CN100405573C - 制造平坦化表面的方法 - Google Patents

制造平坦化表面的方法 Download PDF

Info

Publication number
CN100405573C
CN100405573C CNB2004800079287A CN200480007928A CN100405573C CN 100405573 C CN100405573 C CN 100405573C CN B2004800079287 A CNB2004800079287 A CN B2004800079287A CN 200480007928 A CN200480007928 A CN 200480007928A CN 100405573 C CN100405573 C CN 100405573C
Authority
CN
China
Prior art keywords
layer
conductive layer
planarization
flexible material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800079287A
Other languages
English (en)
Other versions
CN1765015A (zh
Inventor
弗雷德·C·雷德克
约翰·博伊德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of CN1765015A publication Critical patent/CN1765015A/zh
Application granted granted Critical
Publication of CN100405573C publication Critical patent/CN100405573C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

在包括窄和宽构造的衬底上形成平坦化导电材料。导电材料通过一系列沉积过程形成。第一沉积过程形成导电材料的第一层,填充窄构造,并且至少部分填充宽构造。第二沉积过程在第一层的空腔内形成导电材料的第二层。柔性材料可以减少衬底上第一层的厚度,同时将溶液递送到空腔中以在其中形成第二层。柔性材料可以是与充满所述溶液的可加压容器相连的多孔膜。柔性材料也可以是使用所述溶液润湿的多孔性材料。

