CN100533880C - 多级集成光子器件 - Google Patents

多级集成光子器件 Download PDF

Info

Publication number
CN100533880C
CN100533880C CNB2005800052452A CN200580005245A CN100533880C CN 100533880 C CN100533880 C CN 100533880C CN B2005800052452 A CNB2005800052452 A CN B2005800052452A CN 200580005245 A CN200580005245 A CN 200580005245A CN 100533880 C CN100533880 C CN 100533880C
Authority
CN
China
Prior art keywords
laser
etched facet
facet
eam
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005800052452A
Other languages
English (en)
Other versions
CN101002369A (zh
Inventor
A·A·贝法
M·R·格林
A·T·谢里默尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnesium Microwave Technology Co ltd
Original Assignee
BinOptics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BinOptics LLC filed Critical BinOptics LLC
Publication of CN101002369A publication Critical patent/CN101002369A/zh
Application granted granted Critical
Publication of CN100533880C publication Critical patent/CN100533880C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/131Integrated optical circuits characterised by the manufacturing method by using epitaxial growth
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01708Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12104Mirror; Reflectors or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/102In×P and alloy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1017Waveguide having a void for insertion of materials to change optical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1021Coupled cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Nonlinear Science (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

激光器和电吸收调制器(EAM)通过蚀刻刻面过程被整体集成。晶片上的外延层包括用于激光器结构的第一层和用于EAM结构的第二层。激光器和EAM之间的强光耦合使用两个45度旋转反射镜实现,以便使光从激光器波导垂直路由到EAM波导。使用定向有角度的蚀刻过程来形成两个有角度的刻面。

