CN100507646C - 显示器件、显示器件驱动方法和装有显示器件的电子设备 - Google Patents
显示器件、显示器件驱动方法和装有显示器件的电子设备 Download PDFInfo
- Publication number
- CN100507646C CN100507646C CNB2005100919163A CN200510091916A CN100507646C CN 100507646 C CN100507646 C CN 100507646C CN B2005100919163 A CNB2005100919163 A CN B2005100919163A CN 200510091916 A CN200510091916 A CN 200510091916A CN 100507646 C CN100507646 C CN 100507646C
- Authority
- CN
- China
- Prior art keywords
- liquid crystal
- display device
- pixel
- signal line
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Liquid Crystal Display Device Control (AREA)
- Liquid Crystal (AREA)
Abstract
液晶板(2)具有对TFT(14)的栅极(20)提供扫描信号的扫描信号线(31)、对TFT的数据电极(24)提供数据信号的数据信号线(32)。所述液晶板还设置形成辅助电容的辅助电容用电极焊盘(27a)和辅助电容布线(33),使其与扫描信号线之间不导入电容耦合。而且,按画面改写频率为30Hz以下驱动所述液晶板。由此,能低耗电地驱动所述液晶板,并且使其依然保持良好的质量。
Description
本申请是申请人于2001年4月24日提交的、申请号为“01812023.7”的、发明名称为“显示器件、显示器件驱动方法和装有显示器件的电子设备”的发明专利申请的分案申请。
技术领域
本发明涉及显示器件的低耗电化。
背景技术
近年来,迅速发展液晶显示器件在字处理器、膝上型个人计算机、袖珍电视机等中的应用。尤其是液晶显示器件中,由于使外部入射光反射来进行显示的反射型液晶显示器件不需要背光,耗电少且为薄型,可减轻重量,引人注目。
已有的反射型液晶显示器件大体上可分为:用于钟表的仅能显示单纯数字和文字符号简单图型的笔段显示方式、作为进一步能适应个人计算机和便携信息终端等复杂显示的纯复合驱动方式以及使用TFT(薄膜晶体管)等有源元件的有源矩阵驱动方式。
作为减少笔段显示方式耗电的方法,日本国公开专利公报“特开平5-232447号(公开日期:1993年9月10日)”揭示了备用时,即成为全白显示或全黑显示的非图像显示时,将公共电极和笔段电极取为同电位,进行稳定的全白显示或全黑显示。
日本国公开专利公报“特开平2-210492号(公开日期:1990年8月21日)”还揭示了备用时使直接驱动液晶的MOS晶体管成为高阻抗状态,从而减少驱动电路耗电的方法。
这些技术都将笔段显示的液晶显示器件作为对象,因而其表意性能限于显示纯数字和文字符号简单图形。因此,不能用于个人计算机和便携信息终端等那样显示复杂信息的设备。
这种驱动方法也难用于矩阵型液晶显示器件。详细而言,例如在图43所示4X4矩阵型液晶显示器件的情况下,分别供给扫描信号线G(0)~G(3)的扫描信号如图44所示,并依次对扫描线G(0)~G(3)施加选择电压。对这样选择的各行,与扫描信号同步地将数据信号供给数据信号线S(0)~S(3),使各象素写入与数据对应的电荷。而且,扫描末行后,如图45所示,经过时间短暂的垂直回扫周期,再次开始从第1行扫描。
所述垂直回扫周期原本是为CRT内部电子枪发出的电子束恢复原位设计的时间,液晶显示器件中完全不需要。然而,为了用液晶显示器件再现常规电视图像等,即为了保持与MTSC等电视图像信号的互换性,设置了该周期。
如上所述,矩阵型液晶显示的情况下,数据信号线必须依次驱动在画面纵向排列的多个象素,不输出相当于上述笔段显示方工的笔段输出那样仅驱动一个象素用的数据信号。因此,对一个画面的最下端行的象素写入电荷后,即使应用笔段显示方式的驱动方法使数据信号线和象素的对置电极保持高阻抗状态,对最下端以外的象素而言,也不保持写入电荷,不能得到稳定的显示。
另一方面,矩阵型液晶显示器件中纯复合驱动方式的器件虽然在2号程度大小下耗电的10mW~15mW,足够小,但存在亮度和对比度低且响应速度慢等基本显示质量问题。使用TFT等的有源驱动方式虽然亮度和对比度高且响应速度快,基本显示质量足够,但即使在2号程度大小下,耗电也有100mW~150mW左右,不能充分满足耗电小。
具体而言,具有采用有源元件的有源矩阵型液晶显示元件的液晶显示器件为了得到良好的活动图像显示。一般将决定把电荷写入各象素的周期的改写频率(即改写一个画面的频率)取为60Hz。有源驱动方式的液晶显示器件中用60Hz这样的高频进行画面改写,其原因在于CRT通常进行脉冲型显示,虽然用瞬间发光的荧光体,却利用人眼残像效应显示一个画面,即使显示静止图像时,也要高速改写画面,该液晶显示器件遵照此高速改写。
有源驱动方式的液晶显示器件中,除上述高速改写外,为了减少显示闪烁,每一扫描信号线使数据信号的电压极性反相。因此,扫描信号驱动器和数据信号驱动器的耗电增大。
为了减少这种液晶显示器件的耗电,本案申请人对“在栅Cs”结构的液晶显示器件将改写频率取为30Hz以下的低频进行驱动,结果显示产生闪烁。这样,证明为了达到低耗电,在栅Cs结构中仅使改写频率降低,显示质量会下降。
对此问题,目前正集中精力进行研究开发,以便耗电足够低,显示质量足够好。
例如日本国公开实用公报“实开昭60-505573号(公开日期:1985年4月9日)”和日本国公开专利公报“特开平10-10489号(公开日期:1998年1月16日)”揭示了减少耗电的方法。这些公报的方法着眼于电视信号发送方法,利用垂直回扫周期不存在数据,在垂直回扫周期停止外围驱动电路动作,谋求减少耗电。
日本国公开专利公报“特开平9-107563号(公开日期:1997年4月2日)”揭示了另一种方法。该方法涉及头戴型显示器的低耗电化,该显示器具有与左右两眼对应的2个液晶板,按场依次立体显示图像。其方法为:一场周期仅驱动一个液晶板,使另一液晶板停止,并且每一场周期交互切换驱动,进行显示。
STD’95征文集第249~252页和日本国公开专利公报“特开平32-271795号(公开日期:1991年12月3日)”提出多场驱动法,作为减少TFT液晶驱动器耗电的方法。该方法将扫描线取为隔开一行或隔开多行,划分成多次,对一个画面进行扫描,并且一次扫描中不使数据信号线的电压极性反相,从而减少数据信号线的驱动器耗电。其目的又在于使各行中发生的亮度变化(即闪烁)按极性相反的相邻行闪烁相互抵消,从而实现总体上无闪烁的显示。
又例如,日本国公开专利公报“特开平6-342148号(公开日期:1994年12月13日”所揭示的方式那样,还有液晶板中采用强介电性液晶,使其具有存储性,降低驱动频率(刷新速率),减少耗电的方法。
然而,在垂直顺扫周期上围驱动电路停止动作的方法,如日本实开昭60-50573号公报所记载那样,垂直回扫周期仅占全部时间的8%左右,并且该周期能减少的耗电不超过约5%。
日本特开平9-107563号公报的方法在整个场周期驱动某一液晶板,从而仅耗电不增加,决不能减少耗电。借助取为左右两眼头戴型显示器,对一方的显示器必然而进行刷新,因而得到闪烁的显示,因而该方法用于直接观看一个液晶板的系统时,容易感到闪烁。
此外,即使多场驱动,也每行发生闪烁,尽管相邻行中相互抵消,实际上还觉察到闪烁,可观看性显著下降。不能说仅降低驱动频率就使耗电充分减少。多场驱动方式中,为了抒一个画面划分成多个子场,并且隔开一行或多行扫描信号线进行扫描,需要将图像暂时存入帧存储器后,读出与驱动扫描信号线对应的信号,难免电路结构复杂。因此,存在外围电路大型化带来成本提高的缺点。
日本特开平6-342148号公报揭示的方法中,由于强介电性液晶基本上是值(黑白)显示,不能进行色调显示,不能显示自然图像,而且,将强介电性液晶制成而板要求高级制板技术,因而难以实现,至今未付诸实用。
这样,已有的矩阵液晶显示器件驱动方法不能在满足亮度、对比度、响应速度、灰度等基本显示质量的状态下,方便地达到分低耗电化。而且,上述已有的矩阵型液晶显示器件妪动方法不能兼顾充分低耗电化和无闪烁高显示质量。这些问题不限于液晶显示器件,矩阵型显示器件,一般来说,也有这些问题。
本发明是鉴于上述已有问题而完成,其目的在于提供满足亮度、对比度、响应速度、灰度等基本显示质量的状态下,能方便地达到充分低耗电化的矩阵型显示器件及其驱动方法。本发明另一目的在于提供能兼顾充分低耗电化和充分抑制闪烁的高显示质量的矩阵型显示器件及其驱动方法。
发明内容
为了达到上述目的,本发明的显示器件包括具有有源矩阵型显示元件,该显示元件具有从扫描信号驱动器供给扫描信号的扫描信号线,从数据信号驱动器按交流驱动供给数据信号的数据信号线以及连接所述扫描信号线和所述数据信号线的象素,同时根据所述扫描信号和所述数据信号,有源元件周期性成为选择状态,并且通过所述有源元件将决定显示状态的电荷写入规定的电容,其中,所述象素各自分别设置对所述电容的辅助电容,使所述辅助电容的电极处于与所述扫描信号线之间不导入电容耦合的位置,还具有可将决定写入上述电荷的周期的改写频率设定为30Hz以下的频率设定装置。
根据上述结构,设置对规定电容的辅助电容,使其电极处于与扫描信号线之间不导入电容耗合的位置,因面该状态下设定利用频率设定装置以30Hz以下的改写频率改写所述电容电荷(即显示元件的画面),则与已有技术那样用在栅Cs结构型成辅助电容时不同,不产生一行以上扫描信号线等扫描信号线的电位变动造成的所述电容电极的电位变动。
借助取为30Hz以下的低频驱动,降低扫描信号频率,充分减少扫描信号驱动器耗电,同时降低数据信号极性反相的频率,充分减少数据信号驱动器耗电。又借助使写入决定显示状态的电荷电容的电极电位不变动,能得到无闪烁的稳定显示质量。
因此,能提供一种具有有源元件的显示器伯,该有源元件可达到低耗电化,并且依然保持良好的显示质量。
为了达到上述目的,本发明的显示器件驱动方法包括,选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号的象素提供数据信号,进行显示,其中,所述驱动方法设置休止周期,该周期是长于对所述画面进行一次扫描的扫描周期的非扫描周期,使全部扫描信号线成为非扫描状态,并且将所述扫描周期与所述休止周期的和取为一个垂直周期。
根据所述方法,每一垂直周期重复扫描周期和长于扫描周期且使全部扫描信号线为非扫描状态的休止周期。例如将扫描周期设定为相当于通常60Hz的时间,则由于存在比该时间长的休止周期也可根据静止图像,活动图像等要显示的图像的活动程度适当设定。休止周期使全部扫描信号线为非扫描状态,因而可降低提供数据信号的频率。
由于存在比扫描周期长的休止周期,垂直扫描频率为低频。因此,有源矩阵型液晶显示器件等能确保亮度、对比度、响应速度、灰度等基本南量等矩阵型显示器件中,能方便且大幅度地减少怀提供数据信号的频率成正比增加的数据信号线驱动器耗电,而不牺牲上述显示质量。
因此,能提供一种矩阵型显示器件的驱动方法,可在满足亮度、对比度、响应速度、灰度等基本质量的状态下,方便地达到充分低耗电化。
为了达到上述目的,本发明的显示器件驱动方法包括,选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号的象素提供数据信号,进行显示,其中,所述驱动方法在扫描一个画面的扫描周期后面,接着设置比该扫描周期长并且使全部扫描信号线为非扫描状态的休止周期,而且所述休止周期使所述数据信号线的电位固定于规定的数据信号线休止电位。
利用上述方法,借助在改写一个画面的扫描周期后设置比扫描周期长的休止周期作为非扫描周期,能方便地减少,与数据信号提供频率成正比增加的数据信号线驱动器(源极驱动器)耗电。
又,借助休止周期使数据信号线电位固定于数据信号线休止周期,可最佳控制休止期的数据信号线电位。即,可使扫描周期和休止周期中,数据信号线电位给象素电极的影响实质上相等。因此,即使设置休止周期,也让象素电极的电位有效值大的固定,能实现无闪烁的显示。
于是,矩阵型显示器件中,可兼顾充分低耗电化和充分抑制闪烁的高质量的显示。
借助以下所示的记载会充分理解本发明的其他目的,特征和优点。在以下参考附图的说明中会明白本发明的好处。
附图简单说明
图1是示出本发明一实施形态所涉及液晶显示器件中液晶板结构的俯视图。
图2是图1中液晶板的A—A线剖视图。
图3是示出本发明一实施形态所涉及液晶显示器件的结构的系统框图。
图4(a)和图4(b)是示出图1中液晶板上一个象素的等效电路的电路图。
图5(a)和图5(b)是示出液晶特性的曲线。
图6是示出TFT的阻断电阻特性的曲线。
图7是说明不能充分保持电荷时象素电极电位变化和反射光强度变化的说明图。
图8(a)和图8(b)是说明液晶板特性评价方法的说明图。
图9(a)至图9(e)是示出液晶板的信号和特性的时序图。
图10是示出作为图1中液晶板的比较例的液晶板结构的俯视图。
图11(a)至图11(e)是示出图10中液晶板的信号和特性的时序图。
图12是示出本发明另一实施形态所涉及液晶显示器件中液晶板结构的俯视图。
图13是图12中液晶板的B-B线剖视图。
图14是示出图12中液晶板结构的俯视图。
图15(a)和图15(b)是分别示出图12中液晶板部分结构的俯视图和侧视图。
图16是说明图15(a)、图15(b)中液晶板部分位置关系的说明图。
图17是说明液晶板的产生的电场状态的说明图。
图18(a)和图18(b)是说明液晶板特性评价方法的说明图。
图19是示出图12中液晶板的变换例的结构的俯视图。
图20是示出图12中液晶板的另一变换例的结构的俯视图。
图21是示出本发明另一实施形态所涉及液晶显示器中液晶板结构的剖面图。
图22是图21中液晶板的俯视图。
图23是示出本发明又一实施形态所涉及有机EL显示器件中有机EL板的结构的俯视图。
图24是图23中有机EL板的EE线剖视图。
图25是示出图23中有机EL板上一个象素的等效电路的电路图。
图26是示出评价本发明一实施形态所涉及液晶显示器件中液晶板特性时用的信号的波形的波形图。
图27是示出本发明一实施形态所涉及液晶显示器件的变形例中液晶板上一个象素的等效电路的电路图。
图28是说明本发明又一实施形态所涉及显示器件驱动方法的时序图。
图29是示出用图28中显示器件驱动方法的显示器件的结构的系统框图。
图30是示出图29中显示器件的数据信号驱动器内部结构的电路图。
图31是示出图29中显示器件的液晶板结构的剖面图。
图32是示出图29中显示器件的液晶板结构的俯视图。
图33(a)和图33(b)是示出图32的等效电路的电路图。
图34是示出液晶特性的曲线。
图35是示出TFT阻断电阻特性的曲线。
图36是说明不能充分保持电荷时象素电极电位变化和反射光强度变化的说明图。
图37(a)和图37(b)是说明液晶板特性评价方法的说明图。
图38(a)至图38(e)是示出图32中液晶板的信号和特性的时序图。
图39是示出图32中液晶板的比较例的结构的俯视图。
图40(a)至图40(e)是示出图39中液晶板的信号和特性的时序图。
图41是示出图31中液晶板的变换例的剖面图。
图42是示出图31中液晶板的变换例的俯视图。
图43是示出矩阵型显示器件结构的框图。
图44是说明已有显示器件驱动方法的时序图。
图45是说明垂直回扫周期的说明图。
图46是示出扫描周期和休止周期中液晶板各驱动信号和光响应的时序图,用于说明本发明又一实施形态的显示器件驱动方法。
图47是示出扫描周期和休止周期中液晶板各驱动信号和光响应的时序图,用于说明本发明又一实施形态的显示器件驱动方法。
图48是示出扫描周期和休止周期中液晶板各驱动信号和光响应的时序图,用于说明本发明又一实施形态的显示器件驱动方法。
图49是说明图46所示显示器件驱动方法的比较例的时序图。
图50是示出扫描周期和休止周期中液晶板各驱动信号和光响应的时序图,用于说明本发明又一实施形态的显示器件驱动方法。
图51是示出采用图46、图50、图56所示显示器件驱动方法的液晶显示器件的结构概况的框图。
图52是示出图51所示液晶显示器件具备的液晶板的结构概况的框图。
图53是示出图51所示液晶显示器件具备的液晶板的结构概况的剖面图。
图54是示出图51所示液晶显示器件具备的液晶板的结构概况的俯视图。
图55是示出图51所示液晶板的等效电路的电路图。
图56是示出扫描周期和休止周期中液晶板各驱动信号和光响应的时序图,用于说明本发明又一实施形态的显示器件驱动方法。
图57是示出图51所示液晶显示器件具备的液晶板另一结构概况的框图。
图58是示出图51所示液晶显示器件具备的液晶板又一结构概况的框图。
实施发明的最佳方式
实施形态1
根据图1至图11说明本发明一实施形态所涉及显示器件如下。
首先,根据本案申请人调查的情况,判明将改写频率取为30Hz以下的低频对在栅Cs结构的液晶显示器件进行驱动时,显示产生闪烁的原因如下。
具有有源元件的液晶显示元件中,将象素的辅助电容电极形态在该象素一行上方的扫描信号线上的“在栅Cs”的情况下,对该一行上方的扫描信号线施加扫描信号时所述象素的象素电极电位变动大。通常改写频率为30Hz以上时,象素电极电位变动所造成的液晶分子响应得到均衡,未觉察,但改频率为30Hz以下,则可觉察液晶分子的响应,产生闪烁,显示质量显著受损。而且,已有技术未对30Hz以下的改写频率优化设计有源元件的电阻值,液晶材料的电阻值和介电常数、各象素的辅助电容,30Hz以下驱动中的闪烁也包含电荷保持欠佳引起的象素电极电位变动部分。因此,判明:为了达到低耗电,在栅Cs结构中仅降低改写频率会使显示质量降低。
本发明的显示器件是根据上述产生闪烁的原因提供的。
图3示出作为本实施形态所涉及显示器件的液晶显示器件1的系统框图。液晶显示器件 1具有液晶板 2、栅极驱动器 3、源极驱动器 4、控制IC的 5、图像存储器6和同步时钟发生电路7。后文详述显示元件,进而详述作为液晶显示元件的液晶板2的细节。作为扫描信号驱动器的栅极驱动器3对液晶板的各扫描信号线输出分别与选择周期和非选择周期相适应的电压扫描信号。作为数据信号驱动器的源极驱动器4将供给所选择扫描信号线上存在的各象素的图像数据作为数据信号,以交流驱动的方式输出到液晶板2的各数据信号线。控制IC5接收计算机等内部所含图像存储器6存储的图像数据,给栅极驱动器3分配栅极启动脉冲信GSP和栅极时钟信号GCK,给源极驱动器4分配RGB的色调数据、源极启动脉冲信号SP和源极时钟信号SCK。
作为频率设定装置的同步时钟发生电路7产生控制IC5从图像存储器6读出图像数据用的同步时钟,以及生成输出的栅极启动脉冲信号GSP、栅极时钟信号GCK、源极启动脉冲信号SP和源极时钟信号SCK用的同步时钟。本实施形态中,在同步时钟发生电路7进行同步时钟频率设定,用于使上述各信号配合液晶板2的画面改写频率。栅极启动脉冲信号GSP的频率相当于上述改写频率,同步时钟发生电路7中,至少可将一个改写频率设定为30Hz以下,也可设定任意多个改写频率,包括30Hz以上。
图3中,同步时钟发生电路7根据从外部输入的频率设定信号M1、M2改变改写频率的设定。频率设定信号数量可任意,但例如这样假设有两种频率设定信号M1、M2,则如表1所示,可设定4种改写频率。
表1
M1 | M2 | 设定频率(Hz) |
H | H | 60 |
H | L | 30 |
L | H | 15 |
L | L | 6 |
改写频率的设定可以如本例那样,使同步时钟发生电路7输入多个频率设定信号,也可使同步时钟发生电路7配备调整改写频率用的电位器或选择该频率用的开关。当然,为了用户设定方便,也可在液晶显示器件1的壳体外周面配备调整改写频率用的电位器或选择该频率用的开关。同步时钟发生电路7只要做成至少可根据外部指示改变改写频率的设定即可。或者,也可设定为配合显示的图像自动切换改写频率。
栅极驱动器3以从控制IC5接收的栅极启动脉冲信号GSP为标记,启动液晶板2的扫描,并且按照栅极时钟信号GCK依次对各扫描信号施加选择电压,源板驱动器4根据从控制IC5接收的源极启动脉冲信号SP,按照源极时钟信号SCK将送来的各象素的灰度数据存入寄存器,并按照下一源极启动脉冲信号SP将灰度数据写入各数据信号线。
图2示出液晶极2的剖面结构。该图相当于后文所述图1的A-A线剖视图。液晶板2是有源矩阵型反射式液晶板,具有两块玻璃基片11、12夹持向列型液晶等的液晶层13,并且玻璃基片12上形成作为有源元件的TFT14...的基本结构。本实施形态中,作为有源元件,采用TFT14或其他的FET的扫描信号在选择周期对栅极施加选择电压,从而源极与漏极之间导通,成为选择状态。2端子元件在后文所述那样的结构中,一个端子施加扫描信号电压,另一个端子通过液晶施加符合数据信号的电压,并且在选择周期借助扫描信号施加的电压和数据信号施加的电压使两个端子导通,成为选择状态。
玻璃基片11的上表面依次设置控制入射光状态用的相位差片15,偏振片16和防反射膜17。玻璃基片11的下表面依次设置RGB滤色片18和作为对置电极的透明公开人电极19。可利用滤色片18进行彩色显示。
各TFT14中,将玻璃基片12上设置的部分扫描信号线作为栅极20,其上形成栅绝缘膜21。在隔着栅极绝缘膜21与栅极20相对的位置设置I型非晶硅层22,并且形成n+型非晶硅层23、23,色围i型非晶硅层22的沟道区。一个n+型非晶硅层23的上表面形成成为部分数据信号线的数据电极24,从另一n+型非晶硅层23的上表面到栅极绝缘膜21中平坦部分的上表面,引出并形成漏极25。漏极25的引出起始部位相反侧的一端如后文所述图1所示那样,连接与辅助电容布线33对置的矩形辅助电容电极焊盘27a。TFT14...的上表面形成层间绝缘膜26,层间绝缘膜26的上表面设置反射电极27b...。反射电极27b...是反射构件,用于利用周围的光进行反射型显示。为了控制反射电极27b...的反射光方向,层间绝缘膜26的表面形成微细凹凸。
