CN100439302C - 高级烯烃的制备 - Google Patents

高级烯烃的制备 Download PDF

Info

Publication number
CN100439302C
CN100439302C CNB02803385XA CN02803385A CN100439302C CN 100439302 C CN100439302 C CN 100439302C CN B02803385X A CNB02803385X A CN B02803385XA CN 02803385 A CN02803385 A CN 02803385A CN 100439302 C CN100439302 C CN 100439302C
Authority
CN
China
Prior art keywords
alkene
octene
olefines
compositions
sapo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB02803385XA
Other languages
English (en)
Other versions
CN1483010A (zh
Inventor
G·玛瑟斯
J·S·古斯马克
M·詹森
L·R·马滕斯
H·J·拜克尔斯
E·T·A·范德里斯奇
R·F·I·卡尔斯
J·R·舒特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23011534&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN100439302(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1483010A publication Critical patent/CN1483010A/zh
Application granted granted Critical
Publication of CN100439302C publication Critical patent/CN100439302C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxo-reaction combined with reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/14Catalytic processes with inorganic acids; with salts or anhydrides of acids
    • C07C2/18Acids of phosphorus; Salts thereof; Phosphorus oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/16Phosphorus; Compounds thereof containing oxygen
    • C07C2527/167Phosphates or other compounds comprising the anion (PnO3n+1)(n+2)-
    • C07C2527/173Phosphoric acid or other acids with the formula Hn+2PnO3n+1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the eroionite or offretite type, e.g. zeolite T
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

一种由C4 +馏分制备高级烯烃产品的方法,其中所述C4 +馏分是从氧化物至烯烃的反应装置生产的烃产品中分离出来的。所述C4 +馏分主要含有丁烯,所述丁烯可以在不脱除异丁烯、丁烷和/或丁二烯的情况下被引导进入高级烯烃反应装置。因为其高的烯烃含量、低的支链数以及低的杂质含量,使所述C4 +馏分特别适合于制备高级烯烃。本发明还涉及一种通过使C4 +馏分与低聚合反应催化剂接触制备的烯烃产品组合物。所述烯烃组合物的特征在于其相对高的辛烯含量,并且所述辛烯的支链数低于1.4。

