CN100427770C - 包括压力控制的缓冲元件的液压系统 - Google Patents

包括压力控制的缓冲元件的液压系统 Download PDF

Info

Publication number
CN100427770C
CN100427770C CNB038108623A CN03810862A CN100427770C CN 100427770 C CN100427770 C CN 100427770C CN B038108623 A CNB038108623 A CN B038108623A CN 03810862 A CN03810862 A CN 03810862A CN 100427770 C CN100427770 C CN 100427770C
Authority
CN
China
Prior art keywords
path
pressure
transmission system
pressure medium
medium power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038108623A
Other languages
English (en)
Other versions
CN1653271A (zh
Inventor
M·青佩费
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Fluid Power GmbH
Original Assignee
Eaton Fluid Power GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Fluid Power GmbH filed Critical Eaton Fluid Power GmbH
Publication of CN1653271A publication Critical patent/CN1653271A/zh
Application granted granted Critical
Publication of CN100427770C publication Critical patent/CN100427770C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/021Installations or systems with accumulators used for damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/02Supply or exhaust flow rates; Pump operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/11Damping valves
    • B60G2500/116Damping valves for damping pressure oscillations of the fluid in hydraulic lines

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Pipe Accessories (AREA)
  • Vehicle Body Suspensions (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Control Of Fluid Gearings (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

本发明涉及一种液压系统(1),通常包括伸缩软管线路和其它缓冲元件(21、22),其具有根据所产生的压力脉冲的一个或多个串联连接的软管腔体。根据本发明在液压系统的工作中缓冲措施是根据压力开启的。由此在循环工作状态可实现低压力损失和显著节省能量。这通过一个在压力源(2)和负载(3)之间的跨接缓冲器的直接连接管线来实现。当系统中的压力增加时,所述短接管线被一阀关闭。

