CN106715036B - 用于单晶超合金和金属的直写的装置和方法 - Google Patents

用于单晶超合金和金属的直写的装置和方法 Download PDF

Info

Publication number
CN106715036B
CN106715036B CN201580052187.2A CN201580052187A CN106715036B CN 106715036 B CN106715036 B CN 106715036B CN 201580052187 A CN201580052187 A CN 201580052187A CN 106715036 B CN106715036 B CN 106715036B
Authority
CN
China
Prior art keywords
laser
substrate
heat source
variable power
power output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580052187.2A
Other languages
English (en)
Other versions
CN106715036A (zh
Inventor
乔蒂尔莫伊·马宗德尔
崔廷榕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
Original Assignee
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Michigan filed Critical University of Michigan
Publication of CN106715036A publication Critical patent/CN106715036A/zh
Application granted granted Critical
Publication of CN106715036B publication Critical patent/CN106715036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/04Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from several pieces

Abstract

用于单晶超合金和金属的直写的方法和装置。方法包括:将衬底加热到低于其熔点的预定温度;使用激光在衬底的表面上形成熔融池,其中,衬底被设置在基板上,以及其中,激光和基板能够相对彼此移动,激光用于直接金属沉积;将超合金粉末引入到所述熔融池;以及控制熔融池的温度以在熔融池的固体和液体界面上保持预定的热梯度,以便于在衬底上形成单晶沉积。装置被配置为总体上实现上述的方法。

