CN100377830C - 用于在金属底板上形成金属部分的方法 - Google Patents

用于在金属底板上形成金属部分的方法 Download PDF

Info

Publication number
CN100377830C
CN100377830C CNB038238756A CN03823875A CN100377830C CN 100377830 C CN100377830 C CN 100377830C CN B038238756 A CNB038238756 A CN B038238756A CN 03823875 A CN03823875 A CN 03823875A CN 100377830 C CN100377830 C CN 100377830C
Authority
CN
China
Prior art keywords
layer
deposit
parameter
metal
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038238756A
Other languages
English (en)
Other versions
CN1688408A (zh
Inventor
韦加亚维尔·巴格瓦茨-塞恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DM3D Tech LLC
Original Assignee
POM Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by POM Group filed Critical POM Group
Publication of CN1688408A publication Critical patent/CN1688408A/zh
Application granted granted Critical
Publication of CN100377830C publication Critical patent/CN100377830C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Powder Metallurgy (AREA)
  • Control Of Temperature (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

在一种直接金属淀积系统中,所述系统通过在送入金属粉末时相对于激光移动底板,在底板上堆积金属覆层。通过在相继的层期间检测每层中的多个选择的点中的焊池并调节功率,以便维持相应于在较低的最佳层的淀积期间达到的那些的焊池。这补偿由淀积引起的底板的加热,所述加热趋于增加较高层的焊池尺寸或温度。