Description

包括压力控制的缓冲元件的液压系统
技术领域
本发明涉及一种压力介质动力传递系统,例如一个液压系统和其缓冲装置。
背景技术
在使用可压缩或不可压缩压力介质用于动力传动的动力传递系统即气动系统或液压系统中,通常在相应的压力源和负载之间安装脉动缓冲器,所述缓冲器缓冲由于压力源或负载产生的脉动。这种脉动缓冲器是例如伸缩软管,所述软管还可以包括用于产生压力波干涉以消除所述压力波的内置件,例如谐振器或反射器。这种缓冲装置安装在压力源和负载之间。
压力介质动力传递系统经常用于负载变化的情况中,即负载在时间上不是恒定的。同样地,压力源的输送率随例如马达转速的变化而波动。
缓冲装置具有一个特殊的可导致动力传递系统中的能量损失的流阻。从经济性的观点来看这种损失会产生一定的影响。另一方面,又不能简单地省略缓冲装置。
此外,缓冲装置常常仅对或多或少较宽的频带内的压力脉动有效。如果应该通过缓冲装置消除发生所有可设想的工作状态下的所有压力脉动,其结果导致有相应的高流阻的复杂的缓冲装置。
发明内容
由此出发,本发明的目的是提供一种压力介质动力传递系统,该系统以良好的经济性工作且能将压力脉动降低至可允许的最小值。
所述目的由一种压力介质动力传递系统来实现,该系统尤其是液压系统,它包括一个压力源和一个负载,以及一个设置于压力源和负载之间的缓冲装置,所述缓冲装置包括至少两个互相平行的通路,所述通路由一阀装置控制,所述阀装置根据动力传递系统中选定位置上的压力控制向通路的流体分配。
例如,根据本发明的压力介质动力传递系统设计成一种液压系统。此系统包括一个压力源和一个负载,它们之间设置一个缓冲装置。该装置包括至少两个相互平行的具有不同缓冲特性的通路。例如,一个通路包括一个或多个脉动缓冲器而另一个通路包括不同地调谐的脉动缓冲器,或者也可以设计成不包括任何脉动缓冲器或其它缓冲器的旁通通路。所述通路配设有一个阀装置,该阀装置通过在缓冲装置的一个选定位置上的压力来控制通路的压力/流体分配。因此,至少一个所述通路根据压力而致动,即开启或关闭或者或多或少地开启。因此,此缓冲装置的性能根据动力传递系统的一选定位置处的压力而变化。由此可以在动力传递系统的一个确定工作状态时以较高的缓冲工作,而在其它工作状态时以较小的缓冲工作。随着缓冲作用的变化,缓冲装置的通流阻力通常也发生变化。因此,在按照本发明的动力传递系统中,可使缓冲装置的通流阻力与动力传递系统的工作状态,尤其与负载状态相匹配。例如,动力传递系统可以作为机动车辆中的液压系统使用。在不需要任何转向助力作用的直线行驶状态中,设置在缓冲装置中用作旁通的通路可以开启。此动力传递系统处于循环状态,所以此例中缓冲不重要。然而,在该工作状态中旁通通路中较小的流阻使得只需要很小的功率来保持循环状态,所以仅有一个小的负载由液压泵(压力源)施加在机动车辆的发动机上。
当开始转向过程时,用作转向助力装置的液压调整装置的流阻增加。相应地缓冲装置上或其中的压力也升高。此压力现在使得阀装置优选地突然转换,或者必要时也可平缓地转换,因此旁通通路或其它在循环状态中使用的具有低流阻的通路现在被渐增地节流作用。这样,流体逐渐增加地必须流过包含至少一个脉动缓冲器的平行通路。由此使可能由压力源引起的脉动、压力冲击和振动不到达负载。相反地,可能由负载产生的脉动、振动和压力冲击也不会到达压力源。因此,任何可能发生在缓冲装置中的缓冲器上的功率损失由此基本上仅限于短时发生的转向过程中。液压液位控制可以以同样的方式进行。
因此,根据本发明的动力传递系统只有在压力源和负载之间实际发生动力传动时才致动其缓冲器。例如,在空转状态时(循环状态),即没有明显的动力从压力源向负载传输时,不可避免地导致能量损失的缓冲器至少部分地被无效。
此外,本发明的动力传递系统主要在确实发生脉动时允许使用脉动缓冲器。这例如是根据负载情况发生的。此外,脉动的频谱可能随着负载变化而变化。此时本发明的动力传递系统提供了一种可能性,即根据动力传递系统的工作状态启动或关闭分别与所出现的脉动相匹配的脉动缓冲器。
缓冲装置可具有两个或多个的相互平行连接的通路。所述通路可分别在其输入端相互连接而在输出端转换,或者可在输出端相互连接而在输入端转换。转换阀可用于这种转换操作。然而,在优选的实施形式中,在待关闭的通路中只设有一个例如当压力增加时关闭的截止阀。此截止阀优选设置于两个通路中具有较低流阻的一个通路中。该通路可被视为例如随系统中的压力增加逐渐被阻断的旁通通路。