Description

制造平坦化表面的方法
技术领域
本发明主要涉及半导体制造领域,更具体而言,涉及在限定于衬底中的构造(feature)内形成具有平坦化表面的导电材料的方法和设备,所述构造具有相差很大的不同尺寸。
背景技术
图1提供部分制造的半导体器件100的横截面,包括衬底102和导电层104。衬底102通常是介电材料,并且可以包括各种尺寸的沟槽,如宽沟槽106和窄沟槽108。除了沟槽,村底102可以包括各种尺寸的其他类似构造,如通孔(未示出)。衬底102中的这种构造通常通过众所周知的光刻法制造。导电层104通常是高导电金属如铜(Cu)。进一步加工后,向下移除导电层104直到衬底102顶面的高度,使得在成品半导体器件中,保留在沟槽106、108中的导电材料和其他相似构造被衬底102电隔离。
导电层104通常通过使用包含待镀金属的电镀溶液进行电镀而形成。需要电镀是因为它是在表面上沉积金属的快速方法。然而,电镀的一个缺陷是在较窄的构造如沟槽108中常常形成空隙,并且这些空隙会导致成品半导体器件失效。某些添加剂在加入到电镀溶液中时,可以促进快速填充窄构造并防止空隙形成,然而,这些添加剂倾向于阻滞在一般平坦区域上的沉积速率,所述平坦区域例如沟槽106、108之间以及沿宽沟槽106底部的表面。
因此,直到导电层104完全填充较大构造如宽沟槽106时,基本厚度或覆盖层(overburden)110覆盖衬底102的其余部分。此外,由于电镀溶液中的添加剂促进快速填充窄构造,同时阻滞其在一般平坦区域中的填充,因此还会在窄构造上的覆盖层110顶部水平面上方形成过填充(superfill)部分112,如图1所示。应该理解,要向下移除导电层104直至衬底102的顶面高度,需要移除三种不同厚度的材料。不幸的是,本领域中已知的平坦化技术不太适合于这项任务,并且通常导致在较大构造上方的表面凹陷(dishing)200,如图2中大沟槽106上方所示。
一个解决方案是在图1所示基础上进一步电镀,使得整个衬底102上方的覆盖层110的厚度更大。如果进行得足够充分,覆盖层110的厚度倾向于在整个衬底102上平坦。然后可以对覆盖层110向下进行均匀平坦化,直到衬底102的顶面高度。然而,该方案浪费材料并且费时。
因此,需要形成具有覆盖层110的导电层104的方法,其中所述覆盖层110具有基本上平坦的表面。
发明内容
本发明提供一种制造平坦化表面的方法,包括提供衬底、形成第一和第二层、以及平坦化第一和第二层。该衬底具有限定于其中的窄构造和宽构造,并在衬底上形成第一层以使其填充窄构造、至少部分填充宽构造、并且具有限定于其中的沿宽构造排列的空腔。平坦化第一层的同时在所述空腔中形成第二层。然后将第一和第二层一起平坦化。
在某些实施方案中,在平坦化第一层的同时形成第二层包括使柔性材料与第一层接触,并在柔性材料和第一层之间引入相对横向运动。在这些实施方案中的某些实施方案中,相对横向运动包括旋转成分、振动成分和/或轨道成分。在那些第一层完全填充宽构造的实施方案中,平坦化第一和第二层可包括完全移除第二层。在其他实施方案中,平坦化第一和第二层并不完全移除第二层。在一些实施方案中,平坦化第一和第二层包括无应力平坦化或化学机械平坦化。在一些实施方案中,平坦化第一和第二层包括暴露出窄和宽构造之间的衬底。
本发明还提供一种用于制造平坦化表面的方法,包括提供衬底、形成第一层、使柔性材料与至少一部分第一层接触、形成第二层、以及平坦化第一和第二层。该衬底具有限定于其中的窄构造和宽构造,并且第一层形成在衬底上以使其填充窄构造、至少部分填充宽构造、并且具有限定于其中的沿宽构造排列的空腔。根据该方法,柔性材料用来将溶液递送到空腔,并且第二层由该溶液形成。在一些实施方案中,该溶液包括无电镀覆溶液,在这些实施方案的某些实施方案中,形成第二导电层包括无电沉积导电材料如铜。在一些实施方案中,第一和第二层由相同的导电材料形成。在一些实施方案中,柔性材料与至少部分第一层的接触抑制第二层在第一层的覆盖层上的沉积。
在该方法的一些实施方案中,衬底可包括介电常数小于SiO2介电常数的介电材料,如有机硅酸盐玻璃。在一些实施方案中,窄构造可具有约100nm或更小的横向尺寸,在一些实施方案中,宽构造可具有大于约100nm或为约500μm的横向尺寸。在一些实施方案中,形成第一层包括形成第一导电层,在一些实施方案中,形成第一导电层包括电化学沉积导电材料,如铜。在一些实施方案中,平坦化第一和第二层包括应用无应力抛光技术。
在该方法的一些实施方案中,柔性材料包括多孔膜,如聚氨酯。在这些实施方案的某些实施方案中,该方法还包括给包含溶液的容器加压,并在与第一层接触侧的对侧邻接膜。而且,在这些实施方案中的一些实施方案中,该方法还包括在多孔膜和衬底之间引入相对横向运动。在包括引入相对横向运动的一些实施方案中,多孔膜例如有效抛光部分第一层,因为多孔膜包含研磨剂。
在该方法的一些实施方案中,柔性材料包括多孔性材料。在这些实施方案的一些实施方案中,该多孔性材料包括具有暴露在其表面处的开口孔的闭孔(closed-cell)结构。在这些实施方案的一些实施方案中,该方法还包括用溶液润湿多孔性材料。在这些实施方案的一些实施方案中,将溶液递送到空腔中还可包括在多孔性材料和第一层之间形成压力。在这些实施方案的一些实施方案中,将溶液递送到空腔中还可包括在衬底和多孔性材料之间引入相对横向运动。
在该方法的一些实施方案中,形成第一层包括完全填充宽构造,在这些实施方案的一些实施方案中,第一层在宽构造上形成过量填充,其超出衬底顶面水平面约10%~约20%的宽构造深度。在这些实施方案的一些实施方案中,平坦化第一和第二层还包括移除第二层。在该方法的其他实施方案中,形成第一层包括不完全填充整个宽构造,并且在这些实施方案的一些实施方案中,宽构造深度的约10%~约30%被第一层填充。在这些实施方案的一些实施方案中,平坦化第一和第二层还包括不完全移除整个第二层。
本发明还提供用于制造平坦化表面的设备。该设备包括用于固定具有一定面积的晶片的晶片支撑体,例如真空吸盘、工件、能够使工件与晶片相互接触的接合机构、和用于在工件和晶片之间引入相对横向运动的装置。所述工件包括包含无电镀覆溶液并具有跨一侧的柔性和多孔膜的容器。在一些实施方案中,该容器是可加压的。在一些实施方案中,多孔膜包含研磨剂。
在该设备的一些实施方案中,多孔膜面积小于晶片面积。在这些实施方案的一些实施方案中,用于引入相对横向运动的装置包括线性平移工件的装置,并且在这些实施方案的一些实施方案中,用于引入相对横向运动的装置还包括用于使工件绕轴旋转的装置。在一些实施方案中,用于引入相对横向运动的装置还可以包括用于使晶片支撑体绕轴旋转和/或使工件振动的装置。
在该设备的一些实施方案中,多孔膜面积等于或大于晶片面积。在这些实施方案的一些实施方案中,用于引入相对横向运动的装置包括使工件和/或晶片支撑体绕轴旋转的装置。
在该设备的一些实施方案中,多孔膜可以是聚氨酯、氟碳材料、烧结聚合物材料或陶瓷。在一些实施方案中,多孔膜可具有约0.1mm~约3.0mm的厚度。在一些实施方案中,多孔膜可包括开孔结构。在一些实施方案中,多孔膜可包括许多贯通排布的孔洞。在一些实施方案中,多孔膜还可具有约5%~约50%的孔隙率,在这些实施方案的一些实施方案中,孔隙率为约10%~约20%。
本发明的另一设备包括用于固定晶片的晶片支撑体、用无电镀覆溶液润湿的柔性多孔性材料、能够使多孔性材料与晶片接触的接合机构、和用于在多孔性材料和晶片之间引入相对横向运动的装置。在一些实施方案中,多孔性材料包括聚合物材料,并且在一些实施方案中,多孔性材料包括具有暴露在表面处的开口孔的闭孔结构。在一些实施方案中,多孔性材料为连续的环路形状、碟形或矩形。在一些实施方案中,多孔性材料还包括挡边(raised edge)以容纳无电镀覆溶液。
附图说明