Description

用于在金属底板上形成金属部分的方法
相关申请
本申请要求2002年8月28日申请的美国临时专利申请序列号为60/406366的专利申请的优先权,该专利申请被包括在此作为参考。
技术领域
本发明涉及通过在底层的底板上进行直接金属淀积,形成多个相对薄的层,尤其涉及这样的一种系统,其根据在前面的层的形成期间产生的参数控制在形成层时使用的淀积功率。
背景技术
通过逐层进行激光镀层制造三维的金属元件在1978年由Breinan和Kear首先报导过。在1982年授予Brown等人的美国专利4323756披露了一种用于生产近似网形的大的快速固化的金属物品的方法,发现一种在制造包括盘形的和刀口状的空气密封的某些汽轮机的元件中的特定的应用。按照其中披露的内容,使用能量束淀积原料的多个薄层,以便使每层熔合在底板上。使用的能源可以是激光或者是电子束。在该发明中使用的原料可以是金属丝或粉末材料,并且把这种原料用这种方式施加到底板上,使得其通过激光束因而熔合到底板的熔化的部分。
这些直接金属淀积的方法可以利用多轴线的市场上可得到的用于制造三维元件的CNC机。美国专利5837960涉及一种用于由颗粒状的材料制造物品的方法和设备。这些材料被激光束熔化,并沿着工具通路淀积在多个点上,从而形成所需形状和尺寸的物品。最好是所述工具通路和淀积处理的其它参数使用计算机辅助设计和制造技术来确定。一种由数字计算机构成的控制器沿着工具通路引导淀积区的运动,并提供用于调节设备功能,例如对淀积区提供激光束和粉末的淀积头沿着工具通路运动的速度的控制信号。
不过,大部分现有技术都根据开环处理,其要求大量的最终加工量,以便得到接近尺寸允差的部件。在制造处理期间需要连续的校正措施,以便制造具有接近的允差和可接受的剩余应力的网状的功能部件。一种实现这些目的的闭环系统在美国专利6122564中披露了。该专利披露了一种激光辅助的、计算机控制的直接金属淀积(DMD)系统,其中材料的连续的层被施加于底板上,以便制造一个物品或提供一个镀层。
和前面的方法对照,这种DMD系统配备有反馈监视部分,用于按照计算机辅助设计(CAD)的描述控制制造的物品的尺寸和整个几何形状。淀积工具通路由用于CNC加工的计算机辅助制造(CAM)系统产生,具有用于淀积的处理后软件,代替常规的CNC加工中的用于除去的软件。这种反馈控制的系统可以完全消除中间加工,并大大减少最终的加工。
美国专利6518541披露了一种直接金属淀积系统,其中使用具有接通/断开占空比的激光和用于通过反馈控制处理参数的装置,用于保持占空比在一个所需的范围内。美国专利6459951涉及一种DMD系统,其中使用系统参数的反馈控制,以便随着在特定层上的淀积的进展维持恒定的焊池。
这些反馈控制系统改善了多层制造过程的每层的精度,但是没有解决随着DMD过程的进展由底板的发热引起的层和层的差异的问题。
发明内容
本发明涉及一种使用反馈控制的多层淀积方法和自适应系统,用于根据在前面的层的形成期间检测的参数控制在一层的形成期间使用的激光功率。
在淀积期间,由激光提供的能量的某个百分数由底板吸收,这增加了底板的温度。重复的淀积导致底板温度的稳定的增加,直到其稳定在一个特定的值。在该点,由底板产生的热损失处于其最大值,因而,激光能量的进一步吸收增加了焊池的温度和尺寸。焊池的尺寸的增加对淀积的均匀性具有不利影响。
本发明被集中到一种自适应的闭环系统,其中使用视频图像或者高温计检测焊池的尺寸或温度,并把检测的值提供给用于调节每层的处理激光功率的数字处理器。执行调节算法以便维持在每层中的特定点的池尺寸或温度和下面的层中的该点的尺寸或温度相同。
在本发明的优选实施例中,在覆在底板上面的第一层的淀积期间,不使用激光功率反馈机构,这是因为该层的热传导条件因而池温度和随后淀积的层的那些值十分不同。对于第二层,或者和设计参数有关的较高的层,沿着层的表面选择若干个测试点坐标。要考虑的测试点的数量取决于淀积的面积、零件的几何形状以及运行算法的CPU的处理速度。当第二层或其它的选择的一层被淀积时,每个测试点的池尺寸或温度都被检测和存储。这一层可被称为“金层”,因为在这一层淀积期间在每个测试点测量的池尺寸或温度的值被认为是在随后的淀积层中相应的测试点坐标的淀积参数的目标值。
在优选实施例中,在淀积金层的期间内,使用CCD照相机在不同的测试点拍摄焊池的图像,并通过分析所述的图像确定每个测试点的焊池的尺寸。然后把存储的每个测试点的值按照各个池尺寸之间的差值分类为低点、中点或高点。然后,使用在高点图像尺寸和低点图像尺寸之间的差值对于每个测试点的值产生两维的“范围矩阵”。接着,不改变激光功率,淀积下一层,并拍摄测试点焊池图像。计算该层的图像尺寸矩阵,并和前一层的图像尺寸矩阵比较,以便计算“层加权”矩阵。接着,该层的图像尺寸矩阵和金层的图像尺寸矩阵比较并计算差值。所述尺寸的差和范围矩阵以及从每个测试点的层加权矩阵选择的相应的加权值一道使用,并建立层校正测试点加权矩阵。通过把该矩阵应用于金层激光功率,计算下一个淀积层的新的激光功率值。对于每个随后的层,重复这个处理。
作为这个处理的结果,在一层上的一个特定的X-Y点的池尺寸被控制为最接近金层上的该点的池尺寸。
附图说明
通过下面对于本发明的优选实施例的详细说明,可以清楚地看出本发明的其它的目的、优点和应用。下面的说明参照附图进行,其中:
图1是用于实施本发明的直接金属淀积系统的示意图;
图2是可以利用本发明的方法和设备制成的一个典型的零件的示意图;
图3是本发明的优选的操作方法的流程图;以及
图4是在本发明的优选实施例中使用的算法的图。
具体实施方式