Description

高级烯烃的制备
发明领域
本发明涉及由氧化物产生的烯烃制备烯烃衍生物即高级烯烃的系统。然后所述高级烯烃可以用于制备各种烯烃衍生物产品,包括醇、醛、酸和酯。
发明背景
烯烃如丁烯和戊烯可用于制备多种衍生物的终端产品。这些终端产品的例子包括醇、醛、酸和酯。丁烯和戊烯还可以被低聚合从而形成具有八个或更多个碳的高级烯烃。所述高级烯烃可以是直链的或者它们可以具有一个或多个烷基支链。然后所述高级烯烃可以被转化为醇、醛、酸和酯。
用于制备烯烃衍生物产品的丁烯通常通过裂解烃原料,即由高分子量烃产生低分子量烃来制备。烃原料的裂解可以催化或非催化完成。例如在Hallee等人的US 3,407,789、Woebcke的US3,820,955、DiNicolantonio的US 4,499,055和Gartside等人的US 4,814,067中描述了非催化裂解过程。在Cormier,Jr.等人的US4,828,679、Rabo等人的US 3,647,682、Rosinski等人的US3,758,403、Gartside等人的US 4,814,067、Li等人的US4,980,053和Yongqing等人的US 5,326,465中描述了催化裂解过程。
应用烃裂解装置生产烯烃的一个问题是烯烃含有很多烷基支链化的烯烃。例如在丁烯物流中,在丁烯被引入到低聚合反应装置之前异丁烯必须首先被脱除。在丁烯进料中存在异丁烯会导致形成支链化的高级烯烃,而后者会导致支链醇。而支链醇因为其会生成差的增塑剂而具有相对低的商业价值。
应用烃裂解装置生产的烯烃的另一个问题是所述烯烃含有大量的硫和氮的化合物。这些化合物使在烯烃衍生过程如烯烃低聚合反应过程中应用的酸性催化剂失活。例如Bodart的US 5,432,243和Debras等人的US 4,861,939中公开了如果杂质不用另外的纯化设备脱除的话,则砷和氧硫化碳(COS)在烯烃衍生过程中可能会产生问题。在Gurak等人的US 5,146,042中提出了在C2-C4烯烃中的硫杂质可能会导致在高级烯烃和烯烃衍生过程中出现不希望的副反应。这种烯烃纯化需要首先将杂质萃取到所选择的烃中,然后从烃中精馏出干净的轻烯烃。另外镍催化剂可以用于脱除硫杂质。从烯烃中脱除硫所需要的设备通常规模非常大,并且操作起来很贵。
根据裂解装置中所应用的烃原料,可能需要其它分离操作,如二烯烃的脱除、异-烯烃的脱除和/或链烷烃的脱除。作为一个例子,来自烃裂解装置的丁烯物流中含有大量必须脱除的丁二烯和异丁烯。在Vora等人的US 6,049,017中,丁二烯通过控制加氢过程来脱除。所述异丁烯通过在甲基叔丁基醚(MTBE)反应器中使丁烯物流与甲醇接触而催化脱除。所述异丁烯被转化为MTBE,并且正丁烯和丁烷通过MTBE反应器。然后正丁烯和丁烷被引入到丁烷裂解装置以生产乙烯和丙烯或者引入到低聚合反应装置中去。
在高级烯烃的制备过程中,因为应用一次通过或低循环量的高级烯烃过程,通常不从丁烯物流中脱除丁烷。而是使丁烷与高级烯烃产品分离,这是更容易且费用更低的分离过程。例如来自蒸汽裂解装置的丁烯物流的烯烃含量通常为约60wt%。在约50%-70%的单程转化率下将丁烯物流引入到高级烯烃装置中。此时仅有少量或者没有循环,因此丁烷很容易与高级烯烃产品分离。但该方法有几个缺点。第一,进料中30%-50%烯烃没有转化为所希望的产品,从而造成过程总产率较低。第二,单程转化率高的过程会造成所希望的α-烯烃的选择性较低。α-烯烃是在第一和第二个碳之间含有碳-碳双键的烯烃。
高循环量、低单程转化率的过程可能克服这两个缺点。但这种过程需要获得烯烃含量高的烯烃物流从而保持进料中烯烃含量为可接受的水平。来自裂解装置的丁烯物流具有低的烯烃含量。因此如果应用高循环量、低单程转化率的过程,则必须从丁烯物流中脱除大部分链烷烃。因为组分的沸程相对接近,这种脱除过程可能是困难且昂贵的任务。
根据过程的进料规格,针对制备烯烃衍生物产品而从烯烃物流中脱除各种化学杂质可能在技术上是很困难的过程。因此,如果能够得到链烷烃浓度、烷基支链、二烯和/或杂质浓度低的烯烃物流,从而使链烷烃和杂质脱除过程最小化或避免这些过程,则脱除这些组分的费用将会最小化或完全消除。
发明概述
本发明提供一种由氧化物至烯烃的过程产生的烯烃来制备高级烯烃产品,具体为辛烯、壬烯和十二烯混合物的方法。该方法包括使氧化物与分子筛催化剂接触从而产生含有烯烃的烃产品,从所述烃产品中分离出含有四个或更多个碳的C4 +馏分,以及使C4 +馏分与低聚合反应催化剂接触从而生产含有高级烯烃的产品。任选地,没有转化为产品的部分未反应烯烃可以返回C4 +馏分中。
附图的简要描述
通过参照结合附图所进行的本发明的详细描述,可以更好地理解本发明,其中:
图1是制备高级烯烃的一种实施方案;
图2是将高级烯烃产品分离成各种烯烃组分的一种实施方案。
发明的详细描述
为了降低制备高级烯烃的相关成本,本发明应用来自氧化物至烯烃的装置的部分烃产品来制备新的C4 +烃馏分。氧化物至烯烃的装置优选为甲醇-至-烯烃(MTO)装置。这种C4 +馏分含有超过60wt%,优选超过80wt%的C4 +烯烃。这种C4 +馏分具有相对高的烯烃含量,即低的链烷烃含量、很少的二烯及支链化程度相对低的烯烃。在本发明中烯烃含量超过或等于约60wt%的烯烃物流被称为具有高烯烃含量的烯烃物流。相反,烯烃含量低于约60wt%的烯烃物流被称为具有低烯烃含量的烯烃物流。另外,C4 +馏分含有相对少的硫和氮化合物或者不含硫和氮化合物,这些物质倾向于使高级烯烃过程中所应用的低聚合反应催化剂失活。
本发明提供含有大量辛烯、壬烯和十二烯的高级烯烃产品。然后这种高级烯烃可以用于制备高级醇,所述高级醇可用作多种工业增塑剂的化学原料。这种方法的优点在于不需要应用相对昂贵的烯烃纯化设备,或者如果应用的话,当应用所希望的C4 +馏分时,需要较少的纯化装置。在大的工业规模的过程中,这将会导致设备成本的明显降低,以及操作成本的明显降低。这种设备和操作成本的降低最终提供给消费者相同的高质量产品,但成本却明显较低。
在本发明中,来自氧化物至烯烃的反应装置的烃产品被引入到本领域已知的分离装置中,以按照碳的个数分离烃。例如,首先将甲烷从烃产品中分离出来,随后分离出乙烯和乙烷(C2分离),然后是丙烯和丙烷(C3分离)。烃产品的剩余部分即主要含四个和五个碳的部分(C4 +馏分)被引入高级烯烃装置。另外可以在在分离顺序开始时分离出C4 +馏分,从而使C2/C3分离装置的容量要求降低10%-25%。
C4 +馏分含有超过60wt%,优选超过80wt%,更优选超过90wt%的具有四个和五个碳的烃。所述C4 +馏分含有超过60wt%,优选超过80wt%的具有四个碳的烯烃(C4烯烃)。在C4 +馏分中所含有的烯烃的例子为1-丁烯、顺式和反式2-丁烯、异丁烯和戊烯。所述C4 +馏分优选含有60-97wt%,更优选为80-97wt%的烯烃。所述C4 +馏分的剩余部分含有链烷烃和少量丁二烯及其它组分。所希望的是C4 +馏分更优选具有如下组成范围:70-95wt%,更优选为80-95wt%的正丁烯,所述正丁烯包括1-丁烯及顺式和反式2-丁烯;2-8wt%,优选低于6wt%的异丁烯;0.2-5wt%,优选低于3wt%的丁烷;2-10wt%,优选低于6wt%的戊烯;以及2-10wt%,优选低于5wt%的丙烷和丙烯。
还希望所述烯烃C4 +馏分具有低的支链数。所希望的是平均支链数低于2.0,优选低于1.6,更优选低于1.4。平均支链数(ABN)的定义如下:
ABN=1+(1*%单支链+2*%二支链)/%总烯烃
例如,如果稀的烯烃物流具有20%1-丁烯、50%2-丁烯、10%丁烷、10%异丁烯、5%丙烷和5%3-甲基丁烯,则平均支链数约为1.17。含有近0%支链烯烃的烯烃的ABN约为1.0。
在一种实施方案中,C4 +馏分可以按原样应用,也就是说直接从分离装置进入高级烯烃装置。另外如果需要,可以在将C4 +馏分引入到高级烯烃装置之前对其进行一些其它处理。这其中可以包括加氢过程,如果不是全部则使大部分丁二烯选择性加氢为丁烯,并且使部分异丁烯选择性加氢为异丁烷。限制烯烃进料中异丁烯的量从而使支链化高级烯烃产品的量达到最少也是很重要的。优选在不进行丁二烯或异丁烯脱除的条件下将C4 +馏分引入高级烯烃装置中。
在另一种实施方案中,C4 +馏分的纯化可能需要脱除低含量的杂质,这些杂质会干扰高级烯烃反应装置的操作性能和/或氧化(加氢甲酰基化)催化剂的性能。低含量的杂质通常包括极性分子。其例子包括氧化物如水、醚、醇和羧酸。这些化合物可以用各种材料例如固体分子筛、用各种溶剂进行萃取以及分馏来脱除。
C4 +馏分的杂质如硫化氢、氧硫化碳和砷的含量通常很低。因此C4 +馏分可以经过最少的分离和纯化后引入到高级烯烃装置中。事实上,从氧化物至烯烃的烃产品中分离出C4 +馏分后,硫化氢、氧硫化碳或砷的脱除通常是不必要的。所希望的是每百万重量份中C4 +馏分的硫化氢含量低于20份(ppmw),优选低于5ppmw,更优选低于1ppmw。还希望C4 +馏分的氧硫化碳含量低于20ppmw,优选低于5ppmw,更优选低于1ppmw。类似地,希望C4 +馏分的砷含量低于20ppmw,优选低于5ppmw,更优选低于1ppmw。
如果需要对烯烃产品物流进行其它纯化,可以应用如在Kirk-Othmer的《化工百科全书》(Encyclopedia of ChemicalTechnology),第4版,第9卷,John Wiley & Sons,1996,第894-899页中的纯化系统,其中的描述在这里作为参考引入。另外也可以应用如在Kirk-Othmer的《化工百科全书》(Encyclopedia ofChemical Technology),第4版,第20卷,John Wiley & Sons,1996,第249-271页中的纯化系统,其中的描述也在这里作为参考引入。
在另一种实施方案中,在不分离具有不同碳数的烃、不分离烯烃与相同碳数的链烷烃、或将C4 +馏分引入MTBE装置以脱除异丁烯、或引入到加氢装置以脱除丁二烯和/或异丁烯的情况下,将C4 +馏分引入到高级烯烃装置中。因此在将C4 +馏分引入到高级烯烃装置之前,专用设备如用于分离C4与C5烃或丁烯与丁烷的精馏装置、MTBE装置以及加氢装置均不再需要。
在另一种实施方案中,在高级烯烃装置中没有转化为产品的部分C4 +馏分被引导回到C4 +馏分中。因此进入高级烯烃装置的烃进料将会具有与C4 +馏分不同的组成。进入高级烯烃装置的烃进料将包括来自循环物流的烃,该循环物流通常会比C4 +馏分含有相对更多的链烷烃。进入高级烯烃装置的烃进料的组成范围取决于所希望的高级烯烃产品的规格、低聚合反应催化剂、低聚合反应装置中的反应条件、循环烃的量以及C4 +馏分的组成。