Description

用于单晶超合金和金属的直写的装置和方法
相关申请的交叉引用
本申请要求2014年8月24日提交的美国临时申请No.62/041,884的优先权。上述申请的全部公开内容通过引用加入本文。
技术领域
本公开涉及用于单晶超合金和金属的直写的装置和方法。
背景技术
该部分提供与本公开有关的背景信息,这些背景信息不一定是现有技术。该部分还提供了对本公开的总体概述,并且不是对本公开的完整范围和所有特征的全面披露。
诸如叶片或轮叶等的叶片(airfoil)部件通常由等轴的、定向凝固(DS)的或单晶(SX)的超合金形成。与等轴晶体的涡轮机叶片相比,定向凝固(DS)的或单晶(SX)的涡轮机叶片具有远为优良的蠕变强度、热疲劳抗性以及抗腐蚀性。在特定的用途中,与等轴晶体的涡轮机叶片相比,DS或SX涡轮机叶片已证实在蠕变强度和热疲劳抗性方面具有高达九倍的相对寿命,并且针对抗腐蚀性,具有高达三倍以上的相对寿命。
然而,单晶铸造是缓慢和昂贵的过程。如果发生设计变化,则需要制作新的模具。由于镍超合金的高的熔融温度,通常需要昂贵的陶瓷模具。另一方面,数字制造方法(如果被成功地应用)能够形成单晶而不使用模具,并且由此能够使设计变化变得经济。
发明内容
根据本发明的原理,公开了用于单晶超合金和金属的直写的方法和装置。在一个实施例中,将衬底加热到低于其熔点的预定温度,并且使用激光在沉底的表面上形成熔融池。衬底设置在基板上,并且激光和基板可以相对彼此移动,激光被用于直接金属沉积并且衬底被加热到低于其熔点的温度。将超合金粉末引入到熔融池,并且控制熔融池的温度以在熔融池的固体和液体界面上保持预定的热梯度,以便于在衬底上形成单晶沉积。
根据该方法,提供了用于单晶超合金和金属的直写的装置。在一个实施例中,装置包括激光,具有功率输出;基板,被配置为将衬底保持在其上;DMD头,被配置为将超合金粉末流提供到衬底上;感应热源,被设置为将基板上的衬底加热到预定温度;以及控制器,用于控制激光的功率输出以保持预定温度。控制器响应于以下中的至少一个的测量温度:衬底上的熔融池,以及超合金粉末。
根据本文提供的描述,其他的适用领域将变得显而易见。本概述中的描述和特定示例仅是出于说明目的,而并非是要限制本公开的范围。
附图说明
本文中描述的附图仅出于对所选择的实施例而非所有可能的实现方式进行说明的目的,而不是要限制本公开的范围。
图1示出了根据一个实施例的实验装置;
图2示出了根据一个实施例的熔融池温度控制过程;以及
图3示出了根据一个实施例的用于熔融池温度控制器的算法的流程图。
在附图的全部多个视图中,相对应的附图标记指示相对应的部分。
具体实施方式
现在将参照附图更完整地描述示例实施例。提供了示例实施例以使得本公开变得充分,并且将范围完整地传达给本领域技术人员。阐述了大量的具体细节,例如特定部件、设备、以及方法的示例,以提供对本公开的实施例的充分理解。对本领域技术人员显而易见的是,特定的细节不需要被采用、示例实施例可以以多种不同的方式实现,并且这些细节和实施例都不应该被解释为限制本公开的范围。在一些示例实施例中,没有详细描述公知的过程、公知的设备结构、以及公知的技术。
在本文中使用的术语仅出于描述特定示例实施例的目的而非旨在进行限制。如本文中使用的,单数形式“一”、“一个”、以及“该”可能旨在还包括复数形式,除非上下文明确地另外指示。术语“包括”、“含有”、“包含”、以及“具有”是开放性的并且因此表示存在所描述的特征、单体、步骤、操作、元件、和/或部件,但不排除一个或多个其他特征、单体、步骤、元件、部件、和/或其组合的存在或添加。本文中描述的方法步骤、过程、以及操作不应该被解释为一定要求它们以讨论或示出的特定顺序来执行,除非它们被特别标识为顺序执行。还应该理解的是,可以采用额外的或可替代的步骤。
