CN100387537C - 氦和氯的回收与循环方法 - Google Patents

氦和氯的回收与循环方法 Download PDF

Info

Publication number
CN100387537C
CN100387537C CNB2004100699737A CN200410069973A CN100387537C CN 100387537 C CN100387537 C CN 100387537C CN B2004100699737 A CNB2004100699737 A CN B2004100699737A CN 200410069973 A CN200410069973 A CN 200410069973A CN 100387537 C CN100387537 C CN 100387537C
Authority
CN
China
Prior art keywords
helium
chlorine
flow
rich
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100699737A
Other languages
English (en)
Other versions
CN1576249A (zh
Inventor
A·I·雪利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer LLC
Original Assignee
BOC Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Group Inc filed Critical BOC Group Inc
Publication of CN1576249A publication Critical patent/CN1576249A/zh
Application granted granted Critical
Publication of CN100387537C publication Critical patent/CN100387537C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • B01D2257/2025Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明公开从生产光纤的过程中回收并循环氦气和未反应氯气的方法。从固结炉中回收富氦和富氯气流,并对它们进行了分离。富氦气流干燥后与补充氦气混合,富氯气流纯化后与补充氯气混合,因而它们各自可以再被用于光纤生产过程。

Description

氦和氯的回收与循环方法
发明领域
本发明涉及从光纤预制棒的干燥和固结过程中回收与循环氦和未反应氯的方法。
发明背景
光纤生产基本上是两相过程,涉及具有特殊组成的玻璃棒,即所谓预制棒的生产,然后熔化预制棒并将其拉制成细纤维。预制棒的生产通常包括两步,即沉积和固结,它们可以合并成连续操作,也可以分成独立的两步。
氦气在光纤生产中有三个主要用途:在预制棒沉积中作为载气,在预制棒固结过程中作为吹扫气,在纤维拉制过程中作为热传递介质。这三个工艺步骤中的每一步都会给氦气带来不同的杂质、不同含量的污染物和/或不同程度的热量。传统的用于光纤生产工艺中的一次通过的氦气流(即用过就成为废气流)是很浪费的,导致消耗过大,不必要地提高了成本。
在如美国专利5055121所述生产玻璃预制棒的其他固结过程中,有选择地在光纤包层中加入氟,这可降低石英玻璃的折射指数,而不会影响光纤传输特性。玻璃预制棒通过如下步骤生产:在管子上沉积石英玻璃粉尘;脱水;玻璃化;和加氟。
脱水气体包括氯和含氯化合物如SOCl2和CCl4。在玻璃化和加氟步骤,使用含氟气体如SF6、CCl2F2、CF4、C2F6和SiF4。为了得到不含残留气泡的透明玻璃预制棒,脱水和加氟步骤都宜用氦气作为载气,因为它容易溶解于玻璃。表1总结了按照专利’121中实施例制备玻璃预制棒时所用气体流速和浓度。
表2
  脱水   加氟
  Cl<sub>2</sub> 0.6l/min(6%)   SiF<sub>4</sub>  0.3l/min(3%)
  He  10l/min(94%)   He    10l/min(97%)
有相当部分含氯和氟的气体可能未经处理离开此过程,并且通过用碱性溶液洗涤普遍减少。离开该过程的氦气被释放到大气中。氦气是不可再生气体,并且十分昂贵。因此,人们非常希望回收和再循环氦气,以降低光纤的生产成本。无论从成本角度还是环境角度考虑,人们都希望能够回收氯。
发明概述
本发明提供从光纤预制棒的干燥和固结过程中回收氦和未反应氯的方法。收集一个或多个固结炉中排出的废气,水洗除去大部分HCl副产物,用可选择性渗透膜或其他气体分离技术将其分成富氯和富氦气流。富氯气流与补充的低纯工业氯一道送入蒸馏工艺单元,纯化成高纯氯气,再用于固结炉中。富氦气流用膜或吸附干燥器干燥,与补充的氦气混合,再用于固结炉中或另一光纤生产过程。
在一个实施方式中本发明提供了由预制棒生产光纤的改进方法,它包括干燥步骤和固结步骤,其中生产过程中产生的废气流中存在氦气和氯气,所述改进包括从废气流中回收氦气和氯气。
在另一种实施方式中,本发明包括一种生产光纤的方法,其中该光纤在生产过程中是通过包含氦气和氯气的气流冷却的,该方法包括从气流中回收氦气和氯气。
另一方面,本发明提供在生产光纤的过程中从固结炉中回收氦气和氯气的方法,该生产光纤的过程包括如下步骤:
a)通过固结炉拉制光纤;
b)向固结炉中添加氦气;
c)向固结炉中添加氯气;
d)从炉顶排走废气,其中废气包含氦气和氯气;
e)将废气送入水洗柱,除去盐酸;
f)将废气送入分离装置,由此形成富氦气流和富氯气流。
本发明还提供在生产光纤的过程中从固结炉中回收并再循环氯气的方法,该生产光纤的过程包括如下步骤:
(a)将纤维通过固结炉拉制光纤;
(b)向固结炉中添加氦气;
(c)向固结炉中添加氯气;
(d)从炉顶排走废气,其中废气包含氦气和氯气;