如上所述原则上可阶跃式地启动或关闭所述通路。然而这可导致整个系统的性能的显著变化。例如,在一个使用液压助力的机动车辆转向系统中,当转向助力的程度由此突然变化时,这会引起问题。在这种情况下,启动和关闭之间的平缓过渡是优选的。在这种平缓的工作方式下通路之间的渐变或转换优选地以无滞后的方式进行。与此相反,在转换过程中有利地设有一定的转换滞后,以便避免振动状态,即避免在极限状态下阀装置经常性的来回转换。
优选地,从缓冲装置或动力传递系统的其它位置分接出的阀致动压力用于转换阀装置。通过合适的压力致动的驱动设置,此压力可以用于移动阀装置。所述致动装置优选地包括一个产生反作用力的弹簧结构。在许多情况下,如果所述弹簧结构具有一线性的力-行程特性曲线就足够了。在个别情况下,如果提供非线性的力-行程特性曲线,可能是有用的。由此可对非线性的阀特性曲线进行补偿。在其它情形中,甚至希望,以非线性特性在两个通路之间进行转换。
从附图、说明书中可得出本发明优选实施例的其它细节。
附图说明
附图中示出本发明的实施例。其中:
图1示出根据本发明的压力介质动力传递系统的示意图,和
图2-5分别示出根据本发明的动力传递系统的实施形式的修改方案的示意图。
具体实施方式
图1表示一使用不可压缩的流体例如液压油作为压力介质的液压系统1。该系统用于从一压力源2向一负载3传输机械功率。因此,该液压系统1是一个压力介质动力传递系统。压力源2例如是一设在机动车辆上的液压泵。负载3例如是一个转向机构、一个阀组或其它可由压力源2驱动的致动器。在压力源2和负载3之间设置一缓冲装置4。此缓冲装置以其输入端5与压力源2的一个输出端6连接。其输出端7与负载3的一个输入端8连接。存在一从负载到压力源2的回流管线,但在图中未示意。(这适用于图1至图5)
缓冲装置4包括至少两个互相平行设置的通路9、11。为此,通路9、11以其输入端12、13以及以其输出端14、15互相连接。通路9设计成一个旁通通路,并且在该实施形式中不包含缓冲器等。然而,该通路包括一个用于在通路9、11之间分配液压流体的截止阀16。设置在旁通通路中(通路9)的截止阀16具有一该阀完全开启且通路9开通的第一状态I,和一闭锁通路9的第二状态II。而且,所述阀可以具有其中通路9只是或多或少地被节流的任意中间状态。截止阀16由压力介质致动。所述的阀包括一个当受到压力时在与压力弹簧18的力相反的闭合方向上致动截止阀16的压力介质驱动装置17。压力介质驱动装置17通过一管线19例如与通路9的输入端12连接。必要时管线19也可与阀的输出端连接,以例如避免转换滞后。
通路11包括至少一个缓冲器,但在这里包括两个串联设置的缓冲器21、22。两个缓冲器21、22例如都是分别包括一个伸缩软管和一布置在所述伸缩软管中的调谐管23、24的脉动缓冲器。每一个缓冲器21、22均被调谐至一个确定的脉动频率或频带上。
两个平行连接/并联的通路9、11的前面连接有一个将缓冲装置4的输入端和通路9、11的输入端12、13连接起来的共同的缓冲器25。缓冲器25可以是一个调谐为窄或宽频带的脉动缓冲器。
以上所述的液压系统1操作如下:
在工作中,压力源2不断地输送液压流体。如果负载3没有消耗任何动力,它允许到达其输入端8的流体无阻地通过并通过一个图中没有示意的回流管线流回压力源2。此液压系统在循环状态下工作。在此状态中,由管线19分接到缓冲装置4中的压力较低。因此,截止阀16处于其第一状态,即它允许(流体)无阻碍通过通路9。因此,液压流体取道缓冲器25,然后通过作为旁通连接的通路9流到负载3。由于同样为开启状态的通路11的流阻较大,所以通过该通路11的流量较小。因此,为了保持液压循环,压力源2只需要低的功率。
如以上所述,负载3例如是一辅助机动车辆转向运动的液压致动器。如果通过进行转向运动而启动该负载,该负载就会对流过的液压流体施加一个逐渐增加的阻力。由此,缓冲装置中-尤其是在通路9的输入端12处-的压力显著提高。然后,此压力通过压力介质驱动装置17启动截止阀16的初始关闭过程。因此,通路9受到不断提高的节流作用,从而迫使越来越多的流体流过通过通路11并经过缓冲器21、22的路程。从而确保,随着动力传递的逐渐提高,压力源2和负载3之间进行脉动缓冲。当在反压力最大时截止阀16完全关闭时,通路9被锁闭。这样,只有通路11开启。系统以完全的脉动缓冲工作。通过管线19分接的压力和分配给通路9、11的流体之间的关系可以通过选择合适的压力弹簧18的力-行程特性曲线来调整。