直接金属沉积(DMD,Direct Metal Deposition),一种数字增材制造工艺,使用智能的闭环反馈系统来提供用于先进燃气涡轮机技术的经济性的解决方案。本文总体上提供了用于三维单晶形状的直写的方法和装置,这样的直写是通过将固液界面处的温度梯度保持在接近常数的很窄的窗口内来促进的。
这样的三维单晶形状具有作为燃气涡轮机引擎的叶片的特定用途。然而,应该理解的是,本公开的教导不应该被视为仅限于燃气涡轮机叶片应用,而是还可以在广阔范围的应用中使用。也就是说,本文讨论的示例性的合金组合物的使用不限于燃气涡轮机叶片,并且由此可以在其他制品中采用,其他制品例如是燃气涡轮机喷嘴、轮叶、外罩,或用于燃气涡轮引擎或类似应用的其他部件。
在示例性的实施例中,部件制品10大体上是单晶。也就是说,部件制品10在体积上至少约80%,并且更优选地在体积上至少约95%是具有单一晶向的单晶粒。可能有微小体积分数的其他晶向并且还可能有由低角度边界分隔的区域。单晶结构是通过合金组合物的定向凝固来制备的,通常从籽晶或引起单晶的生长以及单晶粒取向的其他结构制备。
参照图1,总体上示出了装置20,其使用与浮区方法(floating zone method)类似的过程来为SX生长提供稳定的温度梯度和环境。装置20一般包括工作台21,工作台21上布置有其他部件。单晶基板22用于引发外延生长。单晶衬底23被示出为设置在单晶基板22上的平台27上。单晶基板22可以相对于装置20在垂直方向上移动。如所示出的,线性移动台25设置在工作台21上以控制单晶基板22的垂直移动。
在一个实施例中,衬底是具有与沉积物大体相同的组成的单晶籽晶。例如,衬底和被沉积的材料两者都可以是镍基超合金。
感应热源24被引入以便于在单晶衬底23上保持稳定的温度梯度。如所示出的,感应热源24是相对于装置20呈静态的加热线圈。由此,可以相对于感应热源24垂直地移动单晶基板22以控制单晶衬底23与感应热源24间的距离。当被设置在平台27上时,衬底23可以被设置在感应热源24内。
激光26被示出为从DMD头28出射以在单晶衬底23上生长单晶。如所示出的,4kW的激光26被用于形成单晶镍基超合金样品。然而,具有足够能量来熔融金属粉末的任何激光或热源(例如,电子束)也适合于该过程。在示出的实施例中描述的实验仅使用了4KW中的几百瓦特。DMD头28可以在水平面上移动(在X和Y轴二者上移动)以允许控制激光26的位置。由此,装置10考虑使用用于形成单晶样品的3轴移动台。
如在图2中更具体地示出的,DMD头28利用DMD粉末状金属传送系统30来将超合金粉末32流送或传送到由激光26生成的熔融池34。在一个实施例中,超合金粉末32包括镍基超合金粉末。然而,如所期望的,任何合适的超合金可以被包括在粉末32中。
通过使用感应热源24,单晶衬底23的温度被增加到接近熔融温度(例如,当衬底23是镍基合金时,大约1200℃)。感应热源24帮助在固体和液体界面上保持热梯度。
随后,当由于添加了接触粉末32和衬底23的激光26而从覆层33形成熔融池34时,粉末32被沉积到单晶衬底23上。也就是说,来自激光26的能量添加使粉末32和单晶衬底23的局部温度升高以形成熔融池34。
覆层是与衬底的组成类似的组合物。金属粉末一般是具有合适尺寸和化学组成的气雾化(gas-atomized)金属粉末,以用于在覆层中得到期望的化学性质。
在特定的实施例中,沉积气氛由惰性气体(例如,Ar、He、N2等)形成以用于氧化保护。例如,惰性气体可以流过包含装置10的沉积腔室(未示出)。
现在参照图2,总体上示出了熔融池温度控制器36。熔融池温度控制器36被配置为保持大体恒定的熔融池温度,这在固体与液体界面上保持了热梯度。高温计38以及其镜头39测量熔融池34的温度并且向控制器36发送模拟信号。控制器36进行处理,将模拟信号转换为熔融池34的实际温度,并且在熔融池34的温度与参考温度之间进行比较,这给出最好质量的沉积。