各反射电极27b通过层间绝缘膜26中设置的接触孔28与漏极25导通。即,数据电极24所施加并且由TFT14控制的电压从漏极25经接触孔28加到反射电极27b,借助反射电极27b与透明公共电极19之间的电压驱动液晶层13。也就是说,辅助电容电极焊盘27a与反射电极27b相互导通,并且反射电极27b与透明公共电极19之间介入液晶。这样,辅助电容电极焊盘27a和反射电极27b构成象素电极27,并且在象素电极27与透明公共电极19之间介入液晶,形成通过处于选择状态的TFT14写入决定显示状态的电荷的电容(后文将说明的液晶电容CLC)。在透射型液晶显示器件的情况下,配置成相当于上述各电极的象素电极为透明电极。图2的液晶板2在与象素电极27不同的玻璃基片12上设置透明公共电极19,但本实施形态不限于此,也可以是将公共电极设置在与象素电极相同的基片上的“IPS(In Plane Switching:平面内切换)”方式结构的液晶板。
如俯视图2中液晶层13下方的部分的图1所示那样,液晶板2还在玻璃基片12上正交设置供给TFT14中栅极20扫描信号的扫描信号线31...和供给TFT14中数据电极24数据信号的数据信号线32...。然后,设置分别一辅助电容电极焊盘27a...对置的辅助电容布线33...。一对辅助电容电极焊盘27a和辅助电容布线33是形成后文所述象素中对所述电容(液晶电容CLC)的辅助电容(后文所述辅助电容CCS)的电极。在基片12上与扫描信号线31...平行地设置辅助电容布线33...,使其在扫描信号线31...以外的位置,即避开扫描信号线31...的位置,与辅助电容电极焊盘27a...成对,部分包围栅极绝缘膜21,并且该辅助电容布线与辅助电容电极焊盘27a...一起,不在与扫描信号线31...之间导入电容耦合。不受此情况限制,只要辅助电容电极焊盘27a...和辅助电容布线33...设置成处于与扫描信号线31...之间不导入电容耦合的位置即可。反射电极27b...与扫描信号线31...之间的电容耦合,当然小到可忽略。
从液晶板2上方观看,由相邻扫描信号线31、31和相邻数据信号线32、32实质上包围的区间的玻璃基片11和12、晶层13、TFT14、相位差片15、偏振片16、防反射膜17、滤色片18、透明公共电极19、层间绝缘膜26、象素电极27和辅助电容布线33是构成一个象素的要素。各象素连接扫描信号线31...中的一条和数据信号线32...中的一条,根据扫描信号和数据信号,TFT14周期性地成为选择状态,并且通过TFT14将决定显示状态的电荷写入规定的电容(后文所述的液晶电容CLC)。图1中为了明确辅助电容电极焊盘27a...与辅助电容布线33...的位置关系,部分省略反射电极27b...的示出。图1中未示出图2中层间绝缘膜26的表面凹凸。
有源元件采用MIM等2端子元件时,图1中各TFT14的位置上设置2端子元件,使其串联在相当于数据信号线32的数据信号线与相当于象素电极27的象素电极之间。然后,连接各象素设置的对置电极(透明电极),使其通过相当于液晶层13的液晶层与相当于辅助电容电极焊盘27a的辅助电容电极焊盘对置,使相当于扫描信号线31的各扫描信号线不连接2端子元件。这时,一个象素由用相邻扫描信号线和相邻数据信号线包围的区域中与采用TFT14...时的上述液晶板2对应的要素构成。作为3端子元件采用TFT以外的FET时,其结构的电连接与采用TFT14...时相同,因而省略说明。
图4(a)和图4(b)示出有源元件采用3端子元件的上述结构的液晶板2中一个象素的等效电路。图4(a)的等效电路在TFT14上连接用透明公共电极19和反射电极27夹持液晶层13而形成的液晶电容CLC和用辅助电容电极焊板27a和辅助电容布线33夹持栅板绝缘膜21而形成的辅助电容CCS,并且使透明公共电极19和辅助电容布线33成为直流电位固定。图4(b)的等效电路通过缓存器对上述辅助电容CCS的辅助电容布线施加交流电压Vb,通过缓存器对上述液晶电容CLC的透明公共电极19施加交流电压Va。交流电压Va和Vb振幅相等,相位对齐。因此,这时透明公共电极19的电位和辅助电容布线33的电位之间相位相同,产生振动。图4(a)那样将液晶电容CLC与辅助电容CCS并联的结构中,有时通过缓存器施加共用交流电压,代替固定的直流电位。
这些等效电路中,对扫描信号线31施加选择电压,使TFT14为导通状态,并且从数据信号线32对液晶电容CLC和辅助电容CCS施加数据信号。接着,对扫描信号线31施加非选择电压,使TFT14为阻断状态,从而象素保持写入液晶电容CLC和辅助电容CCS的电荷。这里,如上文所述,设置形成象素的辅助电容CCS的辅助电容布线33,使其处于与扫描信号31之间不导入电容耦合的位置,因而忽略上述电容耦合,在图中示出等效电路。这种状态下,利用同步时钟发生电路7,设定用30Hz以下的改写频率改写液晶电容CLC的电荷,即液晶板2的画面,这与已有技术那样用在栅Cs结构形成辅助电容时不同,能抑制图1中一行上的扫描信号线31等扫描信号线电位变动带来的液晶电容CLC的电极(即象素电极27)的电位变动。有源元件为2端子元件时也相同。
借助做成30Hz以下的低频驱动,降低扫描信号频率,充分减少扫描信号驱动器耗电,同时降低数据信号线极性反相的频率,充分减少数据信号驱动器(图1的结构时,为源极驱动器4)的耗电。又借助抑制象素电极27的电位变动,取得无闪烁的稳定显示质量。
下面说明对规模为对角线长0.1m,扫描信号线31为240根,数据信号线32为320X3根的液晶板2的特性进行分析的结果。
图5(a)和图5(b)是对所述液晶层13采用的液晶(メルク公司制造的ZLI-4792)测量写入时间固定为定值(例如100usec)时液晶电压保持率Hr与驱动频率(改写频率)的依存关系所得的结果。图5(b)是图5(a)中驱动频率放大0Hz~5Hz范围的图。图6是测量TFT14的阻断电阻值与TFT14的栅极20的电位(即扫描信号31的电位)的关系所得的结果。液晶电压保持率Hr和TFT14的阻断电阻值不充分,则写入液晶电容CLC和辅助电容CCS的电荷在TFT14的非选择周期泄漏,如图7所示,象素电极27的电位变动,使来自反射电极27b的反射光强度变动。
与象素电极27的电位和来自反射电极27b的反射光强度发生关系的象素电压保持率P表为:
P=V1·exp[-T/{(CLC+CCS)·R}]/V (1)
其中,
V1=V-{V·(1-Hr(T))×CLC/(CLC+CCS)}
T:TFT14的非选择周期
Hr(T):图5(a)、图5(b)中某驱动频率下时间T后的液晶电压保持率。
V:紧接写入后的象素电极27与透明公共电极19的电位差
R:图6中TFT14的阻断电阻值
因此,V1.exp[-T/{(CLC+CCS).R}]为从写入开始经过时间T后象素电极27与透明公共电极19的电位差。
例如,T=180nsec时,如表2那样设定液晶电压保持率Hr(T)、TFT14非选择时的电阻值(即阻断电阻值)R、液晶电容CLC和辅助电容CCS,根据式(1)计算象素电压保持率P,则该P为99.7%。
表2
液晶电压保持率(180msec后) | 99.7% |
TFT非选择时的电阻 | 1.5×10<sup>15</sup>Ω |
液晶电容 | 0.45pF |
辅助电容 | 0.32pF+ |
据此,详细研究象素电压保持率P和闪烁觉察界限。如图8(a)所示,制作评价闪烁用的显示单元41,该单元使内侧形成透明电极43的2块玻璃基片42对合在一起,而且在透明电极43、43之间夹持液晶44。然后,在该闪烁评价用的显示单元41的2个透明电极43、43之间施加来自信号发生装置45的电压。图8(b)示出信号发生装置45输出的电压波形。图8(b)中取Vs为2V,非选择周期T在32msec(约30Hz)~167msec(约6Hz)之间变化,从而使Ve变化。显示单元41先充电到Vs的电压后,电压慢慢下降到Ve。接着,施加-Vs的电压,则显示单元41的亮度发生变化,用眼睛观看确认这时的亮度变化,即闪烁。
这里,Ve/Vs相当于实际液晶显示器1的象素电压保持率P。详细观察象素电压保持率P和闪烁发生状况时,可得表3所示的结果。
表3
像素电压保持率[%] | 闪烁目视评价结果 |
80.0 | × |
82.0 | × |
84.0 | × |
86.0 | △ |
88.0 | △ |
90.0 | ○ |
92.0 | ○ |
94.0 | ○ |
96.0 | ○ |
98.0 | ○ |
100.0 | ○ |
○:未觉察闪烁
△:略为觉察闪烁
×:觉察闪烁
据此,即使将画面改写频率取为30Hz以下,为了具体得到无闪烁到无闪烁的稳定显示质量的液晶板2,只要象素电压保持率P>0.9,使象素电极27...的电位几乎不变动即可。
图9(a)~图9(e)示出以上结构的液晶显示器件1中进行低频驱动时的扫描信号波形,数据信号波形,象素电极27的电位和来自反射电极27b的反射光强度。画面改写频率取为6Hz,即60Hz的1/10。详细而言,相当于6Hz的改写周期167msec中,命名每一扫描信号线31...的选择周期为0.7msec,非选择周期为166.3msec。进行驱动,使每一扫描信号供给数据信号线32...的数据信号极性反相,而且每次改写将极性相反的数据信号输入到一个象素。
图9(a)示出高于所关注象素扫描信号线31一行上方的扫描信号线31输出的扫描信号波形,图9(b)示出所关注象素(本行)扫描信号线31输出的扫描信号波形,图9(c)示出所关注象素的数据信号线32输出的数据信号波形,图9(d)示出所关注象素的象素电极27的电位。图9(a)和图9(d)可知,对一行上方的扫描信号线31施加电压时,象素电极27的电位稳定。这时,测量来自反射电极27b的反射光强度,则如图9(e)所示,几乎未确认到反射光强度变化。即使根据目视的评价结果,也确认能得到无闪烁、均匀且良好的显示质量。
与此相反,如图10所示,对一行上方的扫描信号线31’...使辅助电容电极焊盘27a’...对置,形成辅助电容的已有技术的在栅Cs结构中,取得图11(a)~图11(e)的结果。从图11(a)~图11(d)可知,对一行上方的扫描信号线31’施加选择电压时,象素电极27’的电位变动大。结果,如图11(e)所示,来自反射电极27b’的反射光强度也变动,即使自视评价结果,也觉察到闪烁。
现详细研究扫描信号所造成象素电极的电位变动和闪烁觉察界限。对图8(a)所示的闪烁评价用显示单元41施加图26所示波形的电压。图26中,电压V1是为显示规定灰度而施加到液晶层44(透明电极43、43之间)的电压,相当于液晶显示器件漏极与公共电极之间的实际电压(实际象素电极的电位),即写入决定显示状态的电荷的规定电容上的电压。叠加在电压V1上的脉冲电压Vp是由扫描信号线的扫描产生并且加在V1上的噪声,脉冲电压Vp的重叠部分是电压V1的变动部分。
这里,将电压Vp的脉冲宽度取为50usec,并且电压V1的变化周期(相当于改写规定电容的电荷的周期)在33.3msec~167msec的范围内摆动,使电压Vp的值变化,以确认闪烁状况时,得到表示所示的结果。
表4
Vp[V] | 闪烁目视评价结果 |
2.0 | ○ |
2.2 | ○ |
2.4 | ○ |
2.6 | ○ |
2.8 | ○ |
3.0 | ○ |
3.2 | △ |
3.4 | △ |
3.6 | × |
3.8 | × |
4.0 | × |
○:未觉察闪烁
△:略为觉察闪烁
×:觉察闪烁
由表4可知,为了即使画面改写频率为30Hz以下(变化周期T为33.3msec以上),也得到无闪烁的液晶板,最好扫描带来的象素电极电位变动(规定电容的电压变动)为3V以下。通常的液晶板中,象素电极与本,身的象素所连接的扫描信号线之间的电容耦合小,象素本身在选择周期的扫描带来的象素电极电位变动为2V以下,具体而言,为1V左右。因此,将象素电极的电位变动抑制到3V以下,通常不会由于象素本身所连接扫描信号线来的电压V1的变动部分而觉察闪烁。这点对非选择周期T尤其重要。
所述液晶板2中,辅助电容电极焊盘27a...和辅助电容线33...设置成处于与扫描信号线31...之间不导入电容耦合的位置,因而选择周期当然不用说,即使非选择周期T,也几乎没有因扫描信号线31...伴随提供扫描信号所加的噪声而液晶电容CLC的电压变动。这样,液晶板2在结构上就做成:将所述扫描信号线31...伴随提供扫描信号加到液晶电容CLC的电压上的噪声造成的所述电压变动抑制得小于显示状态觉察闪烁的值(这里为3V以下)。
又,如图10那样,使辅助电容电极焊盘27a’与扫描信号线31’对置而形成液晶电容CLC的辅助电容CCS的在栅Cs结构的液晶板中,通过辅助电容CCS,象素电极27的电位发生变动,其变动部分Vp表为:
ΔVp=ΔVg×CCS/(CCS+CLC+CGD+CSD) (2)
其中,取决于
Vg:扫描信号线电位变动值
GGD:由部分晶体管的扫描信号线31’和象素电极27’形成的电容
CSD:由象素和数据信号线形成的电容。
通常CLC》CGD、CLC》CSD,例如ΔVg=25V时,如果CLC为CCS的10倍以上,则实质上ΔVp<3V。因此,即使具有在栅Cs结构的液晶板的液晶显示器件,结构上做成对应于供给扫描信号线31’...的扫描信号,将所述扫描信号线31’...伴随提供扫描信号加到液晶电容CLC的电压上的噪声造成的所述电压变动抑制到3V以下,即抑制到显示状态不觉察闪烁的值,则也能消除显示的闪烁。
本实施形态中液晶板2那样相当于共极CS结构的TFT驱动液晶板中进行低频驱动,实质上等同于上述闪烁评价用显示单元41(标准显示单元)上施加低频矩形波。以往液晶精制技术不充分,液晶所含杂质浓度较高。则相当于对液晶材料电阻值未作低频改写用的最佳设计。于是,本案申请人将这种杂质浓度较高的液晶用于闪烁评价用显示单元的液晶层44,并施加低频矩形波,则所加电压极性反相时液晶作出响应,确认产生闪动(闪烁)。可认为这是因为极性反相时产生杂质离子移动带来的电荷收发而引起电压降落。在栅CS结构在特定条件下扫描信号通过辅助电容给像某电极电位造成变动大,因而可认为其带来的闪烁大于共极CS结构的闪烁。即使现在也可用“故意掺入杂质的液晶材料”、“管理状态不好的液晶材料”或“管理状态不好的显示单元”再现这种现象。因此,可知以往为了看不到闪烁,必然将极性反相频率做成30HZ以上。
与此相反,当前用“高度精制的液晶材料”,而且用“以高度净化工序制作的显示单元”,则即使在30HZ以下进行驱动,也不能确认到闪烁。可认为这是因为液晶中的杂质移动小到可忽略的程度,不产生极性反相时带来的电荷收发,不引起电压降落。这样,由本案申请人首先确认即使30HZ以下也能进行不产生闪烁的驱动。又,液晶显示器件与CRT不同,是进行经常保持显示状态的“保持型显示”的器件,尽管显示静止图像时不需要进行高速电荷改写,却历来如上文所述那样,形成CRT的高速改写,只能用60HZ这样的高频进行改写。这样,以往未考虑进行低频驱动,也没有办法达到想出用本实施形态的液晶显示器件1中液晶板2那样相当于共极CS的结构或其他结构减小象素电极电位变动并进行30HZ以下的低频驱动。
接着,进而在测量液晶显示器件1的耗电的情况下,将画面改写周期取为16.7msec(改写频率60HZ)进行驱动时,测得该耗电为160mW,与此相对,将画面改写频率取为167msec(改写频率6HZ)进行驱动时,该耗电为40mW,证实大为减少。
作为将改写频率设定为30HZ以下的例子,图9(a)~图9(e)中举出6HZ,但改写频率的较佳范围是0.5Hz~30Hz。从图5(b)可知,液晶电压保持率Hr从每1Hz为97%下降,急剧降低到0.5Hz为约92%。液晶电压保持率Hr变成很小,则引起液晶层13和TFT14漏电,象素电极27的电位变动,亮度变化,产生闪烁。又,离开这里议论的写入1sec~2sec后的时间段中TFT14的阻断电阻值无大变动。因此,显示的闪烁很大程度取决于液晶电压保持率Hr。
据此,将改写频率取为30Hz以下,同时将下限取为0.5Hz,充分抑制象素27的电位变动。由此,能达到充分低耗电化和可靠防止象素闪烁。更好的是将改写频率取为15Hz以下,使耗电极大减少,同时将下限取为1Hz,将象素电极27的电位变动抑制得非常小。由此,能达到非常大的低耗电化和进一步可靠防止象素闪烁。
如上文所述,同步时钟发生电路7可设定多个改写频率。因此,例如在显示静止图像或活动少的图像时,将改写频率设定为30Hz以下,谋求低耗电,而在显示活动图像时,将改写频率设定为30Hz以上,确保显示须畅等,能进行适应所显示图像的状态的改写频率设定。将这样多个改写频率按照15Hz、30Hz、60Hz等那样,分别设定为最低改写频率的整数倍关系,则全部改写频率可用共同的基准同步信号外,还可在切换改写频率时,方便地进行所提供数据信号的抽删或追加。又如本例这样,将改写频率分别设定成最低改写频率的2的整数次方倍,使其为15Hz的2倍的30Hz或15Hz的4倍的60Hz等,则借助以2的整数次方分之一对最低频率逻辑信号分频,可用进行频率变换的普通简单分频电路分别产生各改写频率。
此外,液晶显示器件1中,设定刷新频率,决定将液晶板2的显示内容更新为不同图像的周期,即对各象素提供不同的象素数据进行显示状态更新用的数据信号提周期。下文那样规定改写频率和刷新频率的关系,能改善液晶板2的特性。
例如,将多种改写频率中至少最低频率设定为更新频率的2以上的整数倍,则这样设定的改写频率对前一更新到下一更新的同一显示内容,使基于改写频率的各象素的选择次数为2以上的整数次。如果刷新频率为3Hz,则图9(a)~图9(e)的例子中,改写频率6Hz为刷新频率的2倍,因而从前一更新到下一更新对相同象素可分别提供一次正极性的数据信号和负极性数据信号。因此,对同一显示内容,可利用交流驱动使象素电极27的电位极性反相并进行显示,从而提高液晶极2所用液晶的可靠性。
又,将同步时钟发生电路器做成能配合刷新频率的改变,把至少最低改写频率改变为改变后的刷新频率的2以上的整数倍,则即使改变刷新频率,这样改变设定后的改写频率对液晶极2中的同一显示内容,也能利用交流驱动使象素电极27的电位极性反相并进行显示。因此,能方便地维持液晶极2所用液晶的可靠性。例如,把刷新频率从3Hz改变到4Hz时,可将6Hz、15Hz、30Hz等改写频率改变为8Hz、20Hz、40Hz等改写频率。如果在满足上述状态的条件下,把最低改写频率设定为2以上的整数,如6Hz那样,则刷新频率为1Hz以上,能1秒刷新1次以上画而显示内容,因而液晶板2的画而显示时钟时,能正确地按1秒的间隔进行秒显示。
如上文所述,根据本实施形态的液晶显示器件1,具有有源元件的结构中,能达到低耗电,并且依然保持良好的显示质量。而且,液晶显示器件1具有反射电极276...,是需要背光的反射型液晶显示器件,因而成为30Hz以下驱动带来的低耗电比率大的液晶显示器件。液晶板背面装反射构件的反射型液晶显示器件也是这样。
上述液晶显示器件1可装于以便携电话、袖珍游戏机、PDA(个人数字助理器)、便携电视、遥控器、笔记本型个人计算机、其他便携终端等便携设备为首的电子设备。装于电池驱动的电子设备,则由于装有达到低耗电且依然保持良好显示质量的液晶显示器件1,容易实现长时间驱动。
以上说明了显示元件的例子,该元件利用设置成与扫描信号线不产生电容耦合的辅助电容电极焊盘和辅助电容布线形成对规是电容的辅助电容,但实施本发明时,显示元件不限于该例的结构,作业辅助电容Ccs=0,如果满足式(1),不配置辅助电容布线的结构的显示元件(液晶显示元件)也可。例如可举出的结构为:作为辅助电容Ccs=0时的显示元件,从图1的液晶板2去除漏极25...、辅助电容电极焊盘27a...和辅助电容布线33...,将TFT14...的各漏极连接到反射电极27b。
图27示出这种结构中一个象素的等效电路。图27的等效电路相当于从图4(a)的等效电路去除由辅助电容电极焊盘27a和辅助电容布线33形成的辅助电容Ccs的电路。本实施形态中即使辅助电容Ccs=0时,式(1)中表示的象素电压保持率P也为99.5%,并且将改写频率取为30Hz以下,也得到无闪烁的显示。因此,具有这种结构的显示器件中也能达到低耗电,并且依然保持良好的显示质量。
此外,在象素电极与扫描信号线之间产生电容耦合达到能忽略的程度时,如果满足以下所示的条件,则液晶板结构上形成将扫描信号线伴随提供扫描信号加到液晶电容Clc电压上的噪声变动抑制到显示状态不觉察闪烁的值以下。上述式(2)描述象素电极27’通过辅助电容电极焊盘27’和扫描信号线31’之间的电容(辅助电容Ccs)受到的电位变动。象素电极27’与扫描信号线31’之间的电容随电极间距离、电极间所存在物质的介电常数和电极相对的面积变化。因此,设象素电极27’与扫描信号线31’之间的耦合电容为CGP,则用与式(2)相同的考虑方法能导出顾及耦合电容CGP时的象素电极27’受到的电位变动。
例如,在栅Cs结构的情况下,设辅助电容CCS不包含耦合电容CGP,则式(2)的电容比的分子取为CCS+CGP,分母为CCS+CGP+CLC+GD+CSD时的VP成为象素电极27’的电位变动部分。又例如共极CS结构的情况下,式(2)的电容比的分子为CGP,分母为CCS+CGP+CLC+CGD+CSD时的VP成为象素电极的电位变动部分。再例如不设置辅助电容的结构时,式(2)的电容比的分子为CGP,分母为CGP+CLC+CGD+CSD时的VP成为象素电极的电位变动部分。因此,只要上进VP为一定值以下(上述例子中相当于3V以下),就显示状态不产生闪烁。
如上文所述,液晶板2将辅助电容电极焊盘27a...和辅助电容布线33...设置成处于与扫描信号线31...之间不产生电容耦合的位置。这意味着辅助电容电极焊盘27a...和辅助电容布线33...与扫描信号线31...之间不产生成为上述耦合电容CGP的一部分的电容,扫描带来的VP为一定值以下。又,如上文所述,液晶板2中,反射电极27b...与扫描信号线31...之间的电容耦合小到能忽略的程度。这意味着反射电极27b...与扫描信号线31...之间不产生成为上述耦合电容CGP的一部分的电容,扫描带来的VP为一定值以下。据此,液晶板2的显示不产生闪烁。
实施形态2
用图12至图19说明本发明另一实施形态的显示器件如下,具有与上述实施形态1所用组成要素相同功能的组成要素标注相同的号,省略其说明。
本实施形态的显示器件是将实施形态1中图3说明的液晶显示器件1的液晶板2置换成图12和图13所示显示元件,进而替换成作为液晶显示元件的液晶板51的液晶显示器件。
图13示出液晶板21的剖面结构。图13相当于后文所述图12中B-B线的剖视图。液晶板51是有源矩阵型反射式液晶板,基本结构与液晶板2相同。最上层设置前向散射片52,代替液晶板2的防反射膜17。上表面设置平坦的层间绝缘膜53,代替液晶板2中具有微细凹凸的层间绝缘膜26。还设置平坦的反射电极54b...,代替液晶板2的反射电极27b...。代替辅助电容电极焊盘27a...的辅助电容电极焊盘54a...与反射电极通过设置在与液晶板2中接触孔28...不同的位置的接触孔55...相连,相互导通。这里,将辅助电容电极焊盘54a...和反射电极54b...合在一起做成象素电极54。