C4 +馏分中低的链烷烃和杂质的含量为高循环量、低单程转化率的高级烯烃过程的运行提供了操作灵活性。本发明在没有明显增加高级烯烃装置和回收设备的总体负荷的情况下,并且在能使低聚合反应催化剂失活的杂质的没有明显累积危险的情况下,允许来自高级烯烃装置的未反应的烯烃循环。通过对应用高循环量、低单程转化率的过程的高级烯装置应用链烷烃含量低且有害杂质含量低的进料,可以使高级烯烃产品的总体产率和异构体选择性明显提高。高循环量、低单程转化率的高级烯烃过程在其过程中可以转化超过80%,经常超过90%的烯烃。另外,高循环量能提供更大的操作灵活性,从而优化对α-烯烃如1-辛烯的产品选择性。
与之相比,常规的一次通过、高转化率的高级烯烃过程通常在过程中转化低于80%,经常低于70%的烯烃。另外,因为常规的高级烯烃装置在相对高的单程转化率下操作,致使对更希望得到的高级烯烃产品的选择性较低。所希望的高级烯烃产品将含有相对更多的α-烯烃,并且具有相对低的支链数。
高循环量、低单程转化率的高级烯烃过程需要得到烯烃含量高的烯烃进料,从而保持排放体积最小。在一种实施方案中,将丁烯含量为70-97wt%的C4 +馏分引入到高级烯烃装置中。所述C4 +馏分与来自循环物流的烃混合,从而产生高级烯烃装置的最优烃进料组成。所述最优烃进料组成将依据高级烯烃装置中的循环量和烯烃转化百分比而变化。所述烃进料组成可在20-95wt%的丁烯之间变化。链烷烃被用作稀释剂,从而控制高级烯烃过程中的反应速率。在C4 +馏分中的少量链烷烃还能使为控制烃进料中惰性物质含量所需要的排放气体的体积最小。这将使排放物流中损失的烯烃量最小。
高循环量的过程的烯烃单程转化率为30%-70%,优选为40%-70%,更优选为45%-70%。总的烯烃转化率可以高达80%-98%,优选为90%-98%。应用高循环量、低单程转化率的过程的另一个优点是产品的选择性,如对1-辛烯的异构体选择性可以被优化。
高循环量过程的一种实施方案如图1所示。在氧化物至烯烃的装置10中产生的C4 +馏分12被引入到高级烯烃装置14中。含有高级烯烃和未反应烯烃以及链烷烃的产品16被引入产品分离装置15中。高级烯烃产品17,即辛烯、壬烯和十二烯与未反应的烯烃和链烷烃分离,然后被引入其它的分离装置中。这些分离装置在图2中由15b、15c、15d和15e表示。放空物流18含有未反应的烯烃和惰性物质,包括链烷烃。所述放空物流18含有40wt%-90wt%烯烃。部分放空物流18通过排放物流22排出,从而保持在高级烯烃装置中剩余惰性物质在特定的组成范围内,而该组成范围反过来又使进入高级烯烃装置14的烃进料中的烯烃保持在所希望的浓度。余下的放空物流18通过循环物流26循环回到烯烃反应装置14中。
另一种实施方案包括应用一个或多个分离装置从放空物流18中脱除至少部分链烷烃和不希望的烯烃。所述烯烃分离装置的例子包括精馏塔设备和吸收、萃取或膜分离设备、以及它们的组合,其中所述精馏塔设备包括精馏器。所述烯烃分离装置优选为一个或多个分馏装置。所述分馏装置优选在不应用贫物理溶剂的条件下操作。从放空物流18中脱除的化合物的例子包括丁烷和异丁烷。当这些化合物的所希望的部分已经作为排放物流被排出后,所希望的分离后的烯烃可以通过循环物流26循环回到高级烯烃装置14中。
当进入高级烯烃装置14的链烷烃和烯烃的总量已经确定之后,则根据所希望的通过烯烃排放物流22的链烷烃和烯烃的脱除程度和过程中的循环比来确定放空物流18的质量流量。在一种优选实施方案中,放空物流18中至少50wt%的链烷烃通过排放物流22脱除,更优选为至少75wt%,并且最优选为至少90wt%。如果将分离装置设置在放空物流18中,则会有更大百分比的链烷烃被脱除。排放物流22优选含有不超过50wt%,更优选为不超过20wt%,并且最优选为不超过5wt%的烯烃。
烯烃循环物流26优选含有至少50wt%包含在放空物流18中的烯烃,更优选为至少75wt%,并且最优选为至少90wt%。剩余的回收烯烃物流26可以含有在放空物流18中存在的链烷烃和其它物质。
如果不是全部的话,则本领域已知的大部分过程都可以用于使C4 +馏分低聚合为具有八个或更多个碳的高级烯烃。固体磷酸聚合反应是通常应用的丁烯低聚合反应方法。在该过程中将丁烯加入到装有固体磷酸的多床层反应器中,而所述固体磷酸由硅藻土上的磷酸混合物造粒且煅烧制成。所述操作条件为175℃-225℃及至少20atm的压力。高级烯烃的选择性相对较低,并且因为这个原因,该过程经常与石油精制过程相联,从而确保这些价值较低的产品的经济利用。另外应用填埋法处理催化剂会存在环境问题以及相关的成本。
Figure C0280338500111
是一种工业方法,该方法比磷酸方法生产更多的直链烯烃。所述反应在50℃-80℃及大约1600kPa-1800kPa的压力条件下,应用均相镍烷基铝催化剂在液相中进行。向产品物流中注入氨和水以中和催化剂,然后从水相中分离出烃。然后将催化剂回收并循环回到反应器中。
在另一种实施方案中,改性ZSM-22催化剂可以用作低聚合反应催化剂。Verrelst等在US 6,013,851中描述了一种改性的ZSM-22烯烃低聚合反应分子筛催化剂,其中分子筛含有金属-硅核心和表面层,并且表面层比核心具有更高的硅金属比,US 6,013,851的公开内容作为参考引入本申请。所述金属选自铝、镓和铁。这种催化剂降低了在过程中产生的支链化高级烯烃的量。另外,在烯烃进料中存在一些链烷烃对催化剂的催化效率没有或仅有很少的影响。因此在C4 +馏分中相对少量的丁烷不必从进料中分离出来。例如可以应用1∶1,优选为2∶1的丁烯∶丁烷比。另外还表明少量的水可以提高所希望的高级烯烃的产量。
在高循环量的高级烯烃过程中应用改性的ZSM-22催化剂,可以在支链量降低的情况下保持对辛烯的产品选择性。例如,应用C4 +馏分作为进料,辛烯选择性可以超过80%。应用更高的循环比时可以达到超过90%的辛烯选择性。所述低聚合反应可以在温度范围为160℃-300℃,优选为170℃-260℃,并且最优选为180℃-260℃,压力范围有利地为5MPa-10MPa,优选为6MPa-8MPa,并且烯烃小时空速范围有利地为0.1hr-1-20hr-1,优选为0.5hr-1-10hr-1,并且最优选为0.75hr-1-3.5hr-1的条件下进行。
在另一种实施方案中,C4 +馏分烯烃的低聚合反应可以在Saleh等人在US 5,254,783中所描述的镍氧化物(NiO)催化剂存在时进行,而该文献的公开内容在这里作为参考引入。所述催化剂含有在二氧化硅载体表面上以分散单层存在的无定形NiO。所述载体还含有少量铝、镓或铟的氧化物,从而使催化剂中存在的NiO与金属氧化物的比的范围为约4∶1至约100∶1。所述催化剂将直链丁烯转化为辛烯产品,其中所述辛烯产品每个分子上平均含有低于约2.6个,通常低于2.0-2.4个甲基基团。
NiO催化剂在丁烯二聚反应中形成主要由辛烯组成的混合聚合反应产品是特别有效的。C4 +OTO优选含有不超过5wt%的异丁烯,因为异丁烯倾向于形成支链化程度高的产品。通过选择性加氢C4 +OTO可以达到所希望的异丁烯浓度。在烯烃进料中链烷烃的存在通常是无害的,但是如果其比例升至80wt%以上,则该方法会变得很不经济。
应用NiO催化剂的低聚合反应在液相或气相中进行。温度条件包括150℃-275℃的温度,并且在气相中丁烯通过催化剂的液体小时重量进料速率为0.4hr-1-1.8hr-1,优选为0.6hr-1-0.7hr-1。当低聚合反应在液相中进行并且催化剂与烯烃混合时,烯烃与催化剂的比的范围优选为2∶1至8∶1,更优选为4∶1至6∶1。当低聚合反应在接近、为或高于烯烃的临界压力下进行时,通过在惰性高沸点烃如正链烷烃或环烷烃存在时进行反应来保持液相是所希望的。
在另一种实施方案中,ZSM-57催化剂可以用作低聚合反应催化剂。ZSM-57可以在降低烯烃支链化产品和裂解量的条件下提供对辛烯的高的产品选择性。另外,ZSM-57催化剂对另外存在于C4 +OTO中的戊烯具有相对更高的反应活性。因此过程中壬烯的产率得到提高。事实上,可以由外部来源向C4 +OTO中加入附加的戊烯以提高过程中壬烯的产率。所述低聚合反应可以在温度范围为80℃-400℃,优选为120℃-300℃,并且最优选为150℃-280℃,压力范围有利地为2MPa-15MPa,优选为5MPa-10MPa,并且烯烃小时空速范围有利地为0.1hr- 1-30hr-1,优选为0.5hr-1-15hr-1,并且最优选为0.75hr-1-8hr-1的条件下进行。
图2描述了分离装置15,该分离装置15被分为几个分离装置15a、15b、15c、15d和15e。在一种实施方案中,分离装置15a-15e可以按如下过程设计。分离装置15b从高级烯烃产品16中脱除戊烯和己烯17b。所述戊烯和己烯17b可以用作燃料和/或也可以引入高级烯烃反应装置14中。循环的戊烯和己烯17b可以与C4 +馏分12混合从而分别形成更多的壬烯和癸烷。分离装置15c脱除庚烯17c,分离装置15d脱除辛烯17d,以及分离装置15e脱除壬烯17e。也可以应用其它分离装置分离剩余的高级烯烃产品。例如,可能希望的是从C10-C20高级烯烃19中分离出大量的十二烯,从而生产C13醇。C10-C20高级烯烃19也可以用作其它有价值的工业产品例如喷气发动机燃料或优质溶剂的化学原料。按碳的个数进行分离可以应用在本领域中已知的方法进行,如在Kirk-Othmer,《化学工业百科全书》(Encyclopedia of Chemical Technology),第4版,第20卷,John Wiley & Sons,1996中有述,其中的公开内容在这里作为参考引入。
因为C4 +OTO主要含有丁烯,预期来自于高级烯烃装置的产品将主要含有辛烯(约70%)、十二烯(约17%)、以及一些壬烯(约5%)和C16-C20烯(约5%)。这些百分比将会随着所使用的低聚合反应催化剂的类型以及烃进料的组成而变化。
由高级烯烃装置生产更多壬烯可能也是所希望的。完成这一任务的一种方法是向高级烯烃装置中加入更多的C5烯烃。C5烯烃的来源可以是蒸汽裂解炉或者是高级烯烃装置生产的少量C5。更多的C5烯烃也可以通过催化裂化高级烯烃产品如庚烷和C10-C20烯烃得到。
在将高级烯烃产品根据碳的个数分离成所希望的高级烯烃组分后,各种分离后的高级烯烃可以引入到一个或多个加氢甲酰基化装置中。在一种实施方案中,辛烯和壬烯可以引入到加氢甲酰基化装置中,分别产生壬醇和癸醇。剩余的高级烯烃产品,即具有十个或更多个碳的高级烯烃可以引入到加氢装置中。加氢后的产品可以用作混合组分以提高柴油或航空燃料的质量。部分未引入到加氢甲酰基化装置中的辛烯和壬烯也可以引入到加氢装置中。
一种可以应用的加氢甲酰基化方法通常称之为氧化方法。在氧化方法中,烯烃与一氧化碳和氢在催化剂存在时在升高的温度和压力下反应,从而生产两种主要的异构醛即终端醛或正醛以及中间或支链醛。在醛产品中甲酰基的位置取决于烯烃、催化剂、溶剂和反应条件。通常使用带有严格限制的络合配位体如叔磷化氢的催化剂时,会主要形成正醛。在大多数工业过程中,初始形成的醛产品并不进行分离。而是通过加氢过程或通过缩醛(aldolization)/加氢过程将醛进一步转化为醇。高分子量的醇的纯化通常包括低压精馏或包括降膜蒸发器的分离过程。