如果负载3是关闭的,例如通过将转向重设置为直线行驶状态,液压流体可再次无阻碍地流过负载3。因此,由管线19分接的压力降低,且通路9随着压力降低而开启。因此,系统回到具有一低脉动缓冲的循环工作。这种工作状态损失小并可以保持到负载3再次启动。
管线19也可以引至输出端7以消除或降低正反馈效应(Mitkopplungseffekt)。而且,这样也避免在一些情况下为了避免振动而希望的任何滞后。
图2表示液压系统1的实施形式的修改方案。该实施形式与上述实施形式的区别在于省略了缓冲器25。当作为旁通的通路9完全开启时即负载3上没有动力降低时,这促使形成一个无缓冲的但同时低损耗的循环工作。由于其它情况完全相同,下文将参考以上说明并基于同样的序号。在通路11中缓冲器的数量可以根据需要变化。阀16可设在通路9的前面或其中。
图3表示图1的液压系统1的另一种可能的变型。而且,完全参考图1实施例的描述。同样的序号也适用。与图1的实施形式不同的是,图3的液压系统1在通路11中只包括一个脉动缓冲器21。其通流阻力显著高于通路9开启时的流阻,从而该通路21导致一个大得多的压降。因此,当通路9开启时(循环工作),只有由缓冲器25的流阻和低得多的通路9的流阻得到的流阻和是有效的。因此,压力源2和负载3之间的压降基本上是由缓冲器25上的压降决定的。然而,如果负载3消耗功率,则通路9被逐渐关闭,从而缓冲器21启作。则缓冲装置4的压降叠加到缓冲器21的压降上,因此存在一个增加的压降和增加的脉动缓冲作用。
图4表示液压系统1的另一变型实施形式。在该实施形式中,缓冲器25和21由一个旁通通路跨接,此旁通通路在系统处于循环工作状态时始终是开启的。只有当负载3消耗机械动力时才启动的缓冲器21、25可以设计成用于较高的缓冲作用。伴随的压力损失通常只在功率消耗的短时阶段期间发生,从而所述阶段在系统的能量平衡上是可以忽略的。相反地,所述阶段在循环工作状态中是不起作用的。
具体而言,缓冲器21是通路11的一个部分,对于此通路的说明和功能可参考结合图3的说明。这同样也适用于通路9。与其不同的是,缓冲器25形成一个配设有一个通路9a的通路11a。通路11a的输入端13a与通路9a的输入端12a连接。它们均位于压力源2的输出端6a上。通路11a的输出端15a与通路9、11的输入端12、13连接,而通路9a的输出端7a与通路9的输出端7连接。因此,通路9a形成一跨接整个缓冲装置4的旁通。此旁通由通过压力管线19a与压力源2的输出端连接的阀16a控制。
这种液压系统1被设计成这样的:在循环状态时截止阀16和16a均为开启的。存在较低的压降。脉动缓冲不会发生。如果由于相应的控制负载3消耗动力,则在液压系统1内形成一个反压力,该压力首先导致阀16a关闭。因此,缓冲器25逐渐启动。随反压力继续升高,阀16也关闭,由此现在缓冲器21也被启动。因此,随着动力消耗逐渐增加,脉动缓冲相应地增加。这里通过确定压力弹簧18和18a的尺寸,而将截止阀16、16a的尺寸确定为:它们可以相继顺序闭锁或它们确定一个重叠范围,在该范围中截止阀16开始关闭,而截止阀16a逐渐接近其完全关闭状态II。
而且,在此种允许极高的脉动缓冲的系统中,所述缓冲只在动力传动阶段被启动。因此,产生的缓冲损失将被限制在所述短时的阶段内。
图5表示液压系统1的另一个变型实施形式。该实施形式参考图1的液压系统的说明中相同序号进行说明。下面所述的不同在于阀装置的布置和设计。作为所述不同的布置和设计设有一个可选地将通路9、11的输出端和负载3连接的转换阀26。此外,通路9不单纯是一个旁通通路而且包含缓冲元件25,如果需要,它也可以省略。如果需要,压力管线19可以与缓冲装置4的输入端5连接或者与液压系统1的其它位置连接。
通常,液压系统1包含伸缩软管线路和其它缓冲元件21、22,所述缓冲元件根据产生的压力脉动而设有一个或多个串联连接的软管腔体。这些腔体形成流阻,以及衰减输入压力信号的系统的弹性和惯性。通常,泵的脉动随着静压力的增加而提高,即例如随着转向过程的尺度和强度或随着一主动液压助力系统的助力程度。脉动可以通过缓冲措施降低,由此压力损失以及由此能量损失增加。这通过本发明得到补救,即通过在液压循环的工作状态中,根据压力情况启动缓冲措施。因此,在循环工作状态中可实现较低的压力损失和显著提高的能量节约。这是通过压力源2和负载3之间跨接缓冲器的直接的管线连接来实现的。当系统中发生压力升高时此短接管线被阀关闭。因为在缓冲器上的压力损失仅在非常短的时间内发生,可以为所述短时段使用具有强缓冲作用和高压降的且对压力波动具有极强缓冲作用的缓冲环节。而且,在时间平均值上可实现能量平衡的改善。