图12示出俯视图13的液晶板51中液晶层13往下部分的状态。如图12所示,将各象素的反射电极配置成覆盖在扫描方向作为液晶板51上下方向时驱动一行上方象素的扫描线和驱动一行上方象素的TFT14的上面。还在辅助电容电极焊盘54a中形成辅助电容布线33和辅助电容CCS的部位的上方设置接触孔55。对液晶板51在箭头号丁的方向进行取向处理。
大部分时间分别对扫描信号线31...施加非选择电压。采用非晶硅的有源矩阵液晶显示器件时,该非选择电压通常为-10V左右。为了提高液晶材料的可靠性一般施加通常每一场极性反相的数据信号,即最好对同一象素进行交流驱动。该条件下,用30Hz以下的改写频率进行驱动,则在将各象素的反射电极和驱动一行上方的象素的扫描信号线配置成不对置时,产生具有与象素电极面平行的方向的分量的电场。而且,在数据信号为正极性时和负极性时场强度产生差别。结果,象素电极的边缘(端部)产生反向倾斜域引起的偏斜,有时可觉察闪烁,使显示质量受损。
因此,本实施形态考虑此情况,将各象素的反射电极54b配置成存在与驱动一行上方的象素的扫描信号线31对置的部位。于是,即使在每次改写反射电极54b的数据号进行数据信号极性反相时,该反射电极54b与一行上方象素的扫描信号线31(该象素连接的扫描信号线31)之间也不发生具有与反射电极面平行的方向的分量的电场。因此,能抑制反射电极54b的边缘(端部)产生反向倾斜域引起的偏斜。上述例子中,使反射电极54b与驱动一行上方的象素的扫描信号线31对置,但也可使其与驱动一行下方的象素的扫描信号线31对置。即,只要反射电极54b与驱动和一行上方象素或一行下方象素等本身所属象素的行沿扫描方向的一定朝向相邻的象素的扫描信号线31对置即可。换句话说,可将反射电极54b配置成至少存在与和本身所属象素沿扫描方向的一定朝向相邻的象素连接的扫描信号线31对置的部位。本实施形态使反射电极54b扫描信号线31对置,但将这样配置的反射电极54b原样置换成透光型象素电极,也能得到同样的效果。
还将各象素的反射电极54b配置成存在与驱动一行上方的象素的TFT14对置的部位。利用这种配置,如图12所示,即使作为扫描信号线31的一部分的栅极20从扫描信号线31主体分支,并延伸到TFT14时,也能使反射电极与栅极20对置。因此,反射电极54b与栅极20之间不存在具有与反射电极面平行的方向的分量的电场,因而能抑制反射电极54b边缘产生反向倾斜域引起的偏斜。上述例子中使反射电极54b与驱动一行上方的象素的TFT14对置,但也可使其与驱动一行下方的象素的TFT14对置。即,只要反射电极54b与驱动和身所属象素的行在一定方向相邻的行的象素的TFT14对置即可。换句话说,可将反射电极配置成至少存在对置于与本身所属象素在所述一定方向相邻的象素的TFT14的部位。
利用这种配置,可用称为反射电极54b的同一基片内的层对TFT14的沟道区进行遮光,因而减少光返回到沟道区。借助对沟道区遮光抑制光激历沟道区的载流子,防止非选择周期中TFT14电阻值减小。由此,即使用30Hz以下的改写频率驱动象素,也能缓解电荷保持欠佳引起的亮度变动,得到更加没有闪烁的显示。本实施形态使反射电极54b与TFT14对置,但将该配置的反射电极54b原样置换成非透光型的其他象素电极,也能取得同样的效果。
本实施形态中,如图14所示,在液晶板51有效显示行中作为沿扫描方向的一定朝向的起点侧端部的行的最下行下方,设置空行。空行中设置与扫描信号线31...和辅助电容布线33...同方向延伸的空扫描信号线56、空辅助电容布线57。又在空扫描信号线56与数据信号线32...的交点分别设置TFT58,而且设置通过漏极25连接该各TFT58的辅助电容电极焊盘61a和通过接触孔60连接该焊盘61a的作为有源元件遮光层的反射电极61b。最下行的扫描信号线31和TFT14...与借助空扫描线56选择的反射电极61b...对置。由此,液晶板51在沿扫描方向的上述一定朝向的起点侧端部的行的一步的外侧设置构成将作为有源元件遮光层的象素电极的有效显示行象素的象素的行。换句话说,液晶板51设置一种象素,与上述一定朝向的起点侧端部的象素在所述一定朝向的相反方向相邻,并且构成将作为有源元件遮光层的反射电极61b用于象素电极的有效显示象素。
由于能用反射电极61b...对最下行的TFT14进行遮光,防止非选择周期中该TFT14的电阻值降低。因此,即使用30Hz以下的改写频率驱动象素,也能缓解电荷保持欠佳造成的亮度变动,得到更加没有闪烁的显示。反射电极61b...是非透光型电极,与反射电极54b...同样地由数据信号线32...提供数据信号,因而可作交流驱动。利用对反射电极54b...进行交流驱动,在例如反射电极54b...电连接的TFT58...为阻断状态且反射电极54b...电浮动时等,避免反射电极54b...积存非进行控制的电荷而对液晶施加直流电压。因此,防止反射电极54b...外围的液晶劣化,提高液晶材料可靠性,进而提高显示象素部分的可靠性。
上述例子中,反射电极61b...对最下行的TFT14...进行遮光,但在图14中使液晶极51上下翻转时,使规定所述相邻朝向的“一定朝向”上下翻转,因而对最上行的TFT14...遮光。这样,反射电极61b...对上述一定朝向的起点侧端部的行的TFT14...遮光,也就是对有效显示象素中上述一定朝向的起点侧端部象素的TFT14...遮光。
TFT58...构成在从空扫描信号线56提供扫描信号而成为选择状态时,从数据信号线32...将数据信号传给反射电极61b...,因而最下行的象素也成为结构与其上方的行的象素相同的结构,保持液晶板51在扫描方向的结构的循环连续性。因此,最下行象素与其上方行的象素电压施加状态相同,液晶材料可靠性提高。上述例子中,在液晶板51有效显示行中的最下行的下方设置空扫描信号线56,但图14中使液晶板51上下翻转时,相当于有效显示行中最上行的上方设置空扫描信号线56。这样,空扫描信号线56就配置在上述一定朝向的起点侧端部的行的外侧。
空行的TFT58...在各自的上方设置对TFT58遮光的反射膜62。反射膜62用与反射电极54b、61b相同的材料且相同的工序加以制作。这里,对一个TFT58配置一块孤岛状反射膜62,但也可将反射膜62做成在空扫描信号线58的方向上相连的带状图案,使其能对全部TFT58...遮光。不需要电绝缘。
接着,图13的滤色片18也可备有图15a、图15b所示的遮光层65...。图15a是俯视图,滤色片18的组成部分包含多个红滤色片18(R)的行、绿滤色片18(G)的行和兰滤色片18(B)的行。各遮光层65...分别配置在与扫描信号线31...相同的方向。图15b是图15a中C-C线的剖视图,在玻璃基片11上设置遮光层65...。图16示出该遮光层65...与反射电极54b...的位置关系。如图16所示,遮光层65...分别设置在与反射电极54b...取向处理点近侧边缘(端部)对置的位置(参考图12中的箭头号丁)。图16的例子中,各遮光层65覆盖排在同一行上的反射电极54b...的上述边缘附近5Mm。各遮光层65与上述边缘的至少一部分对置即可。
利用设置这样的遮光层65...,在每一扫描周期使供给数据信号线32...的数据信号极性反相时,能消除反射电极54b...的边缘产生的反向倾斜域造成的偏斜行,可进行均匀的显示。
下面说明其原因。每一扫描周期进行使数据信号极性反相的驱动时,如图17所示,在沿扫描方向相邻的54b、54b之间产生具有扫描方向分量的横向电场,有时会在反射电极54b...的取向处理起点近侧的边缘产生反向倾斜域造成的偏斜行。产生时,用30Hz以上驱动液晶板51,则该偏斜行原样产生,不移动,因而对显示影响不大,但用30Hz以下进行驱动,则在反射电极54b...的边缘与公共透明电极19之间偏离液晶板51表面法线方向倾斜产生的斜电场和上述横向电场因反射电极54b...的电压极性而产生非时移性,使偏斜行移动。因此,设置遮光层65...,以便能遮蔽移动的偏斜行。
遮光层65...中还配置与上述图14中反射电极61b...的整个面对置的层。由此,能防止来自与显示无关的反射电极61b...的反射光返回到液晶板51的反射面而使显示受影响。这样,与图14中反射电极61b...对应的遮光层65就作为防反射光遮光层起作用。
接着,图13中,将层间绝缘膜的厚度设定为3Mm,由该厚度吸收基底的TFT14...和各布线的高低差,使层间绝缘膜53的表面平坦,即反射电极54b...平坦。这样使层间绝缘膜53的表面和反射电极54b...平坦,从而电场不产生畸娈。反射电极54b...存在表面高低差时,在反射电极54b...上涂覆取向膜,则取向膜对应于表面高低差产生厚度不均匀。这时,取向膜在厚度方向进行偏振,但用低频驱动时取向膜偏振方向固定。因此,加在液晶上的电压产生上述偏振分量的偏置,膜厚不均匀,则偏振量变化,电压偏置量也变化。即,象素内各部位中最佳对置电压不同,因而液晶分子对应于极性反相作出响应时,明状态和暗状态局部进行切换。这就是亮度变化,有时会作为闪烁觉察到。
现详细研究电极表面高低差大小与闪烁发生状况的关系。图18a示出用于研究的闪烁评价用显示单元71的剖面结构。闪烁评价用显示单元71的结构为:在相对配置的两块玻璃基片72、72之一的上表面形成光刻胶图案73,该图案上形成透明电极74,该电极上2形成取向膜75,同时另一玻璃基片72的下表面形成平坦的透明电极74和取向膜75,并且在取向膜75、75之间填充液晶层76。光刻胶图案73在一块玻璃基片72用旋镀法涂覆正型光刻胶(东京应化制造的OFPR-800)后,利用光刻形成具有高低差。这里,使旋镀时的转速按500rpm~300rpm变化,取得1.0Mm~0.1Mm范围内的各种高低差。取向膜75利用旋镀法(800rpm)涂覆PVA。
上述结构的闪烁评价用显示单元71中,从信号发生装置77在透明电极74、74之间施加电压。图18(b)示出这时的电压波形。在无高低差的平坦显示单元的情况下,取向膜无厚度偏差,但存在高低差时,取向膜产生厚度不均匀。由此,产生偏振不均匀,因而电场分布不均匀,亮度变化,即觉察到闪烁。从信号发生装置77施加电压的状态下,观察高低差与闪烁发生状况时,得到表5所示的结果。
表5
表面高低差[μm] | 闪烁目视评价结果 |
0.1 | ○ |
0.2 | ○ |
0.3 | ○ |
0.4 | ○ |
0.5 | ○ |
0.6 | ○ |
0.7 | △ |
0.8 | × |
0.9 | × |
1.0 | × |
○:未觉察闪烁
△:略为觉察闪烁
×:觉察闪烁
如表5所示,可确认表面高低差为0.7um,无显著闪烁,该高低差为0.6um以下,闪烁完全未觉察。因此,判明对图3的各反射电极54b...而言,除了与TFT14电接触的部分外的部位,即除了接触孔55上设置的部分外的部位,其表面高低差最好为0.6um以下。在该范围,则象素内取向不混乱,得到更无烁的均匀显示。实际上,对图13的反射电极54b...分别用相移相干显微镜测量高低差时,最大高低差为0.2um。
液晶板51中,如图19所示,能用透明电极81形成反射电极54b...各自的取向处理起点近侧边缘附近处。由此,能消除在透明电极81...上发生图11中所说明反向倾斜域造成的偏斜而影响反射光的偏斜行,可进行均匀的显示。
液晶板51中,如图20所示,也可使配置TFT14的玻璃基片12侧的取向处理方向实质上平行于扫描信号线31...(箭头号K的方向)。由此,玻璃基片12侧的液晶分子取向方向在对图13中所说明横向电场垂直的平面内。用30Hz以下的改写频率对液晶板51进行交流驱动时,对液晶分子的电场的畸变对称。因此,缓解反向倾斜域造成的偏斜行的发生,能得到均匀的显示。
如上所示,根据本实施形态的液晶显示器件,与实施形态1相同,能用30Hz以下的写入频率进行驱劝,谋求低耗电,还同时利用控制取向状态、减少偏斜的影响等,能得到更无闪烁的均匀显示。
实施形态3
用图21和图22说明本发明另一实施形态的显示器件如下。具有与实施形态1和2中用的组成要素相同功能的组成要素标注相同的号,省略其说明。
本实施形态的显示器件是透射反射两用型液晶显示器件,其中用图21和图22所示的液晶板91置换实施形态1中用图3说明的液晶显示器1上的液晶板2。如作为图22中D-D线剖视图的图21所示,液晶柜91构成:省略液晶板2的防反射膜17和滤色片18,同时在玻璃基片的下表面依次设置相位差片15和偏振片16。还在其下方设置背光92。用ITO等透明电极形成辅助电容电极焊盘94a...。
辅助电容电极焊盘94a...上方的部分反射电极94b...设置贯通层间绝缘膜26的透光孔93。该透光孔93反射光的反射区和上述透射区经接28地通,电位相同,可驱动液晶层13。该液晶板91中以偏振光方式进行显示时,为了谋求反射区和透射区的相位差匹配,希望透射区中液晶层13的厚度dT和反射区中液晶层13的厚度dR为dT=2dR。
图22示出俯视图21中液晶层13下方的部分的图。如图2所示,将辅助电容电极焊盘94a和反射电极94b合在一起成为象素电极94。各辅助电容电极焊盘94a形成辅助电容布线33和辅助电容CCS,同时在TFT14的四周大范围地形成。然后,在反射电极94b和层间绝缘膜26中辅助电容电极焊盘94a的上方且避开扫描信号线31和辅助电容布线33上方的位置设置矩形透光孔93。
做成上述结构的液晶反91,则除实施形态1中得到的效果外,还能在周围的光多时作为反射型,周围的光少时点亮背光92,兼用作透射型地利用。实施形态1的液晶板2中,将反射片做成半透明,也能得到同样的效果。
实施形态4
用图23至图25说明本发明另一实施形态的显示器件如下。与上述实施形态1至3中所用组成要素功能相同的组成要素标注相同的号,省略其说明。
本实施形态的显示器件是有机EL显示器件,其中作为显示元件,具有有源矩阵型有机EL板。有机EL板与图3的液晶显示器件1相同,也利用扫描信号驱动器和数据信号驱动器加以驱动。图23示出部分有机EL板的俯视图。与图1相同,有机EL板也在玻璃基片上正交设置从扫描信号驱动器提供扫描信号的扫描信号线101...和从数据信号驱动器提供数据信号的数据信号线102...。图23示出有机EL板的一个象素的结构,一个象素相当于用相邻扫描信号线101、101和数据信号线102、102实质上围成的区域。
各象素在扫描信号线101与数据信号线102相交的边设置写入用晶体管111,作为有源元件,从扫描信号线101提供扫描信号,并且周期性成为选择状态。由TFT等构成写入用晶体管111。图23中,作为TFT,其栅极111a连接扫描信号线101。该TFT的源极111b连接数据信号线102。该TFT的漏极111c被引出,连接作为后文所述辅助电容CCS的电极的辅助电容电极焊盘112。
与辅助电容电极焊盘112相邻设置后文所述有机EL元件114驱动用的晶体管113。由TFT等构成驱动用晶体管113。图23中,作为TFT,其栅极113a连接辅助电容电极焊盘112。各扫描方向或各四周相邻的象素,TFT的沟道极性不同。该TFT沟道的高电位侧电极113b连接对有机EL元件114提供直流电流的电源布线104,恒电位侧电极113c则连接有机EL件114的阳极114a。
作为图23中E-E线剖视图的图24中,示出有机EL元件114的结构。有机EL元件形成夹持在对置的玻璃基片115、116之间,玻璃基片115上设置阳极114a,阳极114a上设置成层间绝缘膜114b具有接触孔114c。层间绝缘膜114b上设置透明电极114d,透明电极114d经接触孔114c与阳极114a导通。透明电极114d上设置二极管型发光层114e,进而在发光层114e上设置由Al等构成的对置电极114f。发光层114e流通的电流因随着驱动用晶体管113中栅极113a所施加电压使沟道流的强度发光。如图23所示,象素内设置开口部117,发光层14e中发生的光在对置电极114a受到反射后,从开口部117出射。
有机EL板中,如图23所示,象素的每一行设置辅助电容布线105,以SiNx等层间绝缘膜为中介,与辅助电容电极焊盘112对置。将辅助电容布线105取为与所述有机EL元件114的对置电极114f同电位。辅助电容电极焊盘112和辅助电容布线105是形成对驱动用晶体管113的栅极电容的辅助电容CCS的电极。辅助电容布线105...在扫描信号线101...以外的位置设置成在玻璃基片115上平行于扫描信号线101...,并且与辅助电容电极焊盘112一起不在与扫描信号线101...之间导入电容耦合。不限于此情况,只要将辅助电容电极焊盘112...和辅助电容布线105...设置成处于与扫描信号线101...之间不导入电容耦合的位置即可。
下面,在图25示出上述结构的象素等效电路,借助扫描信号线101提供的扫描信号,使写入用晶体管111成为导通状态(选择状态)时,与数据信号线102所提供数据信号相应的电荷写入驱动用晶体管113的栅极电容和辅助电容CCS。该栅极电容是通过写入用晶体管111写入决定象素状态的电荷的电容。数据信号驱动器按交流驱动提供数据信号,使扫描方赂相邻或四周相邻的象素之间极性相反。
根据驱动用晶体管113的电位控制驱动用晶体管113的沟道电阻,使有机EL元件114流通与沟道电阻相应的电流,进行发光的画面显示。利用驱动用晶体管113的栅极电容保持电荷到下一选择周期,对发光状态进行保持。
这里,由于设置辅助电容CCS,使辅助电容电极焊盘112和辅助电容布线105处于与扫描信号线101之间不导入电容耦合的位置,即使利用上述各实施形态的同步时钟发生电路7这样的频率设定装置以30Hz以下的改写频率改写栅极电容的电荷,即有机EL显示极的画面,也不产生一行上方扫描信号线101等扫描信号线的电位变动造成的及113a的电位变动。也就是说,在下一选择周期前驱动用晶体管113的沟道电阻不产生变动,能得到稳定的发光状态。这不意味着使有机EL显示板构成将扫描信号线101...随着提供扫描信号加到驱动用晶体管的栅极电容电压上的噪声造成的所述电压变动抑制到显示状态未觉察闪烁的值以下。
因此,在充分减少扫描信号驱动器耗电和数据信号驱动器耗电的状态下,得到无闪烁的稳定显示质量。结果,达到低耗电,并无闪烁的稳定显示质量。结果,达到低耗电,并且依然保持良好的显示质量。
如上文所述,本发明的显示器件结构上也可做成。具有有源矩阵型显示元件,该显示元件具有从扫描信号驱动器供给扫描信号的扫描信号线,从数据信号驱动器按交流驱动供给数据信号的数据信号线以及连接所述扫描信号线和所述数据信号线的象素,同时根据所述扫描信号和所述数据信号,有源元件周期性成为选择状态,并且通过所述有源元件将决定显示状态的电荷写入规定的电容,所述显示器件,其中,所述象素各自分别设置对所述电容的辅助电容,使所述辅助电容的电极处于与所述扫描信号线之间不导入电容耦合的位置,还具有可将决定写入上述电荷的周期的改写频率设定为30Hz以下的频率设定装置。
根据上述结构,设置对规定电容的辅助电容,使其电极处于与扫描信号线之间不导入电容耗合的位置,因面该状态下设定利用频率设定装置以30Hz以下的改写频率改写所述电容电荷(即显示元件的画面),则与已有技术那样用在栅Cs结构型成辅助电容时不同,不产生一行以上扫描信号线等扫描信号线的电位变动造成的所述电容电极的电位变动。
借助取为30Hz以下的低频驱动,降低扫描信号频率,充分减少扫描信号驱动器耗电,同时降低数据信号极性反相的频率,充分减少数据信号驱动器耗电。又借助使写入决定显示状态的电荷电容的电极电位不变动,能得到无闪烁的稳定显示质量。
结果,能提供一种具有有源元件的显示器件,该有源元件可达到低耗电化,并且依然保持良好的显示质量。
本发明的显示器件结构上还可做成:具有有源矩阵型显示元件,该显示元件具有从扫描信号驱动器供给扫描信号的扫描信号线,从数据信号驱动器按交流驱动供给数据信号的数据信号线以及连接所述扫描信号线和所述数据信号线的象素,同时根据所述扫描信号和所述数据信号,有源元件周期性成为选择状态,并且通过所述有源元件将决定显示状态的电荷写入规定的电容,所述显示器件,其中,所述扫描信号线加到所述电容的电压上的噪声造成的所述电压的变动抑制到所述显示状态不觉察闪烁的值以下;还具有可将决定写入上述电荷的周期的改写频率设定为30Hz以下的频率设定装置。
根据上述结构,即使写入决定显示状态的电荷的规定电容的电压叠加来自扫描信号线的噪声,也构成将该噪声造成的所述电容的电压变动抑制到显示状态未觉察闪烁的值以下,因而在该状态下由频率设定装置设定成用30Hz以下的改写频率改写所述电容的电荷,即改写显示元件的画面,由象素的显示状态稳写,能得到无闪烁的稳定显示质量。又借助做成30Hz以下的低频驱动,使扫描信号频率降低,充分减少扫描信号耗电,同时使数据信号极性反相频率降低,充分减少数据信号驱动器耗电。
结果,能提供一种具有有源元件的显示器伯,该有源元件可达到低耗电化,并且依然保持良好的显示质量。
本发明显示器件的所述改写频率可在0.5Hz以上、30Hz以下的范围内。
根据上述结构,使改写频率为30Hz以下,同时下限为0.5Hz,充分抑制从所述电容通过有源元件等的漏电引起的所述电容的电极电位变动。因此,能达到充分低耗电化和可靠防止象素闪烁。
本发明的显示器件的所述改写频率还可在1Hz以上、15Hz以下的范围内。
根据上述结构,将改写频率取为15Hz以下,使耗电极大减少,同时将下限取为1Hz,将像素电极27的电位变动抑制得非常小。由此,能达到非常大的低耗电化和进一步可靠防止像素闪烁。
本发明的显示器件的所述频率设定装置还可设定多个所述改写频率。
根据上述结构,由于能利用频率设定装置设定显示元件画面的多个切换频率,能确保兼顾至少30Hz以下改写频率的设定的低耗电和高显示质量,并且配合图像活动速度进行优先提高显示质量的改写频率设定或优先降低耗电的改写频率设定。
本的显示器件的所述频率设定装置还可将所述改写频率设定为30Hz以上。
根据上述结构,可利用频率设定装置将显示元件的画面改写频率设定为30Hz以上,在例如显示静止图像和普通活动速度的活动图像时,将改写频率设定为30Hz以下,谋求兼顾低耗电化和高质量显示,在显示活动非常快的活动图像时,将频率设定为30Hz以上,确保显示顺畅等。由此,能进行适应所显示图像的状态的改写频率。
本发明的显示器件的所述改写频率可以分别是最低改写频率设定为最低改写频率的整数倍。
