CN111315531B - 用于在增材制造操作期间测量辐射热能的系统和方法 - Google Patents

用于在增材制造操作期间测量辐射热能的系统和方法 Download PDF

Info

Publication number
CN111315531B
CN111315531B CN201880064101.1A CN201880064101A CN111315531B CN 111315531 B CN111315531 B CN 111315531B CN 201880064101 A CN201880064101 A CN 201880064101A CN 111315531 B CN111315531 B CN 111315531B
Authority
CN
China
Prior art keywords
scans
grid
additive manufacturing
energy density
thermal energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880064101.1A
Other languages
English (en)
Other versions
CN111315531A (zh
Inventor
R·布鲁斯·马迪根
拉尔斯·雅克麦登
格伦·维克勒
马克·J·科拉
维韦克·R·达弗
达伦·贝克特
阿尔贝托·M·卡斯特罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Divergent Technologies Inc
Original Assignee
Sigma Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Labs Inc filed Critical Sigma Labs Inc
Priority to CN202211143065.2A priority Critical patent/CN115319115A/zh
Publication of CN111315531A publication Critical patent/CN111315531A/zh
Application granted granted Critical
Publication of CN111315531B publication Critical patent/CN111315531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/02Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • B23K26/125Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases of mixed gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/31Calibration of process steps or apparatus settings, e.g. before or during manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本公开描述了用于表征增材制造工艺的各种方法和设备。一种用于表征增材制造工艺的方法可包括:生成能量源跨越构建平面的多个扫描;使用光学传感器测量在多个扫描中的每个扫描期间从构建平面辐射的能量的量;确定在多个扫描期间所遍历的构建平面的面积;基于辐射的能量的量和由多个扫描所遍历的构建平面的面积,确定针对由多个扫描所遍历的构建平面的面积的热能密度;将热能密度映射到构建平面中的一个或多个位置;确定热能密度是由密度值范围之外的密度来表征的;以及其后,调整能量源跨越构建平面中的一个或多个位置或在构建平面中的一个或多个位置附近的后续扫描。