图1是根据现有技术的部分制造的半导体器件的横截面;
图2是图1中部分制造的半导体器件在根据现有技术平坦化后的横截面;
图3是根据本发明实施方案的部分制造的半导体器件的横截面;
图4是根据本发明实施方案用于制造半导体器件的衬底的横截面;
图5是图4中部分制造的半导体器件根据本发明实施方案在衬底上形成一层或多层任选层后的横截面;
图6A是图5中部分制造的半导体器件根据本发明实施方案在衬底上形成第一导电层后的横截面;
图6B是图5中部分制造的半导体器件根据本发明另一实施方案在衬底上形成第一导电层后的横截面;
图7是图6A中部分制造的半导体器件根据本发明实施方案形成第二导电层700后的横截面;
图8是图7中部分制造的半导体器件根据本发明实施方案进一步平坦化后的横截面;
图9是图5中部分制造的半导体器件根据本发明又一实施方案在衬底上形成第一导电层后的横截面;
图10是图9中部分制造的半导体器件根据本发明实施方案形成第二导电层后的横截面;
图11是图10中部分制造的半导体器件根据本发明实施方案进一步平坦化后的横截面;
图12是根据本发明实施方案接触柔性材料的部分制造的半导体器件的横截面;
图13是图12中部分制造的半导体器件根据本发明实施方案形成第二导电层后的横截面;
图14是根据本发明实施方案用于制造预先平坦化表面的设备的部分横截面的侧视图;
图15是根据本发明实施方案的图14中设备的俯视图;
图16是根据本发明实施方案用于制造预先平坦化表面的另一设备的俯视图;
图17是根据本发明实施方案用于制造预先平坦化表面的又一设备的俯视图;
图18是根据本发明实施方案用于制造预先平坦化表面的又一设备的横截面的侧视图;
图19是根据本发明实施方案用于制造预先平坦化表面的又一设备的侧视图。
具体实施方式
本发明相继采用两种沉积过程以在包括窄和宽构造的衬底上形成导电层,使得导电层具有表面基本平坦的覆盖层,如图3所示。首先,采用第一过程如电镀形成导电层的第一层。在窄构造被完全填充后停止第一过程。接着,采用第二过程如无电沉积在与宽构造相连的第一层的空腔内形成第二层。形成第二层使得其具有基本上与第一层覆盖层的顶面共面的顶面。
在一些实施方案中,在第二过程中使柔性材料与第一层接触以抑制在覆盖层顶面上的沉积,从而在第一层的空腔如沿宽沟槽106排列的第一层104的空腔114(图1)内发生沉积时,覆盖层的厚度不会显著增加。还可以在柔性材料和第一层之间引入相对横向运动,以进一步抑制在覆盖层顶面上的沉积。在某些情况下,柔性材料和第一层之间的相对横向运动还可以例如通过抛光引起覆盖层厚度的减小。可以使柔性材料具有研磨作用,以提高覆盖层移除速率。
柔性材料还可用来向空腔中递送无电镀覆溶液。在一些实施方案中,柔性材料是无电镀覆溶液从中穿过的多孔膜,在某些情况下,无电镀覆溶液来自多孔膜相对侧的加压容器。在其他实施方案中,柔性材料是用无电镀覆溶液润湿的多孔性材料。然后,相对横向运动可以使无电镀覆溶液进入空腔。
图4提供用于制造半导体器件的村底102的横截面。衬底102通常在晶片(未示出)如硅晶片上形成,还可以形成在先前制造的器件层(未示出)上。衬底102可以是介电材料如SiO2。衬底102还可以是低介电常数(“低k”)材料,即介电常数小于SiO2介电常数的材料,如氟硅酸盐玻璃(FSG)、有机硅酸盐玻璃(OSG)或高度多孔的SiO2。这种低k材料在半导体器件制造领域越来越受欢迎,因为它们赋予成品器件以优异的电性能。然而,低k材料的一个共有特征是低密度和差的机械性能,如下降的硬度和增高的脆性。虽然本发明不限于将低k材料用于衬底102,但是应该理解,当衬底102由低k材料形成时,本发明具有优势,本文对此将进行进一步讨论。
衬底102包括各种尺寸的构造,如宽沟槽106和窄沟槽108。此处沟槽106和108是用于说明目的,应该理解,本发明同样非常适用于包括形成于半导体衬底中的其他常用构造如通孔的衬底。在一些实施方案中,窄构造如窄沟槽108具有约100nm或更小的横向尺寸,在一些实施方案中,宽构造如宽沟槽106具有大于100nm且至多为约500μm的横向尺寸。如沟槽106、108的构造可以通过众所周知的光刻法制造。
图5提供图4中部分制造的半导体器件在衬底102上形成一层或多层任选层500后的横截面。一个任选层是阻挡层,以防止来自后沉积层中的金属原子最终扩散到衬底102中。例如,阻挡层可由诸如Ta或TaN的材料通过化学气相沉积(CVD)形成。另一任选层500是例如通过物理气相沉积(PVD)形成的晶种层(seed layer),如Cu晶种层。如果有的话,该晶种层可以沉积在阻挡层上,以促进粘合、提供导电表面并有利于随后的后沉积层的均匀层生长。
图6A提供图5中部分制造的半导体器件在衬底102和任何任选层500上形成第一导电层600后的横截面。第一导电层600优选由高导电金属如Cu形成。第一导电层600可以通过电化学沉积技术如电镀形成。在电镀过程中,使待电镀表面与包含待沉积金属离子的电镀溶液相接触。然后使待电镀表面作为电化学电池的阴极。众所周知,穿过电化学电池的外加电压使电镀溶液中的金属离子在阴极上沉积为金属膜。为了防止在较窄构造中形成空隙,电镀溶液还可以包含抑制空隙形成的添加剂。在一些实施方案中,电镀溶液包含三种添加剂:促进剂、均匀剂和抑制剂。这种电镀溶液通常称作3组分溶液。合适的3组分电镀溶液可以从Shipley Ronal(Freeport,NY)得到。
在一些实施方案中,形成第一导电层600,使窄构造如窄沟槽108完全由第一导电层600填充,同时至少部分填充较宽的构造如宽沟槽106。例如,如图6A所示,宽沟槽106被第一导电层600填充大约一半。在一些实施方案中,宽沟槽106深度的约10%~约30%被第一导电层600填充。当采用电镀沉积第一导电层600时,可以在窄构造完全填充之后而较宽构造完全填充之前停止沉积。在这些实施方案中,覆盖层602比覆盖层110薄(图1),且窄沟槽108上的过填充层604比过填充层112薄(图1)。在某些情况下,通过在窄沟槽108填充后立即停止第一导电层600的沉积,可以基本上消除过填充效应,如图6B所示。从图6A和6B中可以看出,第一导电层600包括沿宽沟槽106排列的空腔606。
图7提供图6A中部分制造的半导体器件在空腔606内形成第二导电层700后的横截面。第二导电层700也优选由高导电金属如Cu形成。在一些实施方案中,第一和第二导电层600、700由相同的导电材料形成。第二导电层700可以通过无电沉积技术如无电镀覆形成。在无电镀覆过程中,金属从无电镀覆溶液中沉积,但与电镀技术相比,不施加外部电压。相反,由于包括金属离子物质的无电镀覆溶液循环通过空腔606,因此通过由空腔606中的还原剂的还原而由金属离子物质沉积金属,形成第二导电层700。合适的无电镀覆溶液包括由Shipley Ronal(Freeport,NY)生产的CircupositTMElectroless Copper 3350。
在一些实施方案中,当在空腔606内形成第二导电层700时,过填充层604和一些覆盖层602也被除去。这可以导致除去基本上所有的过填充层604,并产生覆盖层602的大体平坦表面。因此,如图7所示,一旦在这些实施方案中完成第二导电层700,第二导电层700就具有基本上与第一导电层600的覆盖层602顶面共面的顶面。同时,覆盖层602的顶面和第二导电层700形成预先平坦化表面702。限制第二导电层700向空腔606沉积的方法和除去过填充层604和覆盖层602的方法在本文的其他地方进行讨论。
图8提供图7中部分制造的半导体器件在除去覆盖层602和部分第二导电层700之后的横截面。从图8可以看出,移除沟槽106、108的顶部之间的导电材料选择性地暴露出沟槽106、108顶部之间的衬底102,并且使保留在沟槽106、108内的导电材料电隔离。宽沟槽106内的导电材料可以在例如成品半导体器件中形成电互连。类似地,保留在窄沟槽108中的部分第一导电层600可形成阵列元件。