(e)将废气送入水洗柱,除去盐酸;
(f)将废气送入分离装置,由此形成富氦气流和富氯气流;
(g)将富氯气流送入固结炉。
发明详述
本发明提供从在光纤生产中所述的光纤预制棒的干燥和固结过程中回收氦气和未反应的氯气的方法。
光纤固结过程的阶段可包括用氮气吹扫,用氯/氦气脱水;用氮气/氦气混合物玻璃化;用含氦/氟混合气加入氟。
从预制棒的干燥和固结过程回收氦气的典型过程中,从固结炉排出的废气混合物包含He、Cl2、HCl、N2、O2、H2O和含氟气体。
一般,预制棒在炉子中完成上述步骤。炉顶部分开放,所述工艺气体从底部进入炉子,在顶部附近排出。废气吸收大量空气后,进入鼓风机或真空泵。
在本发明的一种实施方式中,高纯氯气从低纯氯气源生产,如由工业氯气通过蒸馏工艺单元生产。来自蒸馏单元的超高纯(UHP)氯气,即99.9999%Cl2,以大约1∶10到1∶100的Cl2∶He比与氦气混合,并送入装有玻璃沉积预制棒的固结炉。
Cl2能渗进未固结的预制棒,与玻璃中夹杂的-OH基团反应形成HCl,氦气将其带出玻璃基质。只有小部分氯气也许反应75-80%,所以从炉子中排出的废气主要包含氦气和氯气,含有少量HCl和水汽,更少量的SiCl4、SiO2、O2、N2和痕量其他化合物。
为了从该废气中回收氯气和氦气,大概通过真空泵收集气流,然后鼓泡通过水洗柱除去HCl。将该水洗柱蒸气送入气体分离装置,如可选择渗透膜,分离富氦气流和富氯气流。压缩富氦气流,由于它可能含有少量水汽,将其达入干燥器,回收为高纯气体,特别是不含水汽。向此回收气流中加入补充氦气,再循环回到一个或多个固结炉中。
富氯气流含有95%以上的Cl2,将其送回蒸馏单元,加入补充工业氯气流,然后混合物进入蒸馏单元中纯化。通过这种方法,可以在光纤生产过程中重复利用氯气和氦气。
现在看图,将工业纯氯气送入管线10,并通入管线15进入第一蒸馏柱A。来自所述蒸馏柱的柱底部分经管线12离开,经过热交换器13进入管线14,然后进入第二蒸馏柱B的底部。此柱顶部分通过管线16排出,通过热交换器18,然后通过管线17回到柱B。
蒸馏柱A中的氯气经柱顶通过管线25离开。已经纯化到99.9999wt%的氯气进入管线75,继而进入固结炉C。离开柱A的部分气流将通过管线19的旁路进入热交换器20,并通过管线11重新进入柱A顶部。
已送到管线75的氯气与氦气混合,进入固结炉C。注意预制棒在此柱顶部,标为C1。氯气经过管线30离开固结炉C。固结炉中的气体一般使用鼓风机或真空泵除去(未示出)。这时,氯气是氦气、氯气、水、氮气、氧气和盐酸(它们都包含来自光纤生产过程的废气)的大量混合物的一部分。这些其他气体,特别是水、氮气、氧气和盐酸是杂质,它们要么进入固结炉,要么成为光纤生产方法的副产物。
该废气流进入洗涤柱E,通过管线35向该柱通入淡水。洗涤柱用来与废气流中的盐酸反应,从而将其除去。从洗涤柱中除去的水包含从废气流中洗下来的某些杂质,经过管线45进入洗涤单元,由此水得到净化,并用于其他过程。
这时,废气流主要包含氦气、氯气、水、氮气和氧气,它离开洗涤柱E后,经过管线40进入图中所示膜单元F。也可以采用其他气体分离系统,如变温吸附(TSA)和变压吸附(PSA),但气体分离系统宜采用膜单元。膜单元包含可选择渗透膜,它能让某些气体通过,而其他气体则不能通过。在本例中,废气流中的氦气和水,经由管线55离开该膜单元进入干燥器G。干燥器有选择地除去该混合物中的水,但有一些氦气,和该混合物通过管线65排到大气中。
大部分氦气通过管线60离开干燥器G,并与来自管线80的纯补充氦气会合,通过管线70进入压缩机D。回收氦气和补充氦气合并后,经由管线75送回到固结炉中,使光纤生产过程能稳态操作。
这时的剩余废气流由氯气、某些盐酸、氮气和氧气组成,它们离开膜单元F后,经由管线50回到工业纯氯气进入蒸馏柱A的地方,两股气流通过管线15进入柱A,由此氯气得到纯化,然后进入固结炉。
如上所述,气体分离单元可以是任何合适的气体纯化单元,如变压吸附(PSA)系统。该系统可包含同时操作的单一吸附单元或一组吸附单元,也可以包含不同时操作的许多吸附单元或许多组吸附单元,视需要而定。如果使用包含均同时操作的单一吸附单元或一组吸附单元的系统,则吸附步骤必须周期性停止,以使吸附床能再生,而采用不同时操作的许多并联吸附单元时,一个或多个单元可以是吸附杂质的吸附表面,而一个或多个其他单元可以脱附杂质进行再生。本发明的吸附系统是循环操作的。在优选吸附过程中,所采用的重复循环方式能使氦气的纯化生产基本上连续进行。
在一个PSA系统中,吸附器中装有合适的吸附剂微粒。适合吸附氮气和氧气的吸附剂包括沸石和碳分子筛,所述沸石如4A沸石、5A沸石和13X沸石。具体地说,用于吸附过程的吸附剂是需要选择的,部分取决于冷却气流遇到的杂质的性质。吸附器中宜包含一层预纯化干燥剂,如活化氧化铝或硅胶,以除去空气中的水蒸气。活氧化铝是优选的干燥剂,因为它还用来除去空气中的二氧化碳,从而减少或避免了主吸附剂对二氧化碳的吸附。或者,该系统可包含独立的空气预纯化单元,以便在进料气进入吸附器之前除去进料气中的水蒸气和二氧化碳。
PSA过程进行的温度和压力是可以选择的,它们不是关键因素。一般地,吸附过程可以在约-50-100℃的温度范围内进行,但通常在约0-40℃的温度范围内进行。一般,吸附在等于或高于约1巴的压力下进行。吸附步骤进行的最低压力宜约为2巴,最好约为5巴。压力上限由经济因素和吸附系统的限制因素决定,一般宜为约50巴,更宜约为20巴,最好约为15巴。
进行吸附剂再生的压力同样是可以选择的,最低压力取决于是否用真空设备从这些吸附器中抽除吸附气体。一般,吸附剂在这些吸附器中再生的压力下限可以低至50毫巴,但不宜低于约150毫巴,最好不要低于约200毫巴。吸附剂再生可以在高达5巴的压力下进行,但宜在不高于约2巴,最好不高于1巴的压力下进行。
虽然已经通过具体实施方式对本发明进行了阐述,但显然,本领域技术人员会明白,本发明有许多其它实施方式和修改。一般应认为本发明的附属权利要求覆盖了所有这些显而易见的实施方式和修改,它们都在本发明的真正范围之内。