Description

用于在增材制造操作期间测量辐射热能的系统和方法
相关申请的交叉引用
本申请要求于2017年8月1日提交的第62/540,016号美国临时专利申请、于2018年2月21日提交的第62/633,487号美国临时专利申请以及于2018年3月15日提交的第62/643,457号美国临时专利申请的优先权,所述专利申请中的每个申请的名称为:“用于在增材制造操作期间测量能量输入的系统和方法”,所述专利申请的公开内容出于所有目的通过引用而被全部并入本文。
背景技术
通过添加材料和施加能量的组合,零件的增材制造(additive manufacturing)或者顺序组装或构造具有多种形式,并且当前存在于许多具体的实施方式和实施例中。可通过使用涉及虚拟地形成任何形状的三维零件的多种不同工艺中的任意工艺来执行增材制造。各种工艺的共同点是分别使用紫外线、高功率激光或电子束逐层地对液体、粉末状或颗粒状原料进行烧结、固化或熔化。不幸的是,用于确定以该方式制造的所得零件的质量的既定工艺受到限制。常规的质量保证测试通常涉及对零件的机械、几何或冶金性能进行后处理测量,这通常会导致零件被破坏。虽然破坏性测试是验证零件质量的一种公认方式,但由于其允许仔细检查零件的各种内部特征,因此出于明显的原因,这样的测试不能应用于生产件(production part)。因此,需要一种无损且准确地验证通过增材制造来生产的生产件的机械、几何和冶金性能的方式。
发明内容
所描述的实施例涉及增材制造,这涉及使用采取强的热能的移动区域的形式的能量源。如果该热能引起所添加的材料的物理熔化,那么这些工艺被广泛已知为焊接工艺。在焊接工艺中,被增量地和顺序地添加的材料被能量源以类似于熔焊的方式熔化。所描述的实施例适于使用的示例性焊接工艺包括使用具有粉末床的扫描能量源的工艺和使用电弧、激光和电子束作为能量源的送丝工艺(wire-fed process)。
当所添加的材料采取粉末层的形式时,在将粉末材料的每个增量层顺序地添加到正被构造的零件之后,扫描能量源通过粉末层的焊接区域来熔化增量添加的粉末,从而形成移动的熔化区域,在下文中称为熔化池(melt pool),从而一旦固化,它们便成为位于新的层下方的先前顺序添加并被熔化和固化的层的一部分,以形成正在构造的零件。由于增材机械加工过程可能是漫长的并且包括任意数量的熔化池的通道,因此,当熔化池用于固化所述该部分时,难以避免熔化池的大小和温度的至少轻微变化。本文描述的实施例减少或最小化了由熔化池的大小和温度的变化而引起的不连续性。应注意的是,由于加热元件的高行进速率和形成三维结构所需的复杂图案,增材制造工艺可由与计算机数控(CNC)相关联的一个或多个处理器驱动。
所描述的实施例的总体目的在于将例如质量推断、工艺控制或者两者的光学感测技术应用于增材制造工艺。光学传感器可用于通过跟踪与其工艺中物理现象相关联的变量的演变来跟踪该工艺中物理现象的演变。本文中,光学可包括电磁光谱的一部分,电磁光谱包括近红外(IR)、可见以及近紫外(UV)。通常,光谱的波长被认为从380nm到780nm。然而,近UV和IR的波长分别可延伸低至1nm和高至3000nm。从光学传感器收集的传感器读数可用于确定工艺中质量度量(in process quality metrics,IPQM)。一种这样的IPQM是热能密度(TED),其有助于表征施加到零件不同区域的能量。
TED是对用户限定的激光粉末床熔合工艺参数(例如,激光功率、激光速度、扫描间距(hatch spacing)等)敏感的度量。然后,可将该度量用于使用IPQM与基准数据集(baseline dataset)进行比较的分析。可针对每个扫描计算所得的IPQM,并使用点云(point-cloud)将IPQM以图形或三维进行显示。此外,IPQM与指示制造缺陷的基准数据集的比较可用于生成用于工艺参数的控制信号。在一些实施例中,在需要详细的热分析的情况下,可针对每个扫描的离散部分确定热能密度。在一些实施例中,可将来自多个扫描的热能数据划分为网格的离散网格区域,从而允许每个网格区域反映针对层或预定数量的层在每个网格区域处所接收到的能量的总量。
公开了一种增材制造方法,该增材制造方法包括以下:生成能量源跨越构建平面的多个扫描;使用监测构建平面的光学传感器测量在多个扫描中的每个扫描期间从构建平面辐射的能量的量;确定在多个扫描期间所遍历的构建平面的面积;基于辐射的能量的量和由多个扫描所遍历的构建平面的面积,确定针对由多个扫描所遍历的构建平面的面积的热能密度;将热能密度映射到构建平面中的一个或多个位置;确定热能密度是由密度值范围之外的密度来表征的;以及其后,调整能量源跨越构建平面中的一个或多个位置或在构建平面中的一个或多个位置附近的后续扫描。
公开了一种增材制造方法,该增材制造方法包括以下:生成能量源跨越构建平面的扫描;使用监测粉末床的光学传感器测量在扫描期间从粉末床辐射的能量的量;确定与扫描相关联的面积;基于辐射的能量的量和扫描的面积,确定针对扫描的面积的热能密度;确定热能密度是由密度值范围之外的密度来表征的;以及其后,调整能量源跨越构建平面的后续扫描。
公开了一种增材制造方法,该增材制造方法包括以下:使用能量源执行增材制造操作;接收在能量源跨越粉末床扫描期间与光学二极管相关联的传感器数据;接收指示能量源何时接通的驱动信号数据;使用能量源驱动信号数据来识别当能量源接通时所收集的传感器数据;将传感器数据划分为多个样品段,多个样品段中的每个样品段对应于扫描的一部分;确定针对多个样品段中的每个样品段的热能密度;以及基于多个样品段中的每个样品段的热能密度,识别零件中最有可能包含制造缺陷的一个或多个部分。
公开了一种增材制造方法,该增材制造方法包括以下:生成能量源跨越构建平面的多个扫描;确定包括多个扫描的网格区域,其中,该网格区域由网格面积来表征;使用光学传感器在多个扫描中的每个扫描期间生成传感器读数;使用传感器读数确定在多个扫描期间从构建平面辐射的能量的总量;基于辐射的能量的总量和网格面积来计算与网格区域相关联的热能密度;确定与网格区域相关联的热能密度是由热能密度值范围之外的热能密度来表征的;以及其后,调整能量源的输出。
公开了一种增材制造方法,该增材制造方法包括以下:将构建平面的一部分限定为包括多个网格区域的网格,每个网格区域具有网格区域面积;生成能量源跨越构建平面的多个扫描;使用光学传感器在多个扫描中的每个扫描期间生成传感器读数;针对多个扫描中的每个扫描,将多个传感器读数中的每个传感器读数的部分映射到多个网格区域中的相应的一个网格区域;针对多个网格区域中的每个网格区域:
对映射到每个网格区域的传感器读数求和;以及基于所求和的传感器读数和网格区域面积来计算基于网格的热能密度;确定与多个网格区域中的一个或多个网格区域相关联的基于网格的热能密度是由热能密度值范围之外的热能密度值来表征的;以及其后,调整能量源的输出。
附图说明
通过以下结合附图的详细描述,将更容易理解本公开,其中,相同的附图标记表示相同的结构元件,并且在附图中:
图1A是具有能量源的增材制造系统中使用的光学感测设备的示意性图示,在该具体实例中,采用激光光束;
图1B是具有能量源的增材制造系统中使用的光学感测设备的示意性图示,在该具体实例中,采用电子束;
图2示出了增材制造工艺中使用的样品扫描图案;
图3示出了表示用于识别零件中最有可能包含制造缺陷的部分的方法的流程图;
图4A至图4H示出了与步进工艺(step by step process)相关联的数据以使用热能密度来识别零件中最有可能包含制造缺陷的部分;
图5示出了详细地描述了如何使用子扫描数据隔离(scanlet data segregation)来完成IPQM评估的流程图;
图6A至图6F示出了与步进工艺相关联的数据以使用热能密度来识别零件中最有可能包含制造缺陷的部分;以及
图7A至图7C示出了将IPQM度量与后处理金相学进行比较的测试结果;
图8示出了可替代工艺,在可替代工艺中由光学传感器(诸如,非成像光电探测器)记录的数据可被处理以表征增材制造构建工艺;
图9A至图9D示出了指示多个扫描如何可贡献于在单个网格区域处引入的功率的可视化描绘;
图10A示出了根据所描述的实施例适于使用的示例性涡轮叶片;
图10B示出了示例性制造配置,在该示例性制造配置中,可在构建平面1006顶上同时制造25个涡轮叶片;
图10C至图10D示出了图10B中所描绘的配置的不同层的不同截面图;
图11A至图11B示出了两个不同的涡轮叶片的基部的截面图;
图11C示出了图示出两个不同的基部之间的表面一致性方面(surfaceconsistency)的差异的图片;
图12图示了针对与多个不同的构建相关联的零件的热能密度;
图13至图14B图示了如何可使用热能密度来使用原位测量控制零件的操作的示例;
图14C示出了强调了由能源设置远超出工艺窗口(process window)的范围而导致的各种物理效应的另一功率密度图;
图14D示出了熔化池的大小和形状如何可根据激光功率和扫描速度设定而变化;
图15A至图15F图示了如何可动态地创建网格以表征和控制增材制造操作;
图16示出了用于建立和维持对增材制造操作进行反馈控制的示例性控制回路1600;
图17A示出了跨越构建板的粉末的标准分布;
图17B示出了当重涂机臂(recoater arm)回收不足量的粉末并且不足量的粉末跨越构建板铺展时,所得的粉末层的厚度可如何变化;
图17C示出了构建板的黑白照片,在构建板的黑白照片中,粉末的少量供给导致仅部分覆盖了布置在构建板上的九个工件;以及
图17D示出了当能量源使用相同的输入参数跨越所有九个工件进行扫描时,所检测的热能密度是如何基本不同的。
具体实施方式
图1A示出了使用一个或多个光学感测设备来确定热能密度的增材制造系统的实施例。热能密度对例如能量源功率功率、能量源速度和扫描间距等工艺参数的变化敏感。图1A的增材制造系统使用激光器100作为能量源。激光器100发射激光光束101,激光光束101穿过部分反射反光镜(partially reflective mirror)102并进入扫描和聚焦系统103,扫描和聚焦系统103随后将光束投射到工作平台105上的小区域104。在一些实施例中,工作平台是粉末床。由于高材料温度而从小区域104发射光能106。
在一些实施例中,扫描和聚焦系统103可被配置为收集从光束相互作用区域104发射的光能106中的一些。部分反射反光镜102可反射光能106,如光学信号107所描绘的。光学信号107可被多个同轴光学传感器(on-axis optical sensor)109询问,每个同轴光学传感器109通过一系列其他部分反射反光镜108接收光学信号107中的一部分。应注意的是,在某些实施例中,增材制造系统可仅包括具有全反射反光镜108的一个同轴光学传感器109。
应注意的是,所收集的光学信号107可能不具有与从光束相互作用区域104发射的光能106相同的光谱内容,因为信号107在经过多个光学元件(诸如,部分反射反光镜102、扫描和聚焦系统103和一系列其他部分反射反光镜108)之后遭受了一些衰减。这些光学元件均可具有其自身的透射和吸收特性,从而导致衰减量变化,因此限制了从光束相互作用区域104辐射的能量的光谱中的某些部分。由同轴光学传感器109所生成的数据可对应于施加在工作平台上的能量的量。
同轴光学传感器109的示例包括但不限于光至电信号换能器(诸如高温计和光电二极管)(即,光电探测器)。光学传感器还可包括光谱仪以及在可见、紫外或红外频谱中工作的低速或高速相机。同轴光学传感器109位于随着光束移动的参考系中,即,当激光光束101在工作平台105上进行扫描时,同轴光学传感器109看见被激光光束所触摸的所有区域并且能够从所触摸的工作平台105的所有区域收集光学信号107。由于由扫描和聚焦系统103所收集的光能106行进的路径几乎平行于激光光束,因此传感器109可被视为同轴传感器。
在一些实施例中,增材制造系统可包括离轴传感器110,离轴传感器110相当对于激光光束101处于固定的参考系中。这些离轴传感器110将具有给定的视场111,该给定的视场111可能非常狭窄或者其可包括整个工作平台105。这些传感器的示例可包括但不限于高温计、光电二极管、光谱仪、在可见、紫外或红外频谱中工作的高速或低速相机等。与能量源不对准的离轴传感器110被视为离轴传感器(off-axis sensor)。离轴传感器还可以是组合了一系列物理测量模态的传感器,诸如激光超声传感器,其可利用一个激光光束主动地激发或“撞击(ping)”沉积物,然后使用激光干涉仪来测量所得的超声波或者结构的“近似瞬态的高频共振响应(ringing)”,以在正构建沉积物时测量或预测沉积物的机械性能或机械完整性。激光超声传感器/干涉仪系统可用于测量材料的弹性性能,这可提供对例如材料的孔隙率和其他材料性能的深入理解。此外,可使用激光超声/传感器干涉仪系统来测量导致材料振动的缺陷形成。
此外,在机械装置、铺展粉末的重涂机臂112上可存在接触传感器113。这些传感器可以是加速计、振动传感器等。最后,可存在其他类型的传感器114。这些传感器可包括测量宏观热场的诸如热电偶的接触传感器,或可包括声学发射传感器,该声学发射传感器可检测在正构建沉积物时沉积物中发生的开裂和其他冶金现象。可在粉末添加过程期间利用这些接触传感器来表征重涂机臂112的操作。由同轴光学传感器109和离轴传感器110所收集的数据可用于检测与重涂机臂112相关联的工艺参数。因此,系统可检测并解决被铺展粉末的表面中的不均匀性。由粉末铺展过程中的变化所导致的粗糙表面可由接触传感器113来表征,以预期可能的问题区域或所得零件中的不均匀性。
在一些实施例中,激光光束101可熔化粉末铺展中的峰,从而导致后续的粉末层具有相对应的峰。在某些点处,峰可接触重涂机臂112,从而可能损坏重涂机臂112并导致其他的铺展粉末不均匀。因此,本发明的实施例可在铺展粉末中的不均匀性导致工作平台105上的构建区域中的不均匀性之前检测该铺展粉末中的不均匀性。本领域普通技术人员将认识到许多变型、修改和替代例。
在一些实施例中,同轴光学传感器109、离轴传感器110、接触传感器113和其他传感器114可被配置为生成工艺中原始传感器数据(in-process raw sensor data)。在其他实施例中,同轴光学传感器109、离轴光学传感器110、接触传感器113和其他传感器114可被配置以处理数据并生成降阶传感器数据(reduced order sensor data)。
在一些实施例中,提供包括处理器118、计算机可读介质120和I/O接口122的计算机116,并将其耦合到增材制造系统的适当系统组件,以从各种传感器收集数据。由计算机116接收的数据可包括工艺中原始传感器数据和/或降阶传感器数据。处理器118可使用工艺中原始传感器数据和/或降阶传感器数据来确定激光器100的功率和控制信息,包括相对于工作平台105的坐标。在其他实施例中,包括处理器118、计算机可读介质120和I/O接口122的计算机116可提供对各种系统部件的控制。计算机116可发送、接收和监测与激光器100、工作平台105和重涂机臂112相关联的控制信息,以控制和调整针对每个部件的相应工艺参数。
处理器118可用于利用由各种传感器所接收的数据来执行计算,以生成工艺中质量度量。在一些实施例中,由同轴光学传感器109和/或离轴传感器110所生成的数据可用于确定构建工艺期间的热能密度。处理器可接收与能量源跨越构建平面的移动相关联的控制信息。然后,处理器可使用控制信息来将来自一个或多个同轴光学传感器109和/或离轴传感器110与相对应的位置相关联。然后,可组合相关数据以计算热能密度。在一些实施例中,处理器118可响应于超出期望范围的其他度量或热能密度,使用热能密度和/或其他度量来生成用于工艺参数(例如,激光功率、激光速度、扫描间距和其他工艺参数)的控制信号。以此方式,可改善可能以其他方式破坏生产件的问题。在一次生成多个零件的实施例中,响应于超出期望范围的度量而对工艺参数进行的及时更正可防止相邻零件从能量源接收太多或太少能量。
