CN100354389C - 铝酸钆基发光薄膜材料芯片及其制备方法 - Google Patents

铝酸钆基发光薄膜材料芯片及其制备方法 Download PDF

Info

Publication number
CN100354389C
CN100354389C CNB2003101078306A CN200310107830A CN100354389C CN 100354389 C CN100354389 C CN 100354389C CN B2003101078306 A CNB2003101078306 A CN B2003101078306A CN 200310107830 A CN200310107830 A CN 200310107830A CN 100354389 C CN100354389 C CN 100354389C
Authority
CN
China
Prior art keywords
film
chip
base
material chip
interlayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101078306A
Other languages
English (en)
Other versions
CN1528856A (zh
Inventor
刘茜
罗岚
刘庆峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CNB2003101078306A priority Critical patent/CN100354389C/zh
Publication of CN1528856A publication Critical patent/CN1528856A/zh
Application granted granted Critical
Publication of CN100354389C publication Critical patent/CN100354389C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本发明公开了铝酸钆基发光薄膜材料芯片及其制备方法。所制备的薄膜材料芯片化学通式为:Gd1-xAlyOz:Rex,y值范围为0~5/3(从纯氧化钆相Gd2O3到石榴石铝酸钆相Gd3Al5O12的所有配比铝酸钆晶相),Re为稀土元素(Eu、Pr、Ce),Re的掺杂克分子量范围在0~25%。0≤x≤0.25,0≤y≤5/3,3/2≤z≤12/3。本发明的主要特征为:芯片制备中采用离子束溅射顺序沉积芯片组元、沉积过程中使用组合材料芯片技术中的旋转掩膜和连续移动掩膜技术控制化学组元的沉积种类和沉积量、芯片热处理采用低温扩散和高温晶化两步热处理方法。所获得的阵列样品分别具有在紫外光(254nm)激发下发射红光的特征。

