CN100368064C - 光催化氧化结合湿法吸收的湿法烟气脱硝工艺 - Google Patents
光催化氧化结合湿法吸收的湿法烟气脱硝工艺 Download PDFInfo
- Publication number
- CN100368064C CN100368064C CNB2006100517371A CN200610051737A CN100368064C CN 100368064 C CN100368064 C CN 100368064C CN B2006100517371 A CNB2006100517371 A CN B2006100517371A CN 200610051737 A CN200610051737 A CN 200610051737A CN 100368064 C CN100368064 C CN 100368064C
- Authority
- CN
- China
- Prior art keywords
- flue gas
- absorption
- catalyst
- oxidation
- nitrogen oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 91
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 47
- 230000003647 oxidation Effects 0.000 title claims abstract description 46
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims description 108
- 239000003546 flue gas Substances 0.000 title claims description 108
- 230000008569 process Effects 0.000 title claims description 29
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 107
- 238000007146 photocatalysis Methods 0.000 claims abstract description 42
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 230000001590 oxidative effect Effects 0.000 claims abstract description 3
- 239000003054 catalyst Substances 0.000 claims description 81
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 30
- 230000003197 catalytic effect Effects 0.000 claims description 25
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 23
- 239000003365 glass fiber Substances 0.000 claims description 19
- 238000011068 loading method Methods 0.000 claims description 17
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 10
- 239000002250 absorbent Substances 0.000 claims description 5
- 230000002745 absorbent Effects 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 15
- 239000007789 gas Substances 0.000 abstract description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 239000011941 photocatalyst Substances 0.000 abstract description 2
- 239000000779 smoke Substances 0.000 abstract 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 2
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical class [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 44
- 239000000725 suspension Substances 0.000 description 30
- 239000011734 sodium Substances 0.000 description 19
- 238000012545 processing Methods 0.000 description 18
- 238000006555 catalytic reaction Methods 0.000 description 16
- 238000005253 cladding Methods 0.000 description 16
- 238000001035 drying Methods 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 15