根据上述结构,由于分别将改写频率设定为最低改写频率的整数倍的关系,除全部改写频率能使用共同的基准同步信号外,还能在切换频率时简便地进行所提供数据号的抽删或追加。
本发明的显示器件可使所述改写频率分别为最低改写频率的2的整数次方倍。
根据上述结构,由于分别将改写频率设定为最低改写频率的2的整数次方倍的关系,能用按2的整数次方分之一进行分频的普通简单分频电路分别产生各改写频率。
本发明的显示器件可使所述改写频率中至少最低频率是决定更新所述显示元件显示内容的周期的刷新频率的2以上的整数倍。
根据上述结构由于将改写频率中至少最低频率设定为刷频率的2以上整数倍的关系,用这样设定的改写频率对各显示元件中的同一显示内容选择各象素的次数为2以上的整数次。因此,对同一显示内容,可用交流驱动使所述电容的电极电位极性反相并进行显示。尤其是显示元件为液晶显示元件时,使液晶显示元件所用液晶的可靠性进一步提高。
本发明的显示器件所述频率装置在改变所述刷新频率时,可配合改变后的所述刷新频率改变所述改写频率中至少最低频率的设定。
根据上述结构,频率设定装置能配合刷新频率的改变至少将最低改写频率的设定改为改变后的刷新频率的2以上整数倍。因此,即使改变刷新频率,也能用上述那样改变设定后的改写频率对显示元件中同一显示内容利用交流驱动使所述电容的电极电位极性反相。尤其是显示元件为液晶显示元件时,能方便地维持液晶显示元件所用液晶的可靠性。
本发明的显示器件可使所述改写频率中最低的频率为2Hz以上的整数值。
根据上述结构,将最低改写频率设定为2Hz以上的整数值,而且该频率为刷新频率的2以上整数倍,所以刷新频率为1Hz以上。因此,在显示元件的画面显示时钟时,能正确地按1秒间隔进行显示。
本发明的显示器件可使所述显示元件是液晶显示元件,该液晶显示元件所述电容,同时对所述电容设置辅助电容,并且所述电容为CLC,所述辅助电容为CCS,所述有源元件的非选择周期为T,所述改写频率中非选择周期后的液晶电压保持率为Hr(T),改写后的所述象素电极与所述对置电极的电位为R,同时V1=V-{V.(1-Hr(T)XCLC/(CLC+CCS)),则所述液晶显示元件的象素电压保持率表为下式时,
P=V1·exp[-T/{(CLC+CCS)·R}]/V
P>0.9:
根据上述结构,所述显示元件是液晶显示元件,并且通过非选择周期以90%以上的电压保持率保持选择周期中施加的象素电压,即象素电极与对置电极之间的以液晶为中介而形成的电容的电压,象素电极几乎不产生电位变动。因此,能得到特别无闪烁的稳定显示质量。
本发明的显示器件可使所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶元件,配置所述象素电极,使存在至少其本身所属象素的行与沿扫描方向按一定朝向相邻的行的象素的扫描信号线对置的部位。
根据上述结构,所述显示元件是液晶显示元件,并且象素电极至少设置将扫描方向作为液晶显示元件上下方向时1行上方或1行下方等本身所述象素的行与沿扫描横向的一定朝向相邻的行的象素的扫描信号线对置的部位,因而每次改写所属电容的电荷进行数据信号的极性反相时,该象素电极与所述一定朝各相邻的行的象素的扫描信号线之间不产生具有与象素电极面平行的方向的分量的电场。因此,能抑制象素电极边缘(端部)产生反向倾斜域引起的偏斜。
本发明的显示器件可使所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,所述象素电极是非透光型电极,并且配置成存在至少其本身所属象素的行与沿扫描方向按一定朝向相邻的行的象素的有源元件对置的部。
根据上述结构,所述显示元件是液晶显示元件,并且非透光型象素电极至少设置将扫描方向作为液晶显示元件上下方向时1行上方或1行下方等本身所述象素的行与沿扫描横向的一定朝向相邻的行的象素的有源元件对置的部位,因而象素电极对有源元件遮光。由此,减少返回到有源元件的光,防止非选择周期有源元件电阻值降低。因而,即使采用30Hz以下的改写频率驱动象素,也缓解电荷保持欠佳造成的亮度变动,能得到更无闪烁的显示。
本发明的显示器件可使所述液晶显示元件具有对有效显示行中述一定朝向起点侧端部的行的有源元件进行遮光的有源元件遮光层。
根据上述结构,能用有源元件遮光层对将扫描方向作为液晶显示元件上下方向时有效显示的最上行或最下行等上述一定朝向起点侧端部的行的有源元件进行遮光,防止非选择周期该有源元件电阻值降低。因此,即使采用30Hz以下的改写频率驱动象素,也缓解电荷保持欠佳造成的亮度变动,能得到更无闪烁的显示。
本发明的显示器件可使所述液晶显示元件具有遮蔽所述有源元件遮光层的反射光返回所述液晶显示元件的显示面的防反射光遮光层。
根据上述结构,利用防反射光遮光层对来自有源元件遮光层的反射光遮蔽返回液晶显示元件显示面的光,因而能使有源元件遮光结构不影响显示。
本发明的显示器件可使所述有源元件遮光层是该置成在与所述对置电极之间以液晶为中介的电极,所述有源元件遮光层与所述对置电极之间施加交流电压。
根据上述结构,对有源元件遮光层与对置电极之间的液晶进行交流驱动,因而液晶材料的可靠性提高。
本发明的显示器件可使所述液晶显示元件具有象素的行,该象素的行具有的结构为:进一步离开所述一定期向起点侧端部的行的外侧构成将所述有源元件遮光层用于所述象素电极的所述象素。
根据上述结构,有效显示的所述一定取向起点侧端部的行,例如将扫描方向作为液晶显示元件上下方向时成为最上行或最下行的有效显示行,其象素也成为与有效显示的其他行的象素结构相同,能保持液晶显示元件在扫描方向的结构循环连续性。因此,有效显示的沿扫描方向的一定朝向起点侧端部的行的象素与有效显示的其他行的象素电压施加状态相同,液晶材料的可靠性进一步提高。
本发明的显示器件可使所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,所述液晶显示元件具有从显示面侧与所述象素电极取向处理起点邻近侧边缘的至少一部分对置的遮光层。
根据上述结构,所述显示元件是液晶显示元件,并且用遮光膜盖象素电极的所述边缘,因而用30Hz以下的改写频率对液晶显示元件进行交流驱动时,能消除象素电极边缘发生的反向倾斜域造成的偏斜,可得到均匀的显示。
本发明的显示器件可使所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,与所述象素电极的取向处理部连接的部位中,去除与所述有源元件电连接的部分外的部位,其表面高低差为0.6um以下。
根据上述结构,所述显示元件是液晶显示元件,并且在象素电极形成取向模时抑制象素内取向膜厚度不均匀,因而象素内无取向混乱,能得到更无闪烁的均匀显示。
本发明的显示器件可使所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,用透明电极形成所述象素电取向处理起点邻近侧的边边缘(端部)附近处。
根据上述结构,所述显示元件是液晶显示元件,并且用30Hz以下的改写频率对液晶显示元件,产且用30hz以下的改写频率对液晶显示元件进行交流驱动时,在透明电极上产生象素电极边缘发生的反向倾斜域造成的偏斜,因而不存在偏斜行对反射光的影响,能进行均匀的显示。
本发明的显示器件可使所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,配置着所述有源元件的基片侧的取向处理方向实质上平行于所述扫描信号线。
根据上述结构,所述显示元件是液晶显示元件,并且配置有源元件的基片侧的液晶分子取向方向在对相邻象素电极间产生的扫描方向电场垂直的平面内,用30Hz以下的改写频率对液显示元件进行交流驱动时,相对于液晶分子的电场畸变为对称。因此,缓解反向倾斜域造成的偏斜的发生,能得到均匀的显示。
本发明的显示器件可使所述液晶显示元件具有利用周围的光进行反射型显示的反射构件。
根据上述结构,使显示器件成为不需要背光的反射型液晶显示器件,因30Hz以下驱动带来的低耗电的比率增大。
本发明的显示器件可使所述反射构件是所述象素电极的至少一部分。
根据上述结构,反射构件是象素电极的至少一部分,也就是说,象素电极的至少一部分成为反射型液晶显示器件的反射电极,因而不需要另外的反射构件,可减少组成该器件的构件的种类。
本发明的显示器件可使所述反射构件设置透光孔,或者所述反射构件为半透明。
根据上述结构,由于做成反射透射两用型液晶显示器件,能在周围的光多时作为反射型,周围的光少时点亮背光等,兼用作透射型,这样进行利用。
本发明的电子设备装有所述显示器件。由此,所述电子器件装有达到低耗电且原样保持良好显示质量的显示器件,因而便于利用电池做长时间驱动。
实施形态5
根据图28至图45说明本发明另一实施形态如下。本实施形态记述的结构可用于上述实施形态。
本实施形态说明本发明显示器件驱动方法以及用该方法的显示器件和电子设备的一种形态。
图29示出作为本实施形态所涉及显示器件的液晶显示器件201的系统框图。液晶显示器件201具有液晶板202、栅极驱动器203、源极驱动器204、控制IC205和图像存储器206。液晶板202具有由配成矩阵状的象素组成的屏幕、按行依次选择并扫描所述屏幕的多根扫描信号线和对所选择行的象素提供数据信号的多根数据信号线。扫描信号线与数据信号线正交。栅极驱动器203是扫描信号线驱动器,对液晶板202的各扫描信号线输同分别适应于选择周期和非选择周期的电压。源极驱动器204是数据信号线驱动器,对液晶板202的各数据信号线输出数据信号,给所选择扫描信号线上的各象素分别提供图像数据。
控制IC205接收计算机等内部具有的图像存储器206存储的图像数据,给栅极驱动器203分配栅极启动脉冲信号GSP和栅极时钟信号GCK,给源极驱动器204分配RGB色调数据,源极启动脉冲信号SSP,源极锁选通信号SLS和源极时钟信号SCK。全部这些信号都同步,在信号名称前对各信号频率示注f加以表示,则这些频率的关系通常为:
fGSP<fGCK=fSSP<fSCK
在“模似倍速驱动”的情下,fGCK>fSSP。作为图像数据存储装置的图像存储器206,其中存储的图像数据是成为数据信号基础的数据。控制IC205具有执行作为后文所述本实施形态所涉及显示器件的驱动方法的控制装置的功能。
栅极驱动器203以从控制IC205接收的栅极启动脉冲信号GSP为标记启动液晶板202的扫描,并且按照栅极时钟信号GCK依次对扫描信号线施加选择电压。把根据从源极驱动器204,控制IC205接收的源极启动脉冲信号SSP,送来的各象素灰度数据按照源极时钟信号SCK存入寄存器,并按照后续源极锁选通信号SLS把灰度数据写入液晶板202的各数据信号线。
控制IC205的内部具有GSP变换电路207,进行栅极启动脉冲信号GSP的脉冲间隔设定。该GSP脉冲间隔在显示的帧频率为常规60Hz时约等于16.7msec。GSP变换电路207能使例如该栅极启动脉冲信号GSP的脉冲间隔加长到167msec。设一个画面的扫描周期仍为常规的值,则所述脉冲间隔中约9/10成为使全部扫描信号线为非扫描状态的周期。这样,GSP变换电路207能将扫描周期结束后再次对栅极驱动器203输入栅极启动脉冲信号GSP前的非扫描周期设定成长于扫描周期T1。将该长于扫描周期T1的非扫描周期称为休止周期T2。
图28示出作为非扫描周期设定休止周期T2时供给扫描信号线G1~Gn的扫描信号波形。图28中,n=4时,与图44所示已有技术中的扫描信号波形比较,判明将非扫描周期设定为长于扫描周期T1的休止周期T2,代替垂直回归周期,并且表示帧或场的垂直扫描周期变长。
GSP变换电路207中,设定休止周期T2作为非扫描周期时,一个垂直扫描周期等于扫描周期T1与休止周期T2的和。例如将扫描周期T1设定为相当于常规60Hz的时间,则垂直扫描频率为低于30Hz的频率,以便存在休止周期T2长于该T1的关系。扫描周期T1可根据静止图像和活动图像等要显示的图像的活动程度适当设定,并且GSP变换电路207能根据图像内容设定多个非扫描周期。而且,非扫描周期的至少1个为休止周期T2。图29中,GSP变换电路207根据外部输入的非扫描周期设定信号M1、M2改变非扫描周期的设定。非扫描周期设定信号数量可任意,但例如这两种非扫描周期设定信号M1、M2为逻辑信号,则可设定四种非扫描周期。
设置休止周期T2,能减少改写画面的次数,即减少源极驱动器204所输出数据信号的提供频率,因而能减少对象素进行充电的电功率。在液晶显示器件201是能确保亮度、对比度、响应速度、灰度等基本显示质量的有源矩阵型液晶显示器件的情况下,将休止周期T2设定作为非扫描周期,则能方便地充分减少与数据信号提供频率成正比增加的数据信号线驱动器耗电,而不牺牲上述显示质量。
根据上述理由,可对静止图像那样图像不活动的显示和虽为活动图像活动少的显示等,将非扫描周期设定为长休止周期T2。对活动多的动画图像则可将非扫描周期设定为短休止周期T2或比休止周期T2短的非扫描周期。例如,设定为16.7msec这样相对于扫描周期足够短的非扫描周期时,驱动频率相当于常规的60Hz,因而可做足够快的活动图像显示。反之,将非扫描周期设定为3333msec这样的长休止周期T2,则对静止图像和活动少的活动图像可减少改写画面造成的耗电且依然保持基本显示质量。即,能以切换活动图像显示和低耗电显示的方式使用液晶板202。这样,就能根据静止图像和活动图像等显示图像的种类使切换画面的周期变化,因而能对每类显示图像谋求最佳低耗电。
将多个非扫描周期中最短的周期取为T01,并将T01以外的任意周期取为T02时,其关系为:
(T1+T02)=(T1+T01)×N(N为2以上的整数) (3)
即,最好使分别采用多个非扫描周期的帧周期为采用最短非扫描周期T01的帧周期的整数倍。例如,用常规60Hz进行驱动时,T1为16.7msec以下。将T01作为垂直回扫周期按式(3)的关系设定T02,则对用60Hz传送来的画面的数据信号可在整数次中进行1次取样。因此,各非扫描周期可共用同步基准信号,仅增添简单的电路就能作低频驱动,能使新产生的耗电非常小。
非扫描周期的设定可做成本例这样,对GSP变换电路207输入多个非扫描周期设定信号,也可使GSP变换电路207具有调整非扫描周期用的电位器或该周期选择用的开关等。当然,为了用户设定方便,也可在液晶显示器件201的壳体外周面配备非扫描周期调整用的电位器或该周期选择用的开关等。GSP变换电路207结构上做成只要能至少根据外部指示将非扫描周期改变为所希望的设定即可。图29中做成GSP变换电路207编入控制IC205的内部,但不限于此,也可独立于IC205地设置。
下面,说明设定休止周期T2时进一步减少耗电的方法。
栅极驱动器203和源极驱动器204的内部具有逻辑电路,为了内部晶体管工作,分别消耗电力。因此,它们的耗电与晶体管动作次数成比例,并且与时钟频率成比例。休止周期T2使全部扫描信号线为非扫描状态,因而除栅极时钟信号GCK,源极启动脉冲信号SSP,源极时钟信号等的栅极启动脉冲信号GSP外,栅极驱动器203和源极驱动器204不输入其他信号,不需要使栅极驱动器203和源极驱动器204内部的逻辑电路动作,能减少这部分的耗电。
另一方面,源极驱动器204是处理数字数据信号的数字驱动器时,如图30所示,设置灰度发生电路208,根据控制IC205送来的灰度信号,借助采用分压电阻208a和开关元件208b的电阻分割法从电源电压VDD选择灰度电压。然后,由缓存器209进行电流放大,并将其输出到各数据信号线。这样,在源极驱动器204的内部存在灰度发生电路208和缓存器209等经常流通电流的模拟电路。源极驱动器204是处理模拟数据信号的模拟驱动器时,作为模拟电路存在取样保持电路和缓存器。控制IC205内部有时也存在模拟电路。
模拟电路的耗电不依赖于驱动频率,因而仅停止栅极驱动器203和源极驱动器204内部逻辑电路的工作不能减少所述耗电。因此,休止周期T2中停止这些模拟电路,使其断开电源,减少耗电,能进一步减少液晶显示器件201的总耗电。液晶显示器件201是源矩阵型液晶显示器件时,休止期间T2中,从栅极驱动器203对象素施加非选择电压,因而可使停止的模拟电路最低限度不关联栅极驱动器203,也就在休止周期T2与显示无关。至少停止源极驱动器204的模拟电路,使耗电最大的模拟电路停止工作,进而能高效地减少液晶显示器件201的总耗电。
在休止周期T2不对象素写入数据,因而在休止周期T2停止从图像存储器206传送图像数据,能减少该周期中传送图像数据用的耗电。停止传送图像数据时,例如根据所述非扫描周期设定信号M1、M2要求停止图像数据从控制IC205传到图像存储器206。由此,传送停止的控制方便,同时能进一步减少液晶显示器件201的总耗电。
有时具有从外部将图像数据供给液晶显示器件201的图像数据提供装置。这时,如果曾在液晶显示器伯201同倍设置图像存储器206,则有时也可不设置。在这种条件下,可使液晶显示器件201内部设置图像存储器206,则有时也可不设置。在这种条件下,可使液晶显示器件201在休止周期T2停止受理从图像数据提供装置提供的图像数据。例如,根据非扫描周期设定信号M1、M2使控制IC205的输入部对图像数据供应侧为高阻抗。由此,能减少所述输入中的耗电。这样,在休止期T2使液晶显示器件201停止受理图像数据供应装置所供应图像数据的工作,从而能减少休止周期T2中受理图像数据供应用的耗电。因此,能进一步减少液晶显示器件201的总耗电。
下面,说明休止周期T2时达到充分抑制画面闪烁的高显示质量的方法。
首先,在休止周期T2进行使全部数据信号线断开源极驱动器204等工作,对源极驱动器204为高阻抗状态。这样,就能在休止周期T2使各数据信号线电位保持固定。因此,能换制液晶显示器201具有连接数据信号线的象素电极时所产生因数据信号线与象素电极电容耦合面引起的象素电极电位变动等那样,由数据信号线电位变动产生的各象素数据保持状态的变化,充分抑制闪烁。由此,能兼顾充分代耗电化和充分抑制闪烁的高显示质量。
如上所述,为了减少耗电,使源极驱动器204中缓存器209内部的模拟电路停止工作时,缓存器209成为接地电位。于是,连接缓存器209的数据信号线也同时成为接地电位,从而在液晶显示器件201具有连接数据信号线的象素电极这种情况下,产生电容耦合引起的象素电极电位变动。因此,使全部数据信号线为高阻抗状态后,停止休止周期T2中与显示无关的模拟电路的工作。由此,减少模拟电路耗电,同时抑制象素的数据保持状态变化,能达到进一步抑制闪烁的高显示质量。
在成为全部象素数据保持状态变化取平均所得实质上最小电位后,使全部数据信号线为高阻抗状态,则更好。例如,液晶显示器件201的结构为连接数据线的象素电极与其对置电极之间介入液晶,则使全部数据信号线为对置电极施加交流电压时流交流电压振幅中心的电位,从而该信号线在对置电极施加直流电压时与该电极同电位。这种情况下,即使进行交流驱动且正极性电位象素和负极性电位象素电极混合存在,数据信号线与象素电极电容耦合造成的全部象素电荷保持状态变化(即数据保持状态变化)为实质上最小。由此,即使每行象素数据保持状态不同时,作为整个画面,保持状态变化也实质上最小,能达到进步抑制闪烁的高显示质量。
下面,说明上述液晶显示器件201中液晶板202的具体结构例。
图31示出液晶板202的剖面结构。图31相当于后文所述图32中A-A线剖面视图。液晶板202是反射型有源矩阵液晶显示板,具有的基本结构为:两块玻璃基片211、212夹持向列型液晶等液晶层213,并且在玻璃基片212上形成作为有源元件的TFT214...。本实施形态中,作为有源元件,采用TFT,但也可用MIM(金属—绝缘体—金属)和TFT以外的FET。玻璃基片211的上表面依次设控制入射光状态用的相位差片215、偏振片216和防反射膜217。玻璃基片211的下表面依闪设置RGB滤色片218和作为对置电极的透明公共电极219。可利用滤色片218进行彩色显示。
各TFT214中,将玻璃基片212上设置的部分扫描信号线作为栅极220,并且在该电极形成栅极绝缘膜221。在隔着栅极绝缘膜221与栅极220对置的位置设置i型非晶硅层222,并在2个部位形成n+型非晶硅层223,包围i型非晶硅层222的沟道区。1个n+型非晶硅层223的上表面形成成为部分数据信号线的数据电极224,从另一n+型晶硅层223的上表面到栅极绝缘膜221的平坦部上表面引出并形成漏极225。如后文所述图32所示,漏极225的引出线起始处相反侧的一端连接与辅助电容布线对置的矩形辅助电容电极焊盘227a。TFT214...的上表面形成层间绝缘膜226,该膜226的上表面设置反射电极227b...。反射电极227b...是利用周围的光进行反射型显示用的反射构件。为了控制反射电极227b...的反射光方向,层间绝缘膜226的表面形成微细凹凸。
各反射电极227b通过层间绝缘膜226中设置的接触孔228与漏极225导通。即,数据电极224所施加并且由TFT214控制的电压从漏极225通过接触孔228加到反射电极227b,并且利用反射电极227b与透明公共电极219之间的电压驱动液晶层213。即,辅助电容电极焊盘227a与反射电极227b相互导通,而且反射电极227b与公共透明电极219之间介入液晶。这样,辅助电容电极焊盘227a和反射电极227b就构成象素电极227。在透射型液晶型显示器件的情况下,与置成相当于上述各电极的透明电极成为象素电极。
液晶板202如俯视图31中液晶层213下方部分的图32所示,在玻璃基片212上正交设置给TFT214的栅极220提供扫描信号的扫描信号的扫描信号线231...和给TFT214的数据电极224提供数据信号的数据信号线232...。而且,在与各辅助电容电极焊盘227a...之间设置作为形成象素辅助电容的辅助电容电极的辅助电容布线233...。在扫描信号线231...以外的位置上,将辅助电容布线233...平行于扫描信号线231...设置在玻璃基片212上,使其部分隔着栅极绝缘膜221与辅助电容电极焊盘227a...配成对。不限于这种情况,只要避开扫描信号线231...的位置设置辅助电容布线233...即可。图32中,为了明确辅助电容电极焊和肋227a...与辅助电容布线233....的位置关系,部分省略示出反射电极227b...。图31中层间绝缘膜226的表面凹凸在图32未示出。
图33(a)、图33(b)示出上述结构的液晶板202中一个象素的等效电路。图33(a)的等效电路在TFT214上连接用透明公共电极219和反射电极227夹持液晶层213而形成的液晶电容CLC和用辅助电容电极焊板227a和辅助电容布线233夹持栅板绝缘膜221而形成的辅助电容CCS,并且使透明公共电极219和辅助电容布线233成为直流电位固定。图33(b)的等效电路通过缓存器对上述辅助电容CCS的辅助电容布线施加交流电压Vb,通过缓存器对上述液晶电容CLC的透明公共电极219施加交流电压Va。交流电压Va和Vb振幅相等,相位对齐。因此,这时透明公共电极219的电位和辅助电容布线233的电位之间相位相同,产生振动。图33(a)那样将液晶电容CLC与辅助电容CCS并联的结构中,有时通过缓存器施加共用交流电压,代替固定的直流电位。