如果熔融池温度34的温度高于参考温度,则控制器36向激光功率控制器40发送低电压信号以降低激光功率。附加地或单独地,控制器36还可以向感应热控制器41发送低压信号。在熔融池温度低于参考温度的情况下,控制器36增加激光功率和/或感应功率。随着晶体生长,由于更远离激光热源,下部开始冷却,这导致固液界面温度梯度的扰动。感应热源24纠正了该问题。
图3示出了由控制器36使用的示例性方法42。在44处,读取高温计模拟输入以确定熔融池的温度。在46处,沉积过程开始。在47处,激活感应热源24。在48处,将熔融池温度与参考温度相比较。如果熔融池温度高于参考温度,则在50处,向激光功率控制器40和/或感应功率控制器41发送信号以分别降低激光功率和/或感应功率。相反地,如果熔融池温度低于参考温度,则在52处,向激光功率控制器40和/或感应功率控制器41发送信号以分别增加激光功率和/或感应功率。在54处,测量熔融池温度,并且过程重复。由此,在沉积期间,熔融池温度可以被实时地控制。
在一个实施例中,控制器36、激光功率控制器40和/或感应功率控制器41可以包括计算机或其他合适的处理单元。由此,在多个实施例中,控制器36可以包括合适的计算机可读指令,当这些指令被实施时,将控制器36配置为执行各种不同的功能,例如,接收、发送和/或执行激光功率输出控制信号。
计算机一般包括处理器和存储器。处理器可以是任何已知的处理设备。存储器可以包括任何合适的计算机可读介质或媒体,包括但不限于RAM、ROM、硬盘驱动器、闪存驱动器、或其他存储器设备。存储器存储可以由处理器访问的信息,包括可以由处理器执行的指令。该指令可以是任何指令集,当由处理器执行时,使得处理器提供期望的功能。例如,指令可以是以计算机可读形式表示的软件指令。当软件被使用时,任何合适的编程语言、脚本语言、或其他类型的语言或语言的组合可以被用于实现包含在本文中的教导。可替代地,指令可以由硬线逻辑或其他电路实现,包括但不限于专用电路。
存储器还可以包括可以由处理器取回、操纵或存储的数据。例如,在接收从高温计测量的温度之后,存储器可以存储温度信息。此外,存储器可以存储针对各种衬底材料和/或粉末材料的参考温度。
计算设备可以包括用于通过网络来访问信息的网络接口。网络可以包括诸如Wi-Fi网络、LAN、WAN、互联网、蜂窝网和/或其他合适的网络等的网络的组合并且可以包括任何数量的有线或无线通信链接。例如,计算设备可以通过有线或无线网络与高温计和/或激光功率控制器通信。
如在方程1中所示的,单晶的生长速率取决于固体中的温度梯度:
Rmax=(Ks·Gs)/(ps·H)
其中:Rmax是最大晶体生长速率,Ks是固体沉积晶体的热导率,Gs是固液界面处的热梯度,Ps是固体密度,以及H是融化潜热。应该注意到,Ks、Ps、以及H是材料特性并且不能够由过程控制,但Gs可以。因此,组合起来的激光和感应加热提供了增加生长速率的额外参数。
本发明由此去除了对用于生长单晶的昂贵的模具的需求并且因此去除了从概念到实现的交付时间(lead time)。因此,双加热系统提供了工艺灵活性以及提高生产率的途径。可以预见的是,在一些实施例中,可以使用除了激光和感应之外的可替代的热源。这样的可替代的热源可以包括电子束、等离子弧、电弧、电阻加热等。然而,针对所使用的特定的热源,可能需要经修改的控制算法。
已经出于示例和描述的目的,提供了对实施例的上述描述。这并不是要穷尽或限制本公开。特定实施例的单独的元件或特征一般不限于该特定的实施例,但是,当可以适用时,这些元件或特征是可互换的并且可以在选择的实施例中使用,即使没有特别地示出或描述。同一个实施例可以以多种方式变化。这样的变化不应该被视为对本公开的偏离,并且所有这样的修改都旨在被包括在本公开的范围内。