Description

多级集成光子器件
本申请要求2004年4月15日提交的待批美国临时申请No.60/562231的权益,标题为“Multi-Level Integrated Photonic Devices”,其公开内容结合在此作为参考。
技术领域
本发明一般涉及光子器件,尤其涉及改进的多级集成光子器件及其制造方法。
背景技术
过去,通常通过有机金属化学气相沉积(MOCVD)或分子束外延(MBE)在基板上生长合适的分层半导体材料以形成与基板表面平行的活性层来制造半导体激光器。随后,用各种半导体处理工具处理该材料,以产生包含活性层的激光腔,然后将金属接触件附着于半导体材料上。最后,激光反射镜刻面通过劈开半导体材料形成于激光腔的端部,以限定激光光学腔的边缘或端部,从而在接触件上施加偏置电压时所获得的穿过活性层的电流使得光子沿与电流垂直的方向发射离开活性层的有刻面的边缘。
以上过程的改进在美国专利No.4851368中进行了描述,该专利公开了通过掩模和蚀刻工艺形成半导体激光器的反射镜刻面的过程,它允许激光器与其它光子器件整体集成于同一基片上。该专利还教示出:通过以大于腔内光传播的临界角的角度制造刻面,可在光学腔内创建全内反射刻面。在单个基片上制造多个光子器件的能力导致了复杂集成光学回路的制造,其中多个有源和无源光学器件被整体制造于单个基片上。这种光学回路可包含集成的激光器、波导、检测器、半导体光学放大器(SOA)、光栅和其它光学器件。
近来,通过激光器和电吸收调制器(EAM)的集成开发电吸收调制激光器(EML)已极受关注。然而,制造整体EML装置的现有方法通常包括半导体再生长步骤,以分开制造激光器和EAM,但这些方法会导致低产量和高成本。
2002年8月23日提交的并转让给本受让人的共同待批的美国专利申请No.10/226076,标题为“Wavelength Selectable Device”,公开了一种在一基片上结合与激光腔耦合的诸如电吸收调制器的整体结构而不需要外延再生长的方法。
美国专利6483863中描述了集成EML装置的另一示例,其中EML包括两个层叠的不对称波导,第一波导形成一激光器且第二波导形成EAM。这两个波导支持两种不同模式的光传播并被排列成使得第一波导中传播的光经由第一波导中的侧锥体传递入第二波导。然而,由于使用侧锥体将激光器中传播的光传递到EAM波导,就要求这两个波导非常接近,从而导致激光器中每个量子阱的限制因子降低。
确定激光器性能的一项非常重要的因素是激光器中的每一量子阱的限制因子Γ。Γ值较小将引起产生激光的较高阈值电流并导致激光器的散热量较高。降低激光器的散热是现代激光器的关键需求并对于有前途的EML产品是非常重要的。在激光器顶部或p侧上包含金属接触层的典型激光器结构的模态分析指示激光器中每个量子阱的2.55%的限制因子Γ。由于EMA的接近,与美国专利6483863的结构相类似的结构的模态分析(包括激光器和下面的EAM还包括p侧金属)造成1.37%的限制因子,这是需要的,因为通过将激光器波导中传播的光经由激光器波导中的侧锥体传递到EAM波导而形成电吸收调制激光器(EML)。结果是具有次优性能的激光器装置。
发明内容
简单地,本发明涉及改进的集成多层光子光学回路和在基片上的多个外延生长层中制造这些回路的改进过程。如此制造的光学回路直接耦合经过整体形成的蚀刻反射镜刻面,以消除使现有EML元件所需的回路组件紧密靠近的需要,从而提供了改进性能。
更特别地,本发明涉及通过沿着器件的z轴但与x、y和z轴成一定角度地向下蚀刻沟槽而在基片上制造集成光子器件的过程。根据本发明的较佳形式,与x轴(沿着激光腔的长度)成45度角并与y轴成10度角地向下蚀刻沟槽。
在本发明的较佳形式中,多个外延层用于提供基片上的电吸收调制器结构以及EAM结构上的优化激光器结构。在这些结构中制造垂直位移的激光器和EAM器件,以形成EML晶片,其中光在激光器和EAM中平行于半导体基片的平面行进。为光连接这些器件,制造第一有角度的蚀刻刻面以在激光器的输出端处提供第一全内发射,使得沿与半导体平面垂直的方向激光传播离开激光腔。在EAM的输入端制造第二有角度的蚀刻刻面,以接收来自激光器的光并由此耦合这两个光子器件。定向有角度蚀刻过程被用于形成两个有角度的刻面。
过去,如美国专利No.4956844中所教示的,仅垂直向下或仅与一个方向有角度地垂直向下蚀刻沟槽。该专利描述了用于形成两个全内反射刻面的蚀刻过程,线性激光腔的每一端处一个,其中每个刻面相对于活性层平面成45°角放置使得激光腔中传播的光垂直向上引导到一个刻面,造成该刻面处的表面发射,同时激光腔中传播的光被垂直向下引导到另一刻面,在该处光被引导到激光器结构下的高反射率层叠体。
本发明中,通过光刻形成EML晶片上氧化物蚀刻掩模中的窗口以限定蚀刻的位置,随后定位所述晶片与入射离子束成一定角度同时进行深蚀刻以形成限定刻面表面的沟槽,而在一个化学辅助离子束蚀刻(CAIBE)过程中制造用作旋转反射镜的刻面。根据本发明的较佳形式,沿着器件的z轴并与x轴成一定角度地,沿着激光腔的长度并与同x和z轴垂直的y轴成一定角度地,将沟槽向下蚀刻入晶片;例如,以与x轴成45度角并与y轴成10度地蚀刻沟槽。激光器和EAM器件上的所获得的45度旋转反射镜位于彼此分开若干微米的平行平面内并用于有效耦合这两个光学器件,而基本上对存在相邻EAM结构的激光器的限制因子没有不利影响。
附图说明
通过以下较佳实施例的详细描述并结合附图将使本发明的以上和附加目的、特点和优点为本领域熟练技术人员显而易见,其中:
图1示出了根据本发明较佳实施例的用于制造结合激光器和电吸收调制器(EAM)的集成光学回路的两层外延结构。
图2(a)示出了下面没有EAM结构的激光器的模态分析。
图2(b)示出了结合了两个层叠不对称波导的现有技术波导结构的模态分析。
图2(c)示出了根据本发明的波导结构的模态分析。
图3是根据本发明的根据图1结构制造的结合了向下发射激光器和集成表面接收EAM的蚀刻刻面电吸收调制激光器(EML)光学回路的概略部分侧视图。
图4是图3的EML器件的透视图。
图5是图4器件的概略部分俯视图。
