CN100494378C - 表达真菌mrp样abc转运蛋白的转基因生物 - Google Patents

表达真菌mrp样abc转运蛋白的转基因生物 Download PDF

Info

Publication number
CN100494378C
CN100494378C CNB028248538A CN02824853A CN100494378C CN 100494378 C CN100494378 C CN 100494378C CN B028248538 A CNB028248538 A CN B028248538A CN 02824853 A CN02824853 A CN 02824853A CN 100494378 C CN100494378 C CN 100494378C
Authority
CN
China
Prior art keywords
ycf1
yeast
resistance
yhl035c
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028248538A
Other languages
English (en)
Other versions
CN1602356A (zh
Inventor
宋元镛
梁泳烈
李永叔
黄仁焕
卢银云
催怜任
郑恩华
恩里科·马丁诺亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POHANG POLYTECHNIC SCHOOL
Posco Holdings Inc
Original Assignee
POHANG POLYTECHNIC SCHOOL
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2002-0062984A external-priority patent/KR100480843B1/ko
Application filed by POHANG POLYTECHNIC SCHOOL, Posco Co Ltd filed Critical POHANG POLYTECHNIC SCHOOL
Publication of CN1602356A publication Critical patent/CN1602356A/zh
Application granted granted Critical
Publication of CN100494378C publication Critical patent/CN100494378C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8259Phytoremediation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及一种分离的DNA分子,其编码赋予生物对有毒物质如重金属和除草剂的抗性和积累的ATP结合盒(ABC)转运蛋白之真菌MRP(多药耐药性相关蛋白)亚族,包含分离DNA的载体,和用分离的DNA转化的生物。用本发明的ABC转运蛋白的真菌MRP亚族转化的生物能用于修复被有毒物质污染的环境。例如,转化的植物可用于清洁污染的土壤或水,从而提供一种环境友好的方式以低成本修复被污染的资源。