Claims (19)

1.一种用于单晶合金的直写的方法,所述方法包括:
使用热源将衬底加热到低于其熔点的预定温度;
使用与所述热源分离的激光在所述衬底的表面上形成熔融池,其中,所述衬底设置在基板上,以及其中,所述激光和所述基板能够相对彼此移动,所述激光用于直接金属沉积;
将超合金粉末引入到所述熔融池;以及
使用所述热源和所述激光控制所述衬底和所述熔融池的温度以在所述熔融池的固体与液体界面处保持预定的热梯度,以便于在所述衬底上形成单晶沉积。
2.根据权利要求1所述的方法,其中,所述激光具有可变功率源并且所述热源具有可变功率源,以及其中,使用所述热源和所述激光控制所述熔融池的温度包括调整所述激光的所述可变功率源和所述热源的所述可变功率源。
3.根据权利要求1所述的方法,其中,所述激光具有能够由激光功率控制器控制的可变功率输出并且所述热源具有由热源控制器控制的可变功率输出,以及其中,控制所述熔融池的温度包括:
测量所述熔融池的温度;
接收在控制器处测量的温度;
将测量温度与参考温度相比较;以及
调整所述激光的所述可变功率输出和所述热源的所述可变功率输出。
4.根据权利要求3所述的方法,其中,所述测量温度低于所述参考温度,以及其中,调整所述激光的所述可变功率输出和所述热源的所述可变功率输出包括增加所述激光的所述可变功率输出和增加所述热源的所述可变功率输出。
5.根据权利要求4所述的方法,其中,增加所述激光的所述可变功率输出包括增加由所述激光功率控制器提供的电压,并且其中,增加所述热源的所述可变功率输出包括增加由所述热源控制器提供的电压。
6.根据权利要求3所述的方法,其中,所述测量温度高于所述参考温度,以及其中,调整所述激光的所述可变功率输出和所述热源的所述可变功率输出包括降低所述激光的所述可变功率输出和降低所述热源的所述可变功率输出。
7.根据权利要求6所述的方法,其中,降低所述激光的所述可变功率输出包括降低由所述激光功率控制器提供的电压,并且其中,降低所述热源的所述可变功率输出包括降低由所述热源控制器提供的电压。
8.根据权利要求1所述的方法,其中,所述激光以及所述基板能够相对彼此在三个方向上移动。
9.根据权利要求1所述的方法,还包括:
相对于所述衬底,在水平面上移动所述激光。
10.根据权利要求1所述的方法,还包括:
相对于所述激光,在垂直方向上移动所述基板。
11.一种用于单晶合金的直写的装置,包括:
激光,具有功率输出;
基板,被配置为将衬底保持在其上;
直接金属沉积头,被配置为将超合金粉末流提供到所述衬底上;
感应热源,被设置为将所述基板上的所述衬底加热到预定温度;以及
控制器,被配置为控制所述感应热源和所述激光的所述功率输出以保持所述预定温度,其中,所述控制器被配置为响应于以下中的至少一个的测量温度:所述衬底上的熔融池,以及所述超合金粉末。
12.根据权利要求11所述的装置,还包括:
高温计,被配置为测量以下中的至少一个的温度:所述衬底上的熔融池,以及所述超合金粉末。
13.根据权利要求12所述的装置,其中,所述高温计与所述控制器通信。
14.根据权利要求13所述的装置,其中,所述激光和所述感应热源具有由所述控制器控制的可变功率输出。
15.根据权利要求14所述的装置,其中,所述控制器是激光控制器和感应热源控制器。
16.根据权利要求11所述的装置,其中,所述激光通过所述直接金属沉积头传递到所述衬底上以形成熔融池。
17.根据权利要求11所述的装置,其中,所述激光以及所述基板能够相对彼此在三个方向上移动。
18.根据权利要求11所述的装置,其中,所述激光能够相对于所述衬底在水平方向上移动。
19.根据权利要求11所述的装置,其中,所述基板能够相对于所述激光在垂直方向上移动。
CN201580052187.2A 2014-08-26 2015-08-24 用于单晶超合金和金属的直写的装置和方法 Active CN106715036B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462041884P 2014-08-26 2014-08-26
US62/041,884 2014-08-26
PCT/US2015/046531 WO2016032953A1 (en) 2014-08-26 2015-08-24 Apparatus and method for direct writing of single crystal super alloys and metals