图6是从图3的EML的EAM端获得的顶部透视图,它示出了形成本发明的EML器件中的有角度刻面的有角度蚀刻沟槽的位置和方向。
图7是从图3的EML的激光器端获得的顶部透视图,它示出了形成本发明的EML器件中的有角度刻面的有角度蚀刻沟槽的位置和方向。
图8是图3的EML的顶部俯视图,它示出了形成本发明的EML器件中的有角度刻面的有角度蚀刻沟槽的位置和方向。
具体实施方式
现在转到本发明的更详细描述,如图1所示,在晶片或芯片10上制造多个集成的光子器件,以形成具有多种功能的光学回路从而提供用于各种应用的紧凑和廉价的组件。如图所示,晶片10包括共用基片16上的两个外延结构12和14,其中第一结构12位于基片16上且第二结构14位于第一结构顶部之上。缓冲层18可结合于这两个结构12和14之间,用以提供电隔离。此外,选择缓冲层的厚度以光学上优化激光器和EAM结构。例如在单次的有机金属化学气相沉积(MOCVD)生长来生长外延结构12和14以及缓冲器18,且本发明的装置不需要外延再生长。在所示的实施例中,第一结构中的诸层被掺杂以使其用作半导体电吸收调制器(EAM),且第二结构中的诸层被掺杂以形成半导体激光器。在所示实施例中,EAM结构被外延沉积于基片上,随后将激光器结构外延沉积于EAM结构上。
基片16上的结构例如由适当掺杂的III-V化合物或其合金构成。EAM结构12可以是通过诸如有机金属化学气相沉积(MOCVD)的外延沉积工艺沉积的一系列层。通常,这些层可包括InP基片上的以下诸层:p掺杂的InP缓冲层,p掺杂的InGaAs p接触层、p掺杂的InP过渡层、InGaAsP量子阱和阻挡层、n掺杂的InP层和n掺杂的InGaAs n接触层。激光器结构14也可以是在结构12的顶表面上通过MOCVD沉积的一系列层,以形成结合活性区的光学腔。尽管根据本发明可以制造许多类型的激光腔,以下为简便用脊状激光器来描述本发明。通常对于固态脊状激光器,结构14包括由指数低于中心活性区(可由InAlInGaAs基的量子阱和阻挡层构成)所使用材料指数的半导体材料(例如InP)构成的上下包层区。除p掺杂的InGaAs接触层外可在结构14的顶部上形成InGaAsP的过渡层,以提供与顶部金属层的电阻接触,其中顶部金属层沉积于结构14上用于将激光器连接到偏压源。EAM中的量子阱被设计成带隙高于激光器中的量子阱。
结构12和14可共享一些沉积层,使得结构之间的界面为两者共用。
如上所述,激光器中每一个量子阱的限制因子Γ是确定激光器性能时的很重要的因素。Γ值较小将导致产生激光的阈值电流较高并导致激光器的散热量较高。减少激光器的散热量是现代激光器的关键需求,且对于有生命力的EML产品来说是很重要的。图2(a)中的曲线图20中示出了典型激光器结构(例如与美国专利6483863中所述的相类似的激光器)的模态分析,其中下面没有EAM但在激光器的顶部或p侧上包括金属接触层。在该分析中,曲线22示出了激光折射率的变化,而曲线24指示出相应的模态强度。该激光器中每一量子阱的获得的限制因子Γ是2.55%。
与包括激光器和下面的EAM两者并包括p侧金属的美国专利6483863的结构相类似的结构的模态分析导致了图2(b)中的曲线图26所示的解决方案,其中曲线28示出了激光器的折射率的变化且曲线30指示了模态强度的相应变化。在该附图中,由于EAM的所需的接近度,Γ被降低到1.37%,因为通过将激光器波导中传播的光经由激光器波导中的侧锥体传递到EAM波导形成电吸收调制激光器(EML),需要激光器和EAM之间的接近。
图2(c)中的曲线图32示出了根据本发明构造的EML器件的模态分析。如以下详细描述的,该装置不需要激光器和EAM如诸如美国专利6483863中所述的装置中要求的那样的相同接近度,以获得期望的光耦合。因此,通过在激光器和EAM层之间插入缓冲器可获得激光器的改进限制。例如,这是通过在激光器的底部包层中提供2μm的附加厚度来实现的。在图2(c)的这种器件的模态分析中,曲线34示出了激光器的折射率,而曲线36示出了本发明激光器的相应模态强度。这获得了2.55%的限制因子。如该分析所示,对激光器的Γ基本上没有因下面存在EMA引起的不利影响,对于根据本发明构造的装置,基本上没有激光器或EAM的性能的劣化。
图1的晶片10中制造的EML器件40在图3的概略部分侧视图中以及图4的顶部透视图中示出,且参考这些附图。EML40基于结合了从层12中形成的EAM结构44垂直移开的层14中的激光器结构42的设计。如图所示,向下发射的激光器42是具有光学腔或波导的脊型激光器,它包括活性区46和由顶部电极层50覆盖的脊部48。在其输出端,激光器包括上旋转反射镜52,它是存在于一平面内的全内反射刻面。该平面与x-z平面的相交形成了相对于激光器的水平轴(或x轴)154成约45°角并相对于器件的垂直z轴成45°角的一条线。在激光器的相对端处是合适的滤光器60和监控光电检测器62,它在刻面64中以布儒斯特角终止。这种表面发射激光器在2004年10月5日提交的共同待批的美国申请No.10/958069,标题为“Surface Emitting and Receiving Photonic Device”(案卷号BIN-15),转让给本受让人的申请中更详细地描述,其公开内容结合在此作为参考。在本发明的较佳形式中,缓冲层18是作为激光器的一部分的包层的延伸或加厚,如上所述。通过本领域已知的掩模和蚀刻技术在层14中制造激光器。
表面接收EAM44是通过已知掩模和蚀刻技术在晶片的层12中制造的脊型器件,并结合了具有脊部60和活性区62的光学腔或波导。电极层64被置于EAM结构的顶表面上,用于施加调制电压。EAM结构的输入端包括第二或较低旋转反射镜66,它由存在于一平面内的全内发射刻面构成。该平面与x-z平面的相交形成了与装置的x轴54和垂直z轴成约45°角的一条线。旋转反射镜66在上旋转反射镜52之下、与其垂直对准并基本上与之平行,使得激光器中传播的光由反射镜52偏转并从激光器的底部表面发射出。发射的光被引向EAM器件,在该处它由反射镜66沿着EAM腔的轴引导。如下所述,反射镜52和反射镜66两者也与y轴成约10°角,以方便器件的制造。