再次参照图7,预先平坦化表面702使各种平坦化技术可成功用于制造图8中部分制造的半导体器件,而不会出现图2中所描述的表面凹陷200。可用于本发明的平坦化技术实例包括化学机械抛光(CMP)、无应力平坦化(SFP)和电化学抛光。许多CMP技术为本领域内所熟知。SFP技术特别适合在包括脆弱材料如OSG或多孔OSG的衬底102上使用,因为这些技术在平坦化表面处产生很小的剪切力或不产生剪切力。一些SFP技术包括等离子体蚀刻。某些其他SFP技术采用传统的旋转抛光垫。这些技术中的一些技术依靠非常低的外加压力来减小剪切力,而另一些使用无研磨剂的抛光溶液,还有一些技术将低外加压力与无研磨剂的抛光溶液相结合。此外,可以采用电化学抛光技术,例如,通过导电垫施加穿过衬底102的电压。
在其他实施方案中,并不是如图6A和6B中那样使第一导电层600仅仅部分填充宽沟槽106,而是完全填充宽沟槽106。根据这些实施方案,图9提供图5中部分制造的半导体器件在衬底102和任意任选层500上形成第一导电层900后的横截面。第一导电层900优选由高导电金属如Cu形成,并且可以通过例如电化学沉积技术如电镀形成。
如图9所示,第一导电层900完全填充宽沟槽106。在一些实施方案中,第一导电层900形成过填充层902,其超出村底102顶面水平面约10%~约20%的宽沟槽106深度。应该理解,尽管第一导电层900完全填充宽沟槽106,但沿宽沟槽106排列的空腔904仍然存在于第一导电层900中。还应理解,在这些实施方案的一些实施方案中,覆盖层906足够厚,以致窄沟槽108上和沟槽106、108顶面之间的那些表面上的覆盖层906的厚度基本上相同,如图9所示。
图10提供图9中部分制造的半导体器件在空腔904(图9)内形成第二导电层1000后的横截面。第二导电层1000也优选由高导电金属如Cu形成,并且在一些实施方案中,第一和第二导电层900、1000由相同的导电材料形成。可以通过例如无电沉积技术如无电镀覆形成第二导电层1000。在一些实施方案中,如图10所示,第二导电层1000在空腔904中形成的同时,所有残余的过填充层和一些覆盖层906也被除去。在这些实施方案中,一旦完成第二导电层1000,则第二导电层1000就具有基本上与覆盖层906的顶面共面的顶面。同时,覆盖层906和第二导电层1000的顶面形成预先平坦化表面1002。
图11提供图10中部分制造的半导体器件在除去覆盖层906(图10)和所有第二导电层1000(图10)后的横截面。图10中预先平坦化表面1002允许各种平坦化技术成功用于制造图11中的部分制造的半导体器件,而不会出现图2中所描述的表面凹陷200。可用于本发明的平坦化技术实例在本文其他地方进行讨论。
图12和13描述一种用于获得图7中预先平坦化表面702的方法。具体地,图12提供具有接触第一导电层1202的柔性材料1200的部分制造的半导体器件的横截面,类似于图6A中所示。应该理解,参照图12和13所描述的方法同样可用于所描述的与图9和10相关的那些实施方案。相应地,第一导电层1202代表第一导电层600和900二者。
在形成预先平坦化表面如预先平坦化表面702(图7)或预先平坦化表面1002(图10)的过程中,柔性材料1200可发挥多种作用。柔性材料1200的一个作用是支持材料向空腔的传质,所述空腔将被第二导电层如第二导电层700(图7)填充。类似地,在空腔内第二导电层的形成产生废产物的那些实施方案中,柔性材料1200还可以用于支持使废产物离开空腔的传质。在一些实施方案中,柔性材料1200的另一个作用是抑制第二导电层在空腔之外的区域内生长。在一些实施方案中,柔性材料1200还有一个作用是通过除去过填充效应和减薄覆盖层而选择性减小第一导电层1202的厚度。
在一些实施方案中,例如图14-17所描述的那些,柔性材料1200通过提供穿过其厚度的传质支持材料向空腔1204的传质。例如,柔性材料1200可以是多孔膜,从而可以使得溶液如无电镀覆溶液从中穿流。在柔性材料1200一侧的加压容器(未示出)可以使溶液穿过柔性材料1200流到空腔1204中。应该理解,任何该柔性材料1200都应在与空腔1204的最宽尺寸(该尺寸通常称作“平坦化长度”)相当的尺寸范围内具有足够的刚度,从而使柔性材料1200在空腔1204上基本上保持平坦,而不是向空腔1204内弯曲。同时,柔性材料1200应足够柔顺,以能够与具有大于平坦化长度的峰-峰尺寸的构造一致。在一些实施方案中,柔性材料1200提供至多500微米的平坦化长度。应该注意,图12不是依比例绘制的,因为放大了空腔1204和过填充层1208之间的柔性材料1200上的弯曲。
在柔性材料1200支持材料穿过其厚度传质的那些实施方案中,适用于柔性材料1200的材料包括由聚氨酯形成的多孔膜、多孔或烧结聚合物材料如聚乙烯、聚丙烯,和氟碳材料如TeflonTM,以及陶瓷。在一些实施方案中,柔性材料具有约0.1mm~约3.0mm的厚度。用于特定应用的合适的柔性材料1200应该与预定溶液兼容。例如,柔性材料1200应该是耐该溶液化学侵蚀的。为了提供该溶液穿过柔性材料1200的充分传质,柔性材料1200应包括具有足够大直径的大量通道。开孔结构提供在某些柔性材料1200中的通道,而其他柔性材料1200从一侧到另一侧穿过柔性材料1200打上许多孔。还有一些实施方案中,向另外的多孔柔性材料1200中增加孔洞。例如,这些孔洞可以通过激光钻孔实现。在一些实施方案中,孔隙率为约5%~约50%,无论是固有的还是增加的,而在其他实施方案中,孔隙率为约10%~约20%。
在其他实施方案中,例如图18和19中所描述的那些,柔性材料1200通过运送溶液如无电镀覆溶液而支持材料向空腔1204中的传质。例如,柔性材料1200可以是多孔性材料,如具有表面暴露开孔的闭孔结构的聚合物材料。使用该溶液将表面润湿后,可随后利用相对横向运动将溶液递送到空腔1204中。
在一些实施方案中,柔性材料1200的另一作用是抑制第二导电层在空腔之外的区域内的生长。应该理解,大面积的覆盖层1206或过填充层1208与柔性材料1200直接接触时,柔性材料1200的存在可以直接或通过抑制那些区域内的传质而抑制第二导电层的沉积。柔性材料1200和覆盖层1206区域之间的相对横向运动也可以抑制第二导电层的沉积。
在一些实施方案中,柔性材料1200还有一个作用是通过除去过填充效应和减薄覆盖层1206来选择性减小第一导电层1202的厚度。在这些实施方案中,利用柔性材料1200和覆盖层1206区域之间的相对横向运动使覆盖层1206变薄。可以通过使用研磨剂来加速减薄。在一些实施方案中,柔性材料1200包括遍布于其中的研磨剂,从而使一些研磨剂暴露在与覆盖层1206接触的表面。在其他实施方案中,抛光介质如抛光垫、布或带用作柔性材料1200。在这些实施方案的一些实施方案中,可以向抛光介质中增加孔洞以产生允许溶液穿过该孔洞递送的额外孔隙率。
如本文所述,相对横向运动可以以多种方式增强本发明的方法。相对横向运动可以包括沿单轴或双轴的线性平移运动、往复运动、振动、旋转、轨道运动及其组合。相对横向运动的实例将参照图14-19所示的实施方案进行更加详细的讨论。
图13提供图12中部分制造的半导体器件在空腔1204(图12)内形成第二导电层1300后的横截面。预先平坦化表面1302通过在空腔1204内形成第二导电层1300同时减薄覆盖层1206(图12)并除去第一导电层1202的所有过填充层1208而得到。柔性材料1200可以在完成预先平坦化表面1302后除去。此后,可以进行第一和第二导电层1202和1300的额外平坦化,以使宽和窄构造中的导电材料电隔离。在第一导电层1202不完全填充宽沟槽106的那些实施方案中,平坦化第二导电层1300并不完全除去第二导电层1300,并产生如图8中所示的结构。在第一导电层1202完全填充宽沟槽106的那些实施方案中,平坦化第二导电层1300除去整个第二导电层1300,并产生如图11中所示的结构。
