CN100480612C - 热管 - Google Patents
热管 Download PDFInfo
- Publication number
- CN100480612C CN100480612C CNB2006100605118A CN200610060511A CN100480612C CN 100480612 C CN100480612 C CN 100480612C CN B2006100605118 A CNB2006100605118 A CN B2006100605118A CN 200610060511 A CN200610060511 A CN 200610060511A CN 100480612 C CN100480612 C CN 100480612C
- Authority
- CN
- China
- Prior art keywords
- capillary structure
- heat pipe
- section
- mentioned
- nonmetal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本发明公开一种热管,包括一金属管体,其内具有一密封腔室,并该密封腔室内封入有适量工作流体,该金属管体内壁上设有毛细结构,该金属管体沿管体长度方向分为蒸发段、冷凝段及位于两者之间的绝热段,该毛细结构包括设置于至少对应金属管体绝热段部位的非金属毛细结构。该热管制造成本低,重量轻,且可提高孔隙率及含水量,进而提升热管性能。
Description
技术领域
本发明涉及一种热传导装置,特别是指一种热管。
背景技术
热管具有超静音、快速传热、高热传导率、重量轻、尺寸小、无可动件、结构简单及多用途等特性,且热管可在温度几乎保持不变的状况下扮演快速传输大量热能的超导体角色而被广泛的应用;其基本构造是在密闭管材内壁衬以易吸收工作流体的毛细结构层,而其中央的空间则为空洞状态,并在抽真空的密闭管材内注入相当于毛细结构层孔隙总容积的工作流体。
热管依吸收与散出热量等功能可分为蒸发段、冷凝段以及其间的绝热段。其工作原理是通过工作流体的液、汽两相变化吸收或释放的潜热来传递热量:包括在蒸发段借蒸发潜热自热源带走大量热量,使工作流体蒸发并使蒸汽快速通过管内空间,到达冷凝段冷却凝结成液体且释放出热能,上述工作流体则由贴于管内壁的毛细结构层所提供的毛细力回流至蒸发段,达到持续相变化的热能循环来传输热量。
毛细结构主要功能在于将冷凝的工作流体快速由冷却段输送回蒸发段。目前,毛细结构材料多数使用金属材料,除其原料价格昂贵及重量大外还必需考虑金属材料的氧化问题所造成表面张力的变异并烧结等过程中不易控制其制程质量而可用孔隙率受限进而降低热管性能,还必需考虑加工制程的成本。因此如能降低热管的生产成本及减小重量,同时尽量排除金属材料氧化及制程控制难所带来的问题是相关业者所汲汲努力的方向。
发明内容
有鉴于此,有必要提供一种成本低、重量轻的热管。
一种热管,包括一金属管体,其内具有一密封腔室,并该密封腔室内封入有适量工作流体,该金属管体内壁上设有毛细结构,该金属管体沿管体长度方向分为蒸发段、冷凝段及位于两者之间的绝热段,该毛细结构包括设置于至少对应金属管体绝热段部位的非金属毛细结构。
与现有技术相比,上述热管由于至少绝热段部位的毛细结构为非金属材料,减少每根热管所使用的金属原料,节省材料成本,且使热管重量减轻;另,上述非金属毛细结构制程中可控制其可用孔隙率及结构一致性,可提高孔隙率及含水量,进而提升热管性能。
下面参照附图,结合实施例对本发明作进一步的描述。
附图说明
图1是本发明第一实施例的热管纵向截面图。
图2是本发明第二实施例的热管纵向截面图。
图3是本发明第三实施例的热管纵向截面图。
图4是本发明第四实施例的热管纵向截面图。
图5是本发明第五实施例的热管纵向截面图。
具体实施方式
请参阅图1,是本发明第一实施例的热管纵向截面图;该热管包括一内有密封腔室的金属管体100,其内壁面设有毛细结构200,而在毛细结构200内侧中央的空间则为蒸汽通道300,并金属管体100内部封入有适量工作流体(图未示)且可适度抽至一定的真空度;该金属管体100沿管体长度方向依据其各段的使用功能可分为蒸发段400、冷凝段600及位于二者之间的绝热段500。其中,该金属管体100通常由导热性能较好的铝、铜或其合金制成,其内壁平滑或可设有若干微沟槽。
该毛细结构200包括设置于对应蒸发段400位置的烧结粉末式第一毛细结构240、设置于对应绝热段500位置的高分子有机材料组成的第二毛细结构250及设置于对应冷凝段600位置的烧结粉末式第三毛细结构260,其中第一毛细结构240与第三毛细结构260相比,其毛细孔径小、孔隙率大。该第二毛细结构250可为塑料、树脂或其组合等非金属材料,从而减少每根热管所使用的金属原料,节省材料成本,且使热管重量减轻;另,上述非金属毛细结构可预先制成,其制程中可控制其有效可用孔隙率及结构一致性,可提高孔隙率及含水量,进而提升热管性能。
还可以理解地,本实施例的第二毛细结构可为木浆、棉类等其它有机材料构成,从而进一步加强毛细结构的亲水性等特性而促进冷凝液体的回流,而该第一毛细结构与第三毛细结构也可为丝网式或纤维式等。
请参阅图2,是本发明第二实施例的热管纵向截面图。其与第一实施例主要差异在于,毛细结构210对应蒸发段410、冷凝段610及绝热段510位置全部与第一实施例中第二毛细结构250相同设置。由于本实施例的热管毛细结构210全部为高分子、木浆或棉类等非金属材料,使热管重量更轻、成本更低;另外,毛细结构形成时不必烧结等高温处理过程,从而降低生产成本及提生良率。
请参阅图3,为本发明第三实施例的热管纵向截面图。其与第二实施例的主要差异在于,对应绝热段510部位的毛细结构210内侧贴设一汽液分流隔板700,以降低在绝热段部位蒸汽与冷凝液体逆流而互相干涉。此分流隔板700可以是无孔或有孔的结构。可以理解地,该分流隔板也可同样设置于第一实施例所述的热管内。
请参阅图4,为本发明第四实施例的热管纵向截面图。其与第二实施例的主要差异在于,该热管毛细结构220从绝热段520朝向冷凝段620方向厚度逐渐减小,而该方向上对应绝热段520与冷凝段620的蒸汽通道320逐渐扩径,使得热管蒸发段420的毛细结构220较厚、毛细力及孔隙率大,有利于冷凝液体不断回流及持续大量的蒸发,而冷凝段620的毛细结构220较薄,蒸汽冷凝速度快。
请参阅图5,为本发明第五实施例的热管纵向截面图。其与第四实施例的主要差异是,热管的对应绝热段530与冷凝段630的毛细结构230非逐渐变化,而其厚度均匀并小于对应蒸发段430的毛细结构厚度,即呈阶梯状,从而蒸汽通道330呈现对应绝热段530与冷凝段630的断面积大于对应蒸发段430断面积的落差结构。可以理解地,对应绝热段的毛细结构可设置为其厚度等于蒸发段的毛细结构厚度。