尽管这里将旋转反射镜66描述为EAM44的一部分,但可以理解,该下旋转反射镜66可以是激光器42的一部分或者可以在激光器42和EAM44之间。
激光器和EAM之间的强光耦合通过两个45度旋转反射镜52和66提供。偏置电压(未示出)按已知方式施加于激光器顶表面上的电极层50,以使激光在激光腔中传播。该光水平地在激光腔中传播,直到它照射到45度的蚀刻刻面52,在该处发生全内发射并引起从激光器的向下发射。实际上,将激光束的方向改变90度。随后,另一45度蚀刻刻面使得激光束改变另一90度并将其引入EAM。也可以使用45度以外的角度;但是,优选临界角以上的角度以允许全内发射。
为清楚,图4的透视图和图5的俯视图示出了没有下面的基片的上述EML结构40,并示出了EAM结构的输出端70。如图所示,EAM优选结合部分发射输出刻面72,它将接收光的一部分作为调制光束74发出并将其余的光反射入折叠腔部分76。该腔部分在其远端处由刻面78终止,该刻面78成布儒斯特角以防止内反射。2004年3月18日提交的共同待批并转让给本受让人的美国专利申请10/802734(案卷号BIN-9)中描述了一种EAM结构,其中通过在远端处提供成布儒斯特角或接近布儒斯特角的刻面而使背反射最小化,其结合在此作为参考。
制造激光器42,以产生单纵模行为,且为此优选采用校准器,如2004年8月31日提交的共同待批的美国专利申请No.10/929718,标题为“Single LongitudinalMode Laser Diode”(案卷号BIN-11)并转让给本受让人的申请中所教示的,其结合在此作为参考。将校准器引入激光器结构以改变光学行为并提供电隔离。用于电隔离的这些校准器的优选位置靠近两个旋转反射镜。然而,通过各种不同的结构可以获得单纵模行为,如本领域的专家已知的,一个这种示例是分布反馈(DFB)激光器。
根据本发明,使用蚀刻沿上述EML器件的z轴并与其成一定角度地向下延伸并且与器件的x轴和y轴两者成一定角度地延伸的沟槽,来制造上下旋转反射镜,使它们位于平行、相互垂直对准的接近地隔开的平面内。过去,这些沟槽仅被垂直向下或仅与一个方向成一定角度地垂直向下蚀刻,如美国专利No.4956844中所教示的。该专利中,蚀刻过程形成两个全内发射刻面,线性激光腔的每一端处一个,其中每个刻面都相对于活性层的平面成45°角地放置。在该器件中,激光腔中传播的光在一个刻面处被垂直地向上引导,获得该刻面处的表面发射,同时腔另一端处的第二刻面将光垂直向下引导到激光器结构下面的高反射率层叠体。然而,本发明中,通过沿着器件的z轴方向并与x、y和z轴成一定角度地蚀刻沟槽来制造平行刻面。
图6-8示出了制造EML器件40的上下刻面的优选过程,现参考这些附图。在这些图的每一个中,示出了前面附图的EML器件40,其中为参考用途包含了虚平面90。该平面90位于激光器结构42的顶部水平处,对应于晶片表面,并且与基片表面及EAM结构和激光器的活性层平行。该平面的z轴与平面和晶片表面垂直;平面90的x轴与激光器的x轴54平行(图3);且平面的y轴与x轴和z轴相互垂直,如图所示。
根据优选过程,利用适当掩模以及诸如CAIBE蚀刻的定向蚀刻,通过蚀刻晶片中的两个平行沟槽92和94形成刻面52和66的所需部分。在第一掩模步骤中,孔96和98形成于晶片表面上与平面90上所示的那些相对应的位置。用诸如SiO2的掩模材料涂布晶片10的表面,并进行光刻随后进行反应离子蚀刻(RIE)以在掩模中形成孔96和98。随后,通过定位样品使得离子束被向下引导,一般沿z轴方向并与其及x和y轴成一定角度,在化学辅助离子束蚀刻器(CAIBE)中蚀刻晶片。这些孔面向离子束,随后形成与离子束平行的沟槽92和94的侧边。该步骤后,沉积SiO2,随后进行光刻再进行RIE和CAIBE,以形成诸如64、72和56的垂直刻面。刻面56优选定位于部分52和EAM44之间。在DFB激光器的情况中,可去除刻面56。形成脊状结构,并添加金属化以提供功能性EML。
CAIBE中的离子方向需与其中具有刻面52的平面平行。在这里的示例中,刻面66在同一CAIBE蚀刻步骤中形成,这样CAIBE中离子的方向需要与其中具有刻面66的平面平行。如图8所示,投射到x-y平面上的离子方向与y轴形成角度θ。出于实践原因,不使用90°的θ,因为沟槽92会与激光器结构42干扰。此外,出于实践原因,不使用0°的θ,因为沟槽深度会变得无穷。θ的优选角度是0°以上90°以下。向下蚀刻沟槽,与刻面52和66的平面相平行。在这里示出的示例中,也蚀刻沟槽,使得θ约为14°角。蚀刻的沟槽延伸相应孔96和98的宽度,以延伸通过旋转反射镜52和66的期望部分,且延伸形成反射镜表面所需的深度。如上所述,在一个CAIBE工艺步骤中通过在氧化物蚀刻掩模中光刻形成孔96和98制造旋转反射镜,以限定蚀刻位置并随后与入射离子束成一定角度地定位晶片。45度旋转反射镜52和66位于相互错开若干微米的平行平面中。沟槽92和94在各孔96和98处的晶片表面处与平面90相交。图8的平面90中示出的平行线aa’和bb’分别标识了孔98和96的一部分侧边。图8中的线cc’与bb’平行并限定了孔96的另一部分侧边,如图8所示。包含线aa’并包含一部分上旋转反射镜52的平面限定角度θ,并确定在CAIBE蚀刻期间晶片必须相对于入射离子束定向的复合角。类似地,由于在本示例中同时形成两个沟槽94和92,包含线cc’并包含一部分下旋转反射镜66的平面也限定一角度θ。用于CAIBE蚀刻的特殊复合角通常是两个设计参数之间的折衷:最大化传播光学模式的重叠和旋转反射镜的表面积以及最小化CAIBE蚀刻的蚀刻深度。
尽管线aa’、bb’和cc’已被示作是直的,但可以理解这些线可以弯曲。此外,尽管线aa’和bb’被示为平行的,它们可以不平行。
尽管EML结构被示为具有向下发射激光器和表面接收EAM,但可以理解,向上表面发射激光器也可使用这里所述的工艺与向下接收EAM耦合。
尽管根据较佳实施例描述了本发明,但可以理解,可进行各种变型和修改而不背离所附权利要求书中阐述的其真实精神和范围。