Description

表达真菌MRP样ABC转运蛋白的转基因生物
相关申请的交叉参考
本申请基于韩国知识产权局的分别于2001年10月16日和2002年10月15日提交的韩国专利申请2001-0063802和2002-0062984。
背景技术
(a)发明领域
本发明涉及一种真菌MRP样ABC转运蛋白基因和用该基因转化的生物,尤其是,涉及表达包括YCF1或YHL035C的真菌MRP样ABC转运蛋白基因的转化生物,从而对有毒物质如铅、镉、砷和除草剂有改进的抗性和积累。
(b)相关现有技术描述
重金属如铅、镉和汞等等通过天然的食物链在人体内积累,并造成对脑、神经、骨等的慢性伤害,污染的环境和伤害世代持续。这些由重金属毒性引起的问题的典型实例是在日本发生的水俣病(Minamata disease)和Itaiitai disease。由于铅是重金属中引起的伤害最大的一种污染物质(Salt,D.E.,Smith,R.D.,and Raskin,I.Phytoremediation.Annu.Rev.Plant Physiol.PlantMol.Biol.49,643-668(1998)),从环境中除去铅是很重要的。美国政府每年花费大约5亿美元从儿童生长的环境中去除铅(Lanphear,B.P.The paradox oflead poisoning prevention.Science,281;1617-1618(1998))。由于砷污染了饮用水从而引起皮肤疾病和癌症,又正成为一个严重的问题。
已知的与有毒物质如重金属和农药的抗性或蓄积相关的基因细菌P-型ATP酶,在细菌细胞膜上把铅泵到细胞外中起作用(Rensing,C.,Sun,Y.,Mitra,B.,and Rosen,B.P.Pb(II)-translocating P-type ATPases.J.Biol.Chem.273:32614-32617(1998));与镉抗性相关的基因包括酵母的YCF1基因;与砷抗性相关的基因包括酵母的YCF-1和ACR基因,细菌的ArsAB基因,等等。
活的生物具有通过利用转运蛋白或对侵入身体的有害物质有亲和性的生物物质来减轻物质毒性的机制。与目前广泛应用的物理的和/或化学补救(remediation)相比,使用活的生物对有害物质有抗性的基因,可以提供一种环境友好的方式以非常低廉的成本来修复被有害物质污染的环境(Mejareand Bulow,Trends in Biotechnology;2001,Raskin I.and Ensley B.D.Phytoremediaton of Toxic Metals,John Willy&Sons,New York;2000)。尤其是,由于植物有很多优点如能容易表达外源基因从而表现新的表型,它们能以低的成本生产并维持,它们在审美上令人愉快等等,有关通过插入有用的基因到植物中来改良植物从而用于对环境修复的研究正在积极进行。这种使用植物来清洁环境的技术称为“植物修复(phytoremediation)”。
由于土壤等中的毒物如铅,镉,砷和农药而导致环境污染的情况严重,非常需要用能给予对这些毒物的抗性和/或积累的基因转化的生物。
几篇论文中已经描述过能用于从环境中去除镉的转化植物(Zhu et al.,(1999)Plant Physiol.119:73-79,Hirschi et al.,(2000)Plant Physiol.124:125-33,Dominguez-Solis et al.,(2001)J.Biol.Chem.276:9297-9302),但是还没有关于具有增强的从环境中去除铅或砷的能力的转基因植物的报道。更进一步地,开发用YCF1转化的生物来改进对不仅对铅还有对镉,砷和除草剂抗性从而去除这些毒物的尝试还没有公开过。
发明概述
本发明涉及一种显示铅抗性和积累,并编码真菌MRP样ABC转运蛋白的DNA分子(多抗药性相关蛋白ATP结合的盒式转运蛋白,MRP样ABC转运蛋白)。
进一步地,本发明涉及一种包括所述的编码MRP样ABC转运蛋白的DNA分子的重组载体。
更进一步地,本发明涉及对毒物有改进的抗性和/或积累的转化生物,其用所述的编码真菌MRP样ABC转运蛋白的DNA分子转化。
附图简述
图1为野生型和YCF1裸(ycf1)酵母在对照,含铅或镉的培养基中生长的图片,表明ycf1突变酵母比野生型酵母对铅和镉更敏感。
图2A和2B为用空载体转化的野生型酵母(wt-pSEC),用空载体转化的ycf1酵母(ycf1-pSEC)和用YCF1转化的ycf1酵母(ycf1-YCF1)在对照,含铅和镉的培养基中生长的图片(A),和酵母系的YCF1的mRNA的Northernblot结果(B)。
图3A和3B为ycf1-pSEC酵母,wt-pSEC酵母和ycf1-YCF1酵母中铅(A)或砷(B)的含量图表。
图4为野生型,YHL035C突变(yh1035C-v)和用YHL035C转化的yh1035C-v酵母在对照或含铅的培养基中生长的照片,表明yh1035C-v酵母比野生型或用YHL035C转化的yh1035C-v酵母对铅更敏感。
图5A和5B为RT-PCR结果的照片,其表明在用YCF1转化的拟南芥(Arabidopsis thaliana)中YCF1的表达。
图6为表明YCF1转化的拟南芥有增强的铅和镉抗性的照片(A,B,C)和图表(D,E)。
图7为表明用YCF1转化的拟南芥对砷有增强的抗性的照片。
图8为表明用YCF1转化的拟南芥对除草剂CDNB有增强的抗性的照片。
图9A和9B为用YCF1转化的拟南芥中铅(A)和镉(B)含量的图表。
图10A-10C显示了来自用YCF1转化的白杨的茎愈伤组织和叶片段比来自野生型的有增强的铅抗性的系列照片(A,B)和图表(C)。
图11为用YHL035C转化的白杨植株比野生型的白杨植株对铅的抗性更强的照片。
发明详述和优选实施例
本发明涉及显示对毒物具有抗性和/或积累的基因,包含该基因的载体,以及用其转化的细胞和生物。
本发明中显示对毒物有抗性和/或积累的基因,是一个编码真菌多抗药性相关蛋白(MRP)样ATP结合的盒式转运蛋白(以后称作“MRP样ABC转运蛋白”)。
真菌MRP样ABC转运蛋白,是一种ABC转运蛋白,在把存在于细胞质内的几种有机物质转运到细胞质外中起作用。ABC转运蛋白存在于从原核生物到人类肝细胞的几种生物中,它们能转运很多种物质。ABC转运蛋白转运的有机物质包括谷胱甘肽结合的重金属,胆汁酸等。属于真菌MRP样ABC转运蛋白的YCF1已知能把镉,砷和农药(agricultural chemicals)转运到液泡中,并由此提供对这些有害物质的抗性(Li et al.,(1997)Proc.Natl.Acad.Sci.USA 94:42-47,Ghosh et al.,(1999)Proc.Natl.Acad.Sci.USA96:5001-5006)。但是使用YCF1开发对镉,砷和农药都有改进抗性的生物从而去除这些有害物质的尝试还没有公开过。更进一步的,YCF1对铅的抗性还没有报道过,也没有任何有关YHL035C蛋白的功能和表达它的转化体的公开。
真菌MRP样ABC转运蛋白基因包括,例如,YCF1(酵母镉因子1)和YHL305C基因,和与YCF1蛋白及YHL035C蛋白的氨基酸序列至少有28%序列同源性的MRP样ABC转运蛋白基因。YCF1和YHL305C基因或它们的蛋白,彼此有28%的序列同源性。本发明也包括编码真菌MRP样ABC转运蛋白,而且其氨基酸序列与YCF1或YHL035C蛋白至少有28%同源性,优选至少40%同源性,更优选的至少50%同源性的DNA分子。例如,可以包括通过使用CLUSRALW程序对GenBank的氨基酸数据库进行比较得到的BPT1,YBT1和YOR1基因,其氨基酸序列与YCF1或YHL035C蛋白至少有28%同源性。BPT1蛋白的氨基酸序列与YCF1有40%同源性,YBT1蛋白的氨基酸序列与YHL035C有51%同源性,YOR1蛋白的氨基酸序列与YCF1有28%同源性。YBT1和BPT1是已知能转运胆汁酸的真菌MRP样ABC转运蛋白(Ortiz et al.,(1997)Journal of Biological Chemistry272:15358-15365,Petrovic et al.,(2000)Yeast 16:561-571),YOR1蛋白也是一种已知能转运几种药物的真菌MRP样ABC转运蛋白(Decottignies et al.,(1998)Journal of Biological Chemistry 273:12612-12622)。