Claims (7)

1.一种由预制棒生产光纤的改进方法,它包括干燥步骤和固结步骤,其特征在于所述生产在固结炉中进行,所述生产过程中产生的废气流中存在氦气和氯气,所述改进包括从所述废气流中回收氦气和氯气,并将所述废气流分离成富氦气流和富氯气流,将该富氦气流和富氯气流再循环回到所述固结炉中。
2.权利要求1所述的方法,它包括从废气流中除去盐酸。
3.权利要求1所述的方法,其特征在于所述分离通过分离装置进行,所述装置选自可选择渗透膜、变温吸附单元和变压吸附单元。
4.权利要求1所述的方法,它包括向所述循环的富氦气流中加入补充氦气。
5.权利要求1所述的方法,它包括向所述循环的富氯气流中加入补充氯气。
6.权利要求1所述的方法,其特征在于所述固结炉中氯气与氦气的重量比为1∶10-1∶100。
7.前述任一项权利要求所述的方法,它包括如下步骤:
(a)通过所述固结炉控制所述光纤;
(b)向所述固结炉中添加氦气;
(c)向所述固结炉中添加氯气;
(d)从所述炉顶排走废气,其中所述废气包含氦气和氯气;
(e)将所述废气送入水洗柱,除去盐酸;
(f)将所述废气送入分离装置,由此形成富氦气流和富氯气流。
CNB2004100699737A 2003-07-17 2004-07-16 氦和氯的回收与循环方法 Expired - Fee Related CN100387537C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US48798903P 2003-07-17 2003-07-17
US60/487,989 2003-07-17
US10/833,216 US7261763B2 (en) 2003-07-17 2004-04-27 Method for the recovery and recycle of helium and chlorine
US10/833,216 2004-04-27