Claims (7)

1.一种集成光子器件,包括:
基片;
所述基片上的至少第一和第二外延层;
所述第一外延层中制造的至少第一蚀刻刻面器件,所述第一蚀刻刻面器件是激光器;
所述第二外延层中制造的至少第二蚀刻刻面器件,所述第二蚀刻刻面器件是用于接收所述激光器发出的光的电吸收调制器;
通过使用所述第一蚀刻刻面器件和第二蚀刻刻面器件的两个平行的反射蚀刻刻面,使所述第一蚀刻刻面器件和所述第二蚀刻刻面器件光连接。
2.如权利要求1所述的器件,其特征在于,所述第一蚀刻刻面的法线与照射在所述第一蚀刻刻面上的激光之间的角度大于所述第一蚀刻刻面的临界角。
3.如权利要求1所述的器件,其特征在于,所述第一蚀刻刻面与照射在所述第一蚀刻刻面上的激光成45度角。
4.如权利要求3所述的器件,其特征在于,所述第一蚀刻刻面使得所述激光器中的活性区中生成的光沿相对于所述基片垂直的方向发射。
5.如权利要求1所述的器件,其特征在于,所述第一蚀刻刻面和至少第二蚀刻刻面被垂直对准,以使所述激光器中的活性区中生成并由所述第一蚀刻刻面发出的光被引向所述第二蚀刻刻面,用于由所述电吸收调制器接收。
6.如权利要求5所述的器件,其特征在于,所述第一和第二蚀刻刻面位于相对于所述基片的x、y和z轴成一定角度的平行的分开平面中,所述x-y平面是基片的表面,x轴沿着激光腔的长度。
7.如权利要求6所述的器件,其特征在于,所述分开平面与所述x-z平面相交,形成相对于所述x和z轴成45度角的线。
CNB2005800052452A 2004-04-15 2005-04-14 多级集成光子器件 Expired - Fee Related CN100533880C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56223104P 2004-04-15 2004-04-15
US60/562,231 2004-04-15