本发明的MRP样转运蛋白已知有一个共同的域结构,包括在N-末端的相当长疏水区域的N-末端延伸区域;第一跨膜区域;细胞质区域的第一核苷酸结合折叠区域;第二跨膜区域;和位于C-末端的细胞质区域的第二核苷酸结合折叠区。
在本发明的一个优选实施方案中,真菌MRP样ABC转运蛋白与SEQID NO:2的YCF1蛋白或SEQ ID NO:4的YHL035C蛋白的氨基酸序列有至少28%,优选至少40%,更优选至少50%的序列同源性。其中每个都包括N-末端延伸区域,第一跨膜区域,第一核苷酸结合折叠区,第二跨膜区域,和第二核苷酸结合折叠区,而且真菌MRP样ABC转运蛋白每个区域与SEQID NO:2的YCF1蛋白或SEQ ID NO:4的YHL035C蛋白相应区域的氨基酸序列至少有28%的序列同源性。
本发明中赋予对毒物抗性和积累的基因是YCF基因,其包括编码YCF1蛋白的多肽的序列,例如,编码显示对有害物质抗性和有害物质积累的SEQID NO:2的多肽的核苷酸序列;优选一种显示对选自镉,砷或除草剂的一种或多种有害物质具有抗性和积累以及对铅的抗性和积累,并包括编码SEQID NO:2的YCF1多肽的核苷酸序列的YCF1基因;更优选的具有SEQ IDNO:1的核苷酸序列的YCF1基因。YCF1基因存在于酿酒酵母(Saccharomyces cerevisiae)的第6染色体上。当YCF1基因表达时就能显示它的功能,因此,本发明包括氨基酸序列与YCF1蛋白至少有28%同源性,优选至少40%同源性,更优选50%同源性并对有害物质有抗性和积累的蛋白,以及编码它们的DNA分子。
YCF1蛋白是ABC转运蛋白中的一种,它存在于酵母的液泡膜中,而且它已知能通过用MgATP作为能量来源把存在于细胞质中与谷胱甘肽结合的镉转运到液泡内减轻镉的毒害,(Li,Z.S.et al.A new pathway for vacularcadmium sequestration in Saccharomyces cerevisiae:YCF1-Catalyzed transportof bis(glutathionato)cadmium.Proc.Natl.Acad.Sci.USA 94,42-47(1997))。
显示对有害物质抗性和/或积累的基因的另一个例子是YHL035C基因,提供了显示对铅抗性并包括编码SEQ ID NO:4的多肽的核苷酸序列,更加优选的是SEQ ID NO:3的核苷酸序列的YHL035C基因。YHL035C基因存在于酿酒酵母的第8条染色体上,是MRP样ABC转运蛋白之一。当表达时YHL035C基因时就显示它的功能,因此,本发明包括氨基酸序列与YHL035C蛋白至少有28%同源性,优选至少40%同源性,更优选50%同源性并对有害物质有抗性和积累的蛋白,以及编码它们的DNA分子。
此外,本发明提供了一种包括编码真菌MRP样ABC转运蛋白的所述DNA分子的重组载体,优选地提供了包括YCF1基因或YHL035C基因的重组载体。重组载体的特定的例子包括pESC-YCF1,ENpCambia-YCF1,或PBI121-YCF1重组载体,或pESC-YHL035C重组载体,和pPBI121-YHL035C。这些重组载体可以由本发明所属领域的普通技术人员根据已知的方法进行构建。
本发明中,有害物质包括铅,镉,砷等重金属,或农药和除草剂。除草剂一般是小分子量的亲脂性化合物,已知能容易地通过植物细胞壁和干扰植物特异性程序,例如,光合电子传递或必需氨基酸的生物合成新陈代谢等,和例如也包括氯磺酮(chlorosulfurone),axidofluorpen,norflurazon和氯-二硝基苯(CDNB)。
因此,可使用包括编码本发明YCF1蛋白和YHL035C蛋白的核苷酸序列的DNA分子,或与其至少有28%同源性的DNA分子来制备显示对有害物质有抗性和积累的转基因生物,而且这样制备的转基因生物可用于以减轻和低的成本来修复被有害物质污染的地方。
此外,本发明涉及用编码真菌MRP样ABC转运蛋白的所述DNA分子转化的生物。本发明也涉及用编码真菌MRP样ABC转运蛋白的所述DNA分子转化的转基因细胞,优选植物细胞。ABC基因包括前述的所有基因,例如,优选使用YCF1基因和YHL035C基因。
转基因生物优选原核或真核生物,如可使用植物,动物,酵母,大肠杆菌(E.coli)和真菌。转基因植物包括异源DNA序列,根据遗传工程方法,其被构建成适合在植物细胞,植物组织或植物体内表达。植物转化体可根据已知技术制备,典型地使用根癌农杆菌(Agrobacterium tumefaciens)介导的DNA转导。更优选地,通过选自电穿孔,微粒注射的方法和使用基因枪构建的重组根癌农杆菌,通过浸(dipping)的方法导入到植物中。本发明的一个实施方案中,可以通过构建包括可操作地连接使其能转录和翻译MRP样ABC转运蛋白编码序列的表达盒,构建包括所述表达盒的重组载体,并把所述的重组载体导入到植物细胞或组织中来制备转基因植物。
上述植物包括草本植物如拟南芥,油菜,芥菜(leaf mustards),烟草,洋葱,胡萝卜,黄瓜,甜马铃薯(sweet potatoes),马铃薯,洋白菜(napacabbages),萝卜(radish),莴苣,花椰菜(broccoli),碧冬茄(petunias),向日葵,草等,和树木如橄榄树(olive),柳树(willow),白桦(white birch),杨(poplar),和桦树(birch),优选使用杨和拟南芥。
本发明的一个优选实施方案中,转基因生物包括YCF1拟南芥(保藏号KCTC10064BP),YCF1杨,或YHL035C杨。本发明的YCF1拟南芥于2001年09月05日保藏在位于韩国的52,Eoun-dong,Yusung-gu,Daejeon韩国生物科学和生物技术研究所的韩国典型培养物保藏中心(Korean Collection forType Cultures),保藏号为KCTC10064BP。YCF1拟南芥可以根据传统的植物细胞培养方法和分化方法,通过组织培养进行无性繁殖并成长为植株。与相应的野生型相比,YCF1拟南芥对重金属和其它有害物质有很好的抗性(图6,7和8)和积累(图9),尤其是,它显示了对铅,镉,砷和农药的抗性和积累。
本发明的YCF1杨和YHL035C杨植株可以根据传统的植物细胞培养方法和分化方法,通过组织培养进行无性繁殖并长成植株。YCF1杨和YHL035C杨植株与相应的野生型相比对铅有极好的抗性(图10和11)。
后面提供的优选实施例可以更好地理解发明。但是,下述实施例只为了更好的理解本发明:本发明并不仅局限于此。
实施例1:YCF1突变酵母对铅和镉的敏感性
野生型酵母(DTY 165)和ycf1突变酵母(DTY167,MATa ura3 leu2 his3trp3 lys2 suc2 ycf::hisG)在YPD液体培养基(1%酵母提取物,2%蛋白胨,2%葡萄糖(dextrose))中于30℃培养直到OD600达到1-2,然后相同数量(1×102,1×103,1×104或1×105)的酵母细胞,在稀释一半(half-diluted)的含有3mM铅的YPD固体培养基中于30℃培养3天。同样的,它们也在稀释一半的含有0.1mM镉的YPD固体培养基中培养。实验结果如图1所示。