多种过渡金属均催化烯烃转化成醛,但通常只有钴和铑的络合物用于工业氧化装置中。涉及常规钴催化剂的工业氧化方法可能包括至少如下步骤:加氢甲酰基化即形成醛、催化剂的脱除和回收、醛的精制、加氢以及最后醇的精制。另外,所述工业装置可以应用缩醛/加氢过程将醛转化成醇。工业加氢甲酰基化反应在返混或管式不锈钢反应器中或这两者的组合中连续进行。在返混式反应器中,反应混合物的组成是恒定的且与产品的组成接近。在管式反应器中,因为活塞流通过长而窄的管道,其组成随时间连续变化。反应条件根据烯烃进料而变化,但通常为100℃-180℃及20MPa-35MPa。所应用的压力由特定反应温度下催化剂的稳定性来决定。通常以烯烃为基准的催化剂浓度约为0.1%-1%钴,并且液体停留时间为1-2小时。
粗醛氧化转化成醇通过在固定床反应器中的非均相气相或液相加氢来实现。已经用作这些加氢过程的催化剂的金属有铜、镍、钨、钴、钼硫化物以及这些金属的各种组合。因为在本发明中硫中毒不是问题,含镍或钴的催化剂是优选的。所述催化剂经常通过相应金属氧化物与氢反应而置于惰性载体上。
氧化产品的加氢通常在100℃-250℃下进行;具体条件由所应用的催化剂和所希望的转化率来决定。气相过程在低压下操作,而液相过程在至多35MPa的压力下操作。需要内部或外部冷却,或者两者都需要,从而脱除反应热。
应用被有机磷化氢配位体改性的羰基钴催化剂可以明显改善加氢甲酰基化对更希望的终端醛的选择性,而这些终端醛反过来又很可能形成终端醇。尽管这些磷化氢改性的钴催化剂比起未络合的羰基钴来说反应活性较弱,但它们可以在更高的反应温度,即150℃-210℃,以及更低的压力2MPa-10MPa下应用。这些催化剂也是活泼的加氢催化剂。因此加氢甲酰基化步骤和许多加氢步骤在同一反应器中发生,从而如果在进料合成气中H2与CO的比约为2∶1则主要产生醇。这种单步过程以及催化剂对直链烯烃终端位上的反应的强烈优选性有可能由中间和终端直链烯烃混合物制备高直链/支链比的醇。
利用被配位体改性的羰基铑催化剂对直链醛的形成也是有利的。通常络合催化剂的组成含有50ppm-150ppm的铑。关于工业氧化方法的其它信息在Kirk-Othmer,《化学工业百科全书》(Encyclopediaof Chemical Technology),第3版,第16卷,John Wiley & Sons,第.637-653页中有述。
本发明的C4 +OTO是在氧化物至烯烃的过程中产生的。所述氧化物至烯烃的过程应用小孔沸石或非沸石分子筛催化剂来催化氧化物例如甲醇使之主要转化为C2-C4 +烯烃。沸石分子筛是复杂的铝硅酸盐晶体,其形成一个通过共用氧原子连接的AlO2 -和SiO2四面体网络。四面体的负电通过夹杂阳离子如碱或碱土金属离子平衡。在一些沸石的制备中,在合成过程中存在非金属阳离子如四甲基铵(TMA)或四丙基铵(TPA)。
沸石包括含有二氧化硅和任选的氧化铝的材料,以及其中二氧化硅和氧化铝全部或部分已经被其它氧化物替代的材料。例如锗氧化物、锡氧化物及其混合物可以代替二氧化硅部分。硼氧化物、铁氧化物、镓氧化物、铟氧化物及其混合物可以代替氧化铝部分。如果不另外指出的话,这里所应用的术语“沸石”和“沸石材料”将不仅指在其晶格结构中含有硅原子和任选的铝原子的材料,而且指含有这些硅和铝原子的适当替代原子的材料。具体地,适合的沸石材料包括ZSM-5、ZSM-22、ZSM-35、这些物质含金属的形式以及它们的混合物。
非沸石、硅铝磷酸盐分子筛优选用于本发明。这些筛通常包括[SiO2]、[AlO2]和[PO2]四面体单元的三维微孔晶体骨架结构。总的来说,硅铝磷酸盐分子筛包括共用角部[SiO2]、[AlO2]和[PO2]的四面体单元的分子骨架。这类骨架在使各种氧化物转化为烯烃产品时是有效的。
优选的是用于本发明的硅铝磷酸盐分子筛具有相对低的Si/Al2比。总体来讲,Si/Al2比越低,C1-C4饱和烃的选择性特别是丙烷的选择性越低。Si/Al2比低于0.65是希望的,Si/Al2比不大于0.40是优选的,并且Si/Al2比不大于0.32是特别优选的。Si/Al2比不大于0.20是最优选的。
硅铝磷酸盐分子筛通常被划分为具有8、10或12元环结构的微孔材料。这些环结构的平均孔尺寸范围可以为约3.5-15埃。优选的是平均孔尺寸小于约5埃的小孔SAPO分子筛,所述平均孔尺寸范围优选为约3.5-5埃,更优选为3.5-4.2埃。这些孔尺寸通常为具有8元环的分子筛的尺寸。
取代的SAPO也可以用于本发明。这些化合物通常称为MeAPSO或含金属的硅铝磷酸盐。所述金属可以是碱金属(IA族)、碱土金属(IIA族)、稀土金属(IIIB族,包括镧系元素),以及IB、IIB、IVB、VB、VIB、VIIB和VIIIB族的过渡金属。通常通过在分子筛合成过程中加入金属组分来结合金属组分。但也可以应用合成后的离子交换,如Sun等的US 5,962,762中以及US 6,448,197中所公开的,这些文献的公开内容在这里作为参考引入。
合适的硅铝磷酸盐分子筛包括SAPO-5、SAPO-8、SAPO-11、SAPO-16、SAPO-17、SAPO-18、SAPO-20、SAPO-31、SAPO-34、SAPO-35、SAPO-36、SAPO-37、SAPO-40、SAPO-41、SAPO-42、SAPO-44、SAPO-47、SAPO-56、其含金属的形式及其混合物。优选为SAPO-17、SAPO-18、SAPO-34、SAPO-35、SAPO-44和SAPO-47,特别是SAPO-17、SAPO-18、SAPO-34,包括其含金属的形式及其混合物。这里所应用的术语混合物是组合物的同义词,并且被认为是具有两种或多种按照不同比例的组分的物质的组成,不管这些组分的物理状态如何。
硅铝磷酸盐分子筛通过本领域通常已知的水热结晶方法来合成。例如参见US 4,440,871、US 4,861,743、US 5,096,684和US5,126,308,这些文献的制备方法在这里全部作为参考引入。通过将反应性硅、铝和磷组分以及至少一种模板混合在一起而形成反应混合物。通常所述混合物优选在自生压力下被密封且被加热到至少100℃的温度,优选为100-250℃,直到形成晶体产品。晶体产品的形成可能花费约2小时到2周的时间。在某些情况下,搅拌或用晶体材料加入晶种有利于产品的形成。
应用组合模板可以有效控制SAPO分子筛的结构。例如,在一种特别优选的实施方案中,SAPO分子筛应用TEAOH和二丙胺的组合模板来制备。这种组合形成对氧化物特别是甲醇和二甲醚转化为轻烯烃如乙烯和丙烯来说特别希望的SAPO结构。
硅铝磷酸盐分子筛通常与其它材料混合(即共混)。当共混后,所形成的组合物通常称为SAPO催化剂,即包含有SAPO分子筛的催化剂。
可以与分子筛共混的材料可以是各种惰性或催化活性材料,或各种粘合剂材料。这些材料包括组合物如高岭土和其它粘土、各种形式的稀土金属、金属氧化物、其它非沸石催化剂组分、沸石催化剂组分、氧化铝或氧化铝溶胶、二氧化钛、氧化锆、氧化镁、二氧化钍、氧化铍、石英、硅石或二氧化硅或二氧化硅溶胶及其混合物。这些组分在降低催化剂的总成本、在再生过程中作为吸热体以利于热屏蔽催化剂、增加催化剂的密度以及增加催化剂的强度方面也是特别有效的。特别希望的是在催化剂中用作吸热体的惰性材料的热容为约0.05至约1cal/g℃,更优选为约0.1至约0.8cal/g℃,最优选为约0.1至约0.5cal/g℃。
所述催化组合物优选含有约1wt%至约99wt%,更优选为约5wt%至约90wt%,最优选为约10wt%至约80wt%分子筛。另外优选的是所述催化剂组合物的粒度为约20μ-3,000μ,更优选为约30μ-200μ,最优选为约50μ-150μ。
任何标准的反应器系统都可以用于氧化物至烯烃的过程,包括固定床、流化床或移动床系统。优选的反应器为并流提升管反应器和短接触时间逆流自由下落反应器。所希望的是所述反应器中氧化物原料可以与分子筛催化剂在重量小时空速(WHSV)为至少约1hr-1下接触,优选范围为约1hr-1至约1000hr-1,更优选的范围为约20hr-1至约1000hr-1,并且最优选的范围为约20hr-1至约500hr-1。WHSV在这里定义为每小时催化剂单位重量分子筛的氧化物和可任选包含在进料中的烃的重量。因为催化剂或原料可以含有作为惰性物质或稀释剂的其它材料,所以WHSV以氧化物进料、可能存在的烃以及在催化剂中包含的分子筛的重量为基准进行计算。
优选在氧化物处于气相状态时使氧化物进料与催化剂接触。另外该方法可以在液相或气/液混相中进行。当该方法在液相或气/液混相中进行时,根据催化剂和反应条件可能达到不同的原料至产品的转化率和选择性。
该方法通常可以在宽的温度范围内进行。有效的操作温度范围可以为约200℃至约700℃,优选为约300℃至约600℃,更优选为约350℃至约550℃。在所述温度范围的低温端,所希望的烯烃产品的形成可能会明显变慢。而在所述温度范围的高温端,该方法可能不会形成最佳的产品量。
所述压力也可以在宽的范围内变化,包括自生压力。有效的压力可以为氧化物在至少7kPa,优选为至少35kPa下的分压,但不必局限于此。在较高的氧化物分压如氧化物的分压大于140kPa的条件下,该方法是特别有效的。所述氧化物的分压优选为至少约175kPa,更优选为至少约210kPa。为了实际设计的目的,希望在甲醇分压不超过约3500kPa下操作,优选不超过约2800kPa,更优选不超过约2100kPa。
转化氧化物以制备轻烯烃可以在各种催化反应器中进行。所述反应器的类型包括常规反应器如固定床反应器、流化床反应器以及提升管反应器。优选的反应器为提升管反应器。
按照一种实施方案,提供一种由氧化物制备烯烃衍生物的方法,所述方法包括以下步骤:使氧化物与分子筛催化剂接触,从而产生含有烯烃的烃产品;从烃产品中分离出含有四个或更多个碳的C4 +馏分;使C4 +馏分与低聚合反应催化剂接触,从而产生高级烯烃和放空物流;以及使部分放空物流与低聚合反应催化剂接触。在另一种实施方案中,所述方法中C4 +馏分含有80wt%至97wt%的丁烯和3wt%至20wt%的丁烷。
在另一种实施方案中,所述丁烯含有20wt%至40wt%的1-丁烯和60wt%至80wt%的2-丁烯。
在又一种实施方案中,所述低聚合反应催化剂选自镍-烷基铝、固体磷酸、镍-氧化物和ZSM-57。
按照另一种实施方案,提供一种烯烃组合物,所述烯烃组合物含有60-80wt%辛烯、2-10wt%壬烯、以及8-25wt%十二烯。
所述烯烃组合物进一步含有2-10wt%的含有16-20个碳原子的烯烃。在另一种实施方案中,所述烯烃组合物的支链数低于2.0,更优选辛烯的平均支链数低于1.4,甚至更优选壬烯的平均支链数低于1.5,并且最优选十二烯的平均支链数低于1.8。
在另一种实施方案中,所述烯烃组合物含有10wt%至50wt%的α-烯烃。另外,其中辛烯含有60wt%至95wt%的1-辛烯。通常,所述辛烯含有5wt%至30wt%的2-辛烯。