还可以理解地,上述第四实施例及第五实施例的结构也可适用于第一实施例中的热管结构。
Claims (8)
1.一种热管,包括一金属管体,其内具有一密封腔室,并该密封腔室内封入有适量工作流体,该金属管体内壁上设有毛细结构,该金属管体沿管体长度方向分为蒸发段、冷凝段及位于两者之间的绝热段,其特征在于:该金属管体内壁上设有的毛细结构包括非金属毛细结构,且仅金属管体对应绝热段部位的毛细结构为非金属毛细结构。
2.如权利要求1所述的热管,其特征在于:上述非金属毛细结构为有机材料构成。
3.如权利要求2所述的热管,其特征在于:上述非金属毛细结构为高分子聚合物。
4.如权利要求3所述的热管,其特征在于:上述高分子聚合物为塑料或树脂。
5.如权利要求2所述的热管,其特征在于:上述非金属毛细结构为木浆或棉类。
6.如权利要求1所述的热管,其特征在于:上述金属管体对应绝热段部位的毛细结构内侧设有汽液分隔板。
7.如权利要求1所述的热管,其特征在于:上述毛细结构厚度由绝热段向冷凝段方向逐渐变小。
8.如权利要求1所述的热管,其特征在于:上述毛细结构对应绝热段及冷凝段的厚度均匀并小于蒸发段的厚度而呈阶梯状。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100605118A CN100480612C (zh) | 2006-04-28 | 2006-04-28 | 热管 |
US11/309,569 US20070251673A1 (en) | 2006-04-28 | 2006-08-24 | Heat pipe with non-metallic type wick structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100605118A CN100480612C (zh) | 2006-04-28 | 2006-04-28 | 热管 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101063597A CN101063597A (zh) | 2007-10-31 |
CN100480612C true CN100480612C (zh) | 2009-04-22 |
Family
ID=38647238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100605118A Expired - Fee Related CN100480612C (zh) | 2006-04-28 | 2006-04-28 | 热管 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20070251673A1 (zh) |
CN (1) | CN100480612C (zh) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101754656B (zh) * | 2008-12-10 | 2013-02-20 | 富准精密工业(深圳)有限公司 | 均温板 |
CN101819002A (zh) * | 2009-02-26 | 2010-09-01 | 富瑞精密组件(昆山)有限公司 | 扁平薄型热导管 |
TW201038896A (en) * | 2009-04-16 | 2010-11-01 | Yeh Chiang Technology Corp | Ultra-thin heat pipe |
US20110214841A1 (en) * | 2010-03-04 | 2011-09-08 | Kunshan Jue-Chung Electronics Co. | Flat heat pipe structure |
GB201009264D0 (en) * | 2010-06-03 | 2010-07-21 | Rolls Royce Plc | Heat transfer arrangement for fluid washed surfaces |
US9603233B2 (en) | 2010-11-11 | 2017-03-21 | Schlumberger Technology Corporation | Particle accelerator with a heat pipe supporting components of a high voltage power supply |
TWI577958B (zh) * | 2012-03-09 | 2017-04-11 | 鴻準精密工業股份有限公司 | 平板熱管 |
CN102829659B (zh) * | 2012-08-22 | 2014-04-02 | 华南理工大学 | 一种微裂纹扁平热管及其制造方法 |
US9315280B2 (en) | 2012-11-20 | 2016-04-19 | Lockheed Martin Corporation | Heat pipe with axial wick |
TWI493150B (zh) * | 2012-11-30 | 2015-07-21 | Ind Tech Res Inst | 熱管及其加工方法 |
CN103868384A (zh) * | 2012-12-14 | 2014-06-18 | 富瑞精密组件(昆山)有限公司 | 扁平热管及其制造方法 |
CN103868386A (zh) * | 2012-12-17 | 2014-06-18 | 富瑞精密组件(昆山)有限公司 | 平板热管及其制造方法 |
US20140174085A1 (en) * | 2012-12-21 | 2014-06-26 | Elwha LLC. | Heat engine |
WO2014099806A1 (en) * | 2012-12-21 | 2014-06-26 | Elwha Llc | Heat pipe |
US9752832B2 (en) | 2012-12-21 | 2017-09-05 | Elwha Llc | Heat pipe |
US9404392B2 (en) * | 2012-12-21 | 2016-08-02 | Elwha Llc | Heat engine system |