图1示意地表示的本发明的优选实施例使用由功率激光器和气体推进的金属粉末分配器构成的头10,用于在底板12上的一点产生焊池14。在现有技术中使用的这种类型的设备例如在美国专利6122564中披露了。金属丝可被馈给激光束作为分配的粉末的替代物,并且可以使用电子束作为激光束的替代物。下文中使用的术语“激光”和“粉末”应当认为包括这些替代物。
借助于CNC控制器16使底板12相对于头10而运动通过编程的通路,从而焊池沿着底板跟随着该通路,从而在底板上形成一个金属层。在机器工作台上支撑着一对CCD照相机,它们可以操作从而从两个相对侧产生焊池14的图像。在焊池被形成以使得挡住一个照相机的视野的情况下,这是需要的。
在本发明的另一个实施例中,不通过对焊池成像来确定它的尺寸,而通过一个或几个高温计测量焊池的温度。焊池的尺寸和温度彼此密切相关。
照相机18和20的输出被提供给视频处理卡22,其使用视频处理软件24进行下面将要说明的操作。接口驱动器26使视频处理软件24和CNC软件28耦连,软件28对CNC控制器16提供驱动信号,并通过线路30对头10内的激光器发送功率控制信号。
图2表示一般由32表示的一个典型的工件,其包括下面的金属底板34,具有在其上表面上由多层形成的DMD淀积部分36。当淀积的体积36的开始的几层被形成时,激光的许多热能用于加热下面的金属底板34。随着淀积的继续,底板达到一个最大温度,此后附加的激光功率用于熔化在先前淀积的区域中的粉末金属。如果对每个区域施加恒定的激光功率,则随着底板34的加热,焊池的尺寸将开始增加,从而产生不规则的淀积图案。本发明便是为了补偿这个现象而作出的。
本发明的宽的方法是要根据常规的实验考虑选择初始的激光功率,并淀积部分36的至少头两层。在第一层的淀积期间,不进行焊池尺寸的测量,这是因为其和底板34的接触产生不同于在淀积随后的层时遇到的热性能。在淀积第二层(或者更高的层,例如第三层,和淀积的部分36中的底板34的冶金过程有关)期间,随着淀积的进展,测量以选择的坐标由焊池的尺寸构成。这些值被存储在视频处理软件24中。广义地说,测量结果将由当形成相继的层时以相同的选择的坐标由焊池的尺寸构成,并且在特定层焊接尺寸的测量将结合表示先前的层的焊接尺寸的存储的矩阵被处理,从而确定在淀积下一层时使用的合适的激光功率。这些从一层到一层的功率调节被广泛地用于补偿底板的加热对焊池尺寸的影响。
焊池的图像是控制系统的基本的输入,并含有和焊池相关的温度信息。通过确定图像的亮度值及其面积从焊池图像提取焊池温度信息,并把所述温度信息称为“焊池尺寸”。借助于控制激光功率,控制焊池尺寸,因而控制焊池温度,这样便构成闭环反馈系统。通过把先前层的图像信息应用于将来层的激光功率校正,该系统成为自学习的或自适应的。
每层的淀积的几何形状的每个选择的坐标被认为是一个单独的测试点。由于几何的约束,每个测试点坐标可以具有不同的图像尺寸。对于平面上的一个点,焊池图像的尺寸可以和斜面上的一个点的不同。此外,即使在平面上,对于压缩的工具通路部分,焊池图像尺寸将和边沿坐标的焊池图像尺寸不同。这种自适应的闭环焊池温度控制系统设计考虑了上述的所有情况,使得其更加健壮。
图3是自适应闭环焊池温度控制系统的优选实施例的控制流程图。在块50,操作者输入初始化信息。这些信息包括在零件的几何形状上的测试点坐标。考虑的测试点的数量取决于淀积的面积和运行算法的CPU的处理速度。在一个相对大的平的零件上,测试点坐标可以被相当宽地隔开,而零件轮廓中的改变要求比较接近的坐标间隔。
MIN和MAX表示开始和结束测试点的坐标。INC表示在测试点之间的增量。KCON是和矩阵的值相关的控制系统常数。PWR1是初始激光功率。
在选择这些初始化值之后,在块52淀积第一层。这是和底板34直接接触的层,因而在其淀积期间不进行焊池尺寸的测量。接着在块54,淀积第二层,在这个淀积期间在测试点坐标计算焊池的图像。这一层被称为“金层”,因为在这一层期间采集的信息对于将来层中的相应的测试点坐标被认为是最佳的解答。在金层淀积期间底板的温度,当和将来层中的底板温度比较时,被认为处于其最小值。因此这一层被认为是最好淀积层。使用CCD照相机18和20在不同的测试点拍摄焊点图像,并由视频处理软件24确定每个点的焊池尺寸。
金层测试点焊池图像尺寸被相互比较,并按照各个尺寸的不同把测试点分类为低点、中点或高点。这在块54和56进行。在块58对层1,即金层产生一个RANGE矩阵。使用在高点和低点图像尺寸之间的差对于低点、中点和高点产生RANGE矩阵。当和高点RANGE矩阵分布相比时,低点RANGE矩阵将具有较短的值分布。一旦RANGE矩阵被产生,便完成关于初始的或金层计算的计算。用于这个计算和其它计算的公式和算法如图4所示。然后在不改变激光功率的条件下淀积下一层,并拍摄测试点焊池图像。如前所述计算焊池尺寸矩阵,并使该层的图像尺寸矩阵和前一层的图像尺寸矩阵比较,并使用图4的公式计算wl2a。这都表示在图3的块60和62中。接着,在块64,层2的图像尺寸矩阵和金层图像尺寸矩阵比较,并计算差值。所述尺寸差值与RANGE矩阵、对于每个测试点从wl2a中选择的相应的加权值被使用,并且使用图4提出的步骤3的公式产生wl2p。最后,通过把wt2p应用于金层激光功率pwr1,计算一个新的激光功率值。所述新的激光功率通过模拟信号链接在激光发射器10被设置。这在块66中被描述。对于随后的层,块60,62,64和66的处理被重复,直到最后的层被完成因而该元件被完成。
应当理解,可以使用其它的专用公式达到这里提出的并在所附权利要求中限定的宽的目的。
还应当理解,可以进行直接温度测量,以便确定焊池温度而不进行基于焊池尺寸的测量。