图14-19还描述了本发明的各种设备实施方案。图14示出用于制造预先平坦化表面的设备1400的一个实施方案的部分横截面侧视图;设备1400包括晶片支撑体1402(截面形式),其用于在加工过程中固定晶片1404(截面形式)。设备1400还包括工件1406(截面形式),在该实施方案中,工件1406包括容器1408和多孔膜1410。支撑结构1412支撑相对于晶片1404的工件1406。
晶片支撑体1402固定晶片1404。在一些实施方案中,晶片支撑体1402是真空吸盘。在一些实施方案中,晶片支撑体1402可绕轴1414旋转,如图14中所示,而在其他实施方案中,晶片支撑体1402是不可旋转的。晶片支撑体1402的旋转是一种用来在工件1406和晶片1404之间引入相对横向运动的方法。
支撑结构1412支撑相对于晶片1404的工件1406。因此,支撑结构1412包括接合机构1416,以调整工件1406和晶片1404之间的间距。接合机构1416使工件1406下降,直到多孔膜1410与晶片1404接触。在一些实施方案中,接合机构1416继续使工件1406下降,直到在工件1406和晶片1404之间形成些许压力。一旦完成预先平坦化表面,接合机构1416就升高工件1406,使其离开晶片1404。作为选择,不移动工件1406,而可以使用可供选择的接合机构(未示出)来升高和降低晶片支撑体1402。适用于接合机构1416的各种机构为本领域内所熟知,包括例如心轴组件。在一些实施方案中,支撑结构1412还包括在工件1406和晶片1404之间引入相对横向运动的装置,这将参照图15-17进行描述。更多变化包括将工件1406置于底部并将晶片支撑体1402定位于顶部。
如上所述,该实施方案中的工件1406包括容器1408和多孔膜1410。在一些实施方案中,多孔膜1410被某些其它的柔性材料1200(图12)替代。多孔膜1410跨越面对容器1408的工件1406的开口侧。因此,容器1408可以充满溶液,然后加压迫使溶液穿出多孔膜1410。在一些实施方案中,穿过多孔膜1410的流量为约5~约500ml/min。在一些实施方案中,将容器1408加压至约5~约50psi。
为本领域内熟知的用于给容器加压的许多技术都可适用于本发明。例如,在一些实施方案中,容器1408部分填充溶液,然后将压缩气体(例如空气、N2、Ar等)引入到溶液水平面上方,直到获得所需压力。在其他实施方案中,在所需压力下,由注射泵将溶液递送到容器1408中。类似地,在其他实施方案中,由具有压力调节流动的隔膜泵将溶液递送到容器1408中。还有一些实施方案中,从包含充满溶液的囊状物的加压罐中递送溶液。当使用压缩气体对该罐加压时,囊状物中的压力增加,将溶液驱出囊状物并进入容器1408。
图15示出图14中设备的俯视图。由图15所示透视图可以看出,虽然工件1406覆盖的面积小于晶片1404的面积,但是工件1406和晶片1404之间的相对横向运动可以确保在形成预先平坦化表面的过程中,工件1406与晶片1404大多数或整个面积相接触。相对横向运动可以通过多种不同方式引入。例如,晶片1404绕轴1414(图14)的旋转1500可以通过将晶片支撑体1402安装在心轴上实现,所述心轴由驱动机构旋转。
可以通过工件1406引入额外的相对横向运动,例如通过工件1406的旋转1502。其他相对横向运动可以通过横向平移工件1406而引入。图15示出了两种横向平移运动:往复平移1504和线性平移1506。例如,可以通过如图所示延伸支撑工件1406的臂1508或通过线性平移工件1406下方的晶片1404来实现线性平移1506。线性平移工件1406下方的晶片1404可以通过例如将晶片支撑体1402置于具有线性轴承的往复式组件上来实现。额外的相对横向运动可以通过使工件1406和晶片1404之一或二者振动来引入。应该理解,也可以使用几种相对横向运动的各种组合,包括轨道运动。
如本文所述,对于工件1406面积小于晶片1404面积的实施方案而言,工件1406和晶片1404之间的相对横向运动可以确保将形成预先平坦化表面的方法应用到晶片1404的整个区域。还应注意,在这些和其他实施方案中,当沉积第二导电层时,相对横向运动还可以提高溶液穿过多孔膜1410(图14)的流动速率,并提高空腔内的传质。具体地,相对横向运动如振动可以改善空腔内的循环,有助于使新鲜溶液流向第二导电材料的生长层,并使废溶液和废产物离开第二导电材料的生长层。
图16示出根据本发明另一实施方案的设备的俯视图。图16中所描述的实施方案与图15中所描述的相似,不过在图16的实施方案中,工件1600的面积大于晶片1404的面积,因此,工件1600可以在任何给定时间接触整个晶片面积。工件1600和晶片1404之间的相对横向运动可以通过旋转工件1600和晶片1404之一或二者而引入。也可以应用图15中所示的其他相对横向运动如振动。应该理解,由于工件1600的面积大于晶片1404的面积,因此工件1600可以具有不同于图16中所示圆形的形状。
图17示出根据本发明又一实施方案的设备的俯视图。图17中描述的实施方案与图15和16所描述的相似,但是,在图17的实施方案中,工件1700的面积等于或稍小于晶片1404的面积。工件1700面积小于晶片1404面积时,通过例如振动或轨道振荡引起的小的相对横向运动可以确保工件1700形成跨越晶片1404整个面积的预先平坦化表面。也可以应用本文中其他地方所描述的其他形式的相对横向运动。
图18示出用于制造预先平坦化表面的设备1800的另一实施方案的横截面。设备1800包括晶片支撑体1402,其用于在加工过程中固定晶片1404。设备1800还包括工件1806,在该实施方案中,工件1806包括多孔性材料1808。支撑结构(未示出)支持相对于工件1806的晶片支撑体1402,并使工件1806与晶片1404相接触,非常类似于支撑结构1412(图14)支持相对于晶片支撑体1402的工件1406。尽管图18中所示工件1806在晶片1404的下方,但是应该理解,工件1806也可以置于晶片1404的上方。
图19示出作为设备1800(图18)的一个可能变化的设备1900的侧视图。在设备1900中,柔性材料提供为围绕一对辊1904的连续环路1902。支撑结构(未示出)使晶片1404(图18)与连续环路1902相接触,反之亦然。在该实施方案中,通过驱动围绕双辊1904的连续环路1902实现线性相对横向运动。可以通过旋转晶片支撑体1402实现额外的相对横向运动,如图所示。其他相对横向运动可以通过对晶片支撑体1402施加其他运动而引入,所述其他运动例如振动和轨道运动,如本文中其他地方所述。尽管在本实施方案中多孔性材料提供为连续环路1902,但是应该理解,在其他实施方案中,多孔性材料可以表现为其他形式,如碟状或矩形。在一些实施方案中,多孔性材料包括挡边以容纳无电溶液。
在图18和19所示实施方案中,将多孔性材料的表面使用溶液1906润湿。然后,溶液1906被多孔性材料输送至晶片1404(图18)。尽管图19示出将溶液1906滴到或喷到连续环路1902上,但是也可以使用将溶液1906递送到多孔性材料表面的其他方法。例如,可以将一个辊1904浸入到该溶液的容器中。
在前面的说明书中,参照具体实施方案对本发明进行了描述,但是本领域的技术人员应承认本发明不限于此。上述发明的各种特征和方面可以单独或结合使用。此外,除了本文中所描述的情况之外,在不背离本说明书的广义实质和范围的情况下本发明可以用于多种环境和应用。因此,本说明书和附图应被视为是说明性的而不是限制性的。