TW201437591A (zh) * | 2013-03-26 | 2014-10-01 | Asustek Comp Inc | 熱管結構 |
TW201510442A (zh) * | 2013-09-05 | 2015-03-16 | Pro Iroda Ind Inc | 燃燒裝置之燭芯 |
US20160010927A1 (en) * | 2014-07-14 | 2016-01-14 | Fujikura Ltd. | Heat transport device |
CN111306972A (zh) * | 2014-11-28 | 2020-06-19 | 台达电子工业股份有限公司 | 热管 |
EP3319096A1 (en) * | 2016-11-07 | 2018-05-09 | Premo, S.L. | A compact magnetic power unit |
JP6302116B1 (ja) | 2017-04-12 | 2018-03-28 | 古河電気工業株式会社 | ヒートパイプ |
CN108871025A (zh) * | 2018-07-04 | 2018-11-23 | 江苏凯唯迪科技有限公司 | 一种扩口热导管及其制作方法 |
CN108827050A (zh) * | 2018-07-04 | 2018-11-16 | 江苏凯唯迪科技有限公司 | 一种不同管径的热导管及其制作方法 |
KR20210033493A (ko) * | 2018-07-18 | 2021-03-26 | 아비드 써멀 코포레이션 | 가변 투과도의 심지 구조물을 갖는 히트 파이프 |
EP3973240B1 (en) * | 2019-06-17 | 2023-10-04 | Huawei Technologies Co., Ltd. | Heat transfer device and method for manufacturing such a heat transfer device |
CN111473669B (zh) * | 2020-04-07 | 2021-03-16 | 西安交通大学 | 一种液态金属高温热管 |
CN112197629B (zh) * | 2020-09-03 | 2021-08-24 | 华东师范大学 | 一种碳基毛细芯及其制备方法和应用 |
CN220187502U (zh) * | 2020-11-04 | 2023-12-15 | 株式会社村田制作所 | 热扩散器件以及电子设备 |
CN114636337A (zh) * | 2020-12-15 | 2022-06-17 | 全亿大科技(佛山)有限公司 | 热管、热管的制作方法及装置 |
EP4046875A1 (en) * | 2021-02-19 | 2022-08-24 | Volvo Truck Corporation | A noise shield arrangement comprising a thermally conductive element |
CN115348805B (zh) * | 2022-08-16 | 2024-05-28 | 昆明理工大学 | 一种渐变式吸液芯平板微热管及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2241053A1 (en) * | 1973-08-14 | 1975-03-14 | Jermyn Thomas | Evacuated vaporising-fluid sheathed heating tube - with greater heat-transfer coefficient from heating first zone and cooling second |
US5642776A (en) * | 1996-02-27 | 1997-07-01 | Thermacore, Inc. | Electrically insulated envelope heat pipe |
CN1624411A (zh) * | 2003-12-05 | 2005-06-08 | 鸿富锦精密工业(深圳)有限公司 | 热管 |
CN2704925Y (zh) * | 2004-06-07 | 2005-06-15 | 华音电器股份有限公司 | 改进的热管散热器结构 |
CN2735283Y (zh) * | 2004-09-15 | 2005-10-19 | 大连熵立得传热技术有限公司 | 锥形吸液芯热管导热柱 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184477A (en) * | 1977-05-03 | 1980-01-22 | Yuan Shao W | Solar heating and storage |
IL100806A (en) * | 1991-02-01 | 1997-02-18 | Commw Scient Ind Res Org | Heat transfer device |
US6382309B1 (en) * | 2000-05-16 | 2002-05-07 | Swales Aerospace | Loop heat pipe incorporating an evaporator having a wick that is liquid superheat tolerant and is resistant to back-conduction |
TWI260385B (en) * | 2005-01-21 | 2006-08-21 | Foxconn Tech Co Ltd | Sintered heat pipe and method for manufacturing the same |
US20060162906A1 (en) * | 2005-01-21 | 2006-07-27 | Chu-Wan Hong | Heat pipe with screen mesh wick structure |
TW200700686A (en) * | 2005-06-16 | 2007-01-01 | Yuh Cheng Chemical Co Ltd | Heat pipe |
TWI307399B (en) * | 2005-09-09 | 2009-03-11 | Delta Electronics Inc | Heat dissipation module and heat pipe thereof |