- 239000007791 liquid phase Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- -1 InO 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000011806 microball Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
本发明公开了一种光催化氧化结合湿法吸收的湿法烟气脱硝工艺,包括氧化过程和湿法吸收过程,将待处理的烟气先通入装有载有负载型纳米TiO2光催化剂的光催化反应器,对烟气中的氮氧化物进行氧化,氧化后的烟气进入湿法吸收反应器,与碱性、氧化性或还原性的脱硝吸收液充分接触,烟气中的氮氧化物被湿法吸收后净化排放。本发明工艺用于处理烟气,可达到60~90%的氮氧化物去除效率,其脱硝效率高,设备简单,操作方便,占地小。烟气中NO的气相光催化氧化,仅需紫外光照射,反应条件温和,氧化反应迅速,经济成本低。吸收液中的吸收剂与烟气中的NOx发生化学反应,生成无害的产物,后处理简单。
Description
技术领域
本发明涉及大气污染控制技术领域,尤其是涉及了一种采用了光催化氧化结合湿法吸收的湿法烟气脱硝工艺。
背景技术
大气氮氧化物污染问题日益严重,而燃料燃烧是NOX的主要来源,我国也制定了严格的氮氧化物排放标准并开始征收相应的排污费用,高效经济可行的烟气脱硝技术将有广阔的应用市场前景。
湿法烟气处理技术是传统的烟气处理技术,工艺过程简单,投资较少,处理效果好,可供应用的吸收剂很多。但是湿法烟气脱硝技术则一直进展缓慢,其主要原因就在于烟道气特殊的性质。在烟气中的O2含量仅为6~9%,NOx浓度也相对较低,因此烟气中NOx的氧化度很低,即烟气中90~95%的NOx为NO,通过对NOx液相反应机理的研究发现,NOx的液相吸收首先是由气态转入水相,这主要是通过气体在溶液中的吸收平衡来实现,吸收平衡符合亨利定律。而NO在水中溶解度很低,室温下(25℃)其亨利常数为1.94×10-8mol/L·Pa,比SO2的亨利常数低3个数量级,这极大地增加了液相吸收的传质阻力,通过改变温度以及溶液的pH值的方法等手段都不能使NO在水中溶解度明显提高。这一特性造成了目前的湿法烟气脱硝技术普遍存在去除效率高、能耗高等一系列问题,湿法烟气脱硝技术难以实现真正的工业化应用。因此,使NO快速氧化或转变成其它的可溶于水的形态是湿法烟气脱硝技术得以工业化应用的关键。为了能有效地去除烟气中氮氧化物,必须保证氮氧化物中NO2含量达到50~60%。
光催化氧化(PCO)技术是近几年发展起来的一项空气净化技术,具有反应条件温和、能耗低、二次污染少等优点,在废气治理领域,越来越引起人们的关注。但是目前光催化氧化处理氮氧化物的研究仅局限于低浓度氮氧化物的处理,对于高浓度氮氧化物的处理效率不高。提高光催化氧化技术对NOX的氧化效率特别是对高浓度NOX的氧化效率,是该项技术得以实际应用的关键。
目前湿法烟气脱硝工艺主要有碱液吸收、液相氧化吸收、液相还原吸收等工艺,碱液吸收法使用的吸收液有NaOH、Ca(OH)2、Na2CO3以及NH4OH等,液相氧化法使用的吸收液有KMnO4、NaClO2等,液相还原法使用的吸收液有Na2SO3、Na2S、Na2S2O3、(NH2)2CO以及(NH4)2SO3等。
目前用于光催化的半导体主要是宽禁带的N型半导体,主要有TiO2、ZnO、CdS、WO3、Fe2O3、PbS、SnO2、InO3、ZnS、SiO2等十几种,其中TiO2价格相对低廉,稳定性好,催化活性高,可以重复使用而成为目前最常用的光催化剂。已有研究表明,TiO2至少可以经历12次的重复使用而保持光分解效率基本不变。
光催化剂载体的主要作用有:(1)固定催化剂,防止催化剂的流失,并易于回收;(2)提高催化剂利用率,即增加催化剂的有效表面积;(3)提高光催化活性;(4)提高光源利用率等。由于纳米TiO2在阳光下能分解有机物,故所用载体绝大多数为无机材料。目前已被用作负载TiO2的无机类载体有硅胶、沸石、玻璃片、介孔分子筛、耐火砖颗粒、空心玻璃微球等。
发明内容
本发明提供了一种光催化氧化结合湿法吸收烟气脱硝工艺,该工艺将待将待处理的烟气先进行氧化,氧化后的烟气再进行湿法吸收后净化排放,有效提高了湿法烟气脱硝的处理效率。
一种光催化氧化结合湿法吸收的湿法烟气脱硝工艺,包括氧化过程和湿法吸收过程,将待处理的烟气先通入装有载有负载型纳米TiO2光催化剂的光催化反应器,对烟气中的氮氧化物进行氧化,氧化后的烟气进入湿法吸收反应器,与脱硝吸收液(碱性吸收液、还原性吸收液以及氧化性吸收液)充分接触,烟气中的氮氧化物被湿法吸收后净化排放。
所述的光催化剂为负载型纳米TiO2,采用涂覆法在玻璃纤维上进行负载,一般采用自制或商品纳米TiO2粉末并通过以下方法制得:使用乙醇作为溶剂,其中纳米TiO2粉末在乙醇溶液中的重量百分比含量为5%,催化剂涂覆过程重复3~5次,催化剂负载量为0.7~1.5mg/cm2。涂覆完成后,对催化剂进行80℃烘干处理1~2小时。
玻璃纤维具有较大的比表面积,良好的透光性,能有效的利用光电子,非常适于作为光催化剂的载体。
负载后的光催化剂在所述的光催化反应器内呈折叠放置,紫外光源布置于光催化反应室内,放置方式为沿壁轴对称布置。
所述的紫外光源采用高功率紫外灯源如氙灯、汞灯、高压汞灯等。
所述的吸收液可以为碱性吸收液、氧化性吸收液以及还原性吸收液。所述的吸收液如NaOH、Ca(OH)2、Na2CO3、NH4OH、KMnO4、NaClO2、Na2SO3、Na2S、Na2S2O3、(NH2)2CO以及(NH4)2SO3等中吸收剂的重量百分比含量为5~20%。
对于光催化氧化结合湿法吸收烟气脱硝工艺而言,脱硝吸收液的选择可以根据不同的应用情况进行选择。还原性吸收液反应生成的绝大部分产物为N2,对环境的危害小;采用碱性或氧化性吸收液反应生成的产物为相应的硝酸盐,在进行适当的提纯及净化处理后,可以作为化工原料以及肥料使用,实现了氮资源的再生利用。
所述的湿法吸收反应器可以采用鼓泡塔、填料塔、喷淋塔或旋流板塔等。