Publications (2)

Publication Number Publication Date
CN101002369A CN101002369A (zh) 2007-07-18
CN100533880C true CN100533880C (zh) 2009-08-26

Family

ID=35242336

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800052452A Expired - Fee Related CN100533880C (zh) 2004-04-15 2005-04-14 多级集成光子器件

Country Status (7)

Country Link
US (3) US7656922B2 (zh)
EP (1) EP1735884B1 (zh)
JP (1) JP5133052B2 (zh)
CN (1) CN100533880C (zh)
AT (1) ATE488038T1 (zh)
DE (1) DE602005024674D1 (zh)
WO (1) WO2005107026A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257398A (zh) * 2012-02-17 2013-08-21 台湾积体电路制造股份有限公司 制造聚合物波导的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8064493B2 (en) * 2009-06-12 2011-11-22 Binoptics Corporation Surface emitting photonic device
CN102713703A (zh) * 2009-12-10 2012-10-03 奥尼奇普菲托尼克斯有限公司 具有通带波长滤波的波导光学前置放大检测器
CN103222137B (zh) * 2010-10-25 2016-02-03 宾奥普迪克斯股份有限公司 紧凑芯片中的长半导体激光腔
US8577193B2 (en) * 2011-02-03 2013-11-05 Seagate Technology Llc Grating assisted surface emitter laser coupling for heat assisted magnetic recording
US9164247B2 (en) * 2011-07-28 2015-10-20 Source Photonics, Inc. Apparatuses for reducing the sensitivity of an optical signal to polarization and methods of making and using the same
US9995876B2 (en) 2012-07-30 2018-06-12 Hewlett Packard Enterprise Development Lp Configurable compact photonic platforms
US10209445B2 (en) 2012-07-30 2019-02-19 Hewlett Packard Enterprise Development Lp Method of fabricating a compact photonics platform
US9091819B2 (en) 2013-04-11 2015-07-28 International Business Machines Corporation Grating edge coupler and method of forming same
EP3327881A1 (en) * 2016-11-24 2018-05-30 Alcatel Lucent Reliable optoelectrinic devices
US11262605B2 (en) * 2017-08-31 2022-03-01 Lightwave Logic Inc. Active region-less polymer modulator integrated on a common PIC platform and method
US10527786B2 (en) * 2017-08-31 2020-01-07 Lightwave Logic Inc. Polymer modulator and laser integrated on a common platform and method
US10509164B2 (en) * 2017-09-14 2019-12-17 Lightwave Logic Inc. Guide transition device and method
US10511146B2 (en) * 2017-11-14 2019-12-17 Lightwave Logic Inc. Guide transition device with digital grating deflectors and method