TWI307400B (en) * | 2005-11-04 | 2009-03-11 | Delta Electronics Inc | Heat dissipation module and heat pipe thereof |
CN100561105C (zh) * | 2006-02-17 | 2009-11-18 | 富准精密工业(深圳)有限公司 | 热管 |
CN101055158A (zh) * | 2006-04-14 | 2007-10-17 | 富准精密工业(深圳)有限公司 | 热管 |
CN100498185C (zh) * | 2006-04-21 | 2009-06-10 | 富准精密工业(深圳)有限公司 | 热管 |
CN100513974C (zh) * | 2006-05-19 | 2009-07-15 | 富准精密工业(深圳)有限公司 | 热管 |
-
2006
- 2006-04-28 CN CNB2006100605118A patent/CN100480612C/zh not_active Expired - Fee Related
- 2006-08-24 US US11/309,569 patent/US20070251673A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2241053A1 (en) * | 1973-08-14 | 1975-03-14 | Jermyn Thomas | Evacuated vaporising-fluid sheathed heating tube - with greater heat-transfer coefficient from heating first zone and cooling second |
US5642776A (en) * | 1996-02-27 | 1997-07-01 | Thermacore, Inc. | Electrically insulated envelope heat pipe |
CN1624411A (zh) * | 2003-12-05 | 2005-06-08 | 鸿富锦精密工业(深圳)有限公司 | 热管 |
CN2704925Y (zh) * | 2004-06-07 | 2005-06-15 | 华音电器股份有限公司 | 改进的热管散热器结构 |
CN2735283Y (zh) * | 2004-09-15 | 2005-10-19 | 大连熵立得传热技术有限公司 | 锥形吸液芯热管导热柱 |
Also Published As
Publication number | Publication date |
---|---|
US20070251673A1 (en) | 2007-11-01 |
CN101063597A (zh) | 2007-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100480612C (zh) | 热管 | |
CN100513974C (zh) | 热管 | |
CN101055156A (zh) | 热管 | |
CN100573019C (zh) | 热管 | |
CN100513973C (zh) | 热管 | |
CN100529639C (zh) | 热管 | |
Singh et al. | Performance of a solar still integrated with evacuated tube collector in natural mode | |
CN100498185C (zh) | 热管 | |
Deng et al. | Experimental investigation of performance for the novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC) | |
US7845394B2 (en) | Heat pipe with composite wick structure | |
CN100491889C (zh) | 热管 | |
Schwab et al. | Dependence of thermal conductivity on water content in vacuum insulation panels with fumed silica kernels | |
MX341749B (es) | Circuito de refrigeracion. | |
CN101055158A (zh) | 热管 | |
JP2013508663A5 (zh) | ||
US20110000647A1 (en) | Loop heat pipe | |
Zhou et al. | Accelerating vapor condensation with daytime radiative cooling | |
CN101338986A (zh) | 一种改进型单向重力热管 | |
Abbas et al. | Frosting and defrosting assessment of carbon fiber reinforced polymer composite with surface wettability and resistive heating characteristics | |
Senthilkumar et al. | Performance investigation of heat pipe using aqueous solution of n-Pentanol with different inclinations | |
EP2157385A2 (de) | Ausnutzung der Verdunstungskälte zur Reduzierung des Energieverbrauchs | |
CN208512287U (zh) | 加热器内置型热泵膜蒸馏装置 | |
CN208526325U (zh) | 冷却器内置型热泵膜蒸馏装置 | |
US20130160976A1 (en) | Heat pipe with composite wick structure | |
TWI289653B (en) | Heat pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090422 Termination date: 20120428 |