如图1中所示,与野生型酵母相比,ycf1突变酵母在含3mM铅的培养基中生长减弱,在含0.1mM镉的培养基中ycfl突变酵母几乎没有生长。因此,它说明YCF1是一种提供铅和镉抗性的基因。
实施例2:克隆载体的构建
2-1:克隆载体(PESC-YCF1)
为了分离YCF1基因,野生型酵母在3mlYPD液体培养基中于30℃培育12小时,然后离心(12,000rpm,20-60sec)。得到的沉淀在400μl酵母裂解缓冲液(1M山梨醇,0.1M EDTA,50mM DTT(pH7.5))中悬浮,然后加入40μl消解酶(5mg/1ml,0.9M山梨醇),于37℃保持15到30min。接着,把它们与400ml尿素缓冲溶液(7M尿素,0.3125M氯化钠,0.05M Tris-HCl(pH8.0),0.02M EDTA(pH8.0),1%肌氨酸)混合,再与苯酚/氯仿混合来分离上清液。上清液再与1ml 100%乙醇混合并离心(12,000rpm,10min.),然后沉淀的DNA在TE缓冲溶液(10mM Tris-HCl,1mM EDTA pH8.0)中重悬。使用分离的DNA作为模板,YCFa引物(SEQ ID NO:3),YCFb引物(SEQ ID NO:4),和LA taq聚合酶试剂盒(Takara)进行PCR来分离YCF1基因。
为了证实酵母中YCF1基因与铅抗性相关,上述(1)中分离到的YCF1基因被克隆到pESC-URA(酵母穿梭载体,Stratagene)载体中。也就是,用限制酶Xho I和Sca I酶切YCF1 PCR产物来制备YCF1(Xho I/Sca I),pESC-URA载体用HindIII消化,并用Klenow片断和dNTPs处理来产生带有平端的载体,再用限制酶Xho I酶切。用T4 DNA连接酶连接上述YCF1(Xho I/Sca I)和消化的pESC-URA载体(Xho I/平端),来构建重组载体pESC-YCF1。
2-2:克隆载体(PESC-YHL035C)
除了PCR使用实施例2-1中的酵母基因组DNA作为模板,YHL035Ca引物(SEQ ID NO:9),YHL035Cb引物(SEQ ID NO:10),和LA taq聚合酶试剂盒(Takara)外,使用与实施例2-1基本相同的程序来从酵母中分离YHL035C基因。
YHL035Ca:5’-cgacgcggccgcatgggaacggatccccttattatc-3’
YHL035Cb:5’-cgacgcggccgccatcatcttacttgattgcttgg-3’
为了在酵母中表达YHL035C基因,把YHL035C基因克隆到pESC-URA(酵母穿梭载体,Stratagene)中。YHL035C PCR产物用NotI酶切,并使用T4DNA连接酶连接到pESC-URA中构建重组载体pESC-YHL035C。实施例3:YCF1重组酵母对铅和镉的抗性
分别构建将空载体导入ycf1突变酵母中的重组酵母(ycf1-pESC酵母),导入空载体到野生型酵母中的重组酵母(wt-pESC酵母),和ycf1突变酵母中YCF1过表达的重组酵母(ycf1-YCF1),并测试其对铅或镉的抗性。
3-1:YCF1重组酵母的构建
酵母接种到3ml的液体YPC培养基中,并于30℃培养12小时,然后将0.5ml的培养物置于10ml液体YPD培养基中,于30℃培养6到8小时直到OD600达到0.5-0.8。将得到的培养物离心(1,500rpm,5min.)收集酵母,其在5ml缓冲液(0.1M LiOAc,TE,pH7.5)中重悬并离心。离心的酵母再在缓中液(0.1M LiOAc,TE(pH7.5))中重悬,并在振荡培养箱中于30℃培养1小时,然后加入质粒pESC,pESC-YCF1或pESC-YCF1,和鲑鱼精子(testis)DNA,于30℃培养1小时。培养的酵母与0.7ml缓冲液(40%PEG3300,0.1M LiOAc),TE(pH7.5)混合,并于30℃振荡培育1小时。然后,上述混合物于42到45℃放置5min,进行热激,并离心(2,500rpm,5min.)收集酵母。酵母用1ml TE缓冲液(pH7.5)洗涤,在0.2ml水或TE缓冲液(pH7.5)中重悬,然后在选择培养基(CM Ura-)中培养2到3天来筛选转化的酵母(ycf1-pESC酵母,wt-pESC酵母,ycf1-YCF1酵母)。
3-2:重组酵母对铅和镉的抗性
上述构建的ycfl-pESC酵母,wt-pESC酵母,ycf1-YCF1酵母,分别培养于添加了1.8mM铅的半乳糖培养基中(2%半乳糖,1%到0.17%(0.1%of0.17%)YNB,0.13% dropout powder,0.5%硫酸铵),或添加了50μM镉的半乳糖培养基中。对照组培养于不含重金属的半乳糖培养基中。各重组ycf1-pESC酵母,wt-pESC酵母,ycf1-YCF1酵母在含铅或镉的培养基中的生长程度如图2的照片所示。
从图2可以看出,ycfl突变酵母中YCF1过表达的ycf1-YCF1酵母在含铅或镉的培养基中比ycf1-pESC酵母或wt-pESC酵母生长的更好,这也支持了前面的YCF1基因在提供镉抗性上起重要作用的结论。此外,它也最新揭示了该基因对铅抗性也是重要的。
3-3:重组酵母中YCF1的表达
为了研究实施例3中构建的ycf1-pESC酵母,wt-pESC酵母,ycf1-YCF1酵母的表达,进行了Northern Blotting。
用液氮研磨每个重组酵母,总RNA提取缓冲液(0.25M Tris HCl pH9.0,0.25M NaCl,0.05M EDTA,0.345M对氨基水杨酸(p-Aminosalicylic acid),0.027M三异丙基萘磺酸,0.02% β-巯基乙醇,0.024%苯酚)与苯酚/氯仿以1:1混合。以12,000rpm离心10min得到的上清液转移到添加了400μl异丙醇的新管中。再以12,000rpm离心10min来沉淀RNA,其然后溶解于DEPC处理水并储存于冷冻箱中。
为了进行Northern Blot,30μg的RNA在琼脂糖凝胶上进行RNA电泳,然后转移到尼龙膜上。尼龙膜在杂交反应液(6×SSPE,0.5% SDS,10% PEG,1%脱脂(nonfat)奶粉,50%甲酰胺)中于42℃振荡(stirring)培育2小时。然后,加入用32P dCTP标记的YCF1,并于42℃反应12小时。杂交反应后,尼龙膜用缓冲液(2×SSPE,0.5% SDS)冲洗两次,再用另一种缓冲液(0.2×SSPE,0.5% SDS)冲洗,干燥,然后在X-线胶片上放射自显影。实验结果如图2B所示。
从图2B,三种重组载体的Northern Blot照片可以看出,ycf1-YCF1酵母过表达YCF1 mRNA。也就是说,它证实了实施例3-2中显示的ycf1-YCF1酵母的铅和镉抗性,是由于YCF1的过表达。
3-4:铅和镉的抗性机理
为了研究YCF1基因给予的铅和镉的抗性是否是由于重金属的分子内积累或分子间的释放,进行了该实验。
三种酵母(ycfl-pESC酵母,wt-pESC酵母和ycf1-YCF1酵母)分别在含1.5mM铅或15μM镉的1/2半乳糖固体培养基中培养1天,刮下培养的酵母并收获。收获的酵母置于1ml浓缩硝酸中,于200℃消化大约6小时,然后用10ml 0.5N硝酸稀释,使用自动吸收分光计(AAS)测定酵母中含有的重金属的量。ycf1-pESC酵母,wt-pESC酵母和ycf1-YCF1酵母的测定结果如图3中的图表所示。
结果,wt-pESC酵母和ycf1-YCF1酵母显示了比ycf1-pESC酵母更高的铅和镉积累,特别地,wt-pESC酵母和ycf1-YCF1酵母显示了比ycf1-pESC酵母高2倍的铅积累。因此,它证实了YCF1基因的铅和镉抗性是由于这些重金属的分子内积累。