下面,对以上那种结构的液晶板202说明设置中止周期T2时的驱动方法。
图33(a)、图33(b)的等效电路中,对扫描信号线231施加选择电压,使TFT214为导通状态,并且从数据信号线232对液晶电容CLC和辅助电容CCS施加数据信号。接着,对扫描信号线231施加非选择电压,使TFT14为阻断状态,从而象素保持写入液晶电容CLC和辅助电容CCS的电荷。这里,如上文所述,设置形成象素的辅助电容CCS的辅助电容布线233,使其避开扫描信号线231的位置,因而这些等效电路中可忽略扫描信号线231与辅助电容电极焊盘227a.的电容耦合。因此,这种状态下,利用控制IC205设定休止周期T2,并对液晶板202驱动,则与在栅Cs结构中形成辅助电容时不同,不产生前级扫描信号线电位变动造成的象素电极227的电位变动。
利用设定休止周期T2形成低频驱动,使数据信号极性反相频率降低,能充分减少数据信号驱动器(本情况下为源极驱动器204)的耗电。又借助抑制象素电极227的电位变动,即使设定长休止周期T2,也能得到抑制闪烁的高显示质量。
如图33(a)那样,对透明公共电极219在扫描周期施加直流电压时,使休止周期T2中透明公共电极219与扫描周期T1的该电极同电位。或者,图33(b)那样,在扫描周期T1对透明公共电极219施加交流电压振幅中心的电位。这样,按以上那样在休止周期T2设定透明公共电极219的电位,从而抑制各象素与对置电极的电容耦合引起的象素电极227的电位变动。因此,抑制象素的数据保持状态变化,能达到抑制闪烁的高显示质量。
下面说明一种驱动方法,该方法基于规模为对角线长为0.1m,扫描信号线231为240根,数据信号线232320X3根的液晶板202的特性分析结果。图23是对所述液晶层213采用的液晶(公司制造的ZLI-4792)测量液晶电压保持率Hr与非扫描周期的依存性所得的结果。从图34可知,液晶电压保持率Hr在非扫描周期为2sec时是92%,该周期为3sec时接着大幅度降低到80%。非扫描周期为3sec时,后文所述的象素电压保持率P变成88%,该保持率P为90%以上较佳,因而最好非扫描周期为2sec以下。非扫描周期取为16.7msec,则相对于60Hz的扫描周期16.7msec,该非扫描周期成为休止周期T2。
因此,将休止周期T2取为16.7msec以上,能比60Hz驱动时进一步减少源极驱动器204的耗电,同时成为2sec以下,从而抑制因液晶和TFT214漏电而象素电极227的电位变动造成的闪烁,能达到高显示质量。将休止周期T2取为50msec以上,1sec以下更好。休止周期T2为50msec以上,能大幅度减少源极驱动器204的耗电,同时该周期为1sec以下,可大幅度抑制因液晶和TFT214漏电而象素电极227电位变动造成的闪烁,达到更高的显示质量。
图35是测TFT214的阻断电阻值与TFT214中栅极220的电位(即扫描信号线231的电位)的关系所得的结果。TFT214的阻断电压通常为-10V左右,即使略为变动该值,液晶电压保持率Hr和TFT214的阻断电阻值也不充分,则在TFT214的非选择周期写入液晶电容CLC和辅助电容CCS的电荷显著泄漏,如图26所示,象素电极227的电位变动,来自反射电极227的反射光强度也变动。即,产生闪烁。
因此,在休止周期T2对全部扫描信号线231...施加使TFT214的阻断电阻值为实质上最大的非选择电压。图35中,该非选择电压为-8V左右。在全部扫描信号线231...为非扫描状态的休止周期T2中,由于TFT214的阻断电阻值保持实质上最大,能抑制对数据信号线232漏电造成的象素电极227的电位变动。由此,即使各扫描行象素电位不同时,也能抑制象素的数据保持状态变化,达到抑制闪烁的高显示质量。
这样对全部扫描信号线231...施加非选择电压,从而与上文所述不同,休止周期T2中仍旧对栅极驱动器203和源极驱动器204分配栅极启动脉冲信号GSP以外的信号,即使源极驱动器204对液晶板202的数据信号线输出数据信号时,也保持象素电极227的电位,显示不发生变化。
接着,与象素电极227的电位和来自反射电极227b的反射光强度发生关系的象素电压保持率P表为:
P=V1·exp[-T/{(CLC+CCS)·R}]/V (4)
其中,
V1=V-{V·(1-Hr(T))×CLC/(CLC+CCS)}
T:TFT214的非选择周期
Hr(T):图34中某驱动频率下时间T后的液晶电压保持率。
V:紧接写入后的象素电极227与透明公共电极219的电位差
R:图35中TFT14的阻断电阻值
V1.exp[-T/{(CLC+CCS).R}]为从写入开始经过时间T后象素电极227与透明公共电极219的电位差。如果扫描信号线数量为n,扫描周期为T1,非扫描周期为T0,则可表为非选择周期T=(T1+T0)-T1/n。
例如,T=180nsec时,如表2那样设定液晶电压保持率Hr(T)、TFT214非选择时的电阻值(即阻断电阻值)R、液晶电容CLC和辅助电容CCS,根据式(4)计算象素电压保持率P,则该P为99.7%。
表6
液晶电压保持率(180msec后) | 99.7% |
TFT非选择时的电阻 | 1.5×10<sup>15</sup>Ω |
液晶电容 | 0.45pF |
辅助电容 | 0.32pF+ |
据此,详细研究象素电压保持率P和闪烁觉察界限。如图37(a)所示,制作评价闪烁用的显示单元241,该单元使内侧形成透明电极243的2块玻璃基片242对合在一起,而且在透明电极243、243之间夹持液晶244。然后,在该闪烁评价用的显示单元241的2个透明电极243、243之间施加来自信号发生装置245的电压。图37(b)示出信号发生装置245输出的电压波形。图37(b)中,将Vs取为3V,非选择周期T取为167msec,使Ve变化,闪烁评价用显示单元241首先充电到电压Vs,再使电压慢慢下降,在为Ve。接着,施加电压-Vs,则闪烁评价用显示单元241的亮度变化,用目视确认这时的亮度变化,即闪烁。
这里,Ve/Vs相当于实际液晶显示器201的象素电压保持率P。详细观察象素电压保持率P和闪烁发生状况时,可得表7所示的结果。
表7
像素电压保持率[%] | 闪烁目视评价结果 |
80.0 | × |
82.0 | × |
84.0 | × |
86.0 | △ |
88.0 | △ |
90.0 | ○ |
92.0 | ○ |
94.0 | ○ |
96.0 | ○ |
98.0 | ○ |
100.0 | ○ |
○:未觉察闪烁
△:略为觉察闪烁
×:觉察闪烁
据此,判明:即使设置休止周期2,为了得到无闪烁的液晶显示板202,可使象素电压保持率P>0.9。
图38(a)~图38(e)示出用以上结构的液晶显示器件进行低频驱动时的扫描信号波形、数据信号波形,象素电极227的电位和反射电极227b的反射光强度。将扫描周期T1取为16.7msec,休止周期T2取为167msec。奇数次象素写入中,扫描奇数号扫描信号线(G1、G3...)时数据信号线232...为正极性,扫描偶数号扫描信号线(G2、G4...)时数据信号线232...为负极性,偶数次图像写入则与此相反。这样,就能使扫描行方向上极性反相,各象素输入每次极性反相的交流信号。
图38(a)示出高于所关注象素扫描信号线231前行的扫描信号线231输出的扫描信号波形,图38(b)示出所关注象素(本行)扫描信号线231输出的扫描信号波形,图9(c)示出所关注象素的数据信号线232输出的数据信号波形,图38(d)示出所关注象素的象素电极227的电位。图38(a)和图38(d)可知,对一行上方的扫描信号线231施加电压时,象素电极227的电位稳定。这时,测量来自反射电极227b的反射光强度,则如图38(e)所示,几乎未确认到反射光强度变化。即使根据目视的评价结果,也确认能得到无闪烁、均匀且良好的显示质量。
与此相反,如图39所示,对一行上方的扫描信号线231’...使辅助电容电极焊盘227a’...对置,形成辅助电容的已有技术的在栅Cs结构中,取得图40(a)~图40(e)的结果。从图40(a)~图40(d)可知,对一行上方的扫描信号线231’施加选择电压时,象素电极227’的电位变动大。结果,如图40(e)所示,来自反射电极227b’的反射光强度也变动,即使自视评价结果,也觉察到闪烁。
测量液晶显示器件201的耗电时,不设置休止周期T2而进行驱动的情况下,耗电为160mW,反之,设置休止周期而进行驱动的情况下,耗电为40mW,证实耗电大为减少。将非扫描周期作为垂直回扫周期,用16.7msec进行切换,以改写反复的图像时,能显示图时刻变化的普通活动图像,
如上所述,利用液晶显示器件201,则具有有源元件的结构中,能达到低耗电并且依然保持良好的显示质量。由于液晶显示器件201是具有反射电极227b...而不需要背光的反射型液晶显示器件,30Hz以下驱动带来的低耗电比率大。液晶板背面设置反射构件的反射型液晶显示器件也这样。
接着说明:作为液晶显示器件,是透反射两用型液晶显示器件,其结构中用图41和图42所示的液晶板251置换利用图31和图32说明的液晶显示器件201中的液晶板202。如作为图42中B-B线剖视图的图41所示,液晶板251的我做成省略液晶板202的防反射膜217和滤色片218,同时在玻璃基片212的下表面依次设置相位差片215和偏振片216,又在其下方设置背光252。用ITO(indium tin oxide)等的透明电极形成辅助电容电极焊盘254a,层间绝缘膜226和反射电极254b无微细凹凸。
辅助电容电极焊盘254a上方的部分反射电254b...设置贯通层间绝缘膜226的透光孔253。该透光孔253成为来自背光252的光的透射区。由反射电极227b...反射光的反射区与上述透射区通过接触孔228导通,电位相同,可驱动液晶层213。用该液晶板251以偏振光方式进行显示时,需要谋求反射区与透射区相位差的匹配,因而透射区液晶层213的厚度dT和反射区液晶层213的厚度dR希望成为dT=2dR。
图42示出俯视图41中液晶层213下方部分的图。将辅助电容电极焊盘254a和反射电极254b合在一起成为象素电极254。各辅助电容电极焊盘254a形成辅助电容布线233和辅助电容CCS,同时在TFT214的四周大范围地形成。然后,在反射电极254b和层间绝缘膜226中辅助电容电极焊盘254a的上方且避开扫描信号线231和辅助电容布线233上方的位置设置矩形透光孔253。
做成上述结构的液晶反2511,则除所述液晶显示器件201中得到的效果外,还能在周围的光多时作为反射型,周围的光少时点亮背光252,兼用作透射型地利用。液晶板2中,将反射片做成半透明,也能得到同样的效果。
以上阐述了本实施形态的显示器件驱动方法和采用该方法的显示器件,但作为显示器件,不限于有源矩阵液晶显示器件,也可以是纯复合液晶显示器件,EL(Electro Luminescence)显示器件,PDP(Plasma Display Pamel)、Giricon等。便携电话,袖珍液戏机,PDA(个人数字助理器)、便携电视机、遥控器、笔记本型个人计算机、其他便携终端等便携设备为首的各种电子设备可装上述显示器件。这些电子器件用电池驱动,装有谋求低耗电且依然保持良好显示质量的显示器件,便于长时间驱动。
如上所述,本发明的显示器件驱动方法可以是一种显示器件驱动方法,选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号的象素提供数据信号,进行显示,其中,所述驱动方法设置休止周期,该周期是长于对所述画面进行一次扫描的扫描周期的非扫描周期,使全部扫描信号线成为非扫描状态,并且将所述扫描周期与所述休止周期的和取为一个垂直周期。
根据所述方法,每一垂直周期重复扫描周期和长于扫描周期且使全部扫描信号线为非扫描状态的休止周期。例如将扫描周期设定为相当于通常60Hz的时间,则由于存在比该时间长的休止周期也可根据静止图像,活动图像等要显示的图像的活动程度适当设定。休止周期使全部扫描信号线为非扫描状态,因而可降低提供数据信号的频率。
由于存在比扫描周期长的休止周期,垂直扫描频率为低频。因此,有源矩阵型液晶显示器件等能确保亮度、对比度、响应速度、灰度等基本南量等矩阵型显示器件中,能方便且大幅度地减少怀提供数据信号的频率成正比增加的数据信号线驱动器耗电,而不牺牲上述显示质量。
因此,能提供一种矩阵型显示器件的驱动方法,可在满足亮度、对比度、响应速度、灰度等基本质量的状态下,方便地达到充分低耗电化。
本发明的显示器件驱动方法还可从多个种类中设定含所述休止周期的非扫描周期。
根据上述方法,能按多个种类切换含休止周期的非扫描周期,因而可根据静止图像和活动图像等显示图像的种类使画面改写周期变化。
本发明的显示器件驱动方法还可使所述扫描周期取为T1,多个所述非扫描周期中最短的周期取为T01,T01以外的任意周期取为T02时,满足以下关系:
(T1+T02)=(T1+T01)×N(N为2以上的整数)
根据上述方法,使分别采用多个非扫描周期的帧周期为采用最短非扫描周期的帧周期的整数倍。例如,用常规60Hz进行驱动时,T1为16.7msec以下。将T01取为回扫周期,按上式的关系设定T02,则可对用60Hz传送来的画面数据信号在整数次传送中进行一次取样。
因此,各非扫描周期可共用基准同步信号,仅增添简单的电路就能进行低频驱动,可使新产生的耗电非常小。
本发明的显示器件驱动方法还可使所述显示装置具有存储成为所述数据信号的基础的图像数据的图像数据存储装置时,所述休止周期停止传送来自所述图像数据存储装置的所述图像数据。
根据上述方法,休止周期停止从图像数据存储装置传送图像数据,因而能减少休止周期中传送图像数据的耗电。由此,能进一步减小显示器件总耗电。
本发明的显示器件驱动方法还可在具有对所述显装置提供成为所述数据信号的基础的图像数据的图像数据提供装置时,所述休止周期使所述显示装置停止受理从所述图像处理提供装置提供的所述图像数据的动作。
根据上述方法,休止周期使显示器件停止受理图像数据提供装置所提供图像数据的动作,因而休止周期中能减少受理图像数据供应的耗电。由此,可进一步减少显示器件总耗电。
本发明的显示器件驱动方法可使所述休止周期停止与显示无关的模拟电路的动作。
根据上述方法,停止数据信号线驱动器及其控制电路等所含摸拟电路中在休止周期与显示无关的模拟电路的动作。因此,能减少经常耗电的电路和的耗电,可进一步减少显示器件总耗电。
本发明的显示器件驱动方法可使所述休止周期至少停止所述数据信号线驱动器的模拟电路的动作。
根据上述方法,休止周期至少停止耗电最大的模拟电路的动作,因而能有效减少显示器件总耗电。
本发明的显示器驱动方法可在所述休止周期中使所述全部数据信号线对驱动全部数据信号线的数据信号驱动器为高阻抗状态。
根据上述方法,休止周期进行使全部数据信号线断开数据信号驱动器等工作,对数据信号驱动器为高阻抗状态,因而休止周期中各数据信号线的电位能保持固定。因此,能抑制具有连接数据信号线的象素电极那样的液晶显示器件中所产生数据信号线与象素电极是电容耦合引起的象素电极电位变动等那样,数据信号线电位变动所产生各象素数据保持状态的变化,从而充分抑制画面闪烁。由此,能提供兼顾充分低耗电和充分抑制闪烁的高显示质量的矩阵型显示器件驱动方法。
本发明的显示器件驱动方法还可在所述休止周期使所述全部数据信号线成为高阻抗状后,停止与显示无关的模拟电路和的动作。
根据上述方法,在全部数据信号线为高阻抗状态后停止与休止周期的显示无关的模拟电路的动作,因而休止周期能避免数据信号线通过模拟电路成为接地电位。因此,减少模拟电路耗电,同时抑制象素的数据保持状态变化,能达到进一步抑制闪烁的高显示质量。
本发明的显示器件驱动方法可使所述休止周期至少停止所述数据信号线驱动器的模拟电路的动作。
根据上述方法,休止周期至少停止耗电最大的模拟电路的动作,因而能有效减少显示器件总耗电。
本发明的显示器件驱动方法可在使所述全部数据信号线为高阻抗状态前,将所述全部数据信号线取为全部象素数据保持状态的变化进行平均所得实质上最小的电位。
根据上述方法,全部数据信号线取为全部象素数据保持状态变化取平均所得实质上最小电位后,成为高阻抗状态。例如,连接数据号线的象素电极与其对置电极之间介入液晶的液晶显示器件中,使全部数据信号线为对置的液晶显示器件中,使全部数据信号线为对置电极施加交流电压时该交流电压振幅中心的电位,对置电极施加直流电压时与对置电极电位相同。这时,即使交流驱动中混合存在正极性相位的象素和负极性相位的象素,数据信号线与象素电极电容耦合造成的全部象素电荷保持状态变化(即数据保持状态变化)也平均实质上最小。
由此,即使每行象素数据保持状态不同时,作为整个画面,数据保持状态的变化也实质上最小,能达到进一步抑制闪烁的高显示质量。
本发明的显示器件可具有控制装置,该控制装置执行一种选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号线的象素提供数据信号,进行显示,其中,所述驱动方法设置休止周期,该周期是长于对所述画面进行一次扫描的扫描周期的非扫描周期,使全部扫描信号线成为非扫描状态,并且将所述扫描周期与所述休止周期的和取为一个垂直周期。
根据上述结构,能提供一种矩阵型显示器件,该器件在满足亮度、对比度、响应速度、灰度等基本显示质量的状态下,能方便地谋求充分低耗电。
本发明的显示器件可使所述控制装置执行一种显示器件驱动方法,该方法在所述休止周期中使所述全部数据信号线对驱动全部数据信号线的数据信号驱动器为高阻抗状态。
根据上述结构,能提供可兼顾充分低耗电和充分抑制闪烁的高显示质量的矩阵型显示器件。
本发明的显示器件驱动方法可以是一种显示器件驱动方法,选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号线的象素提供数据信号,进行显示,其中,所述驱动方法设置休止周期,该周期是长于对所述画面进行一次扫描的扫描周期的非扫描周期,使全部扫描信号线成为非扫描状态,并且将所述扫描周期与所述休止周期的和取为一个垂直周期。该显示器年是所述显示器件是具有液晶显示元件的液晶显示器件,该液晶显示元件将象素排列成矩阵状,该象素通过借扫描信号线提供的扫描信号成为选择状态的源元件,将基于数据信号线所提供数据信号的电荷周期性地写入在象素电极与对置电极之间以液晶为中介而形成的电容。
根据上述方法,能提供一种矩阵型显示器件,该器件在满足亮度、对比度、响应速度、灰度等基本显示质量的状态下,能方便地谋求充分低耗电。
本发明的显示器件驱动方法可在所述休止周期中使所述全部数据信号线对驱动全部数据信号线的数据信号驱动器为高阻抗状态。
根据上述方法,能提供可兼顾充分低耗电和充分抑制闪烁的高显示质量的有源矩阵型液晶显示器件驱动方法。
本发明的显示器件的驱动方法也可在所述休止周期使所述对置电极在所述扫描周期对所述对置电极施加直流电压时与所述扫描周期的所述对置电极同电位,在所述扫描周期对所述对置电极施加交流电压时为所述交流电压振幅中心的电位。
根据上述方法,休止周期如以上所述那样设定对置电极的电位,从而抑制各象素与对置电极电容耦合造成的象素电极电位变动。因此,能抑制象素的数据保持状态变化,达到抑制闪烁的高显示质量。
本发明的显示器件驱动方法可在所述休止周期对全部扫描信号线施加使所述有源元件的阻断电阻值成为实质上最大的非选择电压。
根据上述方法,在全部扫描信号线成为非扫描状态的休止周期中,使有源元伯的阻断电阻值保持实质上最大,因而抑制对数据信号线漏电造成的象素电极电位变动。因此,即中扫描信号线象素电位不同时,也能抑制象素的数据保持状态变化,达到抑制闪烁的高显示质量。
本发明的显示器件驱动方法可将所述休止周期取为16.7msec以上,2sec以下。
根据上述方法,将休止周期取为相当于60Hz的扫描周期以上的16.7msec以上,能减少数据信号线驱动器耗电。又使休止周期为2sec以下,能抑制因液晶和有源元件漏电而象素电极电位变动造成的闪烁,达到高显示质量。
本发明的显示器件驱动方法还可将所述休止周期取为50msec以上,1sec以下。
根据上述方法,将休止周期取为50msec以上,能大幅度减少数据信号线驱动器耗电。又使休止周期为1sec以下,能大量抑制因液晶和有源元件漏电而象素电位电极变动造成的闪烁,达到更高的显示质量。
本发明的显示器件具有执行一种显示器件驱动方法的控制装置。所述显示装置是所述显示器件是具有液晶显示元件的液晶显示器件,该液晶显示元件将象素排列成矩阵状,该象素通过借扫描信号线提供的扫描信号成为选择状态的源元件,将基于数据信号线所提供数据信号的电荷周期性地写入在象素电极与对置电极之间以液晶为中介而形成的电容。所述显示器件驱动方法,选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号线的象素提供数据信号,进行显示,其中,所述驱动方法设置休止周期,该周期是长于对所述画面进行一次扫描的扫描周期的非扫描周期,使全部扫描信号线成为非扫描状态,并且将所述扫描周期与所述休止周期的和取为一个垂直周期。
根据上述结构,能提供一种矩阵型显示器件,该器件在满足亮度、对比度、响应速度、灰度等基本显示质量的状态下,能方便地谋求充分低耗电。
本发明的显示器件可使所述控制装置在所述休止周期中使所述全部数据信号线对驱动全部数据信号线的数据信号驱动器为高阻抗状态。
根据上述结构,能提供可兼顾充分低耗电和充分抑制闪烁的高显示质量的有源矩阵型显示器件。
本发明的显示器件可使所述液晶显示元件避开所述扫描信号线的位置,在与所述象素电极之间设置形成所述象素的辅助电容的辅助电容电极。
根据上述结构,由于避开扫描信号线的位置设置形成象素辅助电容的辅助电容电极,可忽略扫描信号线与象素电极的电容耦合。轩此,在该状态下由控制装置设定休止周期并驱动液晶显示元件,则与用在栅Cs结构形成辅助电容时不同,不产生一行上方扫描信号线电位变动造成的象素电极电位变动。由此,即使设定长休止周期,也能得到抑制闪烁的高显示质量。
本发明的显示器件可使显示器件驱动器件,所述电容为CLC,所述辅助电容为CCS,所述有源元件的非选择周期为T,所述改写频率中非选择周期后的液晶电压保持率为Hr(T),改写后的所述象素电极与所述对置电极的电位为R,同时V1=V-{V.(1-Hr(T)XCLC/(CLC+CCS)),则所述液晶显示元件的象素电压保持率表为下式时,