Claims (5)

1.一种用于制造平坦化表面的方法,包括:
提供具有限定于其中的窄构造和宽构造的衬底;
在衬底上形成第一层,所述第一层
填充窄构造,和
具有限定于其中并沿宽构造排列的空腔;
平坦化第一层的同时在空腔内形成第二层;和
一起平坦化第一和第二层;
其中所述第一层完全填充所述宽构造,并且平坦化第一和第二层包括完全除去第二层。
2.如权利要求1的方法,其中平坦化第一层的同时形成第二层包括:
使柔性材料与第一层接触,和
在柔性材料和第一层之间引入相对横向运动。
3.如权利要求2的方法,其中所述相对横向运动包括振动成分。
4.如权利要求1的方法,其中平坦化第一和第二层包括无应力平坦化。
5.如权利要求1的方法,其中平坦化第一和第二层包括化学机械平坦化。
CNB2004800079287A 2003-03-27 2004-03-23 制造平坦化表面的方法 Expired - Fee Related CN100405573C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/402,600 US6864181B2 (en) 2003-03-27 2003-03-27 Method and apparatus to form a planarized Cu interconnect layer using electroless membrane deposition
US10/402,600 2003-03-27

Related Child Applications (3)

Application Number Title Priority Date Filing Date
CNB2007101357872A Division CN100514600C (zh) 2003-03-27 2004-03-23 利用无电膜沉积形成平坦化Cu互连层的方法
CNB2007101357868A Division CN100511581C (zh) 2003-03-27 2004-03-23 利用无电膜沉积形成平坦化Cu互连层的设备
CN2007101357853A Division CN101174545B (zh) 2003-03-27 2004-03-23 利用无电膜沉积形成平坦化Cu互连层的设备

Publications (2)

Publication Number Publication Date
CN1765015A CN1765015A (zh) 2006-04-26
CN100405573C true CN100405573C (zh) 2008-07-23

Family

ID=32989743

Family Applications (4)