在一些实施例中,I/O接口122可被配置以向远程位置传输所收集的数据。I/O接口122可被配置为从远程位置接收数据。所接收的数据可包括基准数据集、历史数据、后处理检查数据和分类器数据。远程计算系统可使用由增材制造系统所传输的数据来计算工艺中质量度量。远程计算系统可响应于具体工艺中质量度量而向I/O接口122传输信息。
在电子束系统的情况下,图1B示出了可能的配置和传感器的布置。电子束枪150产生电子束151,电子束151被电磁聚焦系统152聚焦,然后被电磁偏转系统153偏转,从而形成了精确聚焦和定向的电子束154。电子束154在工件156上形成热束-材料相互作用区155。从工件156辐射可由一系列光学传感器159收集的光能158,每个光学传感器159具有其自身相应的视场160,光能158可再被局部地隔离到互相作用区域155,或者可包围整个工件156。此外,光学传感器159可具有其自身的跟踪和扫描系统,该跟踪和扫描系统可在电子束154跨越工件156移动时追随电子束154。
无论传感器159是否具有光学跟踪,传感器159可包括高温计、光电二极管、光谱仪以及在可见、UV或IR光谱区域中工作的低速或高速相机。传感器159还可以是组合了一系列物理测量模态的传感器,诸如激光超声传感器,其可利用一个激光光束主动激发或“撞击”沉积物,然后使用激光干涉仪来测量所得的超声波或及结构的“近似瞬态的高频共振响应”,以在正构建沉积物时测量或预期沉积物的机械性能或机械完整性。此外,在重涂机臂上可存在接触传感器113。这些传感器可以是加速计、振动传感器等。最后,可存在其他类型的传感器114。这些传感器可包括测量宏观热场的诸如热电偶的接触传感器,或可包括声学发射传感器,该声学发射传感器可检测在正构建沉积物时沉积物中发生的开裂和其他冶金现象。在一些实施例中,一个或多个热电偶可用于校准由传感器159所收集的温度数据。应注意的是,结合图1A和图1B所描述的传感器可以以所描述的方式来使用,以表征涉及顺序材料积聚的任意增材制造工艺的性能。
图2示出了用于扫描能量源跨越粉末床的可能的扫描图案。在200中,通过能量源沿着在某一方向进行交替的长路径长度的扫描来处理工件的区域。在该实施例中,扫描间距204被示出在第一扫描206与第二扫描208之间。在202中,工件的区域被分成较小的棋盘格214,该较小的棋盘格214可由第一扫描210和第二扫描212依此从左到右和从上到下进行扫描。在其他实施例中,用于各个棋盘格的扫描顺序可被随机化。可结合本文公开的增材制造工艺来利用许多扫描图案。本领域普通技术人员将认识到许多变型、修改和替代例。
图3示出了图示示例性工艺300的流程图,示例性工艺300使用由增材制造系统所生成的数据来确定热能密度并识别零件中最有可能包含制造缺陷的部分。可单独使用或者组合使用由同轴光学传感器109和离轴光学传感器110所生成的数据来确定热能密度。在302处,接收原始光电二极管数据轨迹(raw photodiode data trace)。可使用例如传感器响应于所检测到的所发射的热能而生成的电压数据来生成原始光电二极管数据轨迹。在304处,识别原始光电二极管轨迹的与具体扫描scani对应的部分。在一些实施例中,可通过参考能量源驱动信号数据(负责操控和致动能量源的驱动信号)来将单个光电二极管数据轨迹与传感器读数的剩余读数分开。在306处,确定在原始光电二极管数据轨迹下的用于scani的面积(在下文中,为pdoni)。在一些实施例中,pdoni表示积分的光电二极管电压。在一些实施例中,pdoni表示在scani期间光电二极管的平均读数。在308处,识别与scani相关联的零件p。在308处所识别的零件还可具有零件的相关联面积Ap。可通过使pdoni与如上所描述的能量源位置数据相关联来确定这两个值。工艺可在310处计算总扫描计数。在312处,可确定与scani相关联的长度Li。可使用式(1)来计算Li,其中,x1i、y1i和x2i、y2i表示用于scani的相应的开始位置和结束位置。
Figure GDA0003696261680000081
在314处,可确定用于生产零件的所有扫描的总长度Lsump。可通过对与零件相关联的每个扫描的长度Li求和来确定零件上的Lsump。在316处,可确定扫描的比例面积Ai。可使用式(2)计算Ai
Figure GDA0003696261680000082
在316处,可确定用于ith扫描的比例热能密度(TED)TEDi。TEDi是一组降序工艺特征的示例。使用原始光电二极管数据来计算TED。从该原始传感器数据中,TED计算从原始传感器数据提取降序工艺特征。TEDi对所有用户限定的激光粉末床熔合工艺参数(例如,激光功率、激光速度、扫描间距等)敏感。可使用式(3)计算TEDi
Figure GDA0003696261680000091
出于该论述的目的,“降序”是指以下方面中的一个或多个:数据压缩,即特征中的数据相比于原始数据少;数据缩减,即对原始数据进行系统分析,得出工艺度量值或其他品质因数(figures of merit);数据聚集,即将数据聚类为离散的分组和较小的变量集,其表征与原始数据本身相反的聚类;数据变换,即使用变换定律或算法对数据进行数学变换(mathematical manipulation)以将原始数据线性或非线性地映射到另一个较低维数的可变空间中;或任意其他相关此类技术,其将具有减小的数据密度、减小的数据维数、减小的数据大小、将数据转换到另一减小的空间中的净效果或所有这些效果同时发生。
TEDi可用于在工艺质量度量(IPQM)与基准数据集进行比较期间的分析。可针对每个扫描计算所得的IPQM。在318处,可比较IPQM质量基准数据集和所计算的TEDi。在零件的所计算的TED和基准数据集之间的差异超过阈值的区域中,可将这些区域识别为可能包括一个或多个缺陷和/或可对该区域近实时地执行进一步加工,以改善由TED相对于基准数据集的变化所引起的任意缺陷。在一些实施例中,可使用分类器来识别零件的可包含缺陷的部分。分类器能够将结果按照标称或按照非标称进行分组,并可通过图形和/或基于文本的媒介来表示。分类器可使用多种分类方法,该多种分类方法包括但不限于:单变量和多变量两者的统计学分类;基于启发式的分类器;基于专家系统的分类器;基于查找表格的分类器;仅基于控制上限或控制下限的分类器;与一个或多个统计学分布结合地工作的分类器,该分类器可基于置信区间和/或对自由度的考虑来建立标称阈值与非标称阈值;或不论是暗示或明示,其能够辨别一组特征数据是标称的还是非标称的任意其他分类方案。出于该论述的目的,“标称”将是指在预定义规范内的一组工艺结果(该一组工艺结果导致如此制造的零件的工艺后测量属性落入被认为是可接受的值的范围内)或用于确认“可接受的”部件的任意其他定量的、半定量的、客观的或主观方法。在于2016年9月30日提交的第15/282,822号US专利申请中提供了有关IPQM的分类的其他描述,该专利申请的公开内容出于所有目的通过引用被全部包含在此。
将领会的是,图3中图示的具体步骤提供了根据本发明的实施例的收集数据并确定热能密度的具体方法。还可根据可替代实施例执行其他顺序的步骤。此外,图3中图示的各个步骤可包括多个子步骤,该多个子步骤可以以适于单独步骤的各种顺序来执行。此外,根据具体应用,可添加其他步骤,或者可去除现有的步骤。本领域技术人员将认识到许多变型、修改和替代例。
图4A至图4H图示了工艺300中使用的用以确定TED并识别零件中可能包含缺陷的任意部分的步骤。图4A对应于步骤302,并示出了针对给定扫描长度的原始光电二极管信号402。x轴线450指示以秒为单位的时间,y轴460指示光电二极管电压。在一些实施例中,可代替地或另外地由高温计进行光学测量。信号402是光电二极管原始电压。可清楚地看到光电二极管信号402的上升404和下降406,以及在接通激光的时间期间信号的散射和变化408。以每秒给定数量的样品来收集数据。光电二极管信号402中的变化408可由在粉末床上熔化的粉末中的变化而引起。例如,光电二极管信号402的次要波谷之一可由颗粒床中的较大颗粒从固态转变为液态所吸收的能量而引起。通常,在上升事件与下降事件之间的光电二极管信号的给定区段中的数据点的数量可与扫描持续时间和采样率有关。
图4B示出了光电二极管信号402和激光驱动信号410。可使用能量源驱动信号数据产生图4B中所描绘的激光驱动信号410,在该情况下,激光驱动信号410或命令信号告知激光针对特定扫描长度而接通或关断。光电二极管信号402被叠加在激光驱动信号410上。激光驱动信号410的上升421和下降414对应于光电二极管信号402的上升404和下降406。图4B中图示的数据可用于步骤304处用以识别原始光电二极管信号402的与扫描相对应的部分。在一些实施例中,激光驱动信号410在激光关断时为~0V,在激光接通时为~5V。可通过在激光驱动信号410高于某一阈值(例如,4.5V)的情况下隔离与光电二极管信号相关联的所有数据,并通过分析排除在激光低于该阈值的情况下的所有数据来完成步骤304。
图4C示出了步骤306的一个实施例,其包括确定原始光电二极管信号402下的面积416。在一些实施例中,可使用式(4)来计算曲线下的面积:
Figure GDA0003696261680000101
可使用集成的光电二极管电压418来确定用于TEDi计算的pdoni
图4D示出了扫描420相对于零件的位置和总的扫描计数424。可使用两个值来确定与零件上的扫描位置相对应的TED。图4E示出了感兴趣部分的渲染区域。图4E还示出了多个其他零件428和埋片(witness coupon)430。图4E中的所有零件被描绘为位于粉末床432上。
图4F示出了与光电二极管数据的一部分和与四个扫描相对应的激光驱动信号数据相关联的轨迹,该轨迹可与光电二极管数据的剩余数据一起使用来确定总的样品计数434。可使用总的样品计数来计算零件上的总扫描长度LSump。通过对激光接通时间段436求和来确定总的样品计数。在一些实施例中,可使用激光接通时间段的总和以及在激光接通时间段期间扫描能量源的平均速度来确定总的扫描长度。
在收集扫描数据之后,可通过与每个激光扫描相关联的TED来计算针对每个层的TED,然后将其显示在图形440中,如图4G中所示。图形440示出了位于标称区域442和非标称区域444之内的TED值。TED区域由基准阈值438进行划分。以此方式,可容易识别零件中可能包含缺陷的层。然后,可对具有非标称TED值的层集中进行进一步的分析。
图4H示出了如何可使用点云446以三维显示针对每个扫描的TED值。点云446通过将非标称值显示为与标称值不同的颜色或强度来图示了来自标称区域442和非标称区域444的TED值在三维空间中的位置。非标称值指示零件中最有可能包含制造缺陷的部分,诸如由锁眼状孔(keyhole)形成而产生的孔隙或由于未熔合而产生的空洞。在一些实施例中,系统可基于TED生成并传输将改变一个或多个工艺参数的控制信号。
图5示出了图示示例性工艺500的流程图,示例性工艺500使用由增材制造系统所生成的数据来确定热能密度并识别零件中最有可能包含制造缺陷的部分。可单独使用或组合使用由同轴光学传感器109和离轴光学传感器110所生成的数据来确定热能密度。在502处,可收集光电二极管时间序列数据。可使用例如与传感器相关联的电压数据来生成光电二极管时间序列数据。在504处,收集激光驱动时间序列数据。激光驱动时间数据可与增材制造工艺参数(诸如,激光功率、激光速度、扫描间距、x-y位置等)相关联。在506处的工艺可通过丢弃与激光驱动时间序列数据的指示激光关断状态的部分相对应的光电二极管时间序列数据的部分来对光电二极管时间序列数据进行切片(slice)。在一些实施例中,激光驱动信号在激光关断时为~0V,在激光接通时为~5V。在506处的工艺可通过在激光驱动信号410高于某一阈值(例如,4.5V)的情况下隔离所有数据,并通过分析排除在激光低于该阈值的情况下的所有数据。在一些实施例中,周期性下降至~0.2V的光电二极管信号可被包括在样品序列数据中,因为这些样品序列数据是激光刚接通并且激光正加热材料时的时间。
在506处的工艺可仅输出激光接通光电二极管数据508。在510处的工艺可使用激光接通光电二极管数据来将时间序列数据转换为样品序列数据。在510处的工艺将激光接通光电二极管数据分段为“N”个样品段。使用20个样品段意在提供本发明一个实施例的示例。可以以不同程度的准确性/分辨率使用任意数量的样品段。在一些实施例中,该组样品段可被称为子扫描520,因为通常需要多个子扫描520来构成单个扫描。在512处的工艺可对样品516的数量进行计数。在514处的工艺可渲染激光加工部(lasered part)的面积。在一些实施例中,可使用显示器中与激光加工部相关联的像素数量来确定激光加工部面积518。在其他实施例中,可使用与工艺参数相关联的数据和扫描次数来计算出该面积。在522处,工艺使用总样品计数、激光加工部面积518和子扫描数据520来使子扫描数据归一化。在所示的实施例中,子扫描度量数据524是针对零件的与每个子扫描相关联的部分的热能密度。在一些实施例中,扫描数据也可按扫描类型进行细分。例如,增材制造机器可利用具有不同特征的扫描。特别地,轮廓扫描或设计为精加工零件的外表面的扫描可具有比设计为烧结零件的内部区域的扫描大得多的功率。因此,通过按扫描类型隔离数据也可获得更一致的结果。在一些实施例中,扫描类型的识别可基于扫描强度、扫描持续时间和/或扫描位置。在一些实施例中,可通过将检测到的扫描与由扫描计划(其与正在构建的零件相关联)所指定的扫描相关联来识别扫描类型。
接下来,工艺528接收基准扫描量度数据和热能密度,并输出IPQM质量评估530。IPQM质量评估530可用于识别零件中最有可能包含制造缺陷的部分。工艺528可包括如本说明书前面所论述的分类器。除了以上方法和系统之外,工艺528还可使用马氏距离(Mahalanobis distance)来比较候选数据(例如,子扫描度量数据524)和基准子扫描度量数据。在一些实施例中,可使用基准子扫描度量数据来计算针对每个子扫描的马氏距离。虽然关于图5所公开的实施例已经论述了使用激光作为能量源,但是对于本领域的普通技术人员将显而易见的是,鉴于上述教导,许多修改和变型是可能的,例如,可用电子束或其他合适的能量源来代替激光。
应领会的是,图5中所示的具体步骤提供了根据本发明的另一实施例的确定热能密度和识别零件中最有可能包含制造缺陷的具体方法。根据可替代实施例,也可执行其他步骤顺序。例如,本发明的可替代实施例可以以不同的顺序执行以上概述的步骤。此外,在图5中所示的各个步骤可包括多个子步骤,该多个子步骤可按照适于单独步骤的各种顺序来执行。此外,根据具体应用,可添加或去除其他步骤。本领域普通技术人员将认识到许多变型、修改和替代例。
图6A示出了光电二极管时间序列数据602。可从如图1和图2中所示的各种同轴或离轴传感器收集光电二极管时间序列数据。x轴604指示以秒为单位的时间,y轴606指示由传感器产生的电压。由传感器产生的电压与从构建平面发射的能量相关联,该能量可撞击到一个或多个传感器上。在光电二极管时间序列数据602的轨迹上图示了样品606。图4B描述了在506处的工艺,在506处的工艺中,光电二极管数据与激光驱动信号相关联。
图6B示出了激光接通光电二极管数据。x轴表示样品608的数量,y轴610表示原始传感器数据的电压。电压的下降612被包含在分析中,因为虽然电压基本上较低,但激光仍在积极地贡献于加热材料。
图6C示出了关于步骤510论述的激光接通光电二极管样品序列数据。20个样品段620可具有任意大小。二十个样品对应于~400μm的激光行进距离,激光行进速度为1000mm/s。XY信号本身的噪声约为~150μm。在一些实施例中,具有少于20个样品段,例如,2个样品段,所测量的距离和噪声将处于如下这样的比率:使得不能置信地确定点的位置。在一些实施例中,针对小于1mm的空间分辨率,可使用50个样品的限度。因此,针对具有激光行进速度为1000mm/s的50KHz数据,用于将数据分段的样品数量应在20≤N≤50的范围内。对于本领域的技术人员将显而易见的是,鉴于以上教导,许多修改和变型是可能的。