实施例4:YHL035C重组酵母的铅抗性
4-1:重组酵母的构建
根据和上述实施例3-1中基本类似的方法,分别构建导入空载体到yh1035c突变酵母中的重组酵母(yh1035c-v酵母),导入空载体到野生型酵母中的重组酵母(wt-v酵母),和yh1035c突变酵母中YHL035C过表达的重组酵母(YHL035C酵母),并筛选转化的酵母(wt-v酵母,yh1035c-v酵母,YHL035C酵母)。使用这些重组酵母测试其对铅的抗性。
4-2:重组酵母的铅抗性测试
根据与上述实施例3-2基本相似的方法测试wt-v酵母,yh1035c-v酵母,YHL035C酵母的铅抗性。wt-v酵母,yh1035c-v酵母,YHL035C酵母在含铅培养基中的生长程度如图4中的照片所示。
从图4中可以看出,yh1035c突变酵母yh1035c-v,在含1.8mM铅的培养基中比wt-v酵母更敏感。但是,yh1035c突变酵母中YHL035C被表达的YHL035C酵母又恢复了铅抗性,并在含1.8mM铅的培养基中显示了与wt-v酵母相似的生长。因此,它新揭示了YHL035C基因在提供铅抗性中起重要作用。
实施例5:转基因植株的制备
5-1:用于植物转化的YCF1和YHL035C载体的构建
为了把YCF1基因导入到植株中,pESC-YCF1质粒的BamH I/SnaBI片断4.6kb的YCF1,被插入到PBI121(BamH I/Sma I),从而构建了一个PBI121-YCF1载体。为了提高YCF1基因的表达,构建了EnPCAMBIA1302-YCF1载体。用限制酶Sall消化PCAMBIA1302载体,并用Klenow片断和dNTPs处理以产生带有平端的载体,并插入35S增强子(BamH I/平端)到用BamH I消化的载体中,来构建EnPCAMBIA1302载体。然后把YCF1基因(BamH I/平端)插入到EnPCAMBIA1302载体的BgIII/PmII位点构建EnPCAMBIA1302-YCF1载体。
PBI121-YCF1和EnPCAMBIA1302-YCF1载体用电穿孔仪(BIO-RAD)导入到E.coli中,并培养于LB固体培养基中。接种一个单克隆到3mlLB(Amp)液体培养基中,培养12到16小时,离心收获转化的E.coli。然后,加入100μl溶液I(50mM葡萄糖,25mM Tris-HCl(PH8.0),10mM EDTA)到收获的E.coli中进行重悬,再加入200μl溶液II(1% SDS,0.2N氢氧化钠),轻轻混匀该混合物,然后冰水上培育5min。接着加入150μl溶液III(5M醋酸钾)到上述混合物中,慢慢地混匀3到5倍(times),离心(12,000rpm,10min)收集上清液。上清液与100%乙醇混合来沉淀DNA,然后分离DNA并干燥。获得的PBI121-YCF1质粒DNA裂解于TE缓冲液中,并用限制性酶BamHI和EcoR I酶切,然后确定YCF1基因以正确的方位插入。
为了把YHL035C基因导入到植株中,除了从实施例2构建的pESC-YHL1035C载体中切出YHL035C基因,并因此在两个末端产生限制性位点Sacl和EcolCR1,然后导入YHL035C基因到用Sacl和Smal消化的pBI121载体构建pBI121-YHL035C载体之外,根据与构建上述用于植株转化的YCF1载体相类似的方法构建了pHI121-YHL035C载体。
5-2:转基因拟南芥的制备
上述实施例5-1中构建的PBI121-YCF1和EnPCAMBIA1302-YCF1载体导入到农杆菌(Agrobacterium)中(LBA4404)。在含有卡那霉素的MS(Murashige-Skoog)培养基中筛选转化的农杆菌,并用浸的方法转染拟南芥(Arabidopsis thaliana)的花(Clough,S.J.,and Bent,A.F.,Floral dip:asimplified method for Agrobacterium-mediated transformation of Arabidopsisthaliana,Plant J.,16,735-743(1988))来把YCF1基因导入到植株中。4到5周后,收获拟南芥植株的种子,并用卡那霉素筛选用PBI121-YCF1载体转化的植株,以及用潮霉素筛选用EnPCAMBIA1302-YCF1载体转化的植株来筛选YCF1拟南芥。
总共获得了5个YCF1拟南芥植株系,检测它们YCF1mRNA表达水平,如果表达的mRNA包括C-端700bp的YCF1mRNA,就可确信全长mRNA的表达。首先,从5个YCF1拟南芥植株系提取mRNA,用SEQ IDNO:5/SEQ ID NO:6作引物进行RT-PCR,RT-PCR结果如图5A所示。如图5A中所示,700bp的YCF1在植株1,3,4和5中表达,而且YCF1在植株4和5中高表达。
对上述的RT-PCR产物进行了Southern Blotting,结果如图5B所示。从图5B中可以看出,在植株1,3,4和5中表达的基因是YCF1,野生型YCF1mRNA完全转录的出现确证了图5A的结论。显示YCF1高表达的YCF1拟南芥于2001年09月05日保藏在位于韩国的52,Eoun-dong,Yusung-gu,Daejeon,韩国生物科学和生物技术研究所的韩国典型培养物保藏中心(Korean Collection for Type Cultures at the Korea Research Institute ofBioscience and Biotechnology),保藏号为KCTC10064BP。
5-3:转基因杨的制备
Bong-hwal,杂种杨(Poplulus alba x P.glandulosa)的克隆,其在室外不开花,在增殖后用作用于转化的植株。为了确保杨的体外无菌材料,从保藏于韩国森林研究所(Korea Forest Research Institute)苗圃的无性系库(clonebank)获得了杨茎,并用乙醇(5min)和2%氯化钠(20min)进行表面消毒,然后在MS培养基中培养了4周,开始发育的茎用作用于转化的样本。
使用含有靶基因的农杆菌,愈伤组织诱导,茎诱导等等,用Noh等的方法(Genetic Engineering of Poplar(2002),written by Noh,Eun-un et al.ISBN#89-8176-098-5 93520)进行转化。实施例5-2中构建的导入了PBI121-YCF1和EnPCAMBIA1302-YCF1载体的根癌农杆菌(Agrobacteriumtumefociens),接种到LB培养基中并于30℃培养过夜,以1,000g离心10min后,弃掉培养基,沉淀用0.85%的氯化钠溶液再重悬。重悬液转到皮氏(Petri)培养皿,然后使体外培养的杨节间组织在其中浸泡20min。之后,把它放到两张消毒的吸收滤纸之间,并轻轻挤压来除去过多的农杆菌,然后在不含抗生素的愈伤组织诱导培养基(MS+2,4D 1.0mg/L,BA 0.1mg/L,NAA0.01mg/L)中共培养2天,接着用含有50mg/L卡那霉素和500mg/L氨噻肟头孢霉素的选择培养基筛选转化细胞。
形成的愈伤组织在含有50mg/L卡那霉素的茎诱导培养基(WPM+玉米素1.0mg/L,BA 0.1mg/L,NAA 0.01mg/L)(LIoyd and McCown,1981)中生长来诱导茎。一旦诱导出了茎,可以通过在含有50mg/L卡那霉素的MS基础培养基中进行次生培养来诱导延长,通过添加0.2mg/L的IBA到同样的培养基中来诱导生根,从而获得整个植株体。
实施例6:存在有害物质时转化拟南芥植株的生长
实施例5中制备的YCF1拟南芥植株培养于含有铅(0.9,1,1.1mM)镉(50,60,70μM),除草剂氯-二硝基苯(CDNB)(60μM)和五价砷(50μM)的1/2MS培养基中,来研究它们的生长程度。用空载体(PBI)转化的拟南芥植株和野生型植株用作对照。实验结果如图6到图8所示。