Description

铝酸钆基发光薄膜材料芯片及其制备方法
技术领域
本发明涉及离子束溅射顺序沉积制备铝酸钆基发光材料芯片,更确切地说涉及一种新型材料研究方法-组合材料芯片技术应用于铝酸钆基发光薄膜材料芯片及其制备,属于组合材料芯片技术领域。
背景技术
组合材料芯片(Combinatorial Materials Chips)技术是基于组合化学思想所发展的一种快速发现/优化/筛选新材料的创新技术。它是将薄膜沉积和物理掩膜遮盖技术相结合,在有限面积的衬底上快速、并行制备成百上千个(甚至上万个)化学组成各异的薄膜样品,并通过快速表征技术迅速获得样品的相关结构和性能信息,以比传统方法快百倍、千倍乃至更高的速度快速发现/优化/筛选新材料。而且,这种方法特别适用于化学组成复杂、对微量掺杂敏感的材料体系筛选。由于在衬底上沉积的阵列式样品(或称材料样品库)的排列图形类似集成电路芯片的图形,因此将这种样品库称为“材料芯片”。在组合材料芯片技术中,芯片制备是整个技术应用的前提。自1995年美国劳伦斯-伯克利国家实验室(LBNL)的Xiao-Dong Xiang(项晓东)博士和P.G.Schultz教授在组合材料芯片研究中作出开创性工作以来,针对材料芯片制备技术开展了大量研究工作。组合溶液喷射法是最先发展起来的制备技术,并在生物材料、药物材料等领域得到成功应用。但这种技术制备的材料样品库密度较低,还不能充分体现出组合材料芯片技术加速新材料和新物种发现的优势。物理气相顺序沉积是能制得更高密度材料芯片的技术,与物理掩膜的连续移动(步进马达驱动)及旋转(每圆周旋转4次,每次旋转90度)遮盖技术相结合后,能够实现在每平方英寸的衬底上制备成千上万个样品的操作。
利用组合材料芯片技术筛选化学组成复杂的发光材料可以充分发挥该技术的优势。
铝酸钆基发光材料具有优异的光学性能、机械性能及稳定的物理化学性质。相对发展较成熟的铝酸钇基发光材料,该体系材料具有基体成分吸收系数大的特点,即可掺杂和固溶范围大,作为新型光学基体材料它的应用正为人们所瞩目。对该体系材料中的最佳发光基体选择、最佳掺杂离子种类(主要是稀土元素离子和过渡金属离子)和光淬灭浓度都是目前研究的热点问题,但研究进展缓慢。
用组合材料芯片技术开发新型铝酸钆基发光材料可加速研究进程,是有重要意义和可行性的。利用组合材料芯片技术,在美国劳伦斯-伯克利国家实验室已发现了几类稀土掺杂的金属氧化物磷光体材料,其中包括:(Gd0.6Sr0.4)Al1.6O3+δ:Eu0.08 2+(发绿光);LaAl3.1O3+δ:Eu0.08 2+(发蓝光);GdAl1.6O3+δ:Eu0.08 3+(发红光),其发光量子效率分别为:100%、60%、100%(Tibtech.March;1999,17,107-115)。此外,项晓东博士等人还发现了一种新型的红光发光体(Gd1.54Zn0.46)O3-δ:Eu0.06 3+,其发光量子效率为86%。该材料与目前商用的红光发光体Y2O3:Eu2+相比,具有更纯的饱和色(工业上用的Y2O3:Eu2+的发光峰实际上是在橙红区)。能否基于组合材料芯片技术原理,用离子束溅射沉积技术和物理掩膜技术相结合,制备新型的铝酸钆基发光材料芯片,且芯片中的薄膜材料以发红光为主要特征,从而引导出本发明的目的。
发明内容
本发明目的旨在基于组合材料芯片技术,制备新的铝酸钆基发光薄膜材料芯片。
本发明制备铝酸钆基发光薄膜材料芯片的化学表达式如下:
                    Gd1-xAlyOz:Rex
式中y值范围为0~5/3(从纯氧化钆相Gd2O3到石榴石铝酸钆相Gd3Al5O12的所有配比的铝酸钆晶相),Re为稀土元素Eu、Pr或Ce中的一种或任意两种组合),0≤x≤0.25,0≤y≤5/3,3/2≤z≤4.
本发明采用离子束溅射顺序沉积制备铝酸钆基发光材料芯片。分别选择硅(100)单晶基片、氧化的硅(100)单晶基片和MgO(100)单晶基片作为衬底材料。所用靶材的原料采用纯度为99.99%的Gd2O3、Eu2O3、Pr6O11、CeO2等稀土氧化物和金属箔。溅射使用的靶材为76.2mm直径的、干压成型和高温烧结瓷化的稀土氧化物圆片和金属箔包裹圆片。靶材粘结采用具有良好的耐热性能和极低挥发物含量、较强粘接能力的银导电胶。制备芯片能和极低挥发物含量、较强粘接能力的银导电胶。制备芯片时,先用离子束溅射靶材在衬底上依次逐层沉积各组元,各组元的化学计量比通过沉积膜厚控制:
化学计量比=各组元膜厚比×(相应厚度薄膜的理论密度/克分子量)
采用组合材料芯片技术中的四元组合法(8×8阵列)、梯度组合法实现各组元沉积位置定位(即实现组元成分组合设计过程)。沉积完成后对衬底上的样品进行低温扩散和高温晶化两步热处理,最终得到一系列铝酸钆基发光材料样品。
本发明制备的铝酸钆基发光材料芯片包含样品密度高,可系统地对掺杂的铝酸钆基发光材料进行基体、掺杂元素种类、掺杂淬灭点等进行筛选。