图6D对应于工艺522并且图示了其中确定每个子扫描的平均值618的实施例。在一些实施例中,对工艺522的输入包括总样品计数516、激光加工部面积518和子扫描线数据520。使用这些输入,平均值可用于确定曲线下的面积(AUC),如式(5)中所示:
AUC=V(平均)*N(样品) 式(5)
其中,V是针对每个子扫描所确定的平均电压,N是样品数。在图6D中,由于数据的宽度是固定的,因此20个样品段的平均电压等于对信号进行积分。
图6E示出了针对单个子扫描622和针对所有扫描624的激光加工部面积Ai。除了该面积之外,还可计算扫描的长度Li以及整个零件上的Li的总和LSump。可使用式(6)计算Li
Figure GDA0003696261680000131
可提供用于扫描开始和扫描结束的x和y坐标,或者可基于一个或多个直接传感器测量来确定用于扫描开始和扫描结束的x和y坐标。
图6F示出了与构建平面中的层相关联的激光加工部的渲染区域626。在一些实施例中,一旦确定了pdoni、零件的面积Ap、扫描的长度Li和总长度LSump,就可使用式(7)计算TED:
Figure GDA0003696261680000132
TED对所有用户限定的激光粉末床熔合工艺参数(例如,激光功率、激光速度、扫描间距等)敏感。TED值可用于使用IPQM与基准数据集进行比较的分析。可针对每个激光扫描确定所得的IPQM,并使用点云以图形或三维显示。图4G示出了示例性图形。图4H示出了示例性点云。
图7A至图7C示出了后处理孔隙率测量值和相对应的归一化的处理中TED测量值。该图示出的是,处理中TED测量值可以是孔隙率和其他制造缺陷的准确的IPQM预测器。图7A示出了TED度量数据与基准数据集的比较。该图单独和组合地示出了IPQM度量中每个光电二极管的值。同轴光电二极管数据702可来自与能量源对准的传感器。离轴光电二极管数据704可由与能量源不对准的传感器收集。同轴和离轴光电二极管数据的组合706产生对工艺参数中的变化的最高灵敏度。x轴708示出了零件的构建平面层;y轴710示出了所计算的TED与基准度量之间的马氏距离。
马氏距离可用于使TED数据标准化。马氏距离指示每个TED测量值与TED测量值的标称分布相差多少标准偏差。在该情况下,马氏距离指示在构建控制层526-600时,每个TED测量值与所收集的平均TED测量值相差多少标准偏差。图7A下部的图表还示出了TED如何随整体能量密度(GED)和孔隙率进行变化。特别地,对于该组试验,TED可被配置为预测零件的孔隙率,而无需进行破坏性检查。
在一些实施例中,可通过在执行测试运行的同时比较形成的金属零件的定量金相特征(例如,孔或金属间颗粒的大小和形状)和/或机械性能特征(例如,强度、韧性或疲劳度)来进一步验证增材制造装置的性能。通常,在测试零件中存在未熔化的金属粉末颗粒指示所施加的能量不足,而接受太多能量的测试零件易于生发内部腔,这均会损害所形成的零件的完整性。孔隙率714可表示这些缺陷。
在一些实施例中,用于生成图7A的标称值将取自先前的测试。在一些实施例中,由于不需要在增材制造操作期间进行计算,因此标称值也可取自后续测试。例如,当试图比较两个增材制造装置的性能时,可通过使用增材制造装置中的第一个运行测试来识别标称值。然后,可将第二增材制造装置的性能与由第一增材制造装置限定的标称值进行比较。在一些实施例中,在两个增材制造装置的性能在五个标准偏差的预定阈值内的情况下,可预期两个机器具有相当的性能(comparable performance)。在一些实施例中,预定阈值可以是从逆卡方分布(inverse chi squared distribution)得出的95%统计学置信水平。这种类型的测试方法还可用于识别随时间变化的性能。例如,在校准机器之后,可记录测试图案的结果。在该装置执行一定数量的制造操作之后,可再次执行增材制造装置。校准后立即执行的初始测试图案可用作基准,以识别增材制造装置的性能随时间的任何变化。在一些实施例中,可调节增材制造装置的设置以使增材制造装置恢复到其后校准性能。
图7B示出了使用增材制造工艺构造的零件的后处理金相。图7B示出了零件718和零件的相对应截面720。节段1至节段11对应于图7A中的节段1至节段11。在零件的截面图720中可看到工艺参数的变化以及所导致的孔隙率的变化。特别地,节段2和节段3的孔隙率最高,分别为3.38%和1.62%。通过增加样品零件中的缺陷标记722的数量,在截面中示出较高的孔隙率。
图7C示出了具有在金相期间确定的相对应截面的IPQM结果。每个截面包括以J/mm2为单位的能量密度724和孔隙率714。具有最大数量的缺陷标记722的样品对应于具有距基准最大标准化距离的TED测量。该图图示了低标准距离可预测较高的密度和低孔隙率的金相,而高标准的马氏距离则与高孔隙率和不良的金相高度相关联。例如,用于在层200周围生成层的低功率设定导致高的孔隙率714和大量的缺陷标记722。相比之下,在第600层上或第600层周围使用中间的道路设定(middle of the road settings)导致了没有可识别的缺陷标记722并且所记录的最低孔隙率值为0.06%。
图8示出了可替代工艺,在该可替代工艺中,可处理由光学传感器(诸如非成像光电探测器)记录的数据以表征增材制造构建工艺。在802处,接收原始传感器数据,原始传感器数据可包括关联在一起的构建平面强度数据和能量源驱动信号。在804处,通过比较驱动信号和构建平面强度数据,可识别各个扫描并将各个扫描定位在构建平面内。通常,能量源驱动信号将至少提供开始位置和结束位置,从该开始位置和结束位置可确定扫描延伸所跨越的面积。在806处,可将与每个扫描的强度或功率相关联的原始传感器数据归类到相对应的X和Y网格区域中。在一些实施例中,可通过使特定网格区域中的每个扫描的停留时间相关联,来将原始强度或功率数据转换成能量单位。在一些实施例中,每个网格区域可表示监测构建平面的光学传感器的一个像素。应注意的是,可使用诸如极坐标的不同坐标系来存储网格坐标,并且坐标的存储不应限于笛卡尔坐标。在一些实施例中,可将不同的扫描类型分开进行归类,以便可仅对特定的扫描类型执行分析。例如,如果那些扫描类型最有可能包含不需要的变化,则操作者可能希望专注于轮廓扫描。在808处,可对在每个网格区域处输入的能量求和,从而可使用式(8)来确定在每个网格区域处接收的能量的总量。
Figure GDA0003696261680000151
可在将新的粉末层添加到构建平面之前执行该求和或者可替代地,可将求和延迟直到已沉积了预定数量的粉末层为止。例如,可仅在增材制造工艺期间已沉积并熔合了五个或十个不同粉末层的部分后执行求和。在一些实施例中,烧结的粉末层可使零件的厚度增加约40微米;然而,该厚度将根据正使用的粉末的类型和粉末层的厚度而变化。
在810处,确定所检测到的并与每个网格区域相关联的样品的标准偏差。这可帮助识别功率读数变化量较小或较大的网格区域。标准偏差的变化可指示传感器性能有问题和/或如下情况:缺少一个或多个扫描或者一个或多个扫描的功率水平远超出标称运行参数。可使用式(9)确定标准偏差。
Figure GDA0003696261680000152
在812处,可通过将功率读数除以网格区域的总面积来确定在每个网格区域处接收的总能量密度。在一些实施例中,网格区域可具有长度约为250微米的正方形几何形状。针对每个网格区域的能量密度可使用式(10)来确定。
Figure GDA0003696261680000161
在814处,当正构建多于一个的零件时,可将不同的网格区域与不同的零件相关联。在一些实施例中,系统可包括存储的零件边界,该零件边界可用于使用网格区域的坐标和与每个零件相关联的边界来快速地将每个网格区域和其所关联的能量密度与其相应的零件关联起来。
在816处,可确定零件的每个层的面积。在层包含空洞或有助于限定内部腔的情况下,该层的大部分可能不会接收任何能量。因此,可通过仅对被识别为从能量源接收一些量的能量的网格区域进行求和来计算受影响的面积。在818处,可对与零件相关联的层的部分内的网格区域所接收到的功率的总量进行求和并除以受影响的面积,以确定针对零件的该层的能量密度。可使用式(11)和式(12)来计算面积和能量密度。
Figure GDA0003696261680000162
Figure GDA0003696261680000163
在820处,可对每个层的能量密度一起求和以获得指示由零件所接收的能量总量的度量。然后,可将零件的整体能量密度与构建平面上其他类似零件的能量密度进行比较。在822处,对来自每个零件的总能量求和。这可允许在不同的构建之间进行高级别的比较。构建比较可帮助识别系统差异,诸如粉末差异和总功率输出上的差异。最后在824处,可将求和后的能量值与其他层、零件或构建平面进行比较以确定其他层、零件或构建平面的质量。
应领会的是,图8中图示的具体步骤提供了根据本发明的另一实施例的表征增材制造构建工艺的具体方法。根据可替代实施例,也可执行其他顺序的步骤。例如,本发明的可替代实施例可以以不同的顺序执行以上概述的步骤。此外,在图8中图示的各个步骤可包括多个子步骤,该多个子步骤可以以适于单独步骤的各种顺序来执行。此外,取决于具体应用,可添加或去除其他步骤。本领域普通技术人员将认识到许多变型、修改和替代例。
图9A至图9D示出了指示多个扫描如何可贡献于在单个网格区域处引入的功率的可视化描绘。图9A描绘了由多个网格区域902组成的网格图案,该多个网格区域跨越由增材制造系统构建的零件的一部分进行分布。图9A还描绘了跨越网格区域902对角地延伸的第一能量扫描图案904。第一能量扫描图案904可通过跨越网格902进行扫描的激光或其他强的热能源来施加。图9B示出了在每个网格区域902中如何通过表示所接收到的能量的量的单一灰阶颜色来表示在零件上引入的能量,其中较暗的灰色阴影对应于较大量的能量。应注意的是,在一些实施例中,可减小网格区域902的大小以获得较高分辨率的数据。可替代地,可增加网格区域902的大小以减少存储器和处理功率的使用。
图9C示出了第二能量扫描图案906,该第二能量扫描图案906与第一能量扫描图案的能量扫描的至少一部分重叠。如附图8的文本中所论述的,在第一能量扫描图案和第二能量扫描图案重叠的情况下,以较深的阴影示出了网格区域,以图示来自两个扫描的能量如何增加了重叠的扫描图案上所接收到的能量的量。显然,该方法不限于两个重叠的扫描,并且可包括将被添加在一起以完全表示在每个网格区域处所接收到的能量的许多其他另外的扫描。
图10A示出了根据所描述的实施例适于使用的示例性涡轮叶片1000。涡轮叶片1000包括多个不同的表面,并包括需要许多不同类型的复杂扫描来产生的许多不同的特征。特别地,涡轮叶片1000包括中空的叶片部1002和锥形的基部1004。图10B示出了示例性制造配置,在该示例性制造配置中,可在构建平面1006顶上同时制造25个涡轮叶片1000。
图10C至图10D示出了图10B中所描绘的配置的具有基于网格TED的可视化层的不同层的不同截面图。图10C示出了涡轮叶片1000的层14,基于TED的可视化层图示了基部1004中的选定部分的下端如何可在涡轮叶片1000-1、1000-2和1000-3中限定多个空洞。由于能量密度数据与离散的网格区域相关联,否则将完全隐藏在涡轮叶片内的这些空洞在该基于网格TED的可视化中清晰地可见。图10D示出了基部1004的上端如何也可在涡轮叶片1000-1、1000-2和1000-3内限定多个隐藏的空洞,可从图10D中所描绘的基于网格TED的可视化层清晰地辨别该多个隐藏的空洞。
图11A至图11B示出了两个不同的涡轮叶片1000的基部1004-1和基部1004-2的截面图。图11A示出了使用标称制造设定生产的基部1004-1。基部1004-1的外表面1102和外表面1104比基部1004-1的内部1106实质上接收更多的能量。输入到外表面中的增加的能量提供了更均匀的硬化表面,从而导致沿外表面1102和外表面1104实现退火效果。可使用针对外表面1102和外表面1104的较高能量的轮廓扫描来引入该其他能量。图11B示出了基部1004-2,除了省略了轮廓扫描之外,该基部1004-2以与1004-2相同的制造设定来生产。虽然在生产基部1004-2的制造操作中利用的所有扫描也被包括在生产基部1004-1中,但是对针对覆盖每个网格区域的所有扫描的能量密度输入的求和允许操作者清晰地看到基部1004-1和1004-2之间的差异。
图11C示出了基部1004-1和基部1004-2之间的表面一致性方面的差异。明显地,省略针对基部1004-2的轮廓扫描对整体外表面质量具有实质性影响。在一致性方面,基部1004-1的外表面更光滑,并且孔较少。对基部1004-1的退火效果也应使其强度比基部1004-2实质上更高。
图12示出了针对与多个不同构建相关联的零件的热能密度。构建A至构建G均包括针对在相同的增材制造操作期间构建的大约50个不同零件(由离散圆1202表示)的热发射数据(thermal emission data)。该图示出了如何使用热发射数据来跟踪不同构建之间的差异。例如,批次A、批次B和批次C均具有相似的TED分布;但是,构建D、构建E和构建F虽然仍在公差范围内,但具有始终较小的热发射数据。在某些情况下,这些类型的变化可归因于粉末批次的变化。以此方式,热发射数据可用于跟踪可能对总体输出质量有负面影响的系统误差。应注意的是,虽然该图表描绘了基于网格TED的平均TED值,但可以为基于扫描的TED方法构建类似的图表。
图13至图14B图示了如何可使用热能密度来使用原位测量控制零件的操作的示例。图13示出了可如何生产使用能量源功率和扫描速度的不同组合进行生产的零件,然后对其进行破坏性分析以确定以克/立方厘米为单位的所得零件密度,如所描绘的。在该试验中,使用制造者建议的扫描和激光功率设定来生产与零件密度1302相关联的零件,该零件的零件密度为4.37g/cc。基于所得的密度读数,可确定虚线1304的位置。线1304指示所导致的降低的能量输入量致使粉末的没有被充分加热的部分熔合在一起,从而导致零件密度下降到阈值密度水平以下。当向系统添加过多的能量,从而由于在制造操作期间粉末被汽化而不是熔化而导致在零件内形成锁眼状孔时,也可降低零件密度。可根据密度数据用试验方法确定虚线1306,并且在该示例中通过降到低至4.33g/cc的零件密度来识别虚线1306。线1308表示最佳能量密度轮廓,沿该最佳能量密度轮廓,能量密度和零件几何形状保持基本恒定。密度测试示出了使用沿线1308分布的设定创建的零件的平均密度如何保持相对一致。
图14A至图14B示出了在功率密度图的一部分上重叠的热能密度轮廓,并图示了在增材制造操作期间收集的热密度测量值如何根据能量源所使用的设定而变化。如图14A至图14B中所描绘的,较深的阴影指示较高的热能密度,较浅的阴影指示较低的热能密度。通过零件密度测试和热能密度轮廓,可确定针对具体零件的控制限度。在该情况下,已确定了由椭圆1402指示的控制限度,并允许功率和扫描速度参数随着用于生产零件1302的设定变化,沿线1308变化多达3σ,沿与线1308垂直的线变化多达1σ。在一些实施例中,功率和速度的容许偏差(allowable variation)允许进行工艺中调节,以在生产运行期间保持期望的热能密度。椭圆1404指示可容纳控制限度之外的进一步偏差的整个工艺窗口。在一些实施例中,该工艺窗口可用于识别如下偏差:该偏差仍然将允许仅使用工艺中数据来验证所得零件。应注意的是,虽然所描绘的控制和工艺窗口示出为椭圆形,但是根据例如零件的几何形状和材料偏心率,其他工艺窗口的形状和大小也是可能的,并且可能更复杂。在制造操作期间,可使用测量热辐射的光学传感器读数来原位地确定热能密度。在将激光功率和扫描速度保持在椭圆1402所指示的所描绘控制限度内时热能密度落在预期范围之外的情况下,零件的具有异常热能密度读数的部分可被标记为具有缺陷的可能性。