Claims (18)

1.一种由氧化物制备烯烃衍生物的方法,包括:
使氧化物与分子筛催化剂接触,从而产生含有烯烃的烃产品;
从烃产品中分离出含有四个或更多个碳的C4 +馏分,该C4 +馏分含有至少60wt%烯烃;
使C4 +馏分与低聚合反应催化剂接触,从而产生高级烯烃和放空物流;以及
使部分放空物流与低聚合反应催化剂接触。
2.权利要求1的方法,其中所述C4 +馏分含有80wt%至97wt%的丁烯和3wt%至20wt%的丁烷。
3.权利要求2的方法,其中所述丁烯含有20wt%至40wt%的1-丁烯和60wt%至80wt%的2-丁烯。
4.权利要求1的方法,其中所述烯烃产品含有低于20ppmw重量的各种杂质,所述各种杂质选自硫化氢、氧硫化碳和砷。
5.权利要求1的方法,其中所述分子筛催化剂选自SAPO-17、SAPO-18、SAPO-34、SAPO-35、SAPO-44、SAPO-47、ZSM-5、ZSM-22、ZSM-35、这些物质含金属的形式及其混合物。
6.权利要求1的方法,其中低聚合反应催化剂选自镍-烷基铝、固体磷酸、镍-氧化物和ZSM-57。
7.权利要求1的方法,进一步包括使部分高级烯烃与加氢甲酰基化催化剂接触。
8.权利要求1的方法,进一步包括从高级烯烃中分离出辛烯,并使部分辛烯与加氢甲酰基化催化剂接触以形成壬醇。
9.权利要求1的方法,进一步包括从高级烯烃中分离出壬烯,并使部分壬烯与加氢甲酰基化催化剂接触以形成癸醇。
10.权利要求1的方法,进一步包括从高级烯烃中分离出十二烯,并使部分十二烯与加氢催化剂接触以形成十二烷。
11.一种烯烃组合物,含有:
60-80wt%辛烯;
2-10wt%壬烯;以及
8-25wt%十二烯;
其中所述烯烃组合物的支链数低于2.0。
12.利要求11的烯烃组合物,进一步含有2-10wt%的含有16-20个碳原子的烯烃。
13.权利要求11的烯烃组合物,其中辛烯的平均支链数低于1.4。
14.权利要求11的烯烃组合物,其中壬烯的平均支链数低于1.5。
15.权利要求11的烯烃组合物,其中十二烯的平均支链数低于1.8。
16.权利要求11的烯烃组合物,其中所述烯烃组合物含有10wt%至50wt%的α-烯烃。
17.权利要求11的烯烃组合物,其中辛烯含有60wt%至95wt%的1-辛烯。
18.权利要求17的烯烃组合物,其中所述辛烯含有5wt%至30wt%的2-辛烯。
CNB02803385XA 2001-02-01 2002-01-31 高级烯烃的制备 Expired - Lifetime CN100439302C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26570001P 2001-02-01 2001-02-01
US60/265,700 2001-02-01