Claims (16)

1、压力介质动力传递系统,包括一个压力源(2)和一个负载(3),以及一个设置于压力源(2)和负载(3)之间的缓冲装置(4),所述缓冲装置包括至少两个互相平行并且具有不同流阻的通路(9、11),其中一个通路(9)的流阻显著小于另一个通路(11)的流阻,所述通路由一阀装置(16、26)控制,所述阀装置根据动力传递系统中选定位置上的压力通过当缓冲装置中的压力增加时关闭具有较小流阻的通路(9)来控制向通路(9、11)的流体分配。
2、根据权利要求1的压力介质动力传递系统,其特征在于,所述通路(9、11)中的至少一个包含一个脉动缓冲器(21)。
3、根据权利要求1的压力介质动力传递系统,其特征在于,所述通路(9、11)分别具有至少一个脉动缓冲器(25、21)。
4、根据权利要求3的压力介质动力传递系统,其特征在于,所述脉动缓冲器(25、21)具有不同的脉动缓冲特性。
5、根据权利要求1的压力介质动力传递系统,其特征在于,每一个通路(9、11)分别有一个通路输入端(12、13)并分别具有一个通路输出端(7、15),并且通路输出端(7、15)互相连接,而通路输入端(12、13)经由所述阀装置(16)互相连接。
6、根据权利要求1的压力介质动力传递系统,其特征在于,每个通路(9、11)分别具有一个通路输入端(12、13)并分别有一个通路输出端(7、15),并且通路输入端(12、13)互相连接,而通路输出端(7、15)连接在所述阀装置(26)上。
7、根据权利要求6的压力介质动力传递系统,其特征在于,所述阀装置(26)是一个转换阀。
8、根据权利要求1的压力介质动力传递系统,其特征在于,所述阀装置(16)包含在所述通路(9、11)中的一个中,并设计成截止阀。
9、根据权利要求7的压力介质动力传递系统,其特征在于,当在通路(9、11)之间转换时所述阀装置(26)具有一逐渐的平缓的转换过程。
10、根据权利要求8的压力介质动力传递系统,其特征在于,当在关闭状态和开启状态之间关闭和开启时,所述阀装置(16)具有一逐渐的平缓的转换过程。
11、根据权利要求1的压力介质动力传递系统,其特征在于,所述阀装置(16、26)与一致动阀装置(16、26)的流体致动装置(17)连接。
12、根据权利要求11的压力介质动力传递系统,其特征在于,所述流体致动装置(17)具有一个与引至阀装置(16、26)的管线连接的输入管线(19),以分接出控制和致动压力。
13、根据权利要求11的压力介质动力传递系统,其特征在于,所述流体致动装置(17)包括一个产生与致动力反作用的弹簧结构(18)。
14、根据权利要求13的压力介质动力传递系统,其特征在于,所述弹簧结构(18)具有一线性的力-行程特性曲线。
15、根据权利要求13的压力介质动力传递系统,其特征在于,所述弹簧结构(18)具有一非线性的力-行程特性曲线。
16、根据权利要求1的压力介质动力传递系统,其特征在于,该系统是液压系统(1)。
CNB038108623A 2002-05-14 2003-05-07 包括压力控制的缓冲元件的液压系统 Expired - Fee Related CN100427770C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10221276A DE10221276B4 (de) 2002-05-14 2002-05-14 Hydrauliksystem mit druckabhängiger Dämpfung
DE10221276.7 2002-05-14