P=V1·exp[-T/{(CLC+CCS)·R}]/V
P≥0.9:
根据上述结构,取扫描信号线数量为n,扫描周期为T1,非扫描周期为T0,则表为非选择周期T=T1+T0)-T1/n,因而即使将非扫描周期T0设定为休止周期,选择周期中主号线施加的象素电极通过非选择周期T也按90%以上的电压保持率得到保持,因此,非选择周期T中象素电极的电位几乎不发生变动。由此,即使设定长休止周期,也能得到更无闪烁的稳定显示质量。
本发明的显示器件结构上可做成所述液晶显示元件具有利用周围的光进行反射型显示的反射构件。
根据上述结构,则成为不需要背光的反射型液晶显示器件,因而设定休止周期的驱动带来的低耗电比率增大。
本发明的显示器件结构上可做成所述反射构件是所述象素电极的至少一部分。
根据上述结构,反射构件是象素电极的至少一部分,也就是说,象素电极的至少一部分成为反射型液晶显示器件的反射电极,因而不需要另外的反射构件,可减少组成器件的部件种类。
本发明的显示器件我上可做成所述反射构件设置透光孔,或者所述反射构件半透明。
根据上述结构,则构成反射透射两用型液晶显示器件,因而周围的光多时用作反射型,周围的光少时点亮背光等,可兼用作透射型,
本发明的电子设备结构上可做成装有显示器件,该器件具有执行一种显示器件驱动方法的控制装置,该显示器件驱动方法,选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号线的象素提供数据信号,进行显示,其中,所述驱动方法设置休止周期,该周期是长于对所述画面进行一次扫描的扫描周期的非扫描周期,使全部扫描信号线成为非扫描状态,并且将所述扫描周期与所述休止周期的和取为一个垂直周期。
根据上述结构,能提供可谋求在满足亮度、对比度、响应速度、灰度等基本显示质量的状况下,方便地达到足够低耗电的电子设备,便于利用电池长时间驱动。
本发明的电子设备可使所述控制装置执行一种显示器件驱动方法,其中所述休止周期中使所述全部数据信号线对驱动全部数据信号线的数据信号驱动器为高阻抗状态。
根据上述结构,提供可兼顾充分低耗电和充分抑制闪烁的高显示质量的电子设备,便于利用电池长时间驱动。
本发明的电子设备可使所述显示器件所述显示器件是具有液晶显示元件的液晶显示器件,该液晶显示元件将象素排列成矩阵状,该象素通过借扫描信号线提供的扫描信号成为选择状态的源元件,将基于数据信号线所提供数据信号的电荷周期性地写入在象素电极与对置电极之间以液晶为中介而形成的电容。
实施形态6
根据图46至图58说明本发明是一实施形态如下。本实施形态记述的结构可用于上述实施形态。
本实施形态说明本发明的显示器件驱动方法以及采用该方法的显示器件和装有该显示器件的电子设备的一种形态。
本实施形态以有源矩阵液晶显示器件为例说明本发明的显示器件驱动方法和采用该方法的显示器件。然而,一发明不限于此,也可用于采用TFT元件进行寻址EL(Electro luminescence)显示器件等。以便携电话、袖珍游戏机、PDA(个人数字处理器)、便携电视机、遥控器、笔记本型个人计算机、其他便携终端等便携设备为首的各种电子设备可装上述显示器件。这些电子设备许多用电池驱动,装谋求低耗电并且依然保持无闪烁的良好显示质量的显示器件,便于长时间驱动。
图51示出作为实施形态所涉及显示器件的液晶显示器件(显示器件)301的系统框图。所述液晶显示器301是反射型液晶显示器件,结构上做成具有液晶板(屏幕)302、栅极驱动器303、源及驱动器(数据信号驱动器)304、控制IC(控制装置)305、图像存储器306、公共驱动器307。
如图52所示,所述液晶板302具有由配置成矩阵状的象素组成的屏幕,按行依次选择并扫描所述屏幕的多根扫描信号线,供给所选择行的象素数据的多根数据信号线。而且,扫描信号线与数据信号线正交。
这里用图53和图54说明液晶板302的具体结构例。图53是图54中A-A线剖视图。图54是示出图53所示液晶层311下方结构的俯视图。
如图53所示,液晶板302是反射型有源矩阵液晶显示板,具有的基本结构为:两块玻璃基片311、312夹持向列型液晶等液晶层313,并且在玻璃基片312上形成作为有源元件的TFT314...。本实施形态中,作为有源元件,采用TFT,但也可用MIM(金属—绝缘体—金属)和TFT以外的FET。玻璃基片311的上表面依次设控制入射光状态用的相位差片315、偏振片316和防反射膜317。玻璃基片311的下表面依闪设置RGB滤色片318和作为对置电极的透明公共电极319。可利用滤色片318进行彩色显示。
各TFT314中,将玻璃基片312上设置的部分扫描信号线作为栅极320,并且在该电极形成栅极绝缘膜321。在隔着栅极绝缘膜321与栅极320对置的位置设置i型非晶硅层322,并在2个部位形成n+型非晶硅层323,包围i型非晶硅层322的沟道区。1个n+型非晶硅层323的上表面形成成为部分数据信号线的数据电极324,从另一n+型晶硅层323的上表面到栅极绝缘膜321的平坦部上表面引出并形成漏极325。如后文所述图32所示,漏极325的引出线起始处相反侧的一端连接与辅助电容布线对置的矩形辅助电容电极焊盘327a。TFT314...的上表面形成层间绝缘膜326,该膜326的上表面设置反射电极327b...。反射电极327b...是利用周围的光进行反射型显示用的反射构件。为了控制反射电极327b...的反射光方向,层间绝缘膜326的表面形成微细凹凸。
各反射电极327b通过层间绝缘膜326中设置的接触孔328与漏极325导通。即,数据电极324所施加并且由TFT314控制的电压从漏极325通过接触孔328加到反射电极327b,并且利用反射电极327b与透明公共电极319之间的电压驱动液晶层313。即,辅助电容电极焊盘327a与反射电极327b相互导通,而且反射电极327b与公共透明电极319之间介入液晶。这样,辅助电容电极焊盘327a和反射电极327b就构成象素电极327。
如俯视图53中液晶层313下方部分的图54所示,液晶板302在玻璃基片212上正交设置给TFT214的栅极220提供扫描信号的扫描信号的扫描信号线231...和给TFT214的数据电极224提供数据信号的数据信号线232...。而且,在与各辅助电容电极焊盘227a...之间设置作为形成象素辅助电容的辅助电容电极的辅助电容布线233...。在扫描信号线231...以外的位置上,将辅助电容布线233...平行于扫描信号线231...设置在玻璃基片212上,使其部分隔着栅极绝缘膜221与辅助电容电极焊盘227a...配成对。
不限于这种情况,只要避开扫描信号线331...的位置设置辅助电容布线333...即可。图32中,为了明确辅助电容电极焊和肋327a...与辅助电容布线333....的位置关系,部分省略示出反射电极327b...。图31中层间绝缘膜326的表面凹凸在图54未示出。本实施形态将液反302的板规模取为对角线长0.1m,扫描信号线331为240根,数据信号线332为302X3根,进行说明。
图55中示出上述结构的液晶板302中一个象素的等效电路图。如图55所示,由用透明公共电极319与的反射电极327b夹持液晶层313而形成的液晶电容CLC和由用辅助电容电极焊盘327a与辅助电容布线333夹持栅极绝缘膜321而形成的辅助电容CCS连接到TFT314,同时通过缓存器(图中未示出)对液晶电容CLC的透明公共电极319和辅助电容CCS的辅助电容布线333施加直流或交流的公共电极电压Vcom。
图51所示的上述控制IC(控制装置)305。接收计算机等内部具有的图像存储器306存储的图像数据,给栅极驱动器303分配栅极启动脉冲信号GSP和栅极时钟信号GCK,给源极驱动器304分配RGB色调数据,源极启动脉冲信号SSP,源极锁选通信号SLS和源极时钟信号SCK。全部这些信号都同步,在信号名称前对各信号频率示注f加以表示,则这些频率的关系通常为:
fGSP<fGCK=fSSP<fSCK
在“模似倍速驱动”的情况下,fGCK>fSSP。作为图像数据存储装置的图像存储器306,其中存储的图像数据是成为数据信号基础的数据。控制IC205具有执行作为后文所述本液晶显示器件301的驱动方法的控制装置的功能。
上述栅极驱动器303是扫描信号线驱动器,对液晶板302的各扫描信号线输出分别与选择周期和非选择周期相适应的电压。具体而言,栅极驱动器303把从控制IC305收到的栅极启动脉冲信号GSP作为标记,启动液晶板302的扫描,并按照栅极时钟信号GCK对各扫描信号线依次施加选择电压。
上述源极驱动器304是数据信号驱动器,对液晶板302的各数据信号线输出数据信号,分别给选择的信号线上各象素提供图像数据。具体而言,源极驱动器304极据从控制IC305收到的启动脉冲信号SSP,按照源极时钟信号SCK把送来的各象素的灰度数据存入寄存器,并按照后续的源极锁选通信号SLS将灰度数据写入液晶板302的各数据信号线。
控制IC305中设置GSP变换电路305A,进行栅极启动脉冲信号GSP的脉冲间隔设定。该GSP脉冲间隔在显示的帧频率为常规60Hz时约等于16.7msec。GSP变换电路305A能使例如该栅极启动脉冲信号GSP的脉冲间隔加长到167msec。设一个画面的扫描周期仍为常规的值,则所述脉冲间隔中约9/10成为使全部扫描信号线为非扫描状态的周期。这样,GSP变换电路305A能将扫描周期结束后再次对栅极驱动器303输入栅极启动脉冲信号GSP前的非扫描周期设定成长于扫描周期T1。将该长于扫描周期T1的非扫描周期称为休止周期T2。
这里在图46示出将休止周期T2设定作为非扫描周期时供给扫描信号线G1~Gn(n=240)的扫描信号波形。设定比扫描周期T1长的休止周期T2时,休止周期T2变成代替常规垂直回扫周期(非扫描周期),因而表示帧和场的垂直扫描周期变长。
GSP变换电路305A中,设定休止周期T2作为非扫描周期时,一个垂直扫描周期等于扫描周期T1与休止周期T2的和。例如将扫描周期T1设定为相当于常规60Hz的时间,则垂直扫描频率为低于30Hz的频率,以便存在休止周期T2长于该T1的关系。扫描周期T1可根据静止图像和活动图像等要显示的图像的活动程度适当设定,并且GSP变换电路305A能根据图像内容设定多个非扫描周期。而且,非扫描周期的至少1个为休止周期T2。图51中,GSP变换电路305A根据外部输入的非扫描周期设定信号M改变非扫描周期的设定。非扫描周期设定信号数量可任意,但例如这两种非扫描周期设定信号M为逻辑信号,则可设定四种非扫描周期。
这样设置休止周期T2,能减少改写画面的次数,即减少源极驱动器304所输出数据信号的提供频率,因而能减少对象素进行充电的电功率。在液晶显示器件301是能确保亮度、对比度、响应速度、灰度等基本显示质量的有源矩阵型液晶显示器件的情况下,将休止周期T2设定作为非扫描周期,则能方便地充分减少与数据信号提供频率成正比增加的数据信号线驱动器耗电,而不牺牲上述显示质量。
根据上述理由,可对静止图像那样图像不活动的显示和虽为活动图像活动少的显示等,将非扫描周期设定为长休止周期T2。对活动多的动画图像则可将非扫描周期设定为短休止周期T2或比休止周期T2短的非扫描周期。例如,设定为16.7msec这样相对于扫描周期足够短的非扫描周期时,驱动频率相当于常规的60Hz,因而可做足够快的活动图像显示。反之,将非扫描周期设定为333msec这样的长休止周期T2,则对静止图像和活动少的活动图像可减少改写画面造成的耗电且依然保持基本显示质量。即,能以切换活动图像显示和低耗电显示的方式使用液晶板302。这样,就能根据静止图像和活动图像等显示图像的种类使切换画面的周期变化,因而能对每类显示图像谋求最佳低耗电。
将多个非扫描周期中最短的周期取为T01,并将T01以外的任意周期取为T02时,其关系为:
(T1+T02)=(T1+T01)×N(N为2以上的整数)
即,最好使分别采用多个非扫描周期的帧周期为采用最短非扫描周期T01的帧周期的整数倍。例如,用常规60Hz进行驱动时,T1为16.7msec以下。将T01作为垂直回扫周期按式(3)的关系设定T02,则对用60Hz传送来的画面的数据信号可在整数次中进行1次取样。因此,各非扫描周期可共用同步基准信号,仅增添简单的电路就能作低频驱动,能使新产生的耗电非常小。
再者,栅极驱动器303和源极驱动器304的内部具有逻辑电路,为了内部晶体管工作,分别消耗电力。因此,它们的耗电与晶体管动作次数成比例,并且与时钟频率成比例。休止周期T2使全部扫描信号线为非扫描状态,因而除栅极时钟信号GCK,源极启动脉冲信号SSP,源极时钟信号等的栅极启动脉冲信号GSP外,栅极驱动器303和源极驱动器304不输入其他信号,不需要使栅极驱动器303和源极驱动器304内部的逻辑电路动作,能减少这部分的耗电。
另一方面,源极驱动器304是处理数字数据信号的数字驱动器时,源极驱动器304内部存在灰度发生电路和缓存器等经常流通电流的模拟电路。又,源极驱动器304是处理模拟数据信号的模拟驱动器时,作为模拟电路,存在取样保持电路和缓存器。而且,控制IC305内部有时也存在模拟电路。
模拟电路的耗电不依赖于驱动频率,因而仅停止栅极驱动器303和源极驱动器304内部逻辑电路的工作不能减少所述耗电。因此,休止周期T2中停止这些模拟电路,使其断开电源,减少耗电,能进一步减少液晶显示器件301的总耗电。液晶显示器件301是源矩阵型液晶显示器件时,休止期间T2中,从栅极驱动器303对象素施加非选择电压,因而可使停止的模拟电路最低限度不关联栅极驱动器303,也就在休止周期T2与显示无关。至少停止源极驱动器304的模拟电路,使耗电最大的模拟电路停止工作,进而能高效地减少液晶显示器件301的总耗电。
在休止周期T2不对象素写入数据,因而在休止周期T2停止从图像存储器306传送图像数据,能减少该周期中传送图像数据用的耗电。停止传送图像数据时,例如根据所述非扫描周期设定信号M要求停止图像数据从控制IC305传到图像存储器306。由此,传送停止的控制方便,同时能进一步减少液晶显示器件301的总耗电。
非扫描周期的设定可做成本例这样,对GSP变换电路305A输入多个非扫描周期设定信号,也可使GSP变换电路305A具有调整非扫描周期用的电位器或该周期选择用的开关等。当然,为了用户设定方便,也可在液晶显示器件301的壳体外周面配备非扫描周期调整用的电位器或该周期选择用的开关等。GSP变换电路305A结构上做成只要能至少根据外部指示将非扫描周期改变为所希望的设定即可。
如图51所示,控制IC305中设置放大器控制电路305b,控制连接数据信号的输出放大器。而且,放大器控制电路305B使输出放大器在休止周期T2为高阻抗状态,将全部数据信号线从源极驱动器304断开,从而抑制画面闪烁,能达到高显示质量。
也就是说,可利用放大器控制电路305B在休止周期T2保持各数据信号线电位一定。因此,液晶显示器件301能抑制具有连接数据信号线的象素电极时所产生数据信号线与象素电极电容耦合引起的象素电极电位变动等那样,由数据位号线电位变动产生的各象素的数据保持状态变化,可充分抑制闪烁。于是,能兼顾充分低耗电和充分抑制闪烁的高显示质量。
如上所述,为了减少耗电,使源极驱动器304中缓存器内部的模拟电路停止工作时,缓存器成为接地电位。于是,连接缓存器的数据信号线也同时成为接地电位,从而在液晶显示器件301具有连接数据信号线的象素电极这种情况下,产生电容耦合引起的象素电极电位变动。因此,使全部数据信号线为高阻抗状态后,停止休止周期T2中与显示无关的模拟电路的工作。由此,减少模拟电路耗电,同时抑制象素的数据保持状态变化,能达到进一步抑制闪烁的高显示质量。
在成为全部象素数据保持状态变化取平均所得实质上最小电位后,使全部数据信号线为高阻抗状态,则更好。例如,液晶显示器件301的结构为连接数据线的象素电极与其对置电极之间介入液晶,则使全部数据信号线为对置电极施加交流电压时流交流电压振幅中心的电位,从而该信号线在对置电极施加直流电压时与该电极同电位。这种情况下,即使进行交流驱动且正极性电位象素和负极性电位象素电极混合存在,数据信号线与象素电极电容耦合造成的全部象素电荷保持状态变化(即数据保持状态变化)为实质上最小。由此,即使每行象素数据保持状态不同时,作为整个画面,保持状态变化也实质上最小,能达到进步抑制闪烁的高显示质量。
又,如图46所示,在扫描周期T1对透明公共电极319(COM电位)施加交流电压时,休止周期T2中透明公共电极319为上述交流电压振幅中心的电位。这样在休止周期T2如以上所述那样设定透明公共电极319的电位,可抑制各象素与对置电极电容耦合引起的象素电极327的电位变动。因此,能抑制象素的数据保持状态变化,达到抑制闪烁的高显示质量。
这里,对上述结构的液晶板302说明设置休止周期T2时的驱动方法。
图55的等效电路中,对扫描信号线331施加选择电压,使TFT314为导通状态,从数据信号线332对液晶电容CLC和辅助电容CCS施加数据信号。接着,对扫描信叼线331施加非选择电压,使TFT314为阻断状态,保持写入液晶电容CLC和辅助电容CCS的电荷。这里,如以上所述那样设形成象素的辅助电容CCS的辅助电容布线233,使其避开扫描线231的位置,因而这些等效电路中可忽略扫描信号线231与辅助电容电极焊盘227a.的电容耦合。因此,这种状态下,利用控制IC205设定休止周期T2,并对液晶板202驱动,则与在栅Cs结构中形成辅助电容时不同,不产生前级扫描信号线电位变动造成的象素电极227的电位变动。
因此,利用设定休止周期T2形成低频驱动,使数据信号极性反相频率降低,能充分减少数据信号驱动器(本情况下为源极驱动器204)的耗电。又借助抑制象素电极227的电位变动,即使设定长休止周期T2,也能得到抑制闪烁的高显示质量。
下面,较详细说明上述液晶显示器件301的驱动方法。具体而言,对要止周期T2中象素电极327和透明公共电极(对置电极)319的驱动波形说明两点。
(1)第一,参照图46至图48说明休止周期T2中固定数据信号线332和/或透明公共电极319的电位的驱动方法。
图47是时序图,示出扫描周期T1和休止周期T2中按照栅极驱动器303的控制供给扫描信号线331的扫描信号(G1~G240)、按照源极驱动器304的控制供给数据信号线332的数据信号(S电位)、按照公共驱动器307的控制供给透明公共电极319的对置电极信号的驱动波形以及象素电极327的电位(D电位)、象素电极327与透明公共电极319之间的电位差(D-COM电位差)和液晶层313的光响应。
如图47所示,扫描周期T1中用交流波形施加扫描信号(G1~G240)和与显示图像相适应的数据信号(S电位)。示出为了不影响透明公共电极319的电位振幅而用直流(COM电位)驱动透明公共电极的情况。
这里,扫描周期T1中,由源极驱动器304利用每一水平扫描周期(1H)这样足够高的频率作极性反相的1H反相允动对数据信号线332进行驱动。于是,使数据信号线332的电位振幅受影响,象素电极327的电位(D电位)产生振动。这里,透明公共电极319和象素电极327所夹持液晶层313的液晶分子对作为扫描周期T1中外加电压有效值的有效电压V1作出响应,不作一水平扫描周期的电压振动。
图47在休止周期T2对全部扫描信号分别输入非选择信号,保持扫描周期T1写入的图像数据。图47示出休止周期T2中不控制数据信号线332的电位的状态。
这样,每一垂直扫描周期重复扫描周期T1和长于扫描周期T1且使全部数据信号线332为非扫描状态的休止周期T2,从而能减少一垂直扫描周期所需的数据信号提供频率。因此,有源矩阵型液晶显示器件等能确保亮度、对比度、响应速度、灰度等基本显示地减少与数据信号提供频率成正比增加的源极驱动器304的耗电,而不牺牲显示质量。
这里,由于休止周期T2中TFT314为阻断状态,逻辑上即使对数据信号线施加图47那样的S电位,数据信号线332与象素电极327之间也不流通电流,象素电极327的电位(D电位)应保持固定。
然而,实际上如图55所示,数据信号线332对象素电极327存在电容耦合(Csd),因而象素电极327的电位(D电位)随数据信号线332的电位(S电位)变动。结果,每一休止周期T2象素电极327的电位变动,往往产生闪烁。
图48是另一时序图,示出扫描周期T1和休止周期T2中上述液晶板302的各种驱动信号以及光响应。图48与图47不同。为了减小源极驱动器304的输出电压振幅,利用公共驱动器307提供的驱动信号(对置电极驱动信号)对透明公共电极319进行交流驱动。而且,利用公共驱动器307,使透明公共电极319的电位与S电位一起进行每一水平扫描周期(1H周期)极性反相的1H反相驱动。
在休止周期T2中,利用源极驱动器304的控制,将数据信号线332的电位固定在扫描周期T1中驱动信号电压范围内的电位(数据信号线休止电位)(图48中作为一个例子示出低电位)。同样,休止周期T2中,利用公共驱动器302的控制,使透明公共电极319的电位固定在扫描周期T1中驱动信号电压范围内的电位(对置电极休止电位)(图48中作为一个例子示出低电位)。具体而言,借助对源极驱动器304和公共驱动器307分别连续提供规定的电压,分别抑制数据信号线332和透明公共电极319的电位变动。
这里,象素电极327的电位(D电位)受数据信号线332和透明公共电极319各自的电位振幅影响而产生振动。为了简明,示出忽略数据信号线332的变动通过Csd(图55)对象素电极327电位的影响的波形。实际显示中,S电位、D电位、D-COM电位差的波形随S电位包含的图像数据变化。于是,透明公共电极319和象素电极327所夹持液晶层313的液晶分子对作为扫描周期T1中外加电压有效值的有效电压作出响应,不作一水平扫描周期的电压振动。
而且,根据透明公共电极319的驱动波形决定非选择时象素电极327的电位,逻辑上象素电极327与透明电极319的电位差(D-COM电位素)在整个休止周期T2应保持固定。
然而,实际上如图55所示,象素电极327由于对扫描信号线331(Cgd)和数据信号线332(Csd)存在电容耦合,其电位振幅与透明公共电极319的电伍不完全一致。
这里具体说明图48中第n行象素的光响应。首先,在休止周期T2结束的时刻(a点)启动第1行的扫描,对透明公共电极319施加交流电压,因而加到液晶层313的有效电压为V1,液晶分子作出响应。然后,在最未行(第240行)扫描结束的时刻(b点)透明公共电极319固定为低电位,因而有效电压为V2,液晶分子再次作出响应。透明公共电极319电位的影响在与休止周期T2内象素电极327的电位极性相应的方向起作用,因而象素电极327与透明公共电极319之间的有效电压在C点上为有效电压V3。