Claims (12)

1.一种用于在金属底板上形成金属部分的方法,其中利用产生加热的射束的激光器和粉末金属源淀积多个重叠的层,所述粉末金属源通过操作把金属粉末送入所述的加热的射束,并在数字控制下相对于所述加热的射束移动所述底板通过编程的通路,从而提供一个前进中的熔池,所述方法包括:在产生多个金属层的期间内在多个选择的坐标处检测熔池的参数,存储在所述每个选择的坐标的熔池的检测的参数,以及处理所述存储的参数,以便确定在后继的层的淀积期间使用的合适的激光功率。
2.如权利要求1所述的方法,其中处理所述存储的参数包括比较在淀积的最近一层的形成期间存储的检测的参数的矩阵和较早淀积的层的检测的参数的矩阵,以便确定在下一层的淀积期间使用的合适的激光功率。
3.如权利要求2所述的方法,其中较早淀积的层构成在底板上淀积的第二层。
4.如权利要求1所述的方法,其中所述池的检测的参数包括池的尺寸。
5.如权利要求1所述的方法,其中所述池的检测的参数包括池的光学强度。
6.如权利要求1所述的方法,其中所述池的检测的参数包括池的尺寸和池的光学强度。
7.如权利要求1所述的方法,其中所述熔池的检测的参数包括熔池的温度。
8.一种用于在金属底板上形成金属部分的方法,其中利用产生加热的射束的功率源和金属源淀积多个重叠的层,所述金属源通过操作把金属粉末送入所述的加热的射束,并相对于在所述金属部分的上方的所述加热的射束移动所述底板,从而提供一个前进中的熔池,所述方法包括:在产生多个金属层的期间内在多个选择的坐标处检测熔池的参数,存储在所述每个选择的坐标的熔池的检测的参数,以及处理所述存储的参数,以便确定在相继的层的淀积期间使用的合适的激光功率。
9.如权利要求8所述的方法,其中所述功率源是电子束。
10.如权利要求8所述的方法,其中所述功率束的级在每层的产生期间保持恒定。
11.一种用于在金属底板上形成金属部分的方法,其中利用加热的射束和粉末金属源淀积多个重叠的层,所述粉末金属源通过操作把金属粉末送入所述的加热的射束,并在数字控制下相对于所述加热的射束移动所述底板通过编程的通路,从而提供一个前进中的熔池,所述方法包括:
使用第一加热的射束的功率淀积和底板接触的第一层;
使用和在第一层中使用的相同的加热的射束的功率在所述第一层上淀积第二层,并在所述第二层的产生期间在多个选择的坐标检测熔池的参数;
使用和在头两层中使用的相同的加热的射束的功率淀积第三层,并在所述第三层的产生期间在所述选择的坐标检测熔池的参数;以及
使用在第二和第三层的产生期间存储的熔池的参数确定在后继的层的淀积期间使用的合适的加热的射束的功率。
12.如权利要求11所述的方法,其中当每个相继的层被淀积时,熔池的参数在所述多个选择的坐标被检测,并和前面存储的检测的参数一道被使用,以便确定用于后继层的加热的射束的功率。
CNB038238756A 2002-08-28 2003-08-28 用于在金属底板上形成金属部分的方法 Expired - Fee Related CN100377830C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40636602P 2002-08-28 2002-08-28
US60/406,366 2002-08-28

Publications (2)

Publication Number Publication Date
CN1688408A CN1688408A (zh) 2005-10-26
CN100377830C true CN100377830C (zh) 2008-04-02

Family

ID=31978293

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038238756A Expired - Fee Related CN100377830C (zh) 2002-08-28 2003-08-28 用于在金属底板上形成金属部分的方法

Country Status (13)