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190516A (en) 1981-05-20 1982-11-24 Matsushita Electric Ind Co Ltd Rice cooker
JPS6041526Y2 (ja) * 1981-05-28 1985-12-18 富士通株式会社 導波路インターフエイス
US4851368A (en) * 1987-12-04 1989-07-25 Cornell Research Foundation, Inc. Method of making travelling wave semi-conductor laser
US4956844A (en) * 1989-03-17 1990-09-11 Massachusetts Institute Of Technology Two-dimensional surface-emitting laser array
JPH03266490A (ja) * 1990-03-15 1991-11-27 Victor Co Of Japan Ltd 半導体レーザ装置及びその製造方法
US5132983A (en) * 1990-05-17 1992-07-21 Cornell Research Foundation, Inc. Optical logic using semiconductor ring lasers
JPH04104107A (ja) * 1990-08-23 1992-04-06 Fujitsu Ltd 平面光導波路と光ファイバとの接続構造
DE69414208T2 (de) * 1993-08-31 1999-03-25 Fujitsu Ltd Optischer Halbleitervorrichtung und Herstellungsverfahren
JP3882210B2 (ja) * 1995-09-13 2007-02-14 ソニー株式会社 光学装置
JP2000193921A (ja) * 1998-12-28 2000-07-14 Nec Corp 変調器集積化レ―ザモジュ―ル
US6424669B1 (en) * 1999-10-29 2002-07-23 E20 Communications, Inc. Integrated optically pumped vertical cavity surface emitting laser
US6477285B1 (en) * 2000-06-30 2002-11-05 Motorola, Inc. Integrated circuits with optical signal propagation
US6597718B2 (en) * 2000-07-18 2003-07-22 Multiplex, Inc. Electroabsorption-modulated fabry perot laser
US6483863B2 (en) * 2001-01-19 2002-11-19 The Trustees Of Princeton University Asymmetric waveguide electroabsorption-modulated laser
US6459716B1 (en) * 2001-02-01 2002-10-01 Nova Crystals, Inc. Integrated surface-emitting laser and modulator device
US20020110328A1 (en) * 2001-02-14 2002-08-15 Bischel William K. Multi-channel laser pump source for optical amplifiers
US6803604B2 (en) * 2001-03-13 2004-10-12 Ricoh Company, Ltd. Semiconductor optical modulator, an optical amplifier and an integrated semiconductor light-emitting device
JP2003060311A (ja) * 2001-08-21 2003-02-28 Nippon Telegr & Teleph Corp <Ntt> 半導体光素子及びその製造方法
US6687272B2 (en) * 2001-09-18 2004-02-03 Kabushiki Kaisha Toshiba Semiconductor laser device
US6974966B1 (en) * 2002-01-16 2005-12-13 Vijaysekhar Jayaraman Multiple epitaxial region wafers with optical connectivity
US7194016B2 (en) * 2002-03-22 2007-03-20 The Research Foundation Of The University Of Central Florida Laser-to-fiber coupling
US6885795B1 (en) * 2002-05-31 2005-04-26 Kotusa, Inc. Waveguide tap monitor
US6771682B2 (en) * 2002-08-12 2004-08-03 Infinera Corporation Electrical isolation of optical components in photonic integrated circuits (PICs)
US6792025B1 (en) * 2002-08-23 2004-09-14 Binoptics Corporation Wavelength selectable device
US7099360B2 (en) * 2003-02-03 2006-08-29 Intel Corporation Method and apparatus to generate and monitor optical signals and control power levels thereof in a planar lightwave circuit
US7817702B2 (en) * 2003-03-19 2010-10-19 Binoptics Corporation High SMSR unidirectional etched lasers and low back-reflection photonic device
KR100532260B1 (ko) * 2003-07-08 2005-11-29 삼성전자주식회사 반도체 단일 집적 광송신기
US7835415B2 (en) * 2003-09-03 2010-11-16 Binoptics Corporation Single longitudinal mode laser diode
EP1680843A4 (en) * 2003-10-20 2009-05-06 Binoptics Corp PHOTONIC EQUIPMENT WITH SURFACE EMISSION AND RECEPTION
US7598527B2 (en) * 2004-01-20 2009-10-06 Binoptics Corporation Monitoring photodetector for integrated photonic devices
US7569860B2 (en) * 2004-01-20 2009-08-04 Binoptics Corporation Integrated photonic devices
US7369718B2 (en) * 2004-01-23 2008-05-06 Intel Corporation Package substrate pattern to accommodate optical waveguide
US7447246B2 (en) * 2004-10-27 2008-11-04 Jian-Jun He Q-modulated semiconductor laser
US8064493B2 (en) * 2009-06-12 2011-11-22 Binoptics Corporation Surface emitting photonic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257398A (zh) * 2012-02-17 2013-08-21 台湾积体电路制造股份有限公司 制造聚合物波导的方法
CN103257398B (zh) * 2012-02-17 2016-04-27 台湾积体电路制造股份有限公司 制造聚合物波导的方法