这样,扫描周期T1中,加到液晶层313的有效电压为“象素电极327的电位振幅中心与透明公共电极319的电位振幅中心之差(V2)”。而且,休止周期T2的有效电压在极性保持不同电位的各状态间有效电压绝对值不同(V2=V3)。
即,如图48那样进行驱动,将休止周期T2中数据信号线332和透明公共电极319的电位分别固定扫描周期T1的低电位,则加到液晶层313的有效电压在扫描周期T1和休止周期T2中不同。而且,极性不同的休止周期T2中,有效电压绝对值不同。因此,每次切换扫描周期T1和休止周期T2,加到液昌层313的电压发生变动,每液晶分子作出响应虽然由图47进行抑制,但往往发生闪烁。
图46是另一时序图,示出扫描周期T1和休止周期T2中上述液晶板302的各种驱动信号和光响应。图46与图48的驱动波形的不同点是利用源极驱动器304和公共驱动器307的控制使休止周期T2中数据信号线332和透明公共电极319的电位实质上等于扫描周期T1中各电压的振幅中心。
由此,加到液晶层313的有效电压在扫描周期T1和休止周期T2中实质上相等。因而,能消除各扫描周期T1发生的闪烁。
这样,上述液晶显示器件301的驱动方法中,使数据信号线332和透明公共电极319的电位分别停在扫描周期T1的电位振幅中心。由此,扫描周期T1和休止周期T2中,数据信号线332和透明公共电极319的电位给象素电极327的影响可实质上相等。因此,即使设置休止周期T2,也使象素电极327的电位有效值实质上固定,能实现无闪烁的显示。
休止周期T2中,数据信号线332和透明公共电极319的电位不限定于扫描周期T1中各电压振幅的中心。也就是说,数据信号线332的电压在振幅中心+1.5V的范围,透明公共电极319的电位在振幅中心+1.0V的范围,使值发生变化,也能实现实用上无闪烁的显示。
这里简单说明能够如以上所述那样在扫描周期T1的电压振幅中心附近设定休止周期T2中数据信号线332的电位的理由。
TFT驱动中,扫描信号线因“扫描”而发生例如-10V>+15V>-10V的电压变动,漏极电位也因栅极/漏极电容(Cgd)而变动。具体而言,扫描信号线+15V(栅极导通)时受到写入的漏极由于扫描信号线变动到-10V(栅极阻断),引入V=(025V)XCgd/(CLC+CCS+Cgd)。因此,TFT驱动中,将上述引入的电压V作为直流偏压加给对置电压。
决定上述引入电压的电容中,CCS和Cgd不变化。反之,CLC随液晶取向状态(灰度)变化。例如,某一正型液晶(因施加电压而上升的液晶)中,白电压(液晶分子实质上平行于基片)介电常数ε=3左右,黑电压(液晶分子实质上垂直于基片)介电常数ε=8左右。CLC也随该介电常数的变化而变化。
这样,由于CLC随显示状态变化,即随各灰度变化,引入电压V也对各灰度产生变化,但对置电极是公共电极,所以不可能对各象素设定ΔV。因此,对各象素提供各灰度预先偏移“数据信号线振幅中心”的电压,从而修正各灰度不同的引入电压ΔV。
如以上那样,数据信号线在扫描周期T1的电压振幅中心对各灰度不同,取决于显示内容。然而,实际上液晶板在整个可显示区以各种灰度进行显示,因而可认为扫描周期T1的平均振幅中心近似于中间灰度显示时的值。
再者,上述液晶显示器件301的驱动方法中,如图46所示,在进入休止周期T2的时刻(d点),利用公共驱动器307的控制使透明公共电极319停止交流驱动,固定于一定电位(图46中扫描周期T1的振幅中心),接着在规定时间T0时(e点),利用放大控制电路305B的控制使源极驱动器304为高阻抗状态。结果,时刻T0以后,数据信号线332的电位为浮动状态。其后,由于透明公共电极319的电位无变动,数据信号线332的电位不变,象素电极327的电位也不变。于是,能得到无闪烁的显示。
这样,利用公共驱动器307和放大控制电路305B的控制,在休止周期T2中,首先使透明公共电极319停止交流驱动,接着使源极驱动器304为高阻抗状态,从而在休止周期T2减少源极驱动器304中经常流通放大器的电流,降低耗电,同时能得到无闪烁的显示。
这里,作为图46的比较例,图49中示出一时序图,其中示出在休止周期T2首先使数据信号线332为高阻抗状态后,再停止透明公共电极319的交流驱动时的驱动波形和光响应。
即,图49中,进入休止周期T2的时刻(f点)使源极驱动器4为高阻抗状态,则数据信号线322的电位为浮动状态。接着,在规定时间T1时(g点),使透明公共电极319停止交流驱动,固定于一定电位,则透明公共电极319的电位招致数据信号线332电位变动,该数据信号线332的电位又招致象素电极327的电位变动。因此,这样驱动时,每次切换扫描周期T1和休止周期T2产生闪烁。
最后,液晶显示器件301中进行图46所示驱动时,得到不发生闪烁的良好显示。而且,休止周期T2中透明公共电极319的电位取为1.5V(扫描周期T1的振幅为-1V~4V),数据信号线332的电位取为2V(扫描周期T1的振幅为0V~4V)。
(2)第2,参照图50。图56至图58说明在休止周期T2对数据信号线332和/或透明公共电极319施加低于扫描周期T1的低频交流电压的驱动方法。
图50是另一时序图,示出扫描周期T1和休止周期T2中上述液晶板302的各种驱动信号和光响应。
如图50所示,扫描周期T1中,作为扫描信号(G1~G240)、数据信号(S电位),施加与显示图像相适应的交流波形。为了减小源极驱动器304的输出电压振幅,由公共驱动器307对透明公共电极319进行交流驱动。又利用公共驱动器307进行1H反相驱动,使透明公共电极319的电位与S电位一起,每一水平扫描周期(1H周期)进行极性反相。
休止周期T2中,借助源极驱动器304和公共驱动器307的控制对数据信号线332和透明公共电极319分别施加扫描周期T1中电压范围内(最大电位与最小电位之间)的电位且低频的交流电压。
由此,加到液晶层313的电压有效值在扫描周期T1和休止周期T2中相等,因而能消除各扫描周期T1发生的闪烁。
休止周期T2中,为了降低耗电,供给数据信号线332和透明公共电极319的交流电压频率为扫描周期T1的频率以下,尽可能低为佳。然而,频率太低时,液晶分子对电极反相作出响应,重新成为闪烁源。已证实在休止周期T2对数据信号线332和透明公共电极319施加的驱动信号频率一般为30Hz以上,更好是45Hz左右,以此进行驱动时,能达到无闪烁的显示。
最后,液晶显示器件301中进行图50所示的驱动时,达到不发生闪烁的良好显示。而且,休止周期T2中透明公共电极319的电位与扫描周期T1中振幅-1V~4V同电位,频率取为60Hz,数据信号线332的电位与扫描周期T1振幅0V~4V同电位,频率取为60Hz。
这里,休止周期T2中希望将供给数据信号线332和透明公共电极319的交流电压振幅分别设定为扫描周期T1中电压范围内的电位,如图50所示。然而,休止周期T1中,如图56所示,也可将供给数据信号线332的交流电压振幅设定为超过扫描周期T1中最大振幅的电位。
下面,用图56~图58说明休止周期T2中对数据信号线332施加超过扫描周期T1中最大振幅的交流信号的液晶显示器件301的结构。
首先,图57所示的液晶显示器件301除图52所示的组成部分外,还设置交流电压发生电路308和开关309...
上述交流电压发生电路308是在休止周期T2产生供给数据信号线332的交流电压的电路。所产生交流电压的频率与图50相同,也是扫描周期T1的频率以下,希望尽可能低。根据休止周期T2中,透明公共电极319的驱动信号设定上述交流电压的振幅,使D-COM电位差造成的象素电极327的电位有效值在扫描周期T1和休止周期T2中实质上固定。
在源极驱动器304与液晶板302之间,各数据信号线332设置上述开关309。而且开关309利用来自放大控制电路305B的放大大路控制信号进行切换,以便在扫描周期T1和休止周期T2中,对数据信号线332分别提供来自源极驱动器304的驱动信号和来自交流电压发生电路308的驱动信号。
由此,从交流电压发生电路308供给数据信号线332在休止周期T2的驱动信号,可使源级极驱动器304在休止周期T2休止。于是,能减少休止周期T2中源极驱动器304需要的耗电。
由于将交流信号发生电路308的输出电压振幅作为基准担忧源电压,即已有的0V~3V或0V~5V的振幅,因而不必产生新的中间电位(例如4V等)。于是,不存在生成中间电位时造成的升压损耗,可抑制功耗,能实现进一步降低耗电。
如图56所示,一个画面扫描结构并进入休止周期T2后,可在一定周期(后续周期)对数据信号线332输入与扫描周期T1相同的驱动信号。这里,在图56中,与数据信号线332和透明公共电极319所输入信号相同前,在休止周期T2的始端,继续输入与扫描周期T1相同的驱动信号的后续周期有两种(h~i间:t2=4h,j~k间:t3=3h)。即,图56中时序图的驱动方法每一帧改变2个后续周期。这里,2个后续周期相对于休止周期T2都足够短,而且只要二者之差(|t2-t3|)为一水平扫描周期的奇数倍(n×H(n=1,3,5...))可任意设定。
这样,上述液晶显示器件301提供将驱动信号线332的驱动信号切换为相同电压的定值,同时使该定值偏离一水平扫描周期的奇数倍,由此,可证实能得到更无闪烁的稳定显示。图56中,将驱动数据信号线332和透明公共电极319的驱动信号切换为相同电压时,同时也将频率切换为低频,但切换频率的定时可与电压切换同时,也可前后错开。
于是,液晶显示器件301中,进行图56所示的驱动时,得到夫闪烁的显示。而且,休止周期T2中,使数据信号线332断开源极驱动器,最好是45Hz以上的交流信号。本实施形态中,由于使用扫描时的一垂直扫描周期的时钟信号,将频率取为60Hz,振幅取为基准电源电压,即0V和5V。
如图58所示,公共驱动器307可兼作上述交流信号发生电路308。即,在休止周期T2中,也可与透明公共电极(对置电极)319一起,也对数据信号线332提供来自公共驱动器307的驱动信号。而且,休止周期T2的休止信号振幅可与扫描周期T1加到透明公共电极319的驱动信号振幅相同,也可为最大振幅以下(即驱动信号电压的范围内)。当然,结构上可做成在休止周期T2对数据信号线332和透明公共电极319提供来自交流信号发生电路308的驱动信号,使源极驱动器304和公共驱动器307休止(图中未示出)。
由此,休止周期T2可从公共驱动器307对透明公共电极319(对置电极)和数据信号线332施加公共驱动信号。因而,不必重新设置在休止周期T2驱动数据信号线332用的交流信号发生电路308,能防止液晶显示器件301的电路和大型化和复杂化。又由于对数据信号线332和透明公共电极319与数据信号线332之间的电容(图55的CCD)的充放电,可进一步降低耗电。
这里,图56中,使休止周期T2加到数据信号线332的驱动信号与加到透明公共电极319的驱动信号相同时,数据信号线332的电位在扫描周期T1和休止周期T2中发生变动,严格而言,D-COM电位差有效值存在若干偏移。
然而,一般而言,由于图55中的Csd/(Cgd+Csd+Clc+Ccs)为1/20左右,上述有效值变动的程度实际上几乎没有问题。因此,休止周期T2中数据信号线332和透明公共电极319的电位即使在扫描+1.0V的范围内变化其值,也能实现实用上无闪烁的显示。
为了进一步减少闪烁,提高休止周期T2所施加驱动信号的频率是有效的。上述驱动方法中,由于源极和公共电极输入公共电位,源极/公共电极之间不产生电荷的充放电,但栅极/源极之间和栅极/公共电极之间产生电荷的充放电,因而使频率提高,则降低减少耗电的效果。
因此,详细研究休止周期T2中驱动频率与闪烁觉察界限的关系时,得到表8的结果。据此,本实施形态中,将数据信号线332和透明公共电极319在休止周期T2施加的驱动频率取为完全不能觉察闪烁的最低频率,即500Hz。
表8
休止周期施加的交流频率 | 闪烁目视评价结果 |
6Hz | × |
12Hz | × |
30Hz | △ |
45Hz | △ |
60Hz | △ |
120Hz | △ |
250Hz | △ |
500Hz | ○ |
1kHz | ○ |
10kHz | ○ |
○:未觉察闪烁
△:略为觉察闪烁
×:觉察闪烁
液晶板302的参数(CLC,CCS等)每种液晶板2不同,因面每种液晶板最佳驱动频率也不同。而且,为了显示质量,驱动频率以高为佳,但为了省电,该频率以低为佳。因此,休止周期T2的休止频率根据液晶板302的参数和用途等进行优化。例如,休止周期T2的休止信号,其驱动频率可为0,即可为直流信号。
以上那样,利用液晶显示器件301,则具有有源元件的结构中,在改写一个画面的扫描周期T1后设置长于扫描周期T1的休止周期T2,并优化控制休止周期T2中数据信号线332和透明公共电极319的电位,从而能达到低耗电并且依然保持无闪烁的显示质量。
上述液晶显示器件301的驱动方法在扫描周期T1输入灰度分布为一般图像数据时,将休止周期T2中数据信号线332和透明公共电极319的电位分别取为扫描周期T1的中心而加以实现。然而,也可根据紧接其前或其前的扫描周期T1的电位决定数据信号线和透明公共电极319的电位组合。在接使极性反相时,还可间隔一个休止周期T2进行设定。
本实施形态并不限定本发明的范围,在本发明范围内可做各种变化,能如以下那样的构成。
例如,本实施形态所涉及的显示器件驱动方法在对置配置的一对基片中的一块基片上设置多个有源元件,通过所述有源元件在所述基片间施加希望的电压,控制光的透射率或反射率,其中可在扫描一个画面的扫描周期后,设置时间长于扫描周期并且使全部扫描信号线为非扫描状态的休止周期,在所述休止周期使对置电极的电位固定(不作交流驱动)。
所述显示器件驱动方法可从供给扫描周期的对置信号电压振幅内选择所述休止周期中对置电极的电位。
所述显示器件驱动方法可将所述休止周期中对置电极的电位设定在供给扫描周期的对置信号电压振幅中心附近(液晶显示器件则为振幅中心+1V以内)。由此,能实现良好的低耗电显示器件。
上述显示器件驱动方法在对置配置的一对基片中的一块基片上设置多个有源元件,通过所述有源元件在所述基片间施加希望的电压,控制光的透射率或反射率,其中可在扫描一个画面的扫描周期后,设置时间长于扫描周期并且使全部扫描信号线为非扫描状态的休止周期,在所述休止周期使数据信号布线的电位固定(不作交流驱动)。
所述显示器件驱动方法可从供给扫描周期的对置信号电压振幅内选择所述休止周期中信号布线的电位。
所述显示器件驱动方法可将所述休止周期中数据信号的电位设定在供给扫描周期的对置信号电压振幅中心附近(液晶显示器件则为振幅中心+1.5V以内)。由此,能实现良好的低耗电显示器件。
上述显示器件驱动方法在所述休止周期使对置电极信号和数据信号布线停止交流驱动后,可使数据信号驱动器的输出放大器为高阻抗状态。
本实施形态的显示器件驱动方法在对置配置的一对基片中的一块基片上设置多个有源元件,通过所述有源元件在所述基片间施加希望的电压,控制光的透射率或反射率,其中可在扫描一个画面的扫描周期后,设置时间长于扫描周期并且使全部扫描信号线为非扫描状态的休止周期,对所述休止周期的对置电极施加相对于供给扫描周期的驱动信号其电压实质上相等且频率低于所述驱动信号(液晶显示器件则频率为所述驱动信号频率的1/2以下且45Hz以上)的交流。由此能实现良好的低耗电显示器件。
上述显示器件驱动方法在对置配置的一对基片中的一块基片上设置多个有源元件,通过所述有源元件在所述基片间施加希望的电压,控制光的透射率或反射率,其中可在扫描一个画面的扫描周期后,设置时间长于扫描周期并且使全部扫描信号线为非扫描状态的休止周期,对所述休止周期的对置电极施加相对于供给扫描周期的驱动信号其电压为任意中间灰度电位且频率低于所述驱动信号(液晶显示器件则频率为所述驱动信号频率的1/2以下且45Hz以上)的交流。由此,能实现具有无闪烁的良好显示性能的低耗电显示器件。
上述显示器件驱动方法也可在所述休止周期使供给对置电极和数据信号布线的交流电压同步振动。由此,能更有效地减少闪烁。
本实施形态的显示器件驱动方法利用多条扫描信号线按行依次选择并扫描将象素配置成矩阵状的画面中的各行,从数据信号线对所选行的象素提供数据信号,进行显示,其中可后续扫描一个画面的扫描周期设置长于该扫描周期并使全部扫描信号线为非扫描状态的休止周期,而且所述休止周期中利用开关使所述数据信号线与数据信号驱动器断开,进而将所述数据信号线接到交流信号发生电路,以任意振幅(例如与所述交流信号发生电路相同的振幅)施加频率为该数据信号频率以下的交流驱动信号。休止周期供给数据信号线的驱动信号振幅不限于扫描周期中的电压范围内,利用上述方法,还可在休止周期用开关将数据信号线断开数据信号驱动器,接到交流信号发生电路,从而使数据信号驱动器休止。又可从供给对置电极驱动信号的交流电压发生电路(公共驱动器)提供休止周期中数据信号线的驱动信号。
如上所述,本发明显示器件驱动方法可为:选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号的象素提供数据信号,进行显示,其中,所述驱动方法在扫描一个画面的扫描周期后,接着设置比该扫描周期长并且使全部扫描信号线为非扫描状态的休止周期,而且所述休止周期将对置电极的电位固定于规定的对置电极休止电位。
本发明的显示器件驱动方法还可将所述休止周期中的对置电极的对置电极休止电位设定在所述扫描周期供给对置电极的对置电极驱动信号的电压范围内。
本发明的显示器件驱动方法又可将所述休止周期中的对置电极的对置电极休止电位设定在所述扫描周期供给对置电极的对置电极驱动信号的电压范围内。
利用上述方法,在改写一个画面的扫描周期后设置长于扫描周期的休止周期作为非扫描周期,从而能方便地减少与数据信号提供频率成正比增加的数据信号线驱动器(源极驱动器)耗电。
借助将休止周期中数据信号线的电位固定在数据信号线休止电位,可最佳控制休止周期中数据信号线的电位。即,扫描周期和休止周期中,数据信号线的电位给象素电极的影响可实质上相等。因此,即使设置休止周期,也使象素电极的电位有效值实质上固定,能实现无闪烁的显示。
于是,矩阵型显示器件中可兼顾充分低耗电和充分抑制闪烁的高显示质量。
休止周期中使数据信号线电位固定的数据信号线电位设定在扫描周期供给数据信号线的数据信号电压范围内为佳。将数据信号线休止电位设定在扫描周期供给数据信号线的数据信号振幅中心更好。
有源矩阵液晶显示器件,则即使休止周期中数据信号线的电位在扫描周期振幅中心+1.5V范围内其值变化,也能实现实用上无闪烁的显示。
本发明的显示器件驱动方法可为:选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号的象素提供数据信号,进行显示,其中,所述驱动方法在扫描一个画面的扫描周期后面,接着设置比该扫描周期长并且使全部扫描信号线为非扫描状态的休止周期,而且所述休止周期使所述数据信号线的电位固定于规定的数据信号线休止电位。所述休止周期将对置电极的曜闰固定在规定的对置电极休止电位。
本发明的显示器件驱动方法可将所述休止周期中的对置电极的对置电极休止电位设定在所述扫描周期供给对置电极的对置电极驱动信号的电压范围内。
本发明的显示器件驱动方法还可将所述休止周期中的对置电极的对置电极休止电位设定在所述扫描周期供给对置电极的对置电极驱动信号的电压范围内。
利用上述方法,为了减小数据信号驱动器的输出电压振幅而交流驱动对置电极时,也借助在改写一个画面的扫描周期后设置长于扫描周期的休止周期作为非扫描周期,能方便地减少与数据信号提供频率成正比增加的对置电极驱动器(公共驱动器)的耗电。
又借助将休止周期中对置电极的电位固定在对置电极休止电位,可最佳控制休止周期中对置电极的电位。即,扫描周期和休止周期中,对置电极的电位给象素电极的影响可实质上相等。因此,即使设置休止周期,象素电极的电位有效值也实质上固定,能实现无闪烁的显示。
于是,矩阵型显示器件中可兼顾充分低耗电和充分抑制闪烁的高显示质量。
休止周期中使对置电极电位固定的对置电极线电位设定在扫描周期供给对置电极驱动信号电压范围内为佳。对置电极休止电位设定在扫描周期供给对置电极驱动信号振幅中心更好。
有源矩阵液晶显示器件,则即使休止周期中对置电极的电位在扫描周期振幅中心+1.0V范围内其值变化,也能实现实用上无闪烁的显示。
本发明的显示器件驱动方法可为:利用上述显示器件驱动方法在休止周期将数据信号线的电位固定于数据信号线休止电位,而且利用上述显示器件驱动方法在上述休止周期将对置电极的电位固定于对置电极休止电位。
根据上述方法,在改写一个画面的扫描周期后设置长于扫描周期的休止周期作为非扫描周期,从面能方便地减少与供给数据信号线和对置电极的驱动信号频率成正比增加的耗电。
又将休止周期中数据信号线和对置电极的电位各自分别固定于数据信号线休止电位和对置电极休止电位,从而可最佳控制休止周期中数据信号线和对置电极的电位。即,扫描周期和休止周期中,数据信号线和对置电极的电位给象素电极的影响可实质上相等。这里,可设定数据信号线休止电位和对置电极休止电位,使象素电极与对置电极之间的有效电压在扫描周期和休止周期中实质上相等。因此,即使设置休止周期,象素电极的电位有效值也实质上固定,能实现无闪烁的显示。
于是,矩阵型显示器件中可兼顾充分低耗电和充分抑制闪烁的高显示质量。
本发明的显示器件驱动方法还可所述休止周期将所述数据信号线的电位和所述对置电极的电位分别固定于数据信号线休止电位和对置电极休止电位后,使该数据信号线对供给所述数据信号线数据信号的数据信号驱动器成为高阻抗状态。
利用上述方法,进一步在休止周期进行将全部数据信号线断开数据信号驱动器等,使其对数据信号驱动器为高阻抗状态,因而休止周期中能保持各数据信号线电位固定。
因此,能抑制具有连接数据信号的象素电极的显示器件中所产生数据信号线与象素电极电容耦合引起的象素电极电位变动等那样,由数据信号线电位变动产生的各象素的数据保持状态变化,从而充分抑制象素闪烁。
于是,矩阵型显示器件中可兼顾充分低耗电和充分抑制闪烁的高显示质量。
本发明的显示器件显示器件驱动方法,选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号的象素提供数据信号,进行显示,其中,所述驱动方法在扫描一个画面的扫描周期后面,接着设置比该扫描周期长并且使全部扫描信号线为非扫描状态的休止周期,而且所述休止周期对述数据信号线施加频率为所述扫描周期供给该数据信号线的数据信号的频率以下的交流驱动信号。