Country Link
US (1) US8878094B2 (zh)
EP (1) EP1549454B1 (zh)
JP (1) JP4473124B2 (zh)
KR (1) KR101056487B1 (zh)
CN (1) CN100377830C (zh)
AT (1) ATE461777T1 (zh)
AU (1) AU2003293279B2 (zh)
BR (1) BR0314420B1 (zh)
CA (1) CA2496810C (zh)
DE (1) DE60331843D1 (zh)
NO (1) NO335040B1 (zh)
RU (1) RU2321678C2 (zh)
WO (1) WO2004020139A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715036A (zh) * 2014-08-26 2017-05-24 密执安州立大学董事会 用于单晶超合金和金属的直写的装置和方法
CN109715319A (zh) * 2016-10-31 2019-05-03 惠普发展公司,有限责任合伙企业 金属粒子的融合

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018699A1 (de) * 2004-04-17 2005-11-03 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Laserschweißen von Bauteilen aus Superlegierungen
GB2418208B (en) * 2004-09-18 2007-06-06 Rolls Royce Plc Component coating
US20060153996A1 (en) * 2005-01-13 2006-07-13 Stanek Jennifer M Method and system for laser cladding
US7951412B2 (en) * 2006-06-07 2011-05-31 Medicinelodge Inc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces
GB0616116D0 (en) 2006-08-12 2006-09-20 Rolls Royce Plc A method of forming a component on a substrate
WO2009125284A1 (en) * 2008-04-09 2009-10-15 Pavel Yurievich Smirnov Laser-plasma method and system for surface modification
DE102008018264A1 (de) 2008-04-10 2009-10-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schweißverfahren mit geregeltem Temperaturverlauf und eine Vorrichtung dafür
US8505414B2 (en) * 2008-06-23 2013-08-13 Stanley Black & Decker, Inc. Method of manufacturing a blade
US20120132627A1 (en) 2009-04-28 2012-05-31 Bae Systems Plc Additive layer fabrication method
AU2010295585B2 (en) 2009-09-17 2015-10-08 Sciaky, Inc. Electron beam layer manufacturing
US8598523B2 (en) 2009-11-13 2013-12-03 Sciaky, Inc. Electron beam layer manufacturing using scanning electron monitored closed loop control
EP2555902B1 (en) 2010-03-31 2018-04-25 Sciaky Inc. Raster methodology for electron beam layer manufacturing using closed loop control
DE202010010771U1 (de) 2010-07-28 2011-11-14 Cl Schutzrechtsverwaltungs Gmbh Laserschmelzvorrichtung zum Herstellen eines dreidimensionalen Bauteils
US8769833B2 (en) 2010-09-10 2014-07-08 Stanley Black & Decker, Inc. Utility knife blade
RU2569612C2 (ru) * 2011-08-03 2015-11-27 Невельд С.А. Система восстановления ковочного штампа
JP6342912B2 (ja) * 2012-11-08 2018-06-13 ディーディーエム システムズ, インコーポレイテッド 金属構成要素の加法的製造および修復
CN102962452B (zh) * 2012-12-14 2014-06-25 沈阳航空航天大学 基于红外测温图像的金属激光沉积制造扫描路径规划方法
US9770781B2 (en) 2013-01-31 2017-09-26 Siemens Energy, Inc. Material processing through optically transmissive slag
EP2772329A1 (en) 2013-02-28 2014-09-03 Alstom Technology Ltd Method for manufacturing a hybrid component
DE102013003760A1 (de) 2013-03-06 2014-09-11 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätsbeurteilung eines mittels eines generativen Lasersinter- und/oder Laserschmelzverfahrens hergestellten Bauteils
CA2906400C (en) * 2013-03-15 2019-03-26 Rolls-Royce Corporation Repair of gas turbine engine components
CN103273200A (zh) * 2013-03-21 2013-09-04 上海交通大学 模具钢的激光熔覆修复方法
EP2986397A4 (en) * 2013-04-18 2016-12-21 Dm3D Tech Llc LASER ASSISTED INTERSTITIAL ALLOY FOR INCREASED WEAR RESISTANCE
FR3010785B1 (fr) * 2013-09-18 2015-08-21 Snecma Procede de controle de la densite d'energie d'un faisceau laser par analyse d'image et dispositif correspondant
EP2944402B1 (en) * 2014-05-12 2019-04-03 Ansaldo Energia IP UK Limited Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys
US20150343560A1 (en) * 2014-06-02 2015-12-03 Fracturelab, Llc Apparatus and method for controlled laser heating
AU2015271638A1 (en) * 2014-06-05 2017-01-19 Commonwealth Scientific And Industrial Research Organisation Distortion prediction and minimisation in additive manufacturing
EP3183108B1 (en) 2014-08-20 2020-12-09 Etxe-Tar, S.A. Method and system for additive manufacturing using a light beam