待处理的烟气进入光催化反应器,通过光催化剂的光催化氧化作用对烟气中NO进行有效氧化,将烟气氮氧化物中NO2的含量从10%左右提高到50%以上,提高了氮氧化物的可吸收性。氧化后的烟气进入湿法吸收反应器,与脱硝吸收液充分接触,NOx被还原生成N2或相应的硝酸盐。烟气中的氮氧化物被湿法吸收后净化排放。
本发明以TiO2为光催化剂,以玻璃纤维作为催化剂载体,通过光催化氧化技术对烟气中氮氧化物进行有效的氧化,提高其氧化度;再利用碱性吸收液(如NaOH、Ca(OH)2、Na2CO3以及NH4OH等)、氧化性吸收液(如KMnO4、NaClO2等)、还原性吸收液(如Na2SO3、Na2S、Na2S2O3、(NH2)2CO、(NH4)2SO3等)作为氮氧化物液相吸收的吸收剂,对烟气氮氧化物进行高效的吸收处理,有效提高传统湿法烟气脱硝的处理效率。
本发明工艺脱硝效率高,设备简单,操作方便,占地小。烟气中NO的气相光催化氧化,仅需紫外光照射,反应条件温和,氧化反应迅速,经济成本低。吸收液中的吸收剂与烟气中的NOx发生化学反应,生成无害的产物,后处理简单。采用本发明工艺处理烟气,可达到60~90%的氮氧化物去除效率。
附图说明
附图1为本发明所述的光催化氧化结合湿法吸收的湿法烟气脱硝工艺流程示意图
具体实施方式
按图1所示的光催化氧化结合湿法吸收的湿法烟气脱硝工艺,烟气首先进入光催化反应器,在光催化反应器中在光催化剂作用下进行氧化,再进入有脱硝吸收液的湿法吸收反应器,与脱硝吸收液充分接触,烟气中的NOx被吸收后,净化气体从吸收反应器顶部排放。脱硝吸收液贮存于新鲜吸收液贮槽中,抽取部分新鲜脱硝吸收液与吸收反应器中流出的脱硝吸收液进行混合循环使用,并对部分循环的脱硝吸收液排放后进行处理或资源化利用。
实施例1
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为0.7mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用NaOH溶液作为脱硝吸收液,其中溶液中NaOH重量百分含量为5%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到45%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到60%~65%的氮氧化物去除效率。
实施例2
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.2mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用NaOH溶液作为脱硝吸收液,其中溶液中NaOH重量百分含量为10%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到55%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到65%~70%的氮氧化物去除效率。
实施例3
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.5mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用NaOH溶液作为脱硝吸收液,其中溶液中NaOH重量百分含量为20%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到65%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到75%~80%的氮氧化物去除效率。
实施例4
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为0.7mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用Ca(OH)2溶液作为脱硝吸收液,其中溶液中Ca(OH)2重量百分含量为5%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到45%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到75%~80%的氮氧化物去除效率。
实施例5
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.2mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用Ca(OH)2溶液作为脱硝吸收液,其中溶液中Ca(OH)2重量百分含量为10%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到55%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到80%~85%的氮氧化物去除效率。
实施例6
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.5mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用Ca(OH)2溶液作为脱硝吸收液,其中溶液中Ca(OH)2重量百分含量为20%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到65%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到80%~85%的氮氧化物去除效率。
实施例7