Also Published As

Publication number Publication date
JP2007533159A (ja) 2007-11-15
US7656922B2 (en) 2010-02-02
EP1735884B1 (en) 2010-11-10
US20100099209A1 (en) 2010-04-22
ATE488038T1 (de) 2010-11-15
US8306087B2 (en) 2012-11-06
CN101002369A (zh) 2007-07-18
WO2005107026A2 (en) 2005-11-10
EP1735884A4 (en) 2008-05-14
WO2005107026A3 (en) 2007-03-01
JP5133052B2 (ja) 2013-01-30
US7972879B2 (en) 2011-07-05
US20050232326A1 (en) 2005-10-20
DE602005024674D1 (de) 2010-12-23
US20100091810A1 (en) 2010-04-15
EP1735884A2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
CN100533880C (zh) 多级集成光子器件
US5701379A (en) Waveguide type semiconductor photodetecting device and fabrication process therefor
US9780530B2 (en) Semiconductor integrated optical device, manufacturing method thereof and optical module
US20120183009A1 (en) Horizontal cavity surface emitting laser diodes, vertical illuminated photodiodes, and methods of their fabrication
US5995692A (en) Light emitting device module
US5838854A (en) Integrated optical control element and a method for fabricating the same and optical integrated circuit element and optical integrated circuit device using the same
JPH0750443A (ja) 半導体光集積素子及びその製造方法
US9778428B2 (en) Semiconductor optical device, arrayed semiconductor optical device, and optical module
JPH06216365A (ja) 低損失の一体式受動導波路を備えた、独立してアドレス可能な半導体レーザ
EP0898346B1 (en) Single-transverse-mode 1 x n multi-mode interferometer type semiconductor laser device
US20190310496A1 (en) Optoelectronic device and array thereof
US6163631A (en) Waveguide type optical integrated circuit element and method for fabricating same
US6853666B2 (en) Integrated grating-outcoupled surface-emitting lasers
JP3284994B2 (ja) 半導体光集積素子及びその製造方法
US5763287A (en) Method of fabricating semiconductor optical device
US5396511A (en) Semiconductor laser apparatus with curved waveguide
JPH01164077A (ja) 発光ダイオードおよびその製造方法
JP3116912B2 (ja) 半導体光集積素子及びそれを用いた光通信用モジュール並びに光通信システムとその製造方法
JPH07174927A (ja) 光変調装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: Massachusetts, USA

Patentee after: BINOPTICS Corp.

Address before: American New York

Patentee before: BINOPTICS Corp.

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Massachusetts, USA

Patentee after: Bin O Purdy Kors LLC

Address before: Massachusetts, USA

Patentee before: BINOPTICS Corp.

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Massachusetts, USA

Patentee after: MACOM Technology Solutions Holdings Ltd.

Address before: Massachusetts, USA

Patentee before: M/A-COM technology solutions Holdings Ltd.

TR01 Transfer of patent right

Effective date of registration: 20160829

Address after: Massachusetts, USA

Patentee after: M/A-COM technology solutions Holdings Ltd.

Address before: Massachusetts, USA

Patentee before: Bin O Purdy Kors LLC

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Massachusetts, USA

Patentee after: Magnesium Microwave Technology Co.,Ltd.

Address before: Massachusetts, USA

Patentee before: MACOM Technology Solutions Holdings Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090826

Termination date: 20190414

CF01 Termination of patent right due to non-payment of annual fee