US9573224B2 (en) 2014-09-02 2017-02-21 Product Innovation & Engineering, LLC System and method for determining beam power level along an additive deposition path
US9757902B2 (en) 2014-09-02 2017-09-12 Product Innovation and Engineering L.L.C. Additive layering method using improved build description
FR3028436B1 (fr) * 2014-11-14 2019-04-05 Safran Aircraft Engines Procede d'elaboration d'une piece de turbomachine
US10632566B2 (en) 2014-12-02 2020-04-28 Product Innovation and Engineering L.L.C. System and method for controlling the input energy from an energy point source during metal processing
CN105983837B (zh) 2015-03-02 2018-08-21 东台精机股份有限公司 复合式计算机数值控制加工机及其加工方法
SG10201700339YA (en) 2016-02-29 2017-09-28 Rolls Royce Corp Directed energy deposition for processing gas turbine engine components
JP6196391B1 (ja) * 2016-03-25 2017-09-13 技術研究組合次世代3D積層造形技術総合開発機構 3次元積層造形装置、3次元積層造形装置の制御方法、3次元積層造形装置の制御プログラムおよび治具
EP3246116B1 (en) 2016-03-25 2021-05-05 Technology Research Association for Future Additive Manufacturing Three-dimensional laminate moulding device, control method for three-dimensional laminate moulding device, and control program for three-dimensional laminate moulding device
CN105728954B (zh) * 2016-04-27 2017-04-19 桂林电子科技大学 一种双激光加工水浸工件的方法和系统
CN106363171B (zh) * 2016-09-29 2019-03-05 山西阳宸中北科技有限公司 选择性激光熔化成形熔池实时监测装置及监测方法
KR102476579B1 (ko) * 2016-10-14 2022-12-12 한국재료연구원 3차원 프린터
AU2018273352B2 (en) 2017-05-22 2023-07-27 Howmedica Osteonics Corp. Device for in-situ fabrication process monitoring and feedback control of an electron beam additive manufacturing process
CN111315531B (zh) * 2017-08-01 2022-09-30 西格马实验室公司 用于在增材制造操作期间测量辐射热能的系统和方法
CN110650811B (zh) 2017-08-08 2021-08-31 三菱重工业株式会社 内部缺陷检测系统和方法、以及三维层叠造形装置
WO2019194836A1 (en) * 2018-04-06 2019-10-10 Hewlett-Packard Development Company, L.P. Configuring an additive manufacturing system
CN108838397B (zh) * 2018-05-03 2021-06-01 苏州大学 一种激光增材制造在线监测方法
CN108856709A (zh) * 2018-05-03 2018-11-23 苏州大学 一种激光增材制造在线监测方法
RU185518U1 (ru) * 2018-05-19 2018-12-07 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Устройство контроля и адаптивного управления при прямом лазерном выращивании
AU2019206103A1 (en) 2018-07-19 2020-02-06 Howmedica Osteonics Corp. System and process for in-process electron beam profile and location analyses
RU2704682C1 (ru) * 2018-12-20 2019-10-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ электронно-лучевой наплавки с контролем положения присадочной проволоки относительно электронного луча (варианты)
WO2020242489A1 (en) * 2019-05-31 2020-12-03 Hewlett-Packard Development Company, L.P. Powder-fusing energy source control
CN111014673A (zh) * 2019-12-30 2020-04-17 浙江工业大学之江学院 用于改善激光立体成型表面起伏的闭环控制装置及方法
US11980938B2 (en) 2020-11-24 2024-05-14 Rolls-Royce Corporation Bladed disk repair process with shield
US11629412B2 (en) 2020-12-16 2023-04-18 Rolls-Royce Corporation Cold spray deposited masking layer
US20220219400A1 (en) * 2021-01-13 2022-07-14 B9Creations, LLC System and method to increase accuracy of an imaging system within an additive manufacturing device
US11839915B2 (en) 2021-01-20 2023-12-12 Product Innovation and Engineering LLC System and method for determining beam power level along an additive deposition path
US20230226764A1 (en) * 2022-01-14 2023-07-20 Sakuu Corporation Apparatus and method to provide conditioning to a deposited powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155321A (en) * 1990-11-09 1992-10-13 Dtm Corporation Radiant heating apparatus for providing uniform surface temperature useful in selective laser sintering
CN1072625A (zh) * 1991-11-25 1993-06-02 Gec阿尔斯托姆有限公司 圆筒形工件的激光涂敷法
US5453329A (en) * 1992-06-08 1995-09-26 Quantum Laser Corporation Method for laser cladding thermally insulated abrasive particles to a substrate, and clad substrate formed thereby
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991930A (en) * 1975-09-22 1976-11-16 Fagersta Ab Method for producing a multi-layer metal strip and metal strip produced according to said method