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为0.7mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用Na2SO3溶液作为脱硝吸收液,其中溶液中Na2SO3重量百分含量为5%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到45%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到75%~80%的氮氧化物去除效率。
实施例8
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.2mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用Na2SO3溶液作为脱硝吸收液,其中溶液中Na2SO3重量百分含量为10%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到55%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到85%~90%的氮氧化物去除效率。
实施例9
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.5mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用Na2SO3溶液作为脱硝吸收液,其中溶液中Na2SO3重量百分含量为20%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到65%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到85%~90%的氮氧化物去除效率。
实施例10
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为0.7mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用(NH2)2CO溶液作为脱硝吸收液,其中溶液中(NH2)2CO重量百分含量为5%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到45%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到80%~85%的氮氧化物去除效率。
实施例11
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.2mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用(NH2)2CO溶液作为脱硝吸收液,其中溶液中(NH2)2CO重量百分含量为10%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到55%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到85%~90%的氮氧化物去除效率。
实施例12
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.5mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用(NH2)2CO溶液作为脱硝吸收液,其中溶液中(NH2)2CO重量百分含量为20%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到65%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到85%~90%的氮氧化物去除效率。
实施例13
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为0.7mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用NaClO2溶液作为脱硝吸收液,其中溶液中NaClO2重量百分含量为5%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到45%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到80%~85%的氮氧化物去除效率。
实施例14
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.2mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用NaClO2溶液作为脱硝吸收液,其中溶液中NaClO2重量百分含量为10%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到55%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到85%~90%的氮氧化物去除效率。
实施例15
配制含有5%TiO2的悬浊液,采用涂覆法将玻璃纤维浸入催化剂悬浊液涂覆3~5次,涂覆完成后对催化剂进行80℃烘干处理,催化剂负载量为1.5mg/cm2;负载后的催化剂在催化反应器内呈折叠放置,紫外光源布置于催化反应室内,放置方式为沿壁轴对称布置;采用NaClO2溶液作为脱硝吸收液,其中溶液中NaClO2重量百分含量为20%。待处理的烟气进入光催化反应器,进行光催化氧化反应,经测试,烟气氮氧化物中NO2的含量从10%左右提高到65%以上;氧化后的烟气进入吸收反应器,与吸收液充分接触,排放的烟气检测结果表明能达到85%~90%的氮氧化物去除效率。
Claims (5)