Application Number Title Priority Date Filing Date
CNB2004800079287A Expired - Fee Related CN100405573C (zh) 2003-03-27 2004-03-23 制造平坦化表面的方法
CNB2007101357868A Expired - Fee Related CN100511581C (zh) 2003-03-27 2004-03-23 利用无电膜沉积形成平坦化Cu互连层的设备
CNB2007101357872A Expired - Fee Related CN100514600C (zh) 2003-03-27 2004-03-23 利用无电膜沉积形成平坦化Cu互连层的方法
CN2007101357853A Expired - Fee Related CN101174545B (zh) 2003-03-27 2004-03-23 利用无电膜沉积形成平坦化Cu互连层的设备

Family Applications After (3)

Application Number Title Priority Date Filing Date
CNB2007101357868A Expired - Fee Related CN100511581C (zh) 2003-03-27 2004-03-23 利用无电膜沉积形成平坦化Cu互连层的设备
CNB2007101357872A Expired - Fee Related CN100514600C (zh) 2003-03-27 2004-03-23 利用无电膜沉积形成平坦化Cu互连层的方法
CN2007101357853A Expired - Fee Related CN101174545B (zh) 2003-03-27 2004-03-23 利用无电膜沉积形成平坦化Cu互连层的设备

Country Status (8)

Country Link
US (2) US6864181B2 (zh)
EP (1) EP1609181B1 (zh)
JP (2) JP2006521705A (zh)
KR (1) KR100986950B1 (zh)
CN (4) CN100405573C (zh)
MY (1) MY137557A (zh)
TW (1) TWI326119B (zh)
WO (1) WO2004088746A2 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864181B2 (en) * 2003-03-27 2005-03-08 Lam Research Corporation Method and apparatus to form a planarized Cu interconnect layer using electroless membrane deposition
US7348671B2 (en) * 2005-01-26 2008-03-25 Micron Technology, Inc. Vias having varying diameters and fills for use with a semiconductor device and methods of forming semiconductor device structures including same
US7749896B2 (en) * 2005-08-23 2010-07-06 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method for forming the same
US20080152823A1 (en) * 2006-12-20 2008-06-26 Lam Research Corporation Self-limiting plating method
US7794530B2 (en) * 2006-12-22 2010-09-14 Lam Research Corporation Electroless deposition of cobalt alloys
US7521358B2 (en) * 2006-12-26 2009-04-21 Lam Research Corporation Process integration scheme to lower overall dielectric constant in BEoL interconnect structures
KR100859634B1 (ko) * 2007-05-16 2008-09-23 주식회사 동부하이텍 반도체 장치 및 이의 제조 방법
US8323460B2 (en) * 2007-06-20 2012-12-04 Lam Research Corporation Methods and systems for three-dimensional integrated circuit through hole via gapfill and overburden removal
JP2011029277A (ja) 2009-07-22 2011-02-10 Toshiba Corp 固体撮像装置の製造方法および固体撮像装置
CN102723270B (zh) * 2012-06-07 2015-01-07 北京大学 一种使柔性材料层表面平坦化的方法
US8778789B2 (en) * 2012-11-30 2014-07-15 GlobalFoundries, Inc. Methods for fabricating integrated circuits having low resistance metal gate structures
WO2016002455A1 (ja) * 2014-07-03 2016-01-07 Jx日鉱日石金属株式会社 放射線検出器用ubm電極構造体、放射線検出器及びその製造方法
CN106298500B (zh) * 2015-06-02 2020-07-21 联华电子股份有限公司 降低微负载效应的蚀刻方法
TWI583491B (zh) 2015-11-03 2017-05-21 財團法人工業技術研究院 振動輔助拋光模組
JP7151673B2 (ja) * 2019-09-13 2022-10-12 トヨタ自動車株式会社 金属めっき皮膜の形成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753838A (en) * 1986-06-16 1988-06-28 Tsuguji Kimura Polishing sheet material and method for its production
US5516400A (en) * 1992-07-10 1996-05-14 Lsi Logic Corporation Techniques for assembling polishing pads for chemical-mechanical polishing of silicon wafers
US5692947A (en) * 1994-08-09 1997-12-02 Ontrak Systems, Inc. Linear polisher and method for semiconductor wafer planarization
US6176992B1 (en) * 1998-11-03 2001-01-23 Nutool, Inc. Method and apparatus for electro-chemical mechanical deposition
WO2001078135A2 (en) * 2000-03-24 2001-10-18 Nutool, Inc Methods for repairing defects on a semiconductor substrate
US6341998B1 (en) * 1999-11-04 2002-01-29 Vlsi Technology, Inc. Integrated circuit (IC) plating deposition system and method
US20020134748A1 (en) * 2000-12-15 2002-09-26 Basol Bulent M. Planarity detection methods and apparatus for electrochemical mechanical processing systems
WO2003009361A2 (en) * 2001-07-20 2003-01-30 Nutool, Inc. Planar metal electroprocessing