Publications (2)

Publication Number Publication Date
CN1576249A CN1576249A (zh) 2005-02-09
CN100387537C true CN100387537C (zh) 2008-05-14

Family

ID=33479340

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100699737A Expired - Fee Related CN100387537C (zh) 2003-07-17 2004-07-16 氦和氯的回收与循环方法

Country Status (10)

Country Link
US (1) US7261763B2 (zh)
EP (1) EP1498393B1 (zh)
JP (1) JP2005035884A (zh)
KR (1) KR20050009231A (zh)
CN (1) CN100387537C (zh)
AT (1) ATE321739T1 (zh)
DE (1) DE602004000554T2 (zh)
DK (1) DK1498393T3 (zh)
MY (1) MY138399A (zh)
TW (1) TW200510256A (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866189B2 (en) * 2003-12-08 2011-01-11 Fujikura Ltd. Dehydration-sintering furnace, a manufacturing method of an optical fiber preform utilizing the furnace and an optical fiber preform manufactured by the method
WO2010103858A1 (ja) * 2009-03-12 2010-09-16 株式会社フジクラ 光ファイバ母材の製造方法
US8591634B2 (en) 2010-01-28 2013-11-26 Air Products And Chemicals, Inc. Method and equipment for selectively collecting process effluent
US8858819B2 (en) 2010-02-15 2014-10-14 Air Products And Chemicals, Inc. Method for chemical mechanical planarization of a tungsten-containing substrate
US9856769B2 (en) 2010-09-13 2018-01-02 Membrane Technology And Research, Inc. Gas separation process using membranes with permeate sweep to remove CO2 from combustion exhaust
US9140186B2 (en) * 2010-09-13 2015-09-22 Membrane Technology And Research, Inc Sweep-based membrane gas separation integrated with gas-fired power production and CO2 recovery
US9005335B2 (en) * 2010-09-13 2015-04-14 Membrane Technology And Research, Inc. Hybrid parallel / serial process for carbon dioxide capture from combustion exhaust gas using a sweep-based membrane separation step
US8795411B2 (en) 2011-02-07 2014-08-05 Air Products And Chemicals, Inc. Method for recovering high-value components from waste gas streams
KR101514801B1 (ko) * 2013-06-25 2015-04-24 (주)파인텍 과불화화합물의 분리 및 재활용시스템
US9649590B2 (en) * 2014-01-13 2017-05-16 Versum Materials Us, Llc System and method for gas recovery and reuse
EP3238808B1 (de) * 2016-04-28 2019-03-13 Linde Aktiengesellschaft Verfahren und verfahrenstechnische anlage zum gewinnen von helium aus einem helium-haltigen einsatzgas
US9782718B1 (en) 2016-11-16 2017-10-10 Membrane Technology And Research, Inc. Integrated gas separation-turbine CO2 capture processes
CN106744749A (zh) * 2016-11-30 2017-05-31 富通集团(嘉善)通信技术有限公司 用于光纤拉丝系统的氦气在线回收利用方法及装置
CN111302617B (zh) * 2020-04-27 2022-04-08 黄宏琪 一种气相法制备光纤预制棒的尾气循环利用系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122741A (ja) * 1983-12-08 1985-07-01 Hitachi Cable Ltd 光ファイバ母材の製造法
JPS61261223A (ja) * 1985-05-13 1986-11-19 Furukawa Electric Co Ltd:The 多孔質ガラス母材用透明ガラス化炉
US5055121A (en) * 1987-10-07 1991-10-08 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
CN1176941A (zh) * 1996-07-26 1998-03-25 普拉塞尔技术有限公司 光学纤维生产中的氦回收
US6253575B1 (en) * 1996-06-24 2001-07-03 Corning Incorporated Helium recycling for optical fiber manufacturing
US20020178913A1 (en) * 2000-01-14 2002-12-05 Wenchang Ji Helium recovery process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US178913A (en) * 1876-06-20 Improvement in compositions or cements for preserving fruit
US3933454A (en) 1974-04-22 1976-01-20 Corning Glass Works Method of making optical waveguides
US5377491A (en) * 1992-12-11 1995-01-03 Praxair Technology, Inc. Coolant recovery process
US6131415A (en) 1997-06-20 2000-10-17 Lucent Technologies Inc. Method of making a fiber having low loss at 1385 nm by cladding a VAD preform with a D/d<7.5
US6063162A (en) * 1998-12-22 2000-05-16 Occidental Chemical Corporation Method of separating chlorine from a mixture of gases
US6152986A (en) * 1999-07-07 2000-11-28 Ppg Industries Ohio, Inc. Method of enriching chlorine gas
US6648946B2 (en) * 2000-06-06 2003-11-18 Praxair Technology, Inc. Process for recovering helium using an eductor
FR2815399B1 (fr) * 2000-10-18 2003-01-03 Air Liquide Procede et installation de purification et recyclage de l'helium, et leur application a la fabrication de fibres optiques
CA2456011A1 (en) * 2001-07-31 2003-02-13 Mark Thomas Emley Helium recovery
US6701728B1 (en) * 2002-08-28 2004-03-09 The Boc Group, Inc. Apparatus and method for recovery and recycle of optical fiber coolant gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122741A (ja) * 1983-12-08 1985-07-01 Hitachi Cable Ltd 光ファイバ母材の製造法
JPS61261223A (ja) * 1985-05-13 1986-11-19 Furukawa Electric Co Ltd:The 多孔質ガラス母材用透明ガラス化炉
US5055121A (en) * 1987-10-07 1991-10-08 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
US6253575B1 (en) * 1996-06-24 2001-07-03 Corning Incorporated Helium recycling for optical fiber manufacturing
CN1176941A (zh) * 1996-07-26 1998-03-25 普拉塞尔技术有限公司 光学纤维生产中的氦回收
US20020178913A1 (en) * 2000-01-14 2002-12-05 Wenchang Ji Helium recovery process