图6显示了用YCF1转化的拟南芥生长的照片和图表。如图6所示,当YCF1拟南芥和对照植株在含铅的培养基中培育3周时,YCF1拟南芥(1,3,4和5)比用PBI空载体转化的植株和野生型植株叶中出现更少的缺绿症(chlorosis)和更好的根生长(A,B和D)。当YCF1和野生型拟南芥植株在不同浓度的镉培养基中生长时,野生型拟南芥植株叶中比YCF1转化体显示更多的缺绿症,根长得差而且比YCF1转化体短(C和E)。
图7为YCF1转化的拟南芥显示对砷抗性的图片。当在含60μM五价砷的培养基中培养3周时,野生型拟南芥显示很少的生长,但YCF1转化体(1,2,3和4)与野生型相比显示了好得多的生长。
图8为用YCF1转化的拟南芥显示对CDNB抗性的照片。当YCF1拟南芥和对照植株在含60μM CDNB的培养基中培养2个月时,野生型植株萌芽很差而且几乎死亡,但YCF1拟南芥植株生长较好,几乎和在正常条件下生长的拟南芥植株一样。
因此,实施例5中制备的YCF1转化拟南芥被证实对铅,镉,砷和除草剂有抗性。
实施例7:转化的拟南芥植株中重金属的积累
实施例5中获得的YCF1拟南芥植株和用空载体PBI转化的野生型拟南芥,在含铅(0.75mM)和镉(70μM)的1/2MS培养基中培养3周来研究重金属的积累。通过和实施例6基本类似的实验来研究铅或镉积累的量,结果如图9所示,其中图9A显示了植株中铅的含量,图9B显示了植株中镉的含量。
如图9A所示,YCF1拟南芥植株显示了比用PBI转化的植株高2倍或1.4倍的铅积累。如图9B所示,YCF1拟南芥植株显示了比用PBI转化的植株高2倍或3倍的镉积累。
因此,证实了YCF1拟南芥植株比野生型拟南芥有更高的铅和镉积累。
实施例8:YCF1转化植株抗有害物质的机理
YCF1转化植株显示了对铅,镉,砷和除草剂的抗性,以及铅和镉的积累。为了研究这些现象的发生是由于YCF1蛋白把重金属转运到液泡中的事实,从YCF1转化植株和野生型植株中分离液泡,并进行转运镉和除草剂的实验。YCF转化植株和野生型植株的液泡中镉(Cd+GSH)和除草剂(DNB-GS)转运实验结果如下表1所示。
表1.分离自拟南芥的液泡中GS相关化合物的积累(单位:pmol/l ul液泡/20min)
Figure C02824853D00161
如上述表1所示,转运物质时YCF1使用MgATP作为它的能量来源,在-MgATP小组中,YCF1转化体和野生型植株之间镉(Cd+GSH)和除草剂(DNA-GS)含量没有差异。但是,当加入MgATP时,YCF1转化体液泡显示了比野生型液泡高1.7倍的镉积累。在除草剂(DNB-GS)中,YCF1转化体显示了略高于野生型的积累。
从图6,7,8和9中可以证实,YCF1转化拟南芥植株有比野生型高的铅,镉,砷和除草剂的抗性,以及更多的铅和镉积累。表1的结果也支持了这种现象是由于YCF1转化的拟南芥植株中表达的YCF1蛋白把镉和除草剂转运到液泡中,并稳定它们,从而提供了对这些有害物质的抗性和积累的事实。
实施例9:转基因杨植株的生长
9-1:YCF1转基因杨植株
实施例5中制备的YCF1杨植株的叶片断和茎,置于含有500ppm铅的愈伤组织培养基中,培养2周来研究它们生长的差异。没有转化的野生型杨植株作为对照,以同样的方式进行处理,实验结果如图10所示。图10为显示YCF1转化的植株和对照白杨植株生长的照片和图表。
如图10所示,在含铅的培养基中,YCF1杨(1,2,3和4)茎片(stalk pieces)显示了比野生型(wt)高2倍的生长(A和C),YCF1杨的叶片断(1,2和3)显示了比野生型(wt)少的褐化,并保持了叶绿素的绿色(B)。
9-2:YHL035C转化的杨植株
把实施例5中制备的YHL035C转化杨植株转移到盆(pot)中,并使其生长成盆苗。再把这些盆苗转移到土壤中,并浸泡到含有500ppm硝酸铅的溶液中。实验结果如图11所示。
图11为当在含有铅的土壤中培养4周时,野生型杨生长较差,但YHL035C转化的杨比野生型生长好得多的照片。因此,实施例5中制备的YCF1转化的杨植株和YHL035C杨植株被证实对铅有抗性。
如上所述,本发明的YCF1基因提高了对重金属和其它有害物质的抗性和积累,YHL035C基因改进了对铅的抗性,因此,能表达这些基因的转化体可用于修复被有害物质污染的环境。从而,本发明的转化体提供了一种环境友好的方式以低成本地修复环境。
Figure C02824853D00181
序列表
<110>POSCO公司(POSCO)
学校法人浦项工科大学校(POSTECH FOUNDATION)
<120>表达真菌MRP样ABC转运蛋白的转基因生物
<130>OPP2002-1053KR
<150>KR10-2001-0063802
<151>2001-10-16
<150>KR10-2002-0062984
<151>2002-10-15
<160>10
<170>KopatentIn 1.71
<210>1
<211>4548
<212>DNA
<213>ycf1基因
<400>1
Figure C02824853D00191
Figure C02824853D00201
Figure C02824853D00211
Figure C02824853D00221
<210>2
<211>1515
<212>PRT
<213>Ycf1蛋白
<400>2
Figure C02824853D00231
Figure C02824853D00241
Figure C02824853D00251
Figure C02824853D00261
Figure C02824853D00271
Figure C02824853D00281
Figure C02824853D00291
<210>3
<211>4776
<212>DNA
<213>人工序列
<220>
<223>yh1035c基因
<400>3
Figure C02824853D00292
Figure C02824853D00301
Figure C02824853D00311
Figure C02824853D00321
Figure C02824853D00331
<210>4
<211>1592
<212>PRT
<213>人工序列
<220>
<223>yh1035c蛋白
<400>4
Figure C02824853D00332
Figure C02824853D00341
Figure C02824853D00361
Figure C02824853D00381
Figure C02824853D00401
<210>5
<211>33
<212>DNA
<213>人工序列
<220>
<223>YCFa引物
<400>5
Figure C02824853D00402
<210>6
<211>27
<212>DNA
<213>人工序列
<220>
<223>YCFb引物
<400>6
Figure C02824853D00411
<210>7
<211>24
<212>DNA
<213>人工序列
<220>
<223>RT-YCF1A引物
<400>7
Figure C02824853D00412
<210>8
<211>24
<212>DNA
<213>人工序列
<220>
<223>RT-YCF1B引物
<400>8
Figure C02824853D00413
<210>9
<211>36
<212>DNA
<213>人工序列
<220>
<223>正向引物:YHL035Ca
<400>9
<210>10
<211>35
<212>DNA
<213>人工序列
<220>
<223>反向引物:YHL035Cb
<400>10
Figure C02824853D00422