在一些实施例中,可将工艺窗口结合到建模和仿真程序中,该建模和仿真程序对收集用于确定热能密度的传感器读数的一个或多个光学传感器进行建模。一旦建模和仿真系统迭代到针对工件的指令集的第一近似值,则可将预期的热能密度输出到增材制造机器以进行进一步测试。当增材制造机器包括被配置为测量热能密度的光学传感器和计算设备时,增材制造机器可使用建模的热能密度数据来进行进一步的测试和验证。可使用建模的热能密度与测量的热能密度的比较,来确认指令集的执行与原位预期结果的紧密匹配程度。
图14C示出了另一功率密度图,该功率密度图强调了由于能量源设定远超出工艺窗口1404而导致的各种物理效应。例如,功率密度图示出了以低扫描速度添加大量激光功率导致了在工件内形成锁眼状孔。由于粉末材料因接收太多的能量而部分蒸发,导致发生了锁眼状孔的形成。此外,低功率和高扫描速度组合可导致粉末无法熔合在一起。最后,高功率水平与高扫描速度组合导致了在构建操作期间熔化的金属结团。应注意的是,改变沉积的功率层的厚度可导致将传导模式区(conduction mode zone)与锁眼状孔形成区和未熔合区(lack of fusion zone)分开的线的偏移。例如,增加粉末层的厚度具有使将锁眼状孔区域和未熔合区域与传导模式区分开的线的斜率增加的效果,因为较厚的层通常需要较多的能量来经受液化。
图14C还示出了与传导模式区相对应的功率和扫描速度设定通常如何不导致上述严重缺陷中的任意缺陷;然而,通过保持与工艺窗口1404内的值相对应的激光设定,可优化所得的零件的晶粒结构和/或密度。将能量源设定保持在工艺窗口1404内的另一个益处是这些设定应将热能密度读数保持在值的狭窄范围内。在制造操作期间任何落在预定范围之外的热能密度值都可指示制造工艺中的问题。这些问题可通过将设定移近工艺窗口的中心区域和/或通过更新针对后续零件的工艺窗口来解决。在一些实施例中,制造者能够发现的是,故障是由不应考虑将其纳入后续制造工艺中的有缺陷的粉末或一些其他不常出现的异常行为(aberration)而引起的。应领会的是,所描绘的工艺窗口针对零件的所有部分而言可能不会是相同的,并且可根据在具体时间正在加工的零件上的什么区域或甚至特定层而变化很大。在一些实施例中,工艺窗口1404的大小和/或形状也可根据其他因素(诸如扫描间距、扫描长度和扫描方向)而变化。
图14D示出了熔化池的大小和形状如何可根据激光功率和扫描速度设定而变化。示例性熔化池1406至熔化池1418呈现了用于各种激光功率和速度设定的示例性熔化池大小和形状。通常,可看出的是,较大的熔化池是由较高的激光功率量和较低的扫描速度导致的。然而,对于该具体配置,熔化池的大小更多地取决于激光功率而不是速度。
图15A至图15F图示了如何可动态创建网格以表征和控制增材制造操作。图15A示出了位于构建平面1504的一部分上的圆柱形工件1502的俯视图。工件1502被示出为1其经受增材制造操作时的状态。图15B示出了如何将圆柱形工件1502划分为多个轨道1506,能量源沿着该轨道可熔化分布在圆柱形工件1502的上表面上的粉末。在一些实施例中,能量源可如所描绘的使方向1506交替变化,而在其他实施例中,能量源可始终沿着一个方向移动。此外,轨道1506的方向可在层与层之间变化,以进一步使用于构建工件1502的扫描的取向随机化。
图15C示出了当能量源形成工件1502的一部分时用于能量源的示例性扫描图案。如箭头1508所示,示例性能量源跨越工件1502的移动方向是对角线。能量源的单个扫描1510可在垂直于能量源沿轨道1506的移动方向的方向上定向并且延伸完全跨越轨道1506。能量源可在连续的单独扫描1510之间短暂地关断。在一些实施例中,当能量源遍历轨道1506中的每个时,能量源的占空比可以为大约90%。通过采用这种类型的扫描策略,当能量源遍历工件1502时,能量源可覆盖轨道1506的宽度。在一些实施例中,条带1510可具有大约5mm的宽度。这可大大减少形成工件1502所需的轨道数量,因为在一些实施例中,由能量源产生的熔化池的宽度可在大约80微米的数量级上。
图15D至15E示出了如何沿着每个轨道1506动态地生成网格区域1512,并且如何设置网格区域1512的大小以适应每个单独扫描1510的宽度。系统通过参考途中通往能量源的能量源驱动信号可以预测后续扫描的精确位置。在一些实施例中,网格1512的宽度可与单独扫描1512的长度匹配或者在单独扫描1512的长度的10%或20%内。再次,可通过参考能量源驱动信号来预期单独扫描1512的扫描长度。在一些实施例中,网格区域1512的形状可以是正方形或矩形。随着能量源沿轨道1506继续,可针对网格区域1512中的每个确定热能密度。在一些实施例中,网格区域1512-1内的热能密度读数可用于调节下一个网格区域(在该情况下为网格区域1512-2)内的能量源的输出。例如,如果由网格区域1512-1内的单独扫描1510产生的热能密度读数实质上高于预期,则可减小能量源的功率输出,可增加跨越各单独扫描1510进行能量源扫描的速度和/或可在网格区域1512-2内增加各单独扫描1510之间的间隔。可进行这些调整作为闭合回路控制系统的一部分。虽然在每个区域内仅示出了五个单独扫描1510,但这仅出于示例性目的而进行,并且网格区域1512内的单独扫描的实际数量可实质上更高。例如,在由能量源产生的熔化区为大约80微米宽的情况下,可需要进行大约60个单个扫描1510,以使5mm正方形网格区域1512内的所有粉末落入熔化区内。
图15F示出了一旦能量源完成遍历轨道1506的图案时工件1502的边缘区域。在一些实施例中,在大部分粉末已经被熔化并重新固化之后,能量源可继续向工件1502添加能量。例如,轮廓扫描1514可沿工件1502的外周缘1516进行跟踪,以将表面处理(surfacefinish)施加到工件1502上。应领会的是,如所描绘的轮廓扫描1514比单独扫描1510实质上较短。为此,网格区域1518可比网格区域1512实质上较窄。还应该注意的是,网格区域1518的形状不是纯矩形的,因为在这种情况下,网格区域1518的形状遵循工件1502的外周缘的轮廓。可能导致扫描长度差异的另一种情况可以是工件包括厚度变化的壁。厚度可变的壁可导致扫描长度在单个网格区域内变化。在这样的情况下,可通过增加网格区域的长度,同时使宽度变窄以适应各个扫描的长度的变化,来使每个网格区域的面积保持一致。
图16示出了闭合回路控制示例,闭合回路控制示例示出了用于建立和维持对增材制造操作进行反馈控制的反馈控制回路1600。在框1602处,将用于能量源将要遍历的下一个网格区域的基准热能密度输入到控制回路中。可从建模和仿真程序和/或从先前运行的试验/测试运行确认该基准热能密度读数。在一些实施例中,该基准热能密度数据可由能量密度偏差块1604来调整,该能量密度偏差块1604包括在先前的层期间记录的针对各种网格区域的能量密度读数。能量密度偏差块1604可包括在先前的层接收太多或太少能量的情况下对基准能量密度块的调整。例如,在光学传感器读数指示在工件的一个区域中热能密度低于标称值的情况下,能量密度偏差值可增加针对与低于标称热能密度读数的网格区域重叠的网格区域的基准能量密度的值。以此方式,能量源能够使在先前一层或多层期间完全熔化的其他粉末熔化。
图16还示出了来自框1602和1604的输入如何协同创建由控制器1606所接收的能量密度控制信号。控制器1606被配置为接收能量密度控制信号并生成热源输入参数,热源输入参数被配置为在当前网格区域内生成期望的热能密度。输入参数可以包括功率、扫描速度、扫描间距、扫描方向和扫描持续时间。然后,能量源1608接收输入参数,并且能量源1608采用输入参数的任意变化以用于当前网格区域。一旦光学传感器测量了构成当前网格区域的能量源1608的扫描,则在框1610处,计算针对当前网格区域的热能密度并将其与能量密度控制信号进行比较。如果两个值相同,则不会基于光学传感器数据更改能量密度控制信号。然而,如果两个值不同,则针对下一个网格区域中进行的扫描,从能量密度控制信号中添加或减去差值。
在一些实施例中,针对当前层和所有先前层的网格区域可以是动态地生成的网格区域,该动态地生成的网格区域根据由能量源执行的扫描的路径和扫描长度/宽度来定向。在该类型的配置中,基准能量密度和能量密度偏差都可基于动态地生成的网格区域。在其他实施例中,可动态生成针对当前层的网格区域,而能量密度偏差数据1604可基于与在增材制造操作开始之前限定的静态网格区域相关联的能量密度读数,从而导致静态网格区域在整个零件中保持固定并且位置、大小或形状均不变。当需要笛卡尔网格系统时,网格可均匀地成形和间隔开,但是也可采用构成极坐标网格系统的网格区域的形式。在其他实施例中,可在执行构建操作之前静态地生成针对当前层的网格区域,并且还可静态地生成能量密度偏差数据并共享用于当前层的相同网格。
在一些实施例中,可利用控制回路1600来使用热发射密度代替热能密度。除了热能密度之外,热发射密度还可指其他因素。例如,热发射密度可以是多个特征的加权平均值,该多个特征包括热能密度以及一个或多个其他特征(诸如峰值温度、最低温度、加热速率、冷却速率、平均温度、与平均温度的标准偏差以及平均温度随时间的变化率)。在其他实施例中,可使用一个或多个其他特征来验证构成网格区域中的每个的扫描正在达到期望的温度、加热速率或冷却速率。在这样的实施例中,验证特征可用作如下标志:该标志用以指示针对能量源的输入参数可能需要在定义的控制窗口内进行调整以实现期望的温度、加热速率或冷却速率。例如,如果网格区域内的峰值温度太低,则可增加功率和/或降低扫描速度。虽然论述了与各种类型的网格TED有关的前述控制回路1600,但是应注意的是,本领域技术人员还将理解的是,扫描TED度量也可用于类似的回路配置中。
针对重涂机臂少量供给的TED分析
图17A示出了粉末1702跨越构建板1704的标准分布。该描绘示出了粉末如何均匀地铺展而高度上无任何变化。相反,图17B示出了当通过重涂机臂回收不足量的粉末1702时,粉末层1702的厚度可如何大幅变化。一旦重涂机臂开始耗尽粉末1702时,粉末1702的层的厚度就会逐渐减少,直到构建板1704的一部分完全没有粉末1702为止。由于这种错误会对零件的整体质量产生颇为负面的影响,对这种现象的早期检测对于准确的缺陷检测很重要。
图17C示出了构建板的黑白照片,在构建板的黑白照片中,粉末1702的供给短缺导致被布置在构建板上的九个工件仅有部分被覆盖。特别地,工件中的在照片的右侧的三个完全被覆盖,而工件中的在左侧的三个几乎完全没有被覆盖。
图17D示出了当能量源使用相同的输入参数跨越所有九个工件进行扫描时,所检测的热能密度是如何基本不同的。由于粉末的发射率实质上较高并且构建板或固化粉末材料的热导率大于粉末的有效热导率,因此区域1706产生实质上较高的热能密度读数。较高的热导率减少了可用于辐射返回光学传感器的能量的量,从而减少了所检测到的热辐射。此外,材料本身的较低发射率也减少了辐射的热能的量。
热能密度vs总体能量密度
由能量源所提供的进入工件的功率导致了制造工件的材料的熔化,但在增材制造工艺期间,该功率还可通过其他几种传热和传质工艺来耗散。以下公式描述了在能量源是跨越粉末床进行扫面的激光的情况下可吸收所发射的功率的不同工艺:
P总激光功率=P在激光处的光学损耗+P腔室气体的吸收+P反射+P颗粒和羽流相互作用+P维持熔化池所需的功率+P传导损耗+P辐射损耗+P对流损耗+P蒸发损耗 式(13)
在激光处的光学损耗是指由于光学系统中的缺陷而导致的功率损耗,该缺陷负责在构建平面上传输和聚焦激光。缺陷导致了光学系统内发射的激光的吸收和反射损耗。腔室气体的吸收是指由于增材制造系统的构建腔室内的气体吸收一小部分激光功率而导致的功率损耗。该功率损耗的影响将取决于气体在激光波长处的吸收率。反射损耗是指由于光逸出激光光学器件而从未被粉末床吸收的功率损耗。颗粒和羽流相互作用是指沉积工艺期间激光与喷射的羽流和/或颗粒之间的相互作用。虽然通过保护正循环通过构建腔室的气体可以改善由于这些影响而造成的功率损失,但通常无法完全避免少量功率的降低。维持熔化池所需的功率是指工作材料吸收的一部分激光功率,用于熔化粉末并最终将粉末过度加热至熔化池最终达到的任何温度。传导损耗是指通过传导至粉末下方和粉末床本身下方的固化金属而吸收的一部分功率。以此方式,构成零件的粉末床和固化材料将热量从熔化池中传导出去。该热能的传导传递是来自熔化池的能量损失的主要形式。辐射损耗是指由熔化池和熔化池周围的足够热从而可以发射出热辐射的材料所发射的一部分激光功率。对流损耗是指将热能传递到通过构建腔室进行循环的气体所引起的损耗。最后,蒸发损耗是指在激光辐射下将蒸发的一小部分粉末材料。汽化潜热非常大,因此这对熔化池具有强大的冷却效果,并且随着总激光束功率变高,汽化潜热可能成为能量损耗的不可忽略的来源。
热能密度(TED)度量基于对光学光的测量,该光学光是来自受热区域的光的辐射、通过光学器件传回该光、由检测器收集该光以及将该光转换为电信号的结果。以下在式(14)中所示的斯蒂芬·波尔兹曼(Stefan-Boltzmann)式给出了控制所有可能频率上的黑体辐射的式:
Figure GDA0003696261680000231
以下在表(1)中示出了来自式(14)的变量。
Figure GDA0003696261680000232
Figure GDA0003696261680000241
表(1)
在辐射光被传感器收集之前以及在辐射光导致用于计算TED度量的电压之前,存在影响辐射光的其他干扰因素。以下在等式(15)中进行了总结:
VTED所使用的电压={P辐射–PV观察因子–P以辐射的波长的光学损耗–P传感器损耗因子}*(传感器比例因子) 式(15)
以下在表(2)中解释了来自式(15)的这些各种术语。
Figure GDA0003696261680000242
表(2)
通常在增材制造中,使用的品质因数是总体能量密度(global energy density,GED)。这是一个组合了各种工艺输入的参数,如以下在式(16)中所示:
GED=(电子束功率)/{(行进速度)*(扫描间距)} 式(16)
我们注意到,GED的每面积能量的单位为:(焦耳/SEC)/{(CM/SEC)*(CM)}=焦耳/CM2。然而,应注意的是,虽然GED可具有与TED相同的单位,但GED和TED通常并不等同。例如,TED是来自高温区域的辐射功率除以面积而得出的,而GED是输入功率的测量值。如本文所述,TED涉及响应或工艺输出,而GED涉及工艺输入。因此,发明人认为,TED和GED是彼此不同的测量值。在一些实施例中,用于确定TED的面积与熔化池面积不同。因此,一些实施例在TED与熔化池面积之间不具有直接相关性。有利地,TED对直接影响增材制造工艺的各种各样的因素敏感。
虽然本文描述的实施例已使用了由光学传感器生成的数据来确定热能密度,但是本文描述的实施例可使用由测量工艺中物理变量的其他表现的传感器生成的数据来实施。测量工艺中物理变量的表现的传感器包括例如力和振动传感器、接触热传感器、非接触热传感器、超声传感器和涡流传感器。对于本领域的普通技术人员将显而易见的是,鉴于以上教导,许多修改和变型是可能的。
所描述的实施例的各个方面、实施例、实施方式或特征可单独使用或以任何组合进行使用。所描述的实施例的各个方面可通过软件、硬件或硬件和软件的组合来实施。所描述的实施例还可被实现为用于控制制造操作的计算机可读介质上的计算机可读代码,或者可被实现为用于控制生产线的计算机可读介质上的计算机可读代码。该计算机可读介质是可存储其后可由计算机系统读取的数据的任何数据存储装置。计算机可读介质的示例包括只读存储器、随机存取存储器、CD-ROM、HDD、DVD、磁带和光学数据存储装置。计算机可读介质还可分布在网络耦合的计算机系统上,从而以分布式方式存储和执行计算机可读代码。
出于解释的目的,前述描述使用特定术语来提供对所描述的实施例的透彻理解。然而,对于本领域的技术人员将明显的是,不需要特定的细节来实践所描述的实施例。因此,出于说明和描述的目的,呈现了特定实施例的前述描述。它们并不旨在穷举或将所描述的实施例限制为所公开的精确形式。对于本领域的技术人员将明显的是,鉴于以上教导,许多修改和变型是可能的。