筛选出的钙钛矿型铝酸钆基发光材料发光强度大、色纯度高。
附图说明
图1实施例1芯片样品的紫外激发下发光示意图(各样品均发红光,伪色)。
图2与实施例1薄膜样品组成相同的粉体的紫外光激发下的荧光光谱(典型红光)。
图3实施例2芯片夹层和小夹层设计示意图。
图4实施例2芯片顺序沉积示意图。
图5按实施例2掺杂Ce、Pr、Eu元素的GdAlO3基材料芯片紫外光激发下发光特征示意图,颜色越深表示发光强度越大。
图6实施例3芯片夹层设计示意图。
图7按实施例3,Ce、Pr、Eu激活中心掺杂连续变化的GdAlO3基材料芯片紫外光激发下发光示意图,颜色越深表示发光强度越大。
图8实施例4芯片Al膜层设计示意图。
图9按实施例4得到的Gd和Al化学计量比连续变化的材料芯片紫外光激发下发光特征示意图,颜色越深表示发光强度越大。
具体实施方式
采用离子束溅射在衬底上顺序沉积铝酸钆基发光材料芯片涉及溅射靶材制备、靶材粘接、溅射参数优选、膜层溅射沉积、沉积层的低温扩散和高温晶化热处理等过程。下面将结合实施例和附图按制备过程顺序对本发明进行具体叙述。
实施例1-单一掺杂发光薄膜材料芯片制备
单一掺杂发光材料芯片制备包括:(1)靶材制备;(2)靶材粘接;(3)溅射参数优选;(4)发光材料芯片各组元顺序沉积;(5)沉积层的低温互扩散和高温晶化五个过程。
(1)靶材制备
以Gd2O3为例,素靶典型的通用制备工艺如下。将原始粉料经一定的热处理后,加入粘合剂造粒成20~40目的粉体,并压制成素坯。根据后续工艺中素坯的收缩情况,初始素坯的直径选择为φ90mm。热处理升降温速率为5℃/min以避免素坯受热不均匀导致开裂。热处理工艺为600℃保温10小时,1300℃保温4小时。为提高素坯的密度,也可采用冷等静压进行处理(200MPa下保压3分钟)。
(2)靶材粘接
选用上海合成树脂研究所生产的DAD-87型高温银导电胶粘结靶材。粘接工艺如下:将靶材和铜基座的粘接表面磨平、清洗,稍许加热后均匀涂覆一层银导电胶,在120℃/10小时下完成导电胶的固化即可。
(3)溅射参数优选
优选离子束溅射仪的溅射参数和设备参数为:49mA束电流,1000V束电压,62mA PBN发射电流,52°入射角。
(4)发光材料芯片各组元顺序沉积(单一掺杂,旋转掩膜操作)
按(1)、(2)方式制备GdAlO3和Eu2O3靶材,并粘接。控制离子束溅射仪按(3)所优选的工作条件,在Si(100)衬底上完成顺序沉积,沉积顺序为基层膜(GdAlO3 1000)+夹层膜(Eu 200)+基层膜(GdAlO31000)。
(5)沉积层的低温互扩散和高温晶化
在衬底上沉积的多层前驱膜在400℃进行120小时低温成分互扩散,之后在1300℃进行4小时的高温晶化热处理,最终制备成化学表达式为GdAlOx:Eu的结晶薄膜材料芯片(Eu的掺杂量为10%mol的Gd量)。图1为该薄膜样品紫外光激发发光示意图(伪色),每个样品大小为3.5mm×3.5mm,样品阵列为8×8。图2为与该薄膜化学成分相同的粉体的紫外光激发下的荧光(红光)光谱特性。
实施例2-复合掺杂发光薄膜材料芯片制备(旋转掩膜制备)
按实施例1中(1)、(2)相同方式制备GdAlO3、Eu2O3、Pr6O11、CeO2靶材,并粘接。控制离子束溅射仪按实施例1中(3)所优选的工作条件,在单晶Si(100)面和单晶MgO(100)面衬底上完成顺序沉积,沉积顺序为基层膜+夹层膜+小夹层膜+夹层膜+基层膜。基层膜是GdAlO3(1000)。夹层膜设计是把8×8的样品阵列四等分分成掺杂Ce、Pr、Eu和不掺杂4个大区(每区为4×4阵列,不同掺杂元素膜膜厚均为100,其化学计量相当于10%mol的Gd量)。小夹层膜则将每个4×4夹层膜大区再四等分分为Ce、Pr、Eu和不掺杂4个小区(每个小区为2×2阵列,不同掺杂元素膜膜厚均为20,其化学计量相当于10%mol的相应大区掺杂元素量)。所得多层前驱膜按实施例1中(5)步骤进行扩散和晶化两步热处理,得到掺杂Ce、Pr、Eu元素的GdAlO3基体材料芯片。图3是芯片夹层和小夹层的设计示意图。图4为该薄膜紫外光激发发光示意图(伪色)。
实施例3-复合掺杂发光薄膜材料芯片制备(连续移动掩膜制备)
按实施例1中(1)、(2)相同方式制备GdAlO3、Eu2O3、Pr6O11、CeO2靶材,并粘接。控制离子束溅射仪按实施例1中(3)所优选的工作条件,在Si(100)面和单晶MgO(100)面衬底上完成顺序沉积,沉积顺序为基层膜+夹层膜+基层膜。基层膜是GdAlO3(1000)膜组成。夹层膜由左至右厚度由零连续增加至200nm,由上而下8条薄膜成份分别为不掺杂、掺CeO2(0~200,200其化学计量相当于10%mol的Gd量)、不掺杂、掺Pr6O11(0~200,200其化学计量相当于10%mol的Gd量)、不掺杂、不掺杂、不掺杂、掺Eu2O3(0~200,200时化学计量为10%mol的Gd量)。按实施例1中(5)步骤对多层膜进行热处理,得到Ce