Publications (2)

Publication Number Publication Date
CN1653271A CN1653271A (zh) 2005-08-10
CN100427770C true CN100427770C (zh) 2008-10-22

Family

ID=29413779

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038108623A Expired - Fee Related CN100427770C (zh) 2002-05-14 2003-05-07 包括压力控制的缓冲元件的液压系统

Country Status (9)

Country Link
US (1) US7219494B2 (zh)
EP (1) EP1504194B1 (zh)
JP (1) JP4645946B2 (zh)
CN (1) CN100427770C (zh)
AT (1) ATE349618T1 (zh)
AU (1) AU2003236783A1 (zh)
DE (2) DE10221276B4 (zh)
ES (1) ES2278168T3 (zh)
WO (1) WO2003095845A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7409830B2 (en) * 2005-08-10 2008-08-12 Mitsubishi Electric Research Laboratories, Inc. Fuel-cell actuated mechanical device
DE102006039540B4 (de) * 2006-08-23 2013-01-24 Audi Ag Druckpulsationsdämpfer für ein hydraulisches Hilfskraft-Lenksystem eines Kraftfahrzeugs
ITTO20070445A1 (it) * 2007-06-20 2008-12-21 Dayco Fluid Technologies Spa Condotto provvisto di un dispositivo per lo smorzamento delle pulsazioni di pressione
CN103321975B (zh) * 2013-06-05 2016-08-10 天津航天瑞莱科技有限公司 一种低-高压软启动液压油源系统
US11408445B2 (en) * 2018-07-12 2022-08-09 Danfoss Power Solutions Ii Technology A/S Dual power electro-hydraulic motion control system
DE102018126185A1 (de) * 2018-10-22 2020-04-23 Schaeffler Technologies AG & Co. KG Werkzeug und Verfahren zur mechanischen Oberflächenbearbeitung
CN109334755B (zh) * 2018-11-15 2023-12-22 吉林大学 一种用于线控转向系统的转向盘总成
WO2020220165A1 (zh) * 2019-04-28 2020-11-05 白保忠 双流体负载互反馈自动控制装置、其驱动方法及足式移动机器
CN110594336B (zh) * 2019-10-14 2024-04-30 青岛科技大学 一种无电驱动频率可调压力脉动衰减器
DE102023105815B3 (de) 2023-03-09 2024-06-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Dämpfungssystem für ein Rad eines Kraftfahrzeugs und Kraftfahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704947A (en) * 1985-10-21 1987-11-10 Versa Technologies, Inc. Bidirectional fluid flow valve
CN2031859U (zh) * 1988-05-14 1989-02-01 郝雄义 消除液压冲击现象的液压系统
CN1034793A (zh) * 1988-02-06 1989-08-16 中南工业大学 无级调频锥阀控制液压冲击装置
US5098263A (en) * 1989-09-05 1992-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Pressure vibration damping device in combination of liquid column vibration damping means and pressure pulse absorbing means
DE19622762A1 (de) * 1996-06-07 1997-12-11 Rexroth Mannesmann Gmbh Nutzfahrzeug, insbesondere für die Landwirtschaft
US6003427A (en) * 1996-11-14 1999-12-21 Daimlerchrysler Ag Damper valve arrangement
CN2467834Y (zh) * 2001-03-06 2001-12-26 徐州天地重型机械制造有限公司 混凝土泵全液压换向系统组合阀