Publications (2)

Publication Number Publication Date
CN1483010A CN1483010A (zh) 2004-03-17
CN100439302C true CN100439302C (zh) 2008-12-03

Family

ID=23011534

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB02803385XA Expired - Lifetime CN100439302C (zh) 2001-02-01 2002-01-31 高级烯烃的制备
CNB028043995A Expired - Lifetime CN1223556C (zh) 2001-02-01 2002-02-01 烯烃低聚方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB028043995A Expired - Lifetime CN1223556C (zh) 2001-02-01 2002-02-01 烯烃低聚方法

Country Status (14)

Country Link
US (4) US6875899B2 (zh)
EP (2) EP1368290A1 (zh)
JP (1) JP2004526698A (zh)
KR (1) KR20040002856A (zh)
CN (2) CN100439302C (zh)
AT (1) ATE362903T1 (zh)
AU (1) AU2002242041B2 (zh)
BR (1) BR0206874A (zh)
CA (2) CA2433340A1 (zh)
DE (1) DE60220253D1 (zh)
GC (1) GC0000321A (zh)
MX (2) MXPA03006915A (zh)
NO (2) NO20033416L (zh)
WO (2) WO2002060844A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109809956A (zh) * 2017-11-21 2019-05-28 韩华道达尔有限公司 异丁烯低聚物的制造方法