US4578561A (en) 1984-08-16 1986-03-25 General Electric Company Method of enhancing weld pool boundary definition
US4611111A (en) 1985-01-22 1986-09-09 General Electric Company Method to determine weld puddle area and width from vision measurements
JPH0698687B2 (ja) * 1988-03-14 1994-12-07 三井造船株式会社 熱溶融性粉末を用いた造形方法
US5637175A (en) 1988-10-05 1997-06-10 Helisys Corporation Apparatus for forming an integral object from laminations
FR2678190B1 (fr) 1991-06-28 1995-07-07 Commissariat Energie Atomique Procede et systeme de soudage assistee par ordinateur, bases sur la vision de la scene de soudage.
JP3142401B2 (ja) * 1992-10-16 2001-03-07 トヨタ自動車株式会社 レーザクラッド加工の異常判定方法
US5427733A (en) * 1993-10-20 1995-06-27 United Technologies Corporation Method for performing temperature-controlled laser sintering
JPH0810949A (ja) * 1994-06-23 1996-01-16 Fanuc Ltd 多層盛り溶接における溶接ロボットシステムの制御方法
DE19516972C1 (de) 1995-05-09 1996-12-12 Eos Electro Optical Syst Vorrichtung zum Herstellen eines dreidimensionalen Objektes mittels Lasersintern
US5681490A (en) * 1995-09-18 1997-10-28 Chang; Dale U. Laser weld quality monitoring system
US5730817A (en) 1996-04-22 1998-03-24 Helisys, Inc. Laminated object manufacturing system
JPH11347761A (ja) 1998-06-12 1999-12-21 Mitsubishi Heavy Ind Ltd レーザによる3次元造形装置
US6329635B1 (en) * 1998-10-30 2001-12-11 The University Of Chicago Methods for weld monitoring and laser heat treatment monitoring
US6204469B1 (en) * 1999-03-04 2001-03-20 Honda Giken Kogyo Kabushiki Kaisha Laser welding system
AUPQ099199A0 (en) 1999-06-17 1999-07-08 Herlihy, Geoffrey Francis An improved air release valve
US6180049B1 (en) * 1999-06-28 2001-01-30 Nanotek Instruments, Inc. Layer manufacturing using focused chemical vapor deposition
US6459951B1 (en) 1999-09-10 2002-10-01 Sandia Corporation Direct laser additive fabrication system with image feedback control
US6504127B1 (en) * 1999-09-30 2003-01-07 National Research Council Of Canada Laser consolidation methodology and apparatus for manufacturing precise structures
US6398102B1 (en) 1999-10-05 2002-06-04 Caterpillar Inc. Method for providing an analytical solution for a thermal history of a welding process
US20020165634A1 (en) * 2000-03-16 2002-11-07 Skszek Timothy W. Fabrication of laminate tooling using closed-loop direct metal deposition
SE521124C2 (sv) * 2000-04-27 2003-09-30 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
JP3690491B2 (ja) 2000-05-12 2005-08-31 清水建設株式会社 溶接制御システム
DE10037264C1 (de) 2000-07-28 2002-02-28 Lorch Schweisstech Gmbh Steuerung für Schweißgerät
US6471800B2 (en) 2000-11-29 2002-10-29 Nanotek Instruments, Inc. Layer-additive method and apparatus for freeform fabrication of 3-D objects
US6793140B2 (en) 2001-01-10 2004-09-21 The P.O.M. Group Machine-readable code generation using direct metal deposition
CN100552685C (zh) * 2001-11-17 2009-10-21 株式会社Insstek 使用激光包层和激光辅助的直接金属制造工艺中的图像成像和图像处理技术实时监测和控制淀积高度的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155321A (en) * 1990-11-09 1992-10-13 Dtm Corporation Radiant heating apparatus for providing uniform surface temperature useful in selective laser sintering
CN1072625A (zh) * 1991-11-25 1993-06-02 Gec阿尔斯托姆有限公司 圆筒形工件的激光涂敷法
US5453329A (en) * 1992-06-08 1995-09-26 Quantum Laser Corporation Method for laser cladding thermally insulated abrasive particles to a substrate, and clad substrate formed thereby
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715036A (zh) * 2014-08-26 2017-05-24 密执安州立大学董事会 用于单晶超合金和金属的直写的装置和方法
CN106715036B (zh) * 2014-08-26 2019-12-10 密执安州立大学董事会 用于单晶超合金和金属的直写的装置和方法
CN109715319A (zh) * 2016-10-31 2019-05-03 惠普发展公司,有限责任合伙企业 金属粒子的融合
CN109715319B (zh) * 2016-10-31 2021-04-02 惠普发展公司,有限责任合伙企业 金属粒子的融合
US11207734B2 (en) 2016-10-31 2021-12-28 Hewlett-Packard Development Company, L.P. Fusing of metallic particles