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4021347A1 (de) 1990-07-05 1992-01-16 Heilmeier & Weinlein Hydraulische steuervorrichtung
DE4133892C1 (zh) * 1991-10-12 1992-12-24 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH05147545A (ja) * 1991-11-29 1993-06-15 Nissan Motor Co Ltd パワーステアリングの油圧回路
JP2899525B2 (ja) * 1994-08-18 1999-06-02 新キャタピラー三菱株式会社 慣性負荷を有するアクチュエータの停止時振動防止装置
DE19642837C1 (de) * 1996-10-17 1998-01-29 Daimler Benz Ag Dämpferventil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704947A (en) * 1985-10-21 1987-11-10 Versa Technologies, Inc. Bidirectional fluid flow valve
CN1034793A (zh) * 1988-02-06 1989-08-16 中南工业大学 无级调频锥阀控制液压冲击装置
CN2031859U (zh) * 1988-05-14 1989-02-01 郝雄义 消除液压冲击现象的液压系统
US5098263A (en) * 1989-09-05 1992-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Pressure vibration damping device in combination of liquid column vibration damping means and pressure pulse absorbing means
DE19622762A1 (de) * 1996-06-07 1997-12-11 Rexroth Mannesmann Gmbh Nutzfahrzeug, insbesondere für die Landwirtschaft
US6003427A (en) * 1996-11-14 1999-12-21 Daimlerchrysler Ag Damper valve arrangement
CN2467834Y (zh) * 2001-03-06 2001-12-26 徐州天地重型机械制造有限公司 混凝土泵全液压换向系统组合阀

Also Published As

Publication number Publication date
CN1653271A (zh) 2005-08-10
EP1504194A1 (de) 2005-02-09
ES2278168T3 (es) 2007-08-01
AU2003236783A1 (en) 2003-11-11
WO2003095845A1 (de) 2003-11-20
ATE349618T1 (de) 2007-01-15
US7219494B2 (en) 2007-05-22
DE10221276B4 (de) 2005-05-19
JP4645946B2 (ja) 2011-03-09
EP1504194B1 (de) 2006-12-27
JP2005530962A (ja) 2005-10-13
US20050172620A1 (en) 2005-08-11
DE50306109D1 (de) 2007-02-08
DE10221276A1 (de) 2003-12-04

Similar Documents

Publication Publication Date Title
CN100427770C (zh) 包括压力控制的缓冲元件的液压系统
JP5758137B2 (ja) 産業用車両の油圧ポンプ制御システムと産業用車両
CN101956733B (zh) 液压系统
KR100475517B1 (ko) 작업기계의 유압구동장치
US20070144164A1 (en) Control valve device for the control of a consumer
KR20070074542A (ko) 조향 부스트 시스템
KR100559291B1 (ko) 중장비 옵션장치용 유압회로
JP2006347212A (ja) 全油圧式パワーステアリング装置
JP4923035B2 (ja) 減衰係数切替型油圧ダンパ
CN111810500A (zh) 液压放大器布置
JP2005513363A (ja) 効率を向上した油圧システム
EP1568892A2 (en) Flow control apparatus for construction heavy equipment
JP4358091B2 (ja) 減衰係数切替型油圧ダンパ
JP3898167B2 (ja) 建設機械の油圧回路
JP2009063177A (ja) 減衰係数切替型油圧ダンパ
US6530390B2 (en) Pressure reducing valve
KR100711124B1 (ko) 고부하 유압전동장치
JPH08100446A (ja) 重装備用の可変優先装置
JPH06221305A (ja) 建機の油圧回路構造
JP2002317801A (ja) 油圧差動装置
KR200182135Y1 (ko) 스키드 스티어로더의 유압시스템
JPH0551947A (ja) 建設機械のアクチユエータ制御装置
KR100387840B1 (ko) 자동변속기의 라인압 가변제어시스템
JP2622445B2 (ja) 土木・建設機械の油圧回路
JP2788647B2 (ja) 油圧パイロット操作装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081022

Termination date: 20150507

EXPY Termination of patent right or utility model