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245796A (en) * 1992-04-02 1993-09-21 At&T Bell Laboratories Slurry polisher using ultrasonic agitation
JP3653917B2 (ja) * 1997-02-25 2005-06-02 富士通株式会社 通信網におけるパケット中継方法及びエンドシステム
JP3507678B2 (ja) * 1997-12-03 2004-03-15 松下電器産業株式会社 研磨スラリー、基板の研磨装置及び基板の研磨方法
US6066560A (en) * 1998-05-05 2000-05-23 Lsi Logic Corporation Non-linear circuit elements on integrated circuits
US6036586A (en) * 1998-07-29 2000-03-14 Micron Technology, Inc. Apparatus and method for reducing removal forces for CMP pads
US6156659A (en) * 1998-11-19 2000-12-05 Chartered Semiconductor Manufacturing Ltd. Linear CMP tool design with closed loop slurry distribution
US6169028B1 (en) * 1999-01-26 2001-01-02 United Microelectronics Corp. Method fabricating metal interconnected structure
JP2000232078A (ja) * 1999-02-10 2000-08-22 Toshiba Corp メッキ方法及びメッキ装置
US6547651B1 (en) * 1999-11-10 2003-04-15 Strasbaugh Subaperture chemical mechanical planarization with polishing pad conditioning
US6454916B1 (en) 2000-01-05 2002-09-24 Advanced Micro Devices, Inc. Selective electroplating with direct contact chemical polishing
JP4379556B2 (ja) * 2000-09-22 2009-12-09 ソニー株式会社 研磨方法および研磨装置
US6475332B1 (en) * 2000-10-05 2002-11-05 Lam Research Corporation Interlocking chemical mechanical polishing system
US6607425B1 (en) * 2000-12-21 2003-08-19 Lam Research Corporation Pressurized membrane platen design for improving performance in CMP applications
US6875091B2 (en) * 2001-01-04 2005-04-05 Lam Research Corporation Method and apparatus for conditioning a polishing pad with sonic energy
JP2002299343A (ja) * 2001-04-04 2002-10-11 Sony Corp 半導体装置の製造方法
US7238092B2 (en) * 2001-09-28 2007-07-03 Novellus Systems, Inc. Low-force electrochemical mechanical processing method and apparatus
US7052372B2 (en) * 2001-12-13 2006-05-30 Chartered Semiconductor Manufacturing, Ltd Chemical-mechanical polisher hardware design
US6572731B1 (en) * 2002-01-18 2003-06-03 Chartered Semiconductor Manufacturing Ltd. Self-siphoning CMP tool design for applications such as copper CMP and low-k dielectric CMP
US7455955B2 (en) * 2002-02-27 2008-11-25 Brewer Science Inc. Planarization method for multi-layer lithography processing
US20030194959A1 (en) * 2002-04-15 2003-10-16 Cabot Microelectronics Corporation Sintered polishing pad with regions of contrasting density
JP4212905B2 (ja) * 2003-01-23 2009-01-21 株式会社荏原製作所 めっき方法およびこれに使用するめっき装置
US6864181B2 (en) * 2003-03-27 2005-03-08 Lam Research Corporation Method and apparatus to form a planarized Cu interconnect layer using electroless membrane deposition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753838A (en) * 1986-06-16 1988-06-28 Tsuguji Kimura Polishing sheet material and method for its production
US5516400A (en) * 1992-07-10 1996-05-14 Lsi Logic Corporation Techniques for assembling polishing pads for chemical-mechanical polishing of silicon wafers
US5692947A (en) * 1994-08-09 1997-12-02 Ontrak Systems, Inc. Linear polisher and method for semiconductor wafer planarization
US6176992B1 (en) * 1998-11-03 2001-01-23 Nutool, Inc. Method and apparatus for electro-chemical mechanical deposition
US6341998B1 (en) * 1999-11-04 2002-01-29 Vlsi Technology, Inc. Integrated circuit (IC) plating deposition system and method
WO2001078135A2 (en) * 2000-03-24 2001-10-18 Nutool, Inc Methods for repairing defects on a semiconductor substrate
US20020134748A1 (en) * 2000-12-15 2002-09-26 Basol Bulent M. Planarity detection methods and apparatus for electrochemical mechanical processing systems
WO2003009361A2 (en) * 2001-07-20 2003-01-30 Nutool, Inc. Planar metal electroprocessing

Also Published As

Publication number Publication date
MY137557A (en) 2009-02-27
CN100511581C (zh) 2009-07-08
US20040192030A1 (en) 2004-09-30
WO2004088746A3 (en) 2005-02-17
CN101174545A (zh) 2008-05-07
CN1765015A (zh) 2006-04-26
CN101174578A (zh) 2008-05-07
US6864181B2 (en) 2005-03-08
KR100986950B1 (ko) 2010-10-12
WO2004088746A2 (en) 2004-10-14
TW200421549A (en) 2004-10-16
EP1609181A2 (en) 2005-12-28
JP2006521705A (ja) 2006-09-21
CN101174545B (zh) 2010-08-11
TWI326119B (en) 2010-06-11
JP2012231152A (ja) 2012-11-22
CN100514600C (zh) 2009-07-15
EP1609181B1 (en) 2012-10-03
KR20050111350A (ko) 2005-11-24
US20050042861A1 (en) 2005-02-24
CN101174546A (zh) 2008-05-07

Similar Documents

Publication Publication Date Title
CN100405573C (zh) 制造平坦化表面的方法
US7238092B2 (en) Low-force electrochemical mechanical processing method and apparatus
KR100773164B1 (ko) 기판의 도금장치 및 도금방법과 전해처리방법 및 그 장치
US6561873B2 (en) Method and apparatus for enhanced CMP using metals having reductive properties
US6921551B2 (en) Plating method and apparatus for controlling deposition on predetermined portions of a workpiece
EP1638733A1 (en) Polishing pad for electrochemical-mechanical polishing
JP2004134734A (ja) 基板を研磨する方法および装置
CN100465352C (zh) 集成电镀和平面化的方法及其设备
KR20070103091A (ko) 전기화학적 기계식 폴리싱을 위한 전도성 폴리싱 아티클
US7550070B2 (en) Electrode and pad assembly for processing conductive layers
KR20050107594A (ko) 국부 연마 제어를 위한 방법 및 장치
US7201829B2 (en) Mask plate design
US20040182715A1 (en) Process and apparatus for air bubble removal during electrochemical processing
US7229907B2 (en) Method of forming a damascene structure with integrated planar dielectric layers
US7754061B2 (en) Method for controlling conductor deposition on predetermined portions of a wafer
KR20070063583A (ko) 반도체 웨이퍼에 하나 또는 그 이상의 금속 다마신구조들을 형성하기 위한 방법
US7097755B2 (en) Electrochemical mechanical processing with advancible sweeper
US20070251832A1 (en) Method and apparatus for electrochemical mechanical polishing of cu with higher liner velocity for better surface finish and higher removal rate during clearance
KR20040064699A (ko) 전진가능한 스위퍼를 구비한 전기화학적 기계적 처리
JP2005260224A (ja) 電気化学機械研磨のためのシステム
KR20230010680A (ko) 배리어 메탈 프리 금속 배선 구조의 제조 방법 및 배리어 메탈 프리 금속 배선 구조

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080723

Termination date: 20210323