1.一种光催化氧化结合湿法吸收的湿法烟气脱硝工艺,包括氧化过程和湿法吸收过程,其特征在于:将待处理的烟气先通入装有光催化剂的光催化反应器,对烟气中的氮氧化物进行氧化,氧化后的烟气进入有脱硝吸收液的湿法吸收反应器,与吸收液充分接触,烟气中的氮氧化物被吸收液吸收后净化排放;所述的光催化反应器中装载有负载型纳米TiO2光催化剂;所述的吸收液为碱性吸收液、氧化性吸收液或还原性吸收液;所述负载型纳米TiO2光催化剂的负载工艺为:以乙醇作为溶剂,其中纳米TiO2粉末在乙醇溶液中的重量百分比含量为5%,在玻璃纤维上进行涂覆过程重复3~5次,催化剂负载量为0.7~1.5mg/cm2,涂覆完成后,对催化剂进行80℃烘干处理1~2小时。
2.根据权利要求1所述的湿法烟气脱硝工艺,其特征在于:碱性吸收液含有NaOH、Ca(OH)2、Na2CO3或NH4OH。
3.根据权利要求1所述的湿法烟气脱硝工艺,其特征在于:氧化性吸收液含有KMnO4、NaClO2。
4.根据权利要求1所述的湿法烟气脱硝工艺,其特征在于:还原性吸收液含有Na2SO3、Na2S、Na2S2O3、(NH2)2CO或(NH4)2SO3。
5.根据权利要求1所述的湿法烟气脱硝工艺,其特征在于:所述的吸收液中吸收剂的重量百分比含量为5~20%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100517371A CN100368064C (zh) | 2006-05-31 | 2006-05-31 | 光催化氧化结合湿法吸收的湿法烟气脱硝工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100517371A CN100368064C (zh) | 2006-05-31 | 2006-05-31 | 光催化氧化结合湿法吸收的湿法烟气脱硝工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1883775A CN1883775A (zh) | 2006-12-27 |
CN100368064C true CN100368064C (zh) | 2008-02-13 |
Family
ID=37582153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100517371A Expired - Fee Related CN100368064C (zh) | 2006-05-31 | 2006-05-31 | 光催化氧化结合湿法吸收的湿法烟气脱硝工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100368064C (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008104070A1 (en) * | 2007-02-27 | 2008-09-04 | Nxtgen Emission Controls Inc. | Emission reduction system using wet scrubbing |
CN101352645B (zh) * | 2008-08-29 | 2011-09-21 | 浙江天蓝环保技术有限公司 | 烟气催化氧化脱硝工艺及其催化剂 |
CN102512949A (zh) * | 2011-12-22 | 2012-06-27 | 中山大学 | 一种利用湿法多相可见光催化氧化治理废气的方法 |
CN103349893B (zh) * | 2013-07-24 | 2015-07-29 | 浙江南化防腐设备有限公司 | 一种湿法脱硝方法及设备 |
CN104147909B (zh) * | 2014-08-06 | 2017-10-10 | 华北电力大学 | 一种基于光催化氧化脱硝脱汞及深度脱硫的系统及方法 |
CN105381713B (zh) * | 2015-11-28 | 2018-07-03 | 马鞍山纽盟知识产权管理服务有限公司 | 一种室内空气净化器 |
CN105457466B (zh) * | 2015-11-28 | 2018-02-09 | 中山市乐途电器有限公司 | 一种空气净化器 |
CN107737520A (zh) * | 2017-10-17 | 2018-02-27 | 上海交通大学 | 利用循环钠碱法对有色冶炼烟气进行协同脱硫脱硝的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06315614A (ja) * | 1993-03-11 | 1994-11-15 | Agency Of Ind Science & Technol | 汚染物質の除去方法及び浄化材 |
CN1208670A (zh) * | 1998-07-08 | 1999-02-24 | 福州大学化肥催化剂国家工程研究中心 | 固体超强酸光催化剂 |
JPH11300155A (ja) * | 1998-04-21 | 1999-11-02 | Hidenori Tsuji | 排気ガス中の窒素酸化物の湿式分解洗浄方法 |
JP2001205049A (ja) * | 2000-01-21 | 2001-07-31 | Fuji Electric Corp Res & Dev Ltd | 有害ガス除去方法および装置 |
CN2532910Y (zh) * | 2002-01-23 | 2003-01-29 | 黄永卫 | 光催化空气净化设备 |
-
2006
- 2006-05-31 CN CNB2006100517371A patent/CN100368064C/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06315614A (ja) * | 1993-03-11 | 1994-11-15 | Agency Of Ind Science & Technol | 汚染物質の除去方法及び浄化材 |
JPH11300155A (ja) * | 1998-04-21 | 1999-11-02 | Hidenori Tsuji | 排気ガス中の窒素酸化物の湿式分解洗浄方法 |