本发明的显示器件驱动方法还可在所述休止周期将数据信号线上施加的驱动信号的振幅设定的所述扫描周期中供给该数据信号线的数据信号的电压范围内。
利用上述方法,在改写一个画面的扫描周期后设置长于扫描周期的休止周期作为非扫描周期,从而能方便地减少与数据信号提供频率成正比增加的数据信号线驱动器(源极驱动器)耗电。
而且,休止周期中供给数据信号线的驱动信号的频率上限可低于扫描周期的驱动信号频率,为该驱动信号频率的1/2以下较佳,1/10以下更好。休止周期中供给数据信号线的驱动信号的频率下限可为30Hz以上,45Hz更好根据这样设定,能得到无闪烁的显示。
又,对休止周期中供给数据信号线的驱动信号将振幅取在所述扫描周期供给该信号线的数据信号的电压范围内,并且将频率取为该数据信号的电压范围内,并且将频率取为该数据信号的频率以下,可最佳控制休止周期中数据信号线的电位。即,扫描周期和休止周期中数据信号线的电位。即,扫描周期和休止周期中,数据信号线的电位给象素电极的影响可实质上相等。因此,即使设置休止周期,象素电极的电位有效值也实质上固定,能实现无闪烁的显示。
于是,矩阵型显示器件中可兼顾充分低耗电和充分抑制闪烁的高显示质量。
本发明的显示器件显示器件驱动方法,选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号的象素提供数据信号,进行显示,其中,所述驱动方法在扫描一个画面的扫描周期后面,接着设置比该扫描周期长并且使全部扫描信号线为非扫描状态的休止周期,而且所述休止周期向对置电极施加振幅在所述扫描周期中供给该对置电极的对电极驱动信号的电压范围内且频率为该对置驱动信号的频率以下的交流驱动信号。
利用上述方法,为了减小数据信号驱动器的输出电压振幅而交流驱动对置电极时,也借助在改写一个画面的扫描周期后设置长于扫描周期的休止周期作为非扫描周期,能方便地减少与数据信号提供频率成正比增加的对置电极驱动器(公共驱动器)的耗电。
又借助将休止周期中对置电极的电位固定在对置电极休止电位,可最佳控制休止周期中对置电极的电位。即,扫描周期和休止周期中,对置电极的电位给象素电极的影响可实质上相等。因此,即使设置休止周期,象素电极的电位有效值也实质上固定,能实现无闪烁的显示。
于是,矩阵型显示器件中可兼顾充分低耗电和充分抑制闪烁的高显示质量。
而且,休止周期中供给数据信号线的驱动信号的频率上限可低于扫描周期的驱动信号频率,为该驱动信号频率的1/2以下较佳,1/10以下更好。休止周期中供给数据信号线的驱动信号的频率下限可为30Hz以上,45Hz更好根据这样设定,能得到无闪烁的显示。
本发明的显示器件驱动方法还可利用上述显示器件驱动方法,在休止周期对数据信号线施加交流驱动信号,而且利用上述显示器件驱动方法,在上述止周期将交流驱动信号加到对置电极,并使所述两个驱动信号的频率和相位一致。
又,休止周期中,利用振幅在扫描周期所提供驱动信号的电压范围内并且频率为该驱动频率以下的驱动信号,分别驱动数据信号线和对置电极,从而可最佳控制休止周期中数据信号线和对置电极的电位。即,扫描周期和休止周期中,数据信号线和对置电极的电位给象素电极的影响可实质上相等。这里,可设定休止周期中供给数据信号线和对置电极的各驱动信号的振幅和频率,使象素电极与对置电极之间的有效电压在扫描周期和休止周期中实质上相等。而且,希望休止周期中分别供给数据信号线和对置电极的驱动信号相位一致。因此,即使设定休止周期,象素电极的电位有效值也实质上固定,能实现无闪烁的显示。
于是,矩阵型显示器件中可兼顾充分低耗电和充分抑制闪烁的高显示质量。
如上所述,本发明的显示器件驱动方法在休止周期中,可将数据信号线的电位固定于数据信号线休止电位,同时将对置电极的电位固定于对置电极休止电位,或者可对数据信号线施加交流驱动信号,同时给对置电极也施加交流驱动信号。本发明的显示器件驱动方法在休止周期中,还可将数据信号线的电位固定于数据信号线休止电位,同时给对置电极施加交流驱动信号,反之,可对数据信号线施加交流驱动信号,同时将对置电极的电位固定于对置电极休止电位。
本发明的显示器件驱动方法可为:选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号的象素提供数据信号,进行显示,其中,所述驱动方法包括在扫描一个画面的扫描周期后面,接着设置比该扫描周期长并且使全部扫描信号线为非扫描状态的休止周期,而且所述休止周期向对置电极施加振幅在所述扫描周期中供给所述对置电极的对置电极驱动信号的电压范围内且频率为该对置电极驱动信号的频率以下的交流驱动的信号,同时也对所述数据信号线施加该交流驱动信号。
本发明的显示器件驱动方法又可为,选择象素配置成矩阵状的画面的各扫描信号线,进行扫描,并且从数据信号线对所选择扫描信号的象素提供数据信号,进行显示,其中,所述驱动方法包括在扫描一个画面的扫描周期后面,接着设置比该扫描周期长并且使全部扫描信号线为非扫描状态的休止周期,而且所述休止周期向对置电极施加电位在所述扫描周期中供给所述对置电极的对置电极驱动信号的电压范围内的直流驱动信号,同时也对所述数据信号线施加该直流信号。
根据上述方法,在改写一个画面的扫描周期后调协长于扫描周期的休止周期作为非扫描周期,从而能方便地减少与供给数据信号线和对置电极的驱动信号频率成正比增加的耗电。
又,休止周期中,用振幅在扫描周期中供给对置电极的对置电极驱动信号的电压范围内并且频率为对置电极驱动信号频率以下的交流驱动信号或者电位在所述对置电极驱动信号电压范围内的直流驱动信号驱动数据信号线和对置电极,从而可最佳控制休止周期中数据信号线与对置电极的电位差。即,扫描周期和休止周期中,数据信号线和对置电极的电位给象素电极的影响可实质上相等。
因此,休止周期中供给数据信号线和对置电极的驱动信号的振幅和相位都一致,即使设置休止周期,象素电极的电位有效值也实质上固定,能实现无闪烁的显示。
此外,休止周期中,可从提供驱动信号的交流信号发生电路(公共驱动器)给对置电极提供数据信号线的驱动信号,因而利用休止周期中将数据信号驱动器断开数据信号线,使该驱动器休止,能减少耗电。
于是,矩阵型显示器件中可兼顾充分低耗电和充分抑制闪烁的高显示质量。
有源矩阵液晶显示器件,则即使休止周期中数据信号线和对置电极的电位在扫描周期振幅中心+1.0V范围内其值变化,也能实现实用上无闪烁的显示。
本发明的显示器件也可配备上述驱动方法的控制装置。
利用上述结构,在矩阵型显示器件中,可兼顾充分低耗电和充分抑制闪烁的高显示质量。例如,用于液晶显示器件,则在具有有源元件的结构中,能达到低耗电且依然保持良好的显示质量。
实施发明的最佳形态部分中建立的具体实施形态或实施例,归根到底,是说明本发明技术内容的不应仅限于该具体例作狭义解释,可在本发明的精神和以下所记述权利要求范围内作种种变换并实施。
工业上的实用性
如以上那样,本发明的显示器件和显示器件驱动方法可用于TFT方式、反射型或反射透射型的液晶显示器件,而且可用于EL显示器件等显示器件。以便携电话、袖珍游戏机、PDA、便携电视机、遥控器、笔记本型个人计算机、其他便携终端等携设备为首的各种电子设备可装本发明的显示器件。这些电子设备许多用电池允动,装达到低耗电且依然保持无闪烁的良好显示质量的显示器件,便于长时间驱动。
Claims (24)
1、一种显示器件,具有有源矩阵型显示元件,该显示元件包括
扫描信号线,从扫描信号驱动器供给扫描信号,
数据信号线,从数据信号驱动器按交流驱动供给数据信号,以及
象素,所述象素连接所述扫描信号线和所述数据信号线,同时根据所述扫描信号和所述数据信号,有源元件周期性成为选择状态并且通过所述有源元件将决定显示状态的电荷写入规定的电容中,
其特征在于,
所述象素各自分别设置对所述电容的辅助电容,使所述辅助电容的电极处于与所述扫描信号线之间不导入电容耦合的位置,
还包括频率设定装置,可将决定写入所述电荷的周期的改写频率设定为30Hz以下,
所述显示元件是液晶显示元件,该液晶显示元件在象素电极和对置电极之间以液晶为中介形成所述电容,同时对所述电容设置辅助电容,并且所述电容为CLC,所述辅助电容为CCS,所述有源元件的非选择周期为T,所述改写频率中非选择周期后的液晶电压保持率为Hr(T),改写后的所述象素电极与所述对置电极的电位为V,所述有源元件在非选择时的电阻值为R,同时V1=V-{V.(1-Hr(T)×CLC/(CLC+CCS)),则所述液晶显示元件的象素电压保持率表示为
P=V1·exp[-T/{(CLC+CCS)·R}]/V
这个式子时,P≥0.9。
2、如权利要求1所述的显示器件,其特征在于,
所述改写频率在0.5Hz以上,30Hz以下的范围内。
3、如权利要求1所述的显示器件,其特征在于,
所述改写频率在1Hz以上,15Hz以下的范围。
4、如权利要求1所述的显示器件,其特征在于,
所述频率设定装置可将所述改写频率设定为30Hz以上。
5、如权利要求1所述的显示器件,其特征在于,
所述频率设定装置可设定多个所述改写频率。
6、如权利要求5所述的显示器件,其特征在于,
所述改写频率分别为最低改写频率的整数倍。
7、如权利要求5所述的显示器件,其特征在于,
所述改写频率分别为最低改写频率的2的整数次方倍。
8、如权利要求5所述的显示器件,其特征在于,
所述改写频率中至少最低频率是决定更新所述显示元件显示内容的周期的刷新频率的2以上的整数倍。
9、如权利要求8所述的显示器件,其特征在于,
所述频率设定装置在改变所述刷新频率时,可配合改变后的所述刷新频率改变所述改写频率中至少最低频率的设定。
10、如权利要求5所述的显示器件,其特征在于,
所述改写频率中最低频率为2Hz以上的整数值。
11、如权利要求1所述的显示器件,其特征在于,
所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,配置所述象素电极,使存在至少其本身所属象素的行与沿扫描方向按一定朝向相邻的行的象素的扫描信号线对置的部位。
12、如权利要求1所述的显示器件,其特征在于,
所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,所述象素电极是非透光型电极,并且配置成存在至少其本身所属象素的行与沿扫描方向按一定朝向相邻的行的象素的扫描信号线对置的部位。
13、如权利要求12所述的显示器件,其特征在于,
所述液晶显示元件具有对有效显示行中所述一定朝向起点侧端部的行的有源元件进行遮光的有源元件遮光层。
14、如权利要求13所述的显示器件,其特征在于,
所述液晶显示元件具有遮蔽所述有源元件遮光层的反射光反回所述液晶显示元件的显示面的防反射光遮光层。
15、如权利要求13所述的显示器件,其特征在于,
所述有源元件遮光层是设置成在与所述对置电极之间以液晶为中介的电极,所述有源元件遮光层与所述对置电极之间施加交流电压。
16、如权利要求15所述的显示器件,其特征在于,
所述液晶显示元件具有象素的行,该象素的行具有的结构为:进一步离开所述一定朝向起点侧端部的行的外侧,构成将所述有源元件遮光层用于所述象素电极的所述象素。
17、如权利要求1所述的显示器件,其特征在于,
所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,所述液晶显示元件具有从显示面侧与所述象素电极取向处理起点邻近侧边缘的至少一部分对置的遮光层。
18、如权利要求1所述的显示器件,其特征在于,
所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,与所述象素电极的取向处理部连接的部位中,去除与所述有源元件电连接的部分外的部位,其表面高低差为0.6um以下。
19、如权利要求1所述的显示器件,其特征在于,
所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,在所述象素电极的取向处理起点近端的边缘形成有透明电极。
20、如权利要求1所述的显示器件,其特征在于,
所述显示元件是在象素电极与对置电极之间以液晶为中介形成所述电容的液晶显示元件,配置着所述有源元件的基片侧的取向处理方向实质上平行于所述扫描信号线。
21、一种显示器件,具有有源矩阵型显示元件,该显示元件包括
扫描信号线,从扫描信号驱动器供给扫描信号,
数据信号线,从数据信号驱动器按交流驱动供给数据信号,以及
象素,所述象素连接所述扫描信号线和所述数据信号线,同时根据所述扫描信号和所述数据信号,有源元件周期性成为选择状态并且通过所述有源元件将决定显示状态的电荷写入规定的电容中,其特征在于,
所述象素各自分别设置对所述电容的辅助电容,使所述辅助电容的电极处于与所述扫描信号线之间不导入电容耦合的位置,
还包括频率设定装置,可将决定写入所述电荷的周期的改写频率设定为30Hz以下,
所述显示元件是液晶显示元件,所述液晶显示元件具有利用周围的光进行反射型显示的反射构件,该液晶显示元件在象素电极和对置电极之间以液晶为中介形成所述电容,同时对所述电容设置辅助电容,并且所述电容为CLC,所述辅助电容为CCS,所述有源元件的非选择周期为T,所述改写频率中非选择周期后的液晶电压保持率为Hr(T),改写后的所述象素电极与所述对置电极的电位为V,所述有源元件在非选择时的电阻值为R,同时V1=V-{V.(1-Hr(T)×CLC/(CLC+CCS)),则所述液晶显示元件的象素电压保持率表示为
P=V1·exp[-T/{(CLC+CCS)·R}]/V
这个式子时,P≥0.9。
22、如权利要求21所述的显示器件,其特征在于,
所述反射构件是所述象素电极的至少一部分。
23、如权利要求22所述的显示器件,其特征在于,
所述反射构件设置透光孔,或者所述反射构件为半透明。
24、一种电子设备,其特征在于,
装有如权利要求1所述的显示器件。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000131251 | 2000-04-28 | ||
JP2000131183 | 2000-04-28 | ||
JP2000131183 | 2000-04-28 | ||
JP2000306761 | 2000-10-05 | ||
JP200157398 | 2001-03-01 | ||
JP200194034 | 2001-03-28 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN01812023.7A Division CN1220098C (zh) | 2000-04-28 | 2001-04-24 | 显示器件、显示器件驱动方法和装有显示器件的电子设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1847934A CN1847934A (zh) | 2006-10-18 |
CN100507646C true CN100507646C (zh) | 2009-07-01 |
Family
ID=37077550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100919163A Expired - Fee Related CN100507646C (zh) | 2000-04-28 | 2001-04-24 | 显示器件、显示器件驱动方法和装有显示器件的电子设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100507646C (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102770902A (zh) * | 2010-02-26 | 2012-11-07 | 株式会社半导体能源研究所 | 显示设备及其驱动方法 |
CN104145302A (zh) * | 2012-02-24 | 2014-11-12 | 夏普株式会社 | 显示装置、具备该显示装置的电子设备和显示装置的驱动方法 |
CN104798126A (zh) * | 2012-11-20 | 2015-07-22 | 夏普株式会社 | 液晶显示装置及其驱动方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101933841B1 (ko) * | 2009-10-16 | 2018-12-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 액정 표시 장치 및 이를 구비한 전자 장치 |
CN104115217B (zh) * | 2012-03-01 | 2017-09-19 | 夏普株式会社 | 显示装置及其驱动方法 |
TWI486676B (zh) * | 2012-12-05 | 2015-06-01 | E Ink Holdings Inc | 畫素陣列 |
CN104103246B (zh) * | 2013-04-12 | 2017-04-12 | 乐金显示有限公司 | 用于显示设备的驱动电路及其驱动方法 |
JP6033414B2 (ja) * | 2013-04-23 | 2016-11-30 | シャープ株式会社 | 液晶表示装置 |
KR102050380B1 (ko) * | 2013-04-30 | 2019-11-29 | 엘지디스플레이 주식회사 | 저속 구동용 표시장치와 그 구동방법 |
KR102035755B1 (ko) * | 2013-04-30 | 2019-11-08 | 엘지디스플레이 주식회사 | 저속 구동용 표시장치와 그 구동방법 |
CN105139810A (zh) | 2015-09-28 | 2015-12-09 | 京东方科技集团股份有限公司 | 显示驱动方法及装置、显示装置 |
JP2019091516A (ja) * | 2017-11-15 | 2019-06-13 | シャープ株式会社 | シフトレジスタおよびそれを備えた表示装置 |
-
2001
- 2001-04-24 CN CNB2005100919163A patent/CN100507646C/zh not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102770902A (zh) * | 2010-02-26 | 2012-11-07 | 株式会社半导体能源研究所 | 显示设备及其驱动方法 |
CN104145302A (zh) * | 2012-02-24 | 2014-11-12 | 夏普株式会社 | 显示装置、具备该显示装置的电子设备和显示装置的驱动方法 |
CN104798126A (zh) * | 2012-11-20 | 2015-07-22 | 夏普株式会社 | 液晶显示装置及其驱动方法 |
Also Published As
Publication number | Publication date |
---|---|
CN1847934A (zh) | 2006-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1296174B1 (en) | Display unit, drive method for display unit, electronic apparatus mounting display unit thereon | |
KR101252091B1 (ko) | 수평 전계형 액정표시장치 | |
TWI393094B (zh) | 液晶顯示裝置及其驅動方法 | |
KR100644258B1 (ko) | 액정표시장치 | |
JP4166448B2 (ja) | アクティブマトリクス型液晶表示装置およびその駆動方法 | |
CN102498510B (zh) | 像素电路和显示装置 | |
CN101401148B (zh) | 有源矩阵型液晶显示装置及其驱动方法 | |
US9165517B2 (en) | Methods for reducing ripples in data signal lines, display apparatus, liquid crystal display apparatus, and television receivers including the same | |
CN102725788B (zh) | 像素电路和显示装置 | |
CN101995722A (zh) | 液晶显示器 | |
CN101520978B (zh) | 电光装置、驱动方法及电子设备 | |
CN100476557C (zh) | 液晶板、具有该液晶板的液晶显示装置及其驱动方法 | |
US20070268231A1 (en) | Liquid crystal display and method for driving the same | |
KR20120111684A (ko) | 액정표시장치 | |
WO1996000408A1 (fr) | Afficheur a cristaux liquides de type matrice active et son procede d'activation | |
KR20090018270A (ko) | 전기 영동 표시 장치의 구동 장치 및 구동 방법 | |
CN102598108B (zh) | 像素电路和显示装置 | |
CN100507646C (zh) | 显示器件、显示器件驱动方法和装有显示器件的电子设备 | |
CN104834116A (zh) | 一种液晶显示面板及其驱动方法 | |
CN102498509A (zh) | 像素电路和显示装置 | |
KR20130057704A (ko) | 표시 장치 및 그 구동 방법 | |
KR101354356B1 (ko) | 액정표시장치 | |
KR101493526B1 (ko) | 액정표시장치 | |
JP2002014321A (ja) | 表示装置およびそれを備えた電子機器 | |
KR20090067945A (ko) | 액정표시장치와 그 구동방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090701 Termination date: 20200424 |
|
CF01 | Termination of patent right due to non-payment of annual fee |