Also Published As

Publication number Publication date
CA2496810C (en) 2011-07-26
US20060032840A1 (en) 2006-02-16
AU2003293279A1 (en) 2004-03-19
US8878094B2 (en) 2014-11-04
JP2005537134A (ja) 2005-12-08
DE60331843D1 (de) 2010-05-06
KR20050057089A (ko) 2005-06-16
RU2321678C2 (ru) 2008-04-10
RU2005108978A (ru) 2005-09-10
BR0314420B1 (pt) 2013-03-19
BR0314420A (pt) 2005-07-19
WO2004020139A1 (en) 2004-03-11
CN1688408A (zh) 2005-10-26
EP1549454B1 (en) 2010-03-24
EP1549454A1 (en) 2005-07-06
ATE461777T1 (de) 2010-04-15
AU2003293279B2 (en) 2008-10-23
EP1549454A4 (en) 2008-08-27
NO20051514L (no) 2005-03-22
NO335040B1 (no) 2014-09-01
KR101056487B1 (ko) 2011-08-11
JP4473124B2 (ja) 2010-06-02
NO20051514D0 (no) 2005-03-22
CA2496810A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
CN100377830C (zh) 用于在金属底板上形成金属部分的方法
KR100796465B1 (ko) 3차원 물체를 제조하기 위한 장치 및 방법
US20200030880A1 (en) Additive manufacturing, learning model generation apparatus, manufacturing condition determination apparatus for shaped article to be produced by additive manufacturing and status estimation apparatus for shaped article to be produced by additive manufacturing
JP5008260B2 (ja) 三次元製品の製造装置及び製造方法
JP5095917B2 (ja) 三次元製品の製造装置及び製造方法
US20200030915A1 (en) Deposition condition control device
JP6412049B2 (ja) 金属粉を供給しながらレーザを照射する加工部を移動させて積層造形を行う積層造形加工方法及び積層造形加工装置
US11554438B2 (en) Method and apparatus for manufacturing layered model
Reisgen et al. Study on workpiece and welding torch height control for polydirectional WAAM by means of image processing
JP7036129B2 (ja) 加工システム、及び、加工方法
JP2024508849A (ja) 積層造形プロセスをモニタリングおよび制御する方法
Kerninon et al. Effect of path strategies on metallic parts manufactured by additive process
CN115867407A (zh) 机器学习装置、层叠造型系统、焊接条件的机器学习方法、焊接条件的调整方法及程序
JP7382302B2 (ja) 溶接装置、溶接作業手順作成装置、溶接作業支援装置、溶接方法、溶接作業手順作成方法、及びプログラム
US11839915B2 (en) System and method for determining beam power level along an additive deposition path
US20230405681A1 (en) Powder bed fusion methods and related apparatus
JP7532241B2 (ja) 造形システム及び造形装置、並びに造形方法、並びに造形プログラム
Skordeli et al. Infinite-dimensional geometric regulation in solid freeform fabrication
Kwak Multivariable adaptive modeling and control of geometry in GMA welding material deposition with application in solid freeform fabrication
Garmendiaa et al. In-situ clad geometry measurement in wire laser metal deposition process
Gladkov et al. Computer control of the quality of arc welding (TIG, MIG) using a PZS camera

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: DM3D?TECHNOLOGY LLC

Free format text: FORMER OWNER: P. O. M. GROUP

Effective date: 20140509

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140509

Address after: Michigan

Patentee after: DM3D TECHNOLOGY, LLC

Address before: Michigan

Patentee before: P O M Group Companies

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080402