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875899B2 (en) * 2001-02-01 2005-04-05 Exxonmobil Chemical Patents Inc. Production of higher olefins
AU2003259157A1 (en) * 2002-03-29 2003-10-13 Exxonmobil Chemical Patents Inc. A Corporation Of State Of Delaware Oligomerization of olefins
US7183450B2 (en) * 2002-07-22 2007-02-27 Exxonmobil Chemical Patents Inc. Olefin oligomerization
US7253330B2 (en) 2003-04-29 2007-08-07 Exxonmobil Chemical Patents Inc. Oligomerization process
US7145049B2 (en) * 2003-07-25 2006-12-05 Catalytic Distillation Technologies Oligomerization process
US20050209469A1 (en) * 2004-03-22 2005-09-22 Shutt John R Converting propylene in an oxygenate-contaminated propylene stream to non-polymerization derivative products
GB0412139D0 (en) * 2004-06-01 2004-06-30 Exxonmobil Chem Patents Inc Olefin oligomerization process
GB0412151D0 (en) * 2004-06-01 2004-06-30 Exxonmobil Chem Patents Inc Olefin oligomerization process
CN101111313B (zh) * 2005-01-31 2010-05-12 埃克森美孚化学专利公司 分子筛催化剂组合物,其制备和在转化方法中的应用
JP5102943B2 (ja) * 2005-05-25 2012-12-19 Jx日鉱日石エネルギー株式会社 固体リン酸触媒およびそれを用いたオレフィンの二量化反応方法
US8598396B2 (en) * 2005-06-13 2013-12-03 Exxonmobil Chemical Patents Inc. Oligomerisation of olefins
GB0512377D0 (en) 2005-06-17 2005-07-27 Exxonmobil Chem Patents Inc Oligomerisation of olefins with zeolite catalyst
US7588738B2 (en) * 2005-08-23 2009-09-15 Exxonmobil Chemical Patents Inc. Series catalyst beds
US7501548B2 (en) * 2006-03-10 2009-03-10 Exxonmobil Chemical Patents Inc. Oligomerization of isobutene-containing feedstocks
US7615673B2 (en) * 2006-09-08 2009-11-10 Catalytic Distillation Technologies Propylene oligomerization process
KR100864376B1 (ko) * 2007-05-09 2008-10-21 한국화학연구원 다양한 성분을 함유한 부텐으로 부터 부텐 삼량체를제조하는 방법 및 그를 이용한 고비점알킬레이트 제조 방법
DE102007022175B4 (de) * 2007-05-11 2015-11-05 Air Liquide Global E&C Solutions Germany Gmbh Verfahren und Anlage zur Herstellung von synthetischen Kraftstoffen
US8193402B2 (en) * 2007-12-03 2012-06-05 Gevo, Inc. Renewable compositions
KR20100095004A (ko) 2007-12-03 2010-08-27 게보 인코포레이티드 재생 조성물
US7956227B2 (en) * 2007-12-06 2011-06-07 Conocophillips Company Oligomerization of hydrocarbons
US8399725B2 (en) * 2008-06-20 2013-03-19 Exxonmobil Chemical Patents Inc. Functionalized high vinyl terminated propylene based oligomers
US8283419B2 (en) * 2008-06-20 2012-10-09 Exxonmobil Chemical Patents Inc. Olefin functionalization by metathesis reaction
US8372930B2 (en) 2008-06-20 2013-02-12 Exxonmobil Chemical Patents Inc. High vinyl terminated propylene based oligomers
US8802797B2 (en) 2008-06-20 2014-08-12 Exxonmobil Chemical Patents Inc. Vinyl-terminated macromonomer oligomerization
US8283428B2 (en) * 2008-06-20 2012-10-09 Exxonmobil Chemical Patents Inc. Polymacromonomer and process for production thereof
US8476350B2 (en) * 2008-12-24 2013-07-02 Exxonmobil Research And Engineering Company Triglyceride plasticizer and process of making
US20100216958A1 (en) * 2009-02-24 2010-08-26 Peters Matthew W Methods of Preparing Renewable Butadiene and Renewable Isoprene
US9963405B1 (en) * 2009-07-29 2018-05-08 The United States Of America As Represented By The Secretary Of The Navy High density cyclic fuels derived from linear sesquiterpenes
CN102482107B (zh) 2009-08-28 2014-03-26 埃克森美孚化学专利公司 具有受控平均尺寸的mfs骨架类型分子筛的制备方法和应用
AU2010303461A1 (en) * 2009-10-06 2012-04-26 Gevo, Inc. Integrated process to selectively convert renewable isobutanol to p-xylene
FR2951163B1 (fr) * 2009-10-13 2012-09-28 Total Raffinage Marketing Procede de production de distillat par oligomerisation catalytique d'olefines en presence de composes oxygenes
FR2951161B1 (fr) * 2009-10-13 2012-03-02 Total Raffinage Marketing Procede de production de distillat a partir d'une charge hydrocarbonee comprenant une condensation d'alcool
US8771815B2 (en) 2009-12-17 2014-07-08 Exxonmobil Research And Engineering Company Process for making triglyceride plasticizer
US9272965B2 (en) * 2009-12-22 2016-03-01 Catalytic Distillation Technologies Process for the conversion of alcohols to olefins
US8450543B2 (en) 2010-01-08 2013-05-28 Gevo, Inc. Integrated methods of preparing renewable chemicals
EP2566830B1 (en) 2010-05-07 2017-03-22 GEVO, Inc. Renewable jet fuel blendstock from isobutanol
US20120022224A1 (en) 2010-07-22 2012-01-26 Geraldine Tosin Particles Including Zeolite Catalysts And Their Use In Oligomerization Processes
WO2012033562A1 (en) 2010-09-07 2012-03-15 Exxonmobil Chemical Patents Inc. Extrudates including zeolite catalysts and their use in oligomerization processes
US20120149957A1 (en) * 2010-12-10 2012-06-14 Uop, Llc Apparatus and process for oligomerizing one or more hydrocarbons
US8128902B2 (en) * 2011-04-12 2012-03-06 Midwest Refrigerants, Llc Method for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
EP2699618A4 (en) 2011-04-19 2014-12-17 Gevo Inc VARIATIONS OF A PRINS REACTION FOR THE PREPARATION OF 2,5-DIMETHYLHEXADIENE FROM ISOBUTANOL
WO2013013888A2 (en) * 2011-07-25 2013-01-31 Exxonmobil Chemical Patents Inc. Olefin oligomerization process
WO2013013884A2 (en) * 2011-07-25 2013-01-31 Exxonmobil Chemical Patents Inc. Process for nitrile removal from hydrocarbon feeds
US9573861B2 (en) 2011-07-25 2017-02-21 Exxonmobil Chemical Patents Inc. Olefin oligomerization process
US9776937B2 (en) 2011-07-25 2017-10-03 Exxonmobil Chemical Patents Inc. Integrated nitrile poison adsorption and desorption system
US9550705B2 (en) 2011-07-25 2017-01-24 Exxonmobill Chemical Patents Inc. Olefin oligomerization process
US8680353B2 (en) * 2011-11-21 2014-03-25 Basf Se Process for preparing oligomers of butene
US9522373B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for oligomerizing light olefins
US10508064B2 (en) 2012-11-12 2019-12-17 Uop Llc Process for oligomerizing gasoline without further upgrading
US20140135545A1 (en) * 2012-11-12 2014-05-15 Uop Llc Fluid catalytic cracking process
WO2014074833A1 (en) 2012-11-12 2014-05-15 Uop Llc Process for making gasoline by oligomerization
US9834492B2 (en) 2012-11-12 2017-12-05 Uop Llc Process for fluid catalytic cracking oligomerate
US9434891B2 (en) 2012-11-12 2016-09-06 Uop Llc Apparatus for recovering oligomerate
US9522375B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for fluid catalytic cracking oligomerate
US9663415B2 (en) 2012-11-12 2017-05-30 Uop Llc Process for making diesel by oligomerization of gasoline
US9567267B2 (en) 2012-11-12 2017-02-14 Uop Llc Process for oligomerizing light olefins including pentenes
US9441173B2 (en) 2012-11-12 2016-09-13 Uop Llc Process for making diesel by oligomerization
US9914673B2 (en) 2012-11-12 2018-03-13 Uop Llc Process for oligomerizing light olefins
US9644159B2 (en) 2012-11-12 2017-05-09 Uop Llc Composition of oligomerate
EP2925835A1 (en) * 2012-11-29 2015-10-07 ExxonMobil Chemical Patents Inc. Processes for treating olefin feedstreams and related oligomerization processes
US20150166425A1 (en) * 2013-12-17 2015-06-18 Uop Llc Process for oligomerizing gasoline with high yield
US9670425B2 (en) 2013-12-17 2017-06-06 Uop Llc Process for oligomerizing and cracking to make propylene and aromatics
US9732285B2 (en) 2013-12-17 2017-08-15 Uop Llc Process for oligomerization of gasoline to make diesel
CN107406340A (zh) 2015-03-20 2017-11-28 埃克森美孚化学专利公司 将含烯烃的烃进料转化为低聚产物或氢化低聚产物的方法
US10406511B2 (en) * 2016-04-11 2019-09-10 Enerkem, Inc. Hybrid extruded mixed zeolite catalysts for synthesis of light olefins
US10544068B2 (en) * 2016-08-16 2020-01-28 Iran Polymer And Petrochemical Institute Catalytic process for producing olefins
WO2018096551A1 (en) * 2016-11-25 2018-05-31 Hindustan Petroleum Corporation Limited Oligomerization process involving crystalline molecular sieve
WO2018236471A1 (en) 2017-06-23 2018-12-27 Exxonmobil Chemical Patents Inc. METHODS OF OLIGOMERIZING OLEFINS AND ZEOLITES AND STRUCTURAL ORIENTATION AGENTS THEREOF
CN112867700A (zh) 2018-10-17 2021-05-28 埃克森美孚化学专利公司 烯烃的低聚
CN112867701A (zh) * 2018-10-17 2021-05-28 埃克森美孚化学专利公司 烯烃的低聚
WO2020081210A1 (en) * 2018-10-17 2020-04-23 Exxonmobil Chemical Patents Inc. Oligomerization of olefins
EP3686177A1 (de) * 2019-01-28 2020-07-29 Linde GmbH Verfahren und anlage zur herstellung von alpha-olefinen
WO2020256852A1 (en) 2019-06-20 2020-12-24 Exxonmobil Chemical Patents Inc. Amphiphilic reaction products from lightly branched olefins and methods for production thereof
WO2020264207A1 (en) * 2019-06-27 2020-12-30 Gevo, Inc. Bio-based olefin oligomerization via chabazite zeolite catalyst
CN116023561A (zh) * 2021-10-25 2023-04-28 中国石油化工股份有限公司 一种负载型聚烯烃催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990367A (en) * 1995-12-15 1999-11-23 Uop Llc Process for oligomer production and saturation