Claims (20)

1.一种增材制造方法,包括:
生成能量源跨越构建平面的多个扫描;
使用监测所述构建平面的光学传感器测量在所述多个扫描中的每个扫描期间从所述构建平面辐射的能量的量;
确定在所述能量源的所述多个扫描中的一个或多个扫描期间所遍历的所述构建平面的面积;
基于所述辐射的能量的量和由所述多个扫描遍历的所述构建平面的面积,确定针对由所述多个扫描中的一个或多个扫描遍历的所述构建平面的面积的热能密度;
将所述热能密度映射到所述构建平面中的一个或多个位置;
确定映射的所述热能密度是由热能密度值范围之外的热能密度来表征的;以及
其后,调整所述能量源跨越所述构建平面中的一个或多个位置或在所述构建平面中的一个或多个位置附近的后续扫描。
2.根据权利要求1所述的增材制造方法,其中所测量的能量的量包括从所述光学传感器接收传感器读数。
3.根据权利要求1所述的增材制造方法,其中确定所遍历的所述构建平面的面积包括:
确定所述多个扫描的第一扫描的开始点;
确定所述第一扫描的结束点;以及
通过计算所述开始点与所述结束点之间的距离来确定所述第一扫描的长度。
4.根据权利要求1所述的增材制造方法,其中确定映射的所述热能密度是由热能密度值范围之外的热能密度来表征的还包括:
接收基准值;
确定与所述基准值实质上不同的一个或多个热能密度扫描值;以及
输出图形和点云中的至少一个。
5.根据权利要求4所述的增材制造方法,其中确定映射的所述热能密度是由热能密度值范围之外的热能密度来表征的还包括:
传输与工艺参数相关联的控制信号。
6.根据权利要求1所述的增材制造方法,其中所述能量源对应于激光和电子束中的至少一个。
7.根据权利要求1所述的增材制造方法,其中映射所述热能密度包括:
接收能量源驱动信号数据,所述能量源驱动信号数据指示所述能量源跨越所述构建平面的路径;以及
使用所述能量源驱动信号数据来确定所述多个扫描中的每个扫描的位置。
8.根据权利要求1所述的增材制造方法,还包括:
接收与所述能量源相关联的位置数据。
9.根据权利要求1所述的增材制造方法,还包括:
接收能量源驱动信号数据,其中,所述能量源驱动信号数据指示所述能量源何时接通和所述能量源何时关断。
10.一种增材制造方法,包括:
生成能量源跨越构建平面的多个扫描;
确定包括所述多个扫描的网格区域,其中,所述网格区域由网格面积来表征;
使用光学传感器在所述多个扫描中的每个扫描期间生成传感器读数;
使用所述传感器读数确定在所述多个扫描期间从所述构建平面辐射的能量的总量;
基于所述辐射的能量的总量和所述网格面积来计算与所述网格区域相关联的热能密度;
确定所计算的与所述网格区域相关联的所述热能密度是由热能密度值范围之外的热能密度来表征的;以及
其后,调整所述能量源的输出。
11.根据权利要求10所述的增材制造方法,其中所述热能密度通过将所述辐射的能量的总量除以所述网格面积来确定。
12.根据权利要求10所述的增材制造方法,其中根据所述多个扫描中的每个扫描的长度来设置所述网格区域的宽度的大小。
13.根据权利要求10所述的增材制造方法,确定包括所述多个扫描的网格区域包括:
接收能量源驱动信号数据,所述能量源驱动信号数据指示所述能量源跨越所述构建平面的路径;以及
基于所述能量源驱动信号数据来限定所述网格区域的位置、形状和大小。
14.根据权利要求13所述的增材制造方法,其中所述能量源驱动信号数据包括所述多个扫描中的两个或更多个扫描之间的距离。
15.一种增材制造方法,包括:
将构建平面的一部分限定为包括多个网格区域的网格,每个网格区域具有网格区域面积;
生成能量源跨越所述构建平面的多个扫描;
使用光学传感器在所述多个扫描中的每个扫描期间生成传感器读数;
针对所述多个扫描中的每个扫描,将所述传感器读数中的每个传感器读数的部分映射到所述多个网格区域中的相应的一个网格区域;
针对所述多个网格区域中的每个网格区域:
对映射到每个网格区域的所述传感器读数进行求和;以及
基于所述求和的传感器读数和所述网格区域面积来计算基于网格的热能密度;
确定所计算的与所述多个网格区域中的一个或多个网格区域相关联的所述基于网格的热能密度是由热能密度值范围之外的热能密度值来表征的;以及
其后,调整所述能量源的输出。
16.根据权利要求15所述的增材制造方法,还包括:
提供跨越所述构建平面的粉末层;
生成所述能量源跨越所述粉末层的其他多个扫描,其中,所述其他多个扫描中的至少一些扫描的特征是基于所述多个网格区域中的一个或多个网格区域的所计算的基于网格的热能密度。
17.根据权利要求15所述的增材制造方法,其中基于所计算的基于网格的热能密度在所述多个扫描中的至少一部分扫描期间改变所述能量源的一个或多个输入参数。
18.根据权利要求15所述的增材制造方法,其中映射所述传感器读数的每个传感器读数的部分包括将针对所述多个扫描中的一个扫描的所有多个传感器读数映射到所述多个网格区域中的一个或多个网格区域。
19.根据权利要求15所述的增材制造方法,其中所述构建平面是由等于所述网格面积的面积来表征的。
20.根据权利要求15所述的增材制造方法,其中所述网格区域跨越所述构建平面均匀地分布。
CN201880064101.1A 2017-08-01 2018-08-01 用于在增材制造操作期间测量辐射热能的系统和方法 Active CN111315531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211143065.2A CN115319115A (zh) 2017-08-01 2018-08-01 用于在增材制造操作期间测量辐射热能的系统和方法