Claims (11)

1.DNA分子在赋予生物体对选自铅,镉,砷或氯-二硝基苯的一种或多种有害物质的抗性并且增加生物体对所述有害物质的累积量中的用途,其中所述DNA分子编码具有SEQ ID NO:2的氨基酸序列的YCF1蛋白,或具有SEQ ID NO:4的氨基酸序列的YHL035C蛋白。
2.权利要求1的用途,其中所述编码YCF1蛋白的DNA分子具有SEQID NO:1的核苷酸序列。
3.权利要求1的用途,其中所述编码YHL035C蛋白的DNA分子具有SEQ ID NO:3的核苷酸序列。
4.重组载体在赋予生物体铅抗性并且增加生物体对铅的累积量中的用途,其中所述重组载体包括权利要求1到3中任何一项的编码YCF1蛋白或YHL035C蛋白的DNA分子。
5.制备显示铅抗性并且对铅的累积量增加的转基因生物体的方法,所述方法通过用编码具有SEQ ID NO:4所示氨基酸序列的YHL035C蛋白的DNA分子转化来进行。
6.权利要求5的方法,其中所述的转基因生物体是原核生物。
7.权利要求5的方法,其中所述的转基因生物体是真核生物。
8.权利要求7的方法,其中所述的真核生物是选自拟南芥,油菜,芥菜,烟草,洋葱,胡萝卜,黄瓜,甘薯,马铃薯,洋白菜,萝卜,莴苣,花椰菜,碧冬茄,向日葵,草,杨,橄榄树,柳树或桦的植物。
9.通过用编码YCF1的DNA分子转化而制备显示铅抗性并且对铅的累积量增加的转基因生物体的方法,其中所述的转基因生物体是保藏号为KCTC10064BP的YCF1拟南芥。
10.制备显示铅抗性并且对铅的累积量增加的植物细胞的方法,所述方法通过用编码具有SEQ ID NO:4所示氨基酸序列的YHL035C蛋白的DNA分子转化来进行。
11.权利要求10的方法,其中所述的植物选自拟南芥,油菜,芥菜,烟草,洋葱,胡萝卜,黄瓜,甘薯,马铃薯,洋白菜,萝卜,莴苣,花椰菜,碧冬茄,向日葵,草,杨,橄榄树,柳树或桦树。
CNB028248538A 2001-10-16 2002-10-16 表达真菌mrp样abc转运蛋白的转基因生物 Expired - Fee Related CN100494378C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR2001/63802 2001-10-16
KR20010063802 2001-10-16
KR10-2002-0062984A KR100480843B1 (ko) 2001-10-16 2002-10-15 곰팡이의 mrp-계통 abc 수송 단백질을 발현하는형질전환 생물
KR2002/62984 2002-10-15