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL126665C (zh) * 1960-03-15
US3407789A (en) 1966-06-13 1968-10-29 Stone & Webster Eng Corp Heating apparatus and process
US3647682A (en) 1968-10-23 1972-03-07 Union Carbide Corp Olefin production by the catalytic treatment of hydrocarbons
US3820955A (en) 1970-01-19 1974-06-28 Stone & Webster Eng Corp Horizontal high severity furnace
US3758403A (en) * 1970-10-06 1973-09-11 Mobil Oil Olites catalytic cracking of hydrocarbons with mixture of zsm-5 and other ze
US3906053A (en) * 1971-08-10 1975-09-16 Ethyl Corp Process for the production of olefins
GB1343949A (en) 1971-12-31 1974-01-16 Exxon Research Engineering Co Quality of octenes
US3816975A (en) * 1972-11-14 1974-06-18 Union Carbide Corp Purification of hydrocarbon feedstocks
US3911041A (en) 1974-09-23 1975-10-07 Mobil Oil Corp Conversion of methanol and dimethyl ether
US4386229A (en) * 1980-03-21 1983-05-31 Phillips Petroleum Company Olefin dimerization
US4314090A (en) * 1980-08-18 1982-02-02 The Dow Chemical Company Linear alpha olefin production
FR2504522A1 (fr) * 1981-04-24 1982-10-29 Inst Francais Du Petrole Procede de purification d'une coupe c4 et/ou c5 d'hydrocarbures renfermant de l'eau et du dimethylether comme impuretes
US4499055A (en) 1981-09-14 1985-02-12 Exxon Research & Engineering Co. Furnace having bent/single-pass tubes
US4828679A (en) 1984-03-12 1989-05-09 Mobil Oil Corporation Octane improvement with large size ZSM-5 catalytic cracking
US4513156A (en) 1984-04-16 1985-04-23 Mobil Oil Corporation Olefin oligomerization using extracted feed for production of heavy hydrocarbons
US4579999A (en) * 1985-01-17 1986-04-01 Mobil Oil Corporation Multistage process for converting oxygenates to liquid hydrocarbons with aliphatic recycle
US4686317A (en) 1985-12-31 1987-08-11 Mobil Oil Corporation Process for removing oxygenated compounds or other impurities from hydrocarbon streams
US4675463A (en) * 1986-02-05 1987-06-23 Exxon Chemical Patents Inc. Process for reducing fouling in higher olefin plants
CN1004878B (zh) 1987-08-08 1989-07-26 中国石油化工总公司 制取低碳烯烃的烃类催化转化方法
US4814067A (en) 1987-08-11 1989-03-21 Stone & Webster Engineering Corporation Particulate solids cracking apparatus and process
EP0308569B1 (en) 1987-09-24 1992-03-04 Fina Research S.A. Process for removing arsine from light olefin-containing hydrocarbon feedstocks
US5026933A (en) 1987-10-07 1991-06-25 Mobil Oil Corporation Olefin oligomerization with surface modified zeolite catalyst
US4929780A (en) * 1988-05-12 1990-05-29 Mobil Oil Corporation Multistage process for converting oxygenates to liquid hydrocarbons and ethene
DE3914817C2 (de) 1989-05-05 1995-09-07 Huels Chemische Werke Ag Verfahren zur Oligomerisierung von Olefinen
US5254783A (en) 1991-01-22 1993-10-19 Exxon Chemical Patents, Inc. Catalyst comprising amorphous NiO on silica/alumina support and process for butene dimerization
US5434327A (en) 1991-07-12 1995-07-18 Mobil Oil Corporation Process for dimerizing propylene and for converting hexenes into ethers
US5146042A (en) 1991-08-08 1992-09-08 Exxon Chemical Patents Inc. Desulfurization of light olefins
EP0625132B1 (en) 1992-01-30 1997-07-16 Exxon Chemical Patents Inc. Alkene oligomerization
US5271835A (en) * 1992-05-15 1993-12-21 Uop Process for removal of trace polar contaminants from light olefin streams
CN1031646C (zh) 1992-10-22 1996-04-24 中国石油化工总公司 石油烃的催化转化方法
US5859159A (en) * 1992-12-17 1999-01-12 Exxon Chemical Patents Inc. Dilute process for the polymerization of non-ethylene α-olefin homopolymers and copolymers using metallocene catalyst systems
GB9312245D0 (en) * 1993-06-14 1993-07-28 Exxon Chemical Patents Inc Hydrocarbon treatment
DE69318403T2 (de) 1993-09-15 1998-10-01 Fina Research Verfahren zur Polymerisation von Olefinen
CN1066426C (zh) 1994-02-22 2001-05-30 埃克森化学专利公司 齐聚和齐聚催化剂
US5714662A (en) 1995-08-10 1998-02-03 Uop Process for producing light olefins from crude methanol
US5591340A (en) * 1995-09-01 1997-01-07 Costner Industries Nevada, Inc. Centrifugal separator
CN1048977C (zh) * 1995-11-15 2000-02-02 中国石油化工总公司 制备低碳α-烯烃的方法
US5942656A (en) * 1997-12-09 1999-08-24 Shell Oil Company Process for separating linear alpha olefins from 2-branched and/or 3-branched alpha olefins
US5936136A (en) * 1997-06-16 1999-08-10 Shell Oil Company Process for separating linear alpha olefins from 2 branched and/or3-branched alpha olefins
US6049017A (en) 1998-04-13 2000-04-11 Uop Llc Enhanced light olefin production
CA2346902C (en) 1998-10-16 2010-02-09 Fortum Oil And Gas Oy Process for dimerizing olefinic hydrocarbon feedstock and producing a fuel component
EP1127862A1 (en) 2000-02-24 2001-08-29 Uop Llc Process for oligomer production
GB0010433D0 (en) 2000-04-28 2000-06-14 Exxon Chemical Patents Inc Alkene oligomerization process
US6660898B1 (en) * 2000-11-03 2003-12-09 Fortum Oil & Gas Oy Process for dimerizing light olefins to produce a fuel component
US6875899B2 (en) * 2001-02-01 2005-04-05 Exxonmobil Chemical Patents Inc. Production of higher olefins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990367A (en) * 1995-12-15 1999-11-23 Uop Llc Process for oligomer production and saturation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109809956A (zh) * 2017-11-21 2019-05-28 韩华道达尔有限公司 异丁烯低聚物的制造方法

Also Published As

Publication number Publication date
MXPA03006914A (es) 2004-05-05
BR0206874A (pt) 2004-01-20
AU2002242041B2 (en) 2007-07-12
DE60220253D1 (de) 2007-07-05
KR20040002856A (ko) 2004-01-07
US6875899B2 (en) 2005-04-05
NO20033414D0 (no) 2003-07-30
MXPA03006915A (es) 2004-05-20
CA2433340A1 (en) 2002-08-08
NO20033416D0 (no) 2003-07-30
US20040242948A1 (en) 2004-12-02
WO2002060842B1 (en) 2002-10-10
US20050182282A1 (en) 2005-08-18
CA2434967A1 (en) 2002-08-08
WO2002060842A8 (en) 2002-11-14
WO2002060842A1 (en) 2002-08-08
NO20033416L (no) 2003-07-30
EP1368290A1 (en) 2003-12-10
CN1489564A (zh) 2004-04-14
EP1368288A1 (en) 2003-12-10
US20040133053A1 (en) 2004-07-08
US6884914B2 (en) 2005-04-26
CN1223556C (zh) 2005-10-19
WO2002060844A1 (en) 2002-08-08
JP2004526698A (ja) 2004-09-02
NO20033414L (no) 2003-09-19
US7238844B2 (en) 2007-07-03
US20020111523A1 (en) 2002-08-15
CN1483010A (zh) 2004-03-17
US7381853B2 (en) 2008-06-03
EP1368288B2 (en) 2010-05-05
ATE362903T1 (de) 2007-06-15
EP1368288B1 (en) 2007-05-23
GC0000321A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
CN100439302C (zh) 高级烯烃的制备
CN100567227C (zh) 烯烃低聚
CN1989087B (zh) 低聚反应工艺
US4513156A (en) Olefin oligomerization using extracted feed for production of heavy hydrocarbons
US9522853B2 (en) Process to make olefins from isobutanol
US5023389A (en) Process for preparing normally liquid oxygenate and hydrocarbonaceous products from a hydrocarbon feed containing linear- and branched olefins
AU2002242041A1 (en) Olefin oligomerization
KR20160025604A (ko) 최소 1-부텐 함량을 갖는 c4 흐름의 올리고머화
US6770791B2 (en) Production of olefin dimers and oligomers
EP0096996A2 (en) Process for the conversion of alcohols into petrochemicals
CN102665903A (zh) 由杂原子有机化合物生产c10+烃的方法
US20050043575A1 (en) Butadiene and isobutylene removal from olefinic streams
US6156947A (en) Process for the production of butene-1 from a mixture of C4 olefins
JPH09501407A (ja) 炭化水素の処理方法
WO2003006414A2 (en) Producing maleic anhydride from a c4 stream in an oxygenate to olefin process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20081203