CN1208670A (zh) * | 1998-07-08 | 1999-02-24 | 福州大学化肥催化剂国家工程研究中心 | 固体超强酸光催化剂 |
JP2001205049A (ja) * | 2000-01-21 | 2001-07-31 | Fuji Electric Corp Res & Dev Ltd | 有害ガス除去方法および装置 |
CN2532910Y (zh) * | 2002-01-23 | 2003-01-29 | 黄永卫 | 光催化空气净化设备 |
Non-Patent Citations (6)
Title |
---|
NOx的脱除及回收技术. 严艳丽,魏玺群.低温与特气,第18卷第4期. 2000 * |
TiO2光催化转化NOx的研究进展. 任俊革,谭欣,赵林.天津理工学院学报,第19卷第4期. 2003 * |
二氧化钛光催化剂负载工艺研究进展. 元新华,王红娟.电镀与精饰,第28卷第1期. 2006 * |
湿法吸收法处理氮氧化物废气. 赵建荣.江苏环境科技,第12卷第4期. 1999 * |
用光催化剂去除大气中低浓度氮氧化物. 张唯敏,译.国外环境科学技术,第2期. 1997 * |
硝酸尾气治理方法探讨. 祝天熙.陕西化工. 1997 * |
Also Published As
Publication number | Publication date |
---|---|
CN1883775A (zh) | 2006-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Si et al. | Review on the NO removal from flue gas by oxidation methods | |
CN100368064C (zh) | 光催化氧化结合湿法吸收的湿法烟气脱硝工艺 | |
Krishnamurthy et al. | Abatement of gaseous volatile organic compounds: A process perspective | |
CN100534586C (zh) | 一种烟气联合脱硫脱硝的方法 | |
Zhao et al. | Photocatalytic oxidation for indoor air purification: a literature review | |
Zhang et al. | Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review | |
CN102166471B (zh) | 一种基于非均相Photo-Fenton的一体化烟气净化系统 | |
CN1843575B (zh) | 一种烟气光催化氧化同时脱硫脱硝的方法及装置 | |
Huang et al. | Recent development of VUV-based processes for air pollutant degradation | |
CN104258726B (zh) | 一种光催化处理挥发性有机物的装置 | |
CN113509825A (zh) | 一种低温催化臭氧处理高湿度有机废气的方法 | |
Wang et al. | Photochemical removal of SO2 over TiO2-based nanofibers by a dry photocatalytic oxidation process | |
Preethi et al. | Performance of gas-phase photocatalytic reactors on hydrogen production | |
CN102160959A (zh) | 一种基于高级氧化结合湿法洗涤的烟气净化系统 | |
Wu et al. | Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides | |
CN104147909B (zh) | 一种基于光催化氧化脱硝脱汞及深度脱硫的系统及方法 | |
Chen et al. | NO x attenuation in flue gas by• OH/SO 4•--based advanced oxidation processes | |
CN112973785A (zh) | 一种协同脱除VOCs和NOx的催化剂及其制备方法 | |
CN102512949A (zh) | 一种利用湿法多相可见光催化氧化治理废气的方法 | |
Masresha et al. | A review of prospects and challenges of photocatalytic decomposition of volatile organic compounds (VOCs) under humid environment | |
CN113117704A (zh) | 一种改性纳米二氧化钛光催化剂的制备方法及其应用 | |
CN112090273A (zh) | 一种负载光催化剂的填料及其超重力脱除NOx的装置和工艺 | |
CN102580727B (zh) | 一种活性炭负载二氧化钛掺银光催化剂的制备方法 | |
CN206950990U (zh) | 一种光催化反应器和工业废气处理装置 | |
Gu et al. | Study on impregnation process optimization for regenerating the spent V2O5-WO3/TiO2 catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080213 Termination date: 20170531 |
|
CF01 | Termination of patent right due to non-payment of annual fee |