Also Published As

Publication number Publication date
US7261763B2 (en) 2007-08-28
EP1498393A1 (en) 2005-01-19
DK1498393T3 (da) 2006-05-01
ATE321739T1 (de) 2006-04-15
CN1576249A (zh) 2005-02-09
US20050011353A1 (en) 2005-01-20
JP2005035884A (ja) 2005-02-10
EP1498393B1 (en) 2006-03-29
DE602004000554T2 (de) 2006-11-02
TW200510256A (en) 2005-03-16
KR20050009231A (ko) 2005-01-24
DE602004000554D1 (de) 2006-05-18
MY138399A (en) 2009-05-29

Similar Documents

Publication Publication Date Title
CN100387537C (zh) 氦和氯的回收与循环方法
EP0349655B1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
CN1561255A (zh) 氦的回收
EP1048338A1 (en) Recovery of perfluorinated compounds from the exhaust of semiconductor fabrications using membrane seperation
JPS63501549A (ja) アンモニア処理法及び装置
CN86104191A (zh) 增强气体分离方法
CN1031358A (zh) 由空气生产高纯氧气的方法
CN1381300A (zh) 通过压力摆动吸附生产高纯度氧
JP2000024445A (ja) 高清浄乾燥空気と乾燥空気の製造方法及び装置
KR20090113360A (ko) 공정 가스의 회수 및 재사용 방법 및 장치
CN85102148A (zh) 用于中间产品回收的压力回转吸附
CN1131053A (zh) 气流中二氧化碳的去除
CN1061161A (zh) 双重吸附流程
CN87107532A (zh) 一种利用变压吸附改进的气体分离方法
CN1420079A (zh) 从气流或液流中回收氪和氙的方法和吸附剂
CN103664502A (zh) 一种八氟丙烷纯化方法
CN1012727B (zh) 二氧化硅结合的含钙a沸石颗粒
US6565821B1 (en) Process for removing the fluorocompounds or fluorosulphur compounds from a stream of xenon and/or krypton by permeation
CN1282622A (zh) 净化空气的方法和装置
US6032484A (en) Recovery of perfluorinated compounds from the exhaust of semiconductor fabs with recycle of vacuum pump diluent
JPS63107720A (ja) 空気中の水分および炭酸ガスの分離除去方法
KR101843563B1 (ko) 벤트개념을 이용한 난분해성 유해가스 농축분리 시스템 및 및 이의 운전방법
CN1074448C (zh) 浓缩和提纯高炉气中一氧化碳的变压吸附工艺
US20020178913A1 (en) Helium recovery process
EP0770419A2 (en) Isobaric moving bed continuous gas purification

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080514

Termination date: 20100716