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762540016P 2017-08-01 2017-08-01
US62/540,016 2017-08-01
US201862633487P 2018-02-21 2018-02-21
US62/633,487 2018-02-21
US201862643457P 2018-03-15 2018-03-15
US62/643,457 2018-03-15
PCT/US2018/044884 WO2019028184A1 (en) 2017-08-01 2018-08-01 SYSTEMS AND METHODS FOR RADIANT THERMAL ENERGY MEASUREMENT DURING ADDITIVE MANUFACTURING OPERATION

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202211143065.2A Division CN115319115A (zh) 2017-08-01 2018-08-01 用于在增材制造操作期间测量辐射热能的系统和方法

Publications (2)

Publication Number Publication Date
CN111315531A CN111315531A (zh) 2020-06-19
CN111315531B true CN111315531B (zh) 2022-09-30

Family

ID=65234116

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211143065.2A Pending CN115319115A (zh) 2017-08-01 2018-08-01 用于在增材制造操作期间测量辐射热能的系统和方法
CN201880064101.1A Active CN111315531B (zh) 2017-08-01 2018-08-01 用于在增材制造操作期间测量辐射热能的系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202211143065.2A Pending CN115319115A (zh) 2017-08-01 2018-08-01 用于在增材制造操作期间测量辐射热能的系统和方法

Country Status (7)

Country Link
US (3) US10479020B2 (zh)
EP (1) EP3548218A4 (zh)
JP (3) JP7024981B2 (zh)
KR (1) KR102340573B1 (zh)
CN (2) CN115319115A (zh)
DE (1) DE112018001597B4 (zh)
WO (1) WO2019028184A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014016679A1 (de) * 2014-11-12 2016-05-12 Cl Schutzrechtsverwaltungs Gmbh Verfahren und Vorrichtung zur Belichtungssteuerung einer selektiven Lasersinter- oder Laserschmelzvorrichtung
US20180200794A1 (en) * 2017-01-18 2018-07-19 General Electric Company Method and apparatus for optical detection of keyholing and overmelts
DE112018001597B4 (de) 2017-08-01 2021-06-02 Sigma Labs, Inc. Systeme und Verfahren zum Messen abgestrahlter thermischer Energie während der Ausführung einer additiven Fertigung
JP6887926B2 (ja) * 2017-09-21 2021-06-16 日本電子株式会社 三次元構造体の製造方法および三次元構造体の製造装置
DE102018127695A1 (de) 2017-11-07 2019-05-09 Sigma Labs, Inc. Korrektur von nicht-bildgebenden thermischen Messvorrichtungen
DE102018127678A1 (de) 2017-11-07 2019-05-09 Sigma Labs, Inc. Verfahren und Systeme zum Qualitätsrückschluss und zur Qualitätskontrolle bei additiven Herstellungsverfahren
WO2019094269A1 (en) * 2017-11-10 2019-05-16 General Electric Company Positioning system for an additive manufacturing machine
US11029666B2 (en) * 2017-11-17 2021-06-08 Raytheon Technologies Corporation Fabrication of process-equivalent test specimens of additively manufactured components
US20190211072A1 (en) * 2018-01-10 2019-07-11 Syracuse University TRI-AGONIST FOR THE GLu, GLP-1 AND NPY2 RECEPTORS
DE112019000521B4 (de) 2018-02-21 2022-02-03 Sigma Labs, Inc. Additives Fertigungssystem und additives Fertigungsverfahren
CN112041148B (zh) * 2018-02-21 2022-03-04 西格马实验室公司 用于在增材制造操作期间测量辐射热能的系统和方法
EP4059698A1 (en) 2018-04-04 2022-09-21 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing three-dimensional objects
FR3080306B1 (fr) * 2018-04-19 2021-02-19 Michelin & Cie Procede de fabrication additive d'une piece metallique en trois dimensions
US10620103B2 (en) * 2018-05-15 2020-04-14 Honeywell International Inc. Devices and methods for evaluating the spreadability of powders utilized in additive manufacturing
US10919115B2 (en) * 2018-06-13 2021-02-16 General Electric Company Systems and methods for finishing additive manufacturing faces with different orientations
US11072039B2 (en) * 2018-06-13 2021-07-27 General Electric Company Systems and methods for additive manufacturing
JP6472585B1 (ja) * 2018-07-30 2019-02-20 三菱電機株式会社 積層条件制御装置
WO2020185169A1 (en) * 2019-03-13 2020-09-17 Nanyang Technological University Monitoring system and method of identification of anomalies in a 3d printing process
CN110196231B (zh) * 2019-05-14 2021-09-07 东南大学 一种增材制件的激光超声离线检测装置及方法
DE102019112757A1 (de) * 2019-05-15 2020-11-19 Carl Zeiss Ag Verfahren und Vorrichtung zur additiven Herstellung eines Werkstücks
JP6848010B2 (ja) 2019-06-11 2021-03-24 株式会社ソディック 積層造形装置
EP4034324A1 (en) * 2019-09-25 2022-08-03 SLM Solutions Group AG Technique for analyzing sensor data in powder bed additive manufacturing
US11633810B2 (en) 2019-11-20 2023-04-25 Shin-Etsu Engineering Co., Ltd. Workpiece-separating device and workpiece-separating method
CN111015006B (zh) * 2019-12-16 2021-07-13 哈尔滨工业大学(威海) 基于光谱信息的激光电弧复合焊接质量在线监测方法
US11537111B2 (en) * 2020-04-01 2022-12-27 General Electric Company Methods and apparatus for 2-D and 3-D scanning path visualization
JP2021186816A (ja) * 2020-05-26 2021-12-13 パナソニックIpマネジメント株式会社 レーザ加工装置
CN115884876A (zh) * 2020-05-28 2023-03-31 Slm方案集团股份公司 用于经由加层制造生产三维工件的方法和仪器
US20210394302A1 (en) 2020-06-18 2021-12-23 Sigma Labs, Inc. Determination and control of cooling rate in an additive manufacturing system
US11536671B2 (en) 2020-08-07 2022-12-27 Sigma Labs, Inc. Defect identification using machine learning in an additive manufacturing system
CN112191849B (zh) * 2020-10-10 2023-03-28 重庆邮电大学 基于温度分布的梯度多孔散热装置设计及增材制造方法
CN112518122B (zh) * 2020-12-04 2022-05-17 广州德擎光学科技有限公司 激光加工件熔深检测方法、装置和系统
CN112828421B (zh) * 2020-12-31 2022-10-11 西安铂力特增材技术股份有限公司 电弧熔丝增材制造网格框架结构的方法
WO2022168268A1 (ja) * 2021-02-05 2022-08-11 株式会社ニコン 加工パス情報生成方法
WO2022176430A1 (ja) * 2021-02-18 2022-08-25 国立大学法人大阪大学 三次元構造物の製造方法および造形装置
WO2022197972A1 (en) * 2021-03-18 2022-09-22 Divergent Technologies, Inc. Variable beam geometry energy beam-based powder bed fusion
US11752558B2 (en) 2021-04-16 2023-09-12 General Electric Company Detecting optical anomalies on optical elements used in an additive manufacturing machine
KR102396959B1 (ko) * 2021-05-31 2022-05-12 한국전자기술연구원 금속 3d 프린팅의 출력 안정화를 위한 열 빠짐 특성 분석 기반 모델 출력 방향 결정 방법 및 시스템
CN113715337B (zh) * 2021-09-26 2023-10-27 上海联泰科技股份有限公司 控制装置、方法、3d打印方法及打印设备
DE102021211370A1 (de) 2021-10-08 2023-04-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum Herstellen dreidimensionaler Bauteile
CN114734058B (zh) * 2022-03-31 2024-02-09 西安航天发动机有限公司 一种多激光拼接扫描路径规划方法及多激光拼接扫描方法
JP2023181933A (ja) * 2022-06-13 2023-12-25 株式会社日立製作所 付加造形品品質判定装置、および、付加造形品品質判定方法