Publications (2)

Publication Number Publication Date
CN1602356A CN1602356A (zh) 2005-03-30
CN100494378C true CN100494378C (zh) 2009-06-03

Family

ID=26639398

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028248538A Expired - Fee Related CN100494378C (zh) 2001-10-16 2002-10-16 表达真菌mrp样abc转运蛋白的转基因生物

Country Status (5)

Country Link
US (1) US7358417B2 (zh)
EP (1) EP1446486B1 (zh)
JP (1) JP2005505302A (zh)
CN (1) CN100494378C (zh)
WO (1) WO2003033705A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204209A (ja) * 2005-01-28 2006-08-10 Nitta Ind Corp 酵母カドミウムファクター1をコードする遺伝子(Ycf1)又はその改変遺伝子で形質転換された植物、及び、該植物を用いたカドミウム汚染土壌の浄化方法。
KR100845279B1 (ko) 2006-11-28 2008-07-09 포항공과대학교 산학협력단 중금속이나 염 축적성, 또는 중금속, 염 또는 건조에 대한내성을 변화시키는 유전자 및 이들을 이용하여 제조한형질전환체
JP5652825B2 (ja) * 2009-09-09 2015-01-14 国立大学法人 岡山大学 植物におけるカドミウムの蓄積に関与する遺伝子の利用
JP6388474B2 (ja) * 2010-09-03 2018-09-12 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 植物中の重金属の削減
KR101286391B1 (ko) * 2010-10-28 2013-07-15 포항공과대학교 산학협력단 파이토킬라틴 수송용 조성물
CN103834578B (zh) * 2014-02-28 2015-09-02 浙江中烟工业有限责任公司 内生真菌菌株ycef193及其用途
CN103834579B (zh) * 2014-02-28 2015-09-02 浙江中烟工业有限责任公司 内生真菌菌株ycef199及其用途
CN104450771B (zh) * 2014-11-13 2017-03-15 北京农业质量标准与检测技术研究中心 一种重金属低积累的转基因植物的培育方法
CN105543246B (zh) * 2015-12-31 2019-06-18 江苏省中国科学院植物研究所 一种来源于枯草芽孢杆菌的质膜铝抗性基因在培育耐铝拟南芥中的应用
CN109336959A (zh) * 2018-07-06 2019-02-15 浙江海洋大学 厚壳贻贝多药抗性蛋白Abcc--一种新型海洋生物污染检测标记物
CN110357948B (zh) * 2019-01-18 2021-07-13 东北农业大学 MdrP突变体的基因、氨基酸、蛋白功能及药物积累活性检测
CN110079538A (zh) * 2019-05-31 2019-08-02 西南大学 核盘菌SsBMR1基因及其在植物菌核病抗性育种中的应用
CN111154770B (zh) * 2020-01-21 2021-06-25 华南农业大学 水稻基因OsABCC2在调节农药的吸收转运中的应用
CN111944830B (zh) * 2020-08-26 2023-04-21 湖南省农业生物技术研究所 一种抗除草剂基因及其构建的载体、表达的多肽和基因的应用
CN112458098A (zh) * 2020-12-03 2021-03-09 上海市农业科学院 一种来源于葡萄的耐镉基因Vvmrp1S及其应用
CN116970616A (zh) * 2023-09-25 2023-10-31 烟台大学 红条毛肤石鳖ArWz-4基因在镉污染监测中的应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100042A (en) 1993-03-31 2000-08-08 Cadus Pharmaceutical Corporation Yeast cells engineered to produce pheromone system protein surrogates, and uses therefor
US5859310A (en) 1993-06-14 1999-01-12 Basf Aktiengesellschaft Mice transgenic for a tetracycline-controlled transcriptional activator
US5912411A (en) 1993-06-14 1999-06-15 University Of Heidelberg Mice transgenic for a tetracycline-inducible transcriptional activator
US5888981A (en) * 1993-06-14 1999-03-30 Basf Aktiengesellschaft Methods for regulating gene expression
EP0758392A1 (en) * 1994-04-26 1997-02-19 Cadus Pharmaceutical Corporation Functional expression of mammalian adenylyl cyclase in yeast
US5624711A (en) 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
EP1006784A4 (en) * 1996-11-18 2000-10-04 Univ Pennsylvania TRANSPORT INDUCED BY GLUTATHIONIC CONJUGATES IN PLANTS
US6410041B1 (en) * 1998-04-28 2002-06-25 Trustees Of Tufts College Culturing cells in presence of amphipathic weak bases and/or cations and multiple drug resistance inhibitor containing reserpine
DE19853242B4 (de) 1998-11-18 2006-06-29 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Derivatisierung von Trägeroberflächen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YHD5_YEAST. Database swissprot accession No:P38735. 1995
YHD5_YEAST. Database swissprot accession No:P38735. 1995 *

Also Published As

Publication number Publication date
EP1446486A4 (en) 2005-08-10
EP1446486B1 (en) 2009-08-19
EP1446486A1 (en) 2004-08-18
JP2005505302A (ja) 2005-02-24
US7358417B2 (en) 2008-04-15
WO2003033705A1 (en) 2003-04-24
US20050091709A1 (en) 2005-04-28
CN1602356A (zh) 2005-03-30

Similar Documents

Publication Publication Date Title
CN100494378C (zh) 表达真菌mrp样abc转运蛋白的转基因生物
CN108285901A (zh) 新的草甘膦抗性基因类别
CN111996181B (zh) Drk蛋白及其编码基因在植物抗旱中的应用
CN114560919B (zh) 一种与植物耐旱相关的转录因子VcMYB108及其编码基因与应用
EP0730652B1 (en) Dna sequences for ammonium transporter, plasmids, bacteria, yeasts, plant cells and plants containing the transporter
KR100440097B1 (ko) 나트륨/프로톤 대향수송체, 그 수송체를 코드하는 dna, 그 수송체의 제조방법 및 그 dna를 보유하는 식물체
CN110713994B (zh) 一种植物耐逆性相关蛋白TaMAPK3及其编码基因和应用
Clarkson et al. Molecular biological approaches to plant nutrition
US7173163B2 (en) Methods for producing transgenic plants with enhanced resistance and decreased uptake of heavy metals
CN111434678B (zh) 植物脱水应答元件编码蛋白及其编码基因在耐低氮胁迫中的应用
CN111825755B (zh) 吸收转运新烟碱类杀虫剂的质膜内在水通道蛋白及其编码基因与应用
Colombo et al. Use of the bleomycin resistance gene to generate tagged insertional mutants of Chlamydomonas reinhardtii that require elevated CO2 for optimal growth
CN112409467B (zh) 植物耐逆性相关蛋白GmDof41在调控植物耐逆性中的应用
CN111777673B (zh) 一种吸收转运新烟碱类杀虫剂的质膜内在水通道蛋白及其编码基因与应用
CN110407922B (zh) 水稻耐冷基因qSCT11及其应用
CN110684114B (zh) 植物耐逆性相关蛋白TaBAKL在调控植物耐逆性中的应用
CN112813097A (zh) 一种调控水稻耐盐性的方法
KR100480843B1 (ko) 곰팡이의 mrp-계통 abc 수송 단백질을 발현하는형질전환 생물
CN114645032B (zh) 4种raf蛋白及其编码基因在植物抗旱中的应用
CN113005106B (zh) 玉米耐低温基因ZmCIPK10.1在提高植物抗寒性中的应用
US20080020464A1 (en) Vascular plants expressing Na+ pumping ATPases
CN118207226A (zh) 调控甘蔗适应低钾胁迫的ShCIPK23基因及其应用
CLARKSON et al. Department of Agricultural Sciences, University of Bristol, AFRC Institute of Arable Crops Research, Long Ashton Research Station, Bristol, BS18 9AF, UK. Key words: nitrogen-, sulphur-nutrition, gene cloning, gene expression, regulation, crop improvement Abbreviations and conventions: cDNA= complementary strand of DNA prepared from a messenger RNA
CN1469705A (zh) 通过过表达液泡膜焦磷酸酶来增强分生活力和感受态
CN105802992A (zh) 一种抑制植物基因转录的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090603

Termination date: 20131016