Publications (2)

Publication Number Publication Date
CN106715036A CN106715036A (zh) 2017-05-24
CN106715036B true CN106715036B (zh) 2019-12-10

Family

ID=55400405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580052187.2A Active CN106715036B (zh) 2014-08-26 2015-08-24 用于单晶超合金和金属的直写的装置和方法

Country Status (4)

Country Link
US (2) US10350708B2 (zh)
EP (1) EP3186029B1 (zh)
CN (1) CN106715036B (zh)
WO (1) WO2016032953A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150367418A1 (en) 2014-06-20 2015-12-24 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10443115B2 (en) * 2015-08-20 2019-10-15 General Electric Company Apparatus and method for direct writing of single crystal super alloys and metals
EP3370948A4 (en) 2015-11-06 2019-07-24 Velo3d Inc. PROFESSIONAL THREE-DIMENSIONAL PRINTING
US10207454B2 (en) * 2015-12-10 2019-02-19 Velo3D, Inc. Systems for three-dimensional printing
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
DE102016207893A1 (de) * 2016-05-09 2017-11-09 Siemens Aktiengesellschaft Bauplattform für die additive Herstellung und Verfahren
WO2017200401A1 (en) * 2016-05-18 2017-11-23 General Electric Company Component and method of forming a component
EP3250004B1 (de) * 2016-05-25 2019-03-13 MTU Aero Engines GmbH Vorrichtung zur induktiven erwärmung eines bauteils
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
DE102016211935B4 (de) 2016-06-30 2019-06-06 Sauer Gmbh Vorrichtung und Verfahren zur Prozessüberwachung bei einem Auftragschweiß-Verfahren
US20180126461A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US20180186082A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180281237A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
RU2638850C1 (ru) * 2017-05-10 2017-12-18 Андрей Игоревич Горунов Способ выращивания монокристалла и устройство для его осуществления
FR3071516B1 (fr) * 2017-09-25 2022-07-29 Safran Aircraft Engines Procede de fabrication d'une piece comprenant deux superalliages differents
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
CN108672936B (zh) * 2018-05-17 2020-04-10 湖南科技大学 一种基于感应加热熔丝与激光复合的增材制造装置与方法
CN108620587B (zh) * 2018-05-17 2020-10-16 湖南科技大学 一种金属颗粒感应加热的增材制造装置及其使用方法
KR102500965B1 (ko) * 2021-09-23 2023-02-17 모니텍주식회사 3d 프린팅 장치 및 3d 프린팅 장치의 제어 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637274A1 (en) * 2004-09-16 2006-03-22 Rolls-Royce Plc Forming structures by laser deposition
CN100377830C (zh) * 2002-08-28 2008-04-02 P.O.M.集团公司 用于在金属底板上形成金属部分的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554837A (en) 1993-09-03 1996-09-10 Chromalloy Gas Turbine Corporation Interactive laser welding at elevated temperatures of superalloy articles
DE69620686T2 (de) * 1995-01-13 2002-11-21 Tokai Ind Sewing Machine Laserbearbeitungsmaschine und nähmaschine mit einer laserbearbeitungsfunktion
EP1340583A1 (en) * 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
DE60220930T2 (de) * 2002-11-29 2008-03-13 Alstom Technology Ltd. Verfahren zur Herstellung, Modifizierung oder Reparatur von einkristallinen oder gerichtet erstarrten Körpern
US6815636B2 (en) * 2003-04-09 2004-11-09 3D Systems, Inc. Sintering using thermal image feedback
US20090283501A1 (en) * 2008-05-15 2009-11-19 General Electric Company Preheating using a laser beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100377830C (zh) * 2002-08-28 2008-04-02 P.O.M.集团公司 用于在金属底板上形成金属部分的方法
EP1637274A1 (en) * 2004-09-16 2006-03-22 Rolls-Royce Plc Forming structures by laser deposition

Also Published As

Publication number Publication date
EP3186029B1 (en) 2022-04-06
CN106715036A (zh) 2017-05-24
US10350708B2 (en) 2019-07-16
EP3186029A1 (en) 2017-07-05
US20170274476A1 (en) 2017-09-28
US20160258045A1 (en) 2016-09-08
EP3186029A4 (en) 2018-06-13
WO2016032953A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
CN106715036B (zh) 用于单晶超合金和金属的直写的装置和方法
US11661644B2 (en) Apparatus and method for direct writing of single crystal super alloys and metals
CA2230323C (en) Method for producing monocrystalline structures
EP3096905B1 (en) A method of additive manufacturing utilizing an epitaxy process
US10875124B2 (en) Method, use and apparatus for producing a single-crystalline work piece
JP6117382B2 (ja) 光学的に透過性のスラグによる材料処理法
WO2014074947A3 (en) Additive manufacturing and repair of metal components
US11007575B2 (en) Method for producing a single-crystalline workpiece
BR112015008352B1 (pt) Método de manufatura aditiva de fabricação de um objeto
Liu et al. Effect of substrate preset temperature on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy
CN105689712A (zh) 金属基复合材料结构件激光直接制造方法及装置
Liu et al. Effect of oblique angle on the formability, crystal growth behavior and microstructure in laser direct energy deposited thin-wall structure of single-crystal superalloy
RU2574536C2 (ru) Способ изготовления металлического компонента посредством аддитивного лазерного изготовления
CN117403154A (zh) 一种适用于激光近净成型镍钛形状记忆合金的热处理工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: michigan

Patentee after: University of Michigan Board of Directors

Address before: michigan

Patentee before: The University of Michigan

CP01 Change in the name or title of a patent holder