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427733A (en) * 1993-10-20 1995-06-27 United Technologies Corporation Method for performing temperature-controlled laser sintering
US5552575A (en) * 1994-07-15 1996-09-03 Tufts University Scan welding method and apparatus
IL121279A (en) 1996-07-16 2001-05-20 Roche Diagnostics Gmbh An analytical system with means for testing samples with too small volumes
DE19844500A1 (de) 1998-09-29 2000-03-30 Roche Diagnostics Gmbh Verfahren zur photometrischen Auswertung von Testelementen
JP2000162137A (ja) 1998-11-26 2000-06-16 Nikon Corp 面検査装置
US7132617B2 (en) 2002-02-20 2006-11-07 Daimlerchrysler Corporation Method and system for assessing quality of spot welds
US20030222147A1 (en) 2002-06-04 2003-12-04 Hand Held Products, Inc. Optical reader having a plurality of imaging modules
BR0314420B1 (pt) * 2002-08-28 2013-03-19 mÉtodo para formar uma seÇço de metal sobre um substrato de metal depositando uma pluralidade de camadas superpostas.
SE524421C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
US6815636B2 (en) * 2003-04-09 2004-11-09 3D Systems, Inc. Sintering using thermal image feedback
US7162070B2 (en) 2003-06-06 2007-01-09 Acushnet Company Use of patterned, structured light to detect and measure surface defects on a golf ball
JP3792683B2 (ja) 2003-07-16 2006-07-05 ファナック株式会社 レーザ溶接装置
US6930278B1 (en) 2004-08-13 2005-08-16 3D Systems, Inc. Continuous calibration of a non-contact thermal sensor for laser sintering
WO2006101472A1 (en) 2005-03-15 2006-09-28 Chubb International Holdings Limited Context-aware alarm system
DE102005015870B3 (de) * 2005-04-06 2006-10-26 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
DE102005056265A1 (de) 2005-11-14 2007-05-16 Pilz Gmbh & Co Kg Vorrichtung und Verfahren zum Überwachen eines Raumbereichs, insbesondere zum Absichern eines Gefahrenbereichs einer automatisiert arbeitenden Anlage
US20070276187A1 (en) 2006-02-27 2007-11-29 Wiklof Christopher A Scanned beam imager and endoscope configured for scanning beams of selected beam shapes and/or providing multiple fields-of-view
DE102006019963B4 (de) * 2006-04-28 2023-12-07 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts durch schichtweises Verfestigen eines unter Einwirkung von elektromagnetischer Strahlung verfestigbaren Materials mittels Maskenbelichtung
WO2007147221A1 (en) 2006-06-20 2007-12-27 Katholieke Universiteit Leuven Procedure and apparatus for in-situ monitoring and feedback control of selective laser powder processing
DE102006057605A1 (de) 2006-11-24 2008-06-05 Pilz Gmbh & Co. Kg Verfahren und Vorrichtung zum Überwachen eines dreidimensionalen Raumbereichs
US7515986B2 (en) * 2007-04-20 2009-04-07 The Boeing Company Methods and systems for controlling and adjusting heat distribution over a part bed
US8050884B2 (en) * 2007-12-06 2011-11-01 The Boeing Company Method and apparatus for determining the emissivity, area and temperature of an object
US20100140236A1 (en) 2008-12-04 2010-06-10 General Electric Company Laser machining system and method
GB2466497B (en) 2008-12-24 2011-09-14 Light Blue Optics Ltd Touch sensitive holographic displays
DE102009015282B4 (de) * 2009-04-01 2014-05-22 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts
RU2507032C2 (ru) 2009-07-15 2014-02-20 Аркам Аб Способ и устройство для создания трехмерных объектов
US9215244B2 (en) 2010-11-18 2015-12-15 The Boeing Company Context aware network security monitoring for threat detection
CN201915148U (zh) 2010-12-14 2011-08-03 苏州大学 一种送丝送粉激光熔覆复合喷嘴
US20120283712A1 (en) 2011-02-03 2012-11-08 TRIA Beauty Devices and Methods for Radiation-Based Dermatological Treatments
TWI476364B (zh) 2011-05-09 2015-03-11 Lin Cho Yi 感測方法與裝置
US8614797B2 (en) 2011-06-27 2013-12-24 Infineon Technologies Ag Wafer orientation sensor
GB2493398B (en) 2011-08-05 2016-07-27 Univ Loughborough Methods and apparatus for selectively combining particulate material
US10201877B2 (en) * 2011-10-26 2019-02-12 Titanova Inc Puddle forming and shaping with primary and secondary lasers
DE102012212587A1 (de) * 2012-07-18 2014-01-23 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
US9272369B2 (en) 2012-09-12 2016-03-01 Siemens Energy, Inc. Method for automated superalloy laser cladding with 3D imaging weld path control
US8655307B1 (en) 2012-10-26 2014-02-18 Lookout, Inc. System and method for developing, updating, and using user device behavioral context models to modify user, device, and application state, settings and behavior for enhanced user security
JP2016522312A (ja) 2013-03-15 2016-07-28 マターファブ, コーポレイションMatterfab Corp. 添加剤製造装置及び方法のためのカートリッジ
US9468973B2 (en) 2013-06-28 2016-10-18 Arcam Ab Method and apparatus for additive manufacturing
US10821508B2 (en) 2013-08-15 2020-11-03 General Electric Company System and methods for enhancing the build parameters of a component
FR3010785B1 (fr) 2013-09-18 2015-08-21 Snecma Procede de controle de la densite d'energie d'un faisceau laser par analyse d'image et dispositif correspondant
GB201316815D0 (en) 2013-09-23 2013-11-06 Renishaw Plc Additive manufacturing apparatus and method
US10705509B2 (en) 2013-10-21 2020-07-07 Made In Space, Inc. Digital catalog for manufacturing
US9254682B2 (en) 2013-10-28 2016-02-09 Eastman Kodak Company Imaging module with aligned imaging systems
US9747778B2 (en) 2013-12-17 2017-08-29 Samsung Electronics Co. Ltd. Context-aware compliance monitoring
US11167475B2 (en) 2014-01-16 2021-11-09 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
RU2595072C2 (ru) * 2014-02-14 2016-08-20 Юрий Александрович Чивель Способ управления процессом селективного лазерного спекания объемного изделия из порошков и устройство для его осуществления
US10207363B2 (en) * 2014-03-24 2019-02-19 James Eldon Craig Additive manufacturing temperature controller/sensor apparatus and method of use thereof
WO2015147778A1 (en) 2014-03-24 2015-10-01 Empire Technology Development Llc Methods and systems for monitoring melt zones in polymer three dimensional printing
WO2015148702A1 (en) * 2014-03-26 2015-10-01 Sigma Labs, Inc. Optical manufacturing process sensing and status indication system
JP2015199195A (ja) 2014-04-04 2015-11-12 株式会社松浦機械製作所 三次元造形装置
DE102014208768B4 (de) * 2014-05-09 2019-07-11 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätssicherung
US9925715B2 (en) 2014-06-30 2018-03-27 General Electric Company Systems and methods for monitoring a melt pool using a dedicated scanning device
US9999924B2 (en) * 2014-08-22 2018-06-19 Sigma Labs, Inc. Method and system for monitoring additive manufacturing processes
US20170274599A1 (en) 2014-09-19 2017-09-28 Kabushiki Kaisha Toshiba Additive manufacturing apparatus and additive manufacturing method
US9533375B2 (en) 2014-10-02 2017-01-03 Industrial Technology Research Institute Temperature sensing apparatus, laser processing system, and temperature measuring method
US20170217104A1 (en) 2014-10-03 2017-08-03 Hewlett-Packard Development Company, L.P. Controlling heating of a surface
US10786948B2 (en) * 2014-11-18 2020-09-29 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US10632566B2 (en) 2014-12-02 2020-04-28 Product Innovation and Engineering L.L.C. System and method for controlling the input energy from an energy point source during metal processing
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
DE102015000102A1 (de) 2015-01-14 2016-07-14 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung dreidimensionaler Bauteile
US11042131B2 (en) 2015-03-16 2021-06-22 Rockwell Automation Technologies, Inc. Backup of an industrial automation plant in the cloud
JP6531823B2 (ja) 2015-04-02 2019-06-19 株式会社ニコン 撮像システム、撮像装置、撮像方法、及び撮像プログラム
WO2016168172A1 (en) 2015-04-13 2016-10-20 Materialise N.V. System and method for monitoring and recoating in an additive manufacturing environment
JP6514370B2 (ja) * 2015-06-12 2019-05-15 マテリアライズ・ナムローゼ・フエンノートシャップMaterialise Nv 付加製造における一貫性を熱画像化手段により確かめるためのシステムと方法
CN105058788A (zh) * 2015-07-28 2015-11-18 南京师范大学 一种应用于3d打印的分布式加热装置及控制方法
EP3127635A1 (en) * 2015-08-06 2017-02-08 TRUMPF Laser-und Systemtechnik GmbH Additive manufacturing of down-skin layers
WO2017030586A1 (en) * 2015-08-20 2017-02-23 Hewlett-Packard Development Company, L.P. Filtering temperature distribution data of build material
KR101697530B1 (ko) 2015-09-17 2017-01-18 한국생산기술연구원 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 에너지밀도 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.
KR101976970B1 (ko) * 2015-09-28 2019-05-09 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 첨가제 제조 시스템의 온도 결정 기법
US10207489B2 (en) * 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
US10816491B2 (en) * 2015-10-09 2020-10-27 Amir Khajepour System and method for real time closed-loop monitoring and control of material properties in thermal material processing
WO2017071741A1 (en) 2015-10-27 2017-05-04 Hewlett Packard Development Company L.P. Determining temperature of print zone in additive manufacturing system
JP2018533026A (ja) 2015-11-05 2018-11-08 ルミナー テクノロジーズ インコーポレイテッド 高分解能のデプスマップを作成するための、改善された走査速度を有するライダーシステム
EP3377252A1 (en) 2015-11-16 2018-09-26 Renishaw PLC Machine control for additive manufacturing process and apparatus
WO2017100695A1 (en) 2015-12-10 2017-06-15 Velo3D, Inc. Skillful three-dimensional printing
CN108698297A (zh) 2015-12-16 2018-10-23 德仕托金属有限公司 用于增材制造的方法和系统
US20170173694A1 (en) 2015-12-16 2017-06-22 Desktop Metal, Inc. Bulk metallic glass printer with shearing engine in feed path
CN105499569B (zh) * 2015-12-24 2017-09-15 华中科技大学 一种用于高能束增材制造的温度场主动调控系统及其控制方法
JP6979963B2 (ja) 2016-02-18 2021-12-15 ヴェロ・スリー・ディー・インコーポレイテッド 正確な3次元印刷
US10831180B2 (en) * 2016-02-25 2020-11-10 General Electric Company Multivariate statistical process control of laser powder bed additive manufacturing
CN108885643B (zh) * 2016-03-18 2023-09-29 惠普发展公司,有限责任合伙企业 用于增材制造的修改数据
US11072043B2 (en) 2016-03-21 2021-07-27 Sigma Labs, Inc. Layer-based defect detection using normalized sensor data
WO2017167362A1 (en) * 2016-03-30 2017-10-05 Hewlett-Packard Development Company, L P Build surface heat control
WO2017186278A1 (en) * 2016-04-26 2017-11-02 Hewlett-Packard Development Company, L P Adjusting operational characteristics of additive manufacturing apparatus
KR20190002488A (ko) 2016-04-28 2019-01-08 트리나미엑스 게엠베하 적어도 하나의 물체를 광학적으로 검출하기 위한 검출기
WO2017196956A1 (en) 2016-05-10 2017-11-16 Resonetics, LLC Hybrid micro-manufacturing
KR101858165B1 (ko) 2016-05-16 2018-05-15 주식회사 케이랩 포커싱 상태 측정 장치
WO2017201120A1 (en) 2016-05-17 2017-11-23 Board Of Regents, The University Of Texas System Real-time laser control for powder bed fusion
US11009408B2 (en) 2016-07-26 2021-05-18 Hewlett-Packard Development Company, L.P. Temperature measurement calibration in an additive manufacturing system
GB201701702D0 (en) * 2017-02-02 2017-03-22 Renishaw Plc Methods and system involving additive manufacturing and additively-manufactured article
DE102016011801A1 (de) 2016-09-30 2018-04-05 Eos Gmbh Electro Optical Systems Verfahren zum Kalibrieren einer Vorrichtung zum Herstellen eines dreidimensionalen Objekts und zum Durchführen des Verfahrens ausgebildete Vorrichtung
US11167497B2 (en) 2016-11-14 2021-11-09 Renishaw Plc Localising sensor data collected during additive manufacturing
CN106626378A (zh) * 2016-11-25 2017-05-10 西安交通大学 一种激光选区烧结分区域工艺参数动态调整方法
US10888924B2 (en) * 2017-01-27 2021-01-12 Raytheon Technologies Corporation Control for powder fusion
EP3622275A1 (en) * 2017-05-09 2020-03-18 Arconic Inc. Systems and methods for defect detection in additively manufactured bodies
WO2018204981A1 (en) * 2017-05-10 2018-11-15 Monash University Method and system for quality assurance and control of additive manufacturing process
US10974497B2 (en) * 2017-06-05 2021-04-13 The Boeing Company Multi-region temperature controlled base for additive manufacturing
JP6887896B2 (ja) 2017-06-28 2021-06-16 日本電子株式会社 3次元積層造形装置
US9977425B1 (en) 2017-07-14 2018-05-22 General Electric Company Systems and methods for receiving sensor data for an operating manufacturing machine and producing an alert during manufacture of a part
DE112018001597B4 (de) 2017-08-01 2021-06-02 Sigma Labs, Inc. Systeme und Verfahren zum Messen abgestrahlter thermischer Energie während der Ausführung einer additiven Fertigung
US10725459B2 (en) 2017-08-08 2020-07-28 General Electric Company Identifying and distributing optimal machine parameters within a fleet of additive manufacturing machines
US10710307B2 (en) * 2017-08-11 2020-07-14 Applied Materials, Inc. Temperature control for additive manufacturing
US11511373B2 (en) * 2017-08-25 2022-11-29 Massachusetts Institute Of Technology Sensing and control of additive manufacturing processes
CN111107974B (zh) 2017-10-04 2022-03-04 惠普发展公司,有限责任合伙企业 增材制造温度
US10605665B2 (en) 2017-10-31 2020-03-31 National Cheng Kung University Method for measuring temperature of process area
EP3527352B1 (en) 2018-02-15 2020-06-03 SLM Solutions Group AG Device and method for calibrating an irradiation system of an apparatus for producing a three-dimensional work piece

Also Published As

Publication number Publication date
DE112018001597T5 (de) 2019-12-12
US11390035B2 (en) 2022-07-19
JP2022081477A (ja) 2022-05-31
CN111315531A (zh) 2020-06-19
JP2024037833A (ja) 2024-03-19
JP2020530070A (ja) 2020-10-15
DE112018001597B4 (de) 2021-06-02
US10479020B2 (en) 2019-11-19
EP3548218A1 (en) 2019-10-09
JP7024981B2 (ja) 2022-02-24
EP3548218A4 (en) 2019-12-04
US20200101671A1 (en) 2020-04-02
WO2019028184A1 (en) 2019-02-07
JP7408066B2 (ja) 2024-01-05
KR102340573B1 (ko) 2021-12-21
KR20200051594A (ko) 2020-05-13
CN115319115A (zh) 2022-11-11
US11938560B2 (en) 2024-03-26
US20220388249A1 (en) 2022-12-08
US20190039318A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CN111315531B (zh) 用于在增材制造操作期间测量辐射热能的系统和方法
CN112041148B (zh) 用于在增材制造操作期间测量辐射热能的系统和方法
US20230127650A1 (en) Methods and systems for quality inference and control for additive manufacturing processes
US10717264B2 (en) Systems and methods for additive manufacturing operations
US20230182235A1 (en) Sensing and Control of Additive Manufacturing Processes
US20160184893A1 (en) Method and system for monitoring additive manufacturing processes
CN112004635B (zh) 用于增材制造的系统和方法
US11260454B2 (en) Correction of non-imaging thermal measurement devices
CN114514082B (zh) 分析传感器数据的设备及方法、装置、存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: New Mexico

Patentee after: Sigma Add Solutions Co.

Address before: New Mexico

Patentee before: SIGMA LABS, Inc.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20240318

Address after: California, USA

Patentee after: DIVERGENT TECHNOLOGIES, Inc.

Country or region after: U.S.A.

Address before: The American state of New Mexico

Patentee before: Sigma Add Solutions Co.

Country or region before: U.S.A.

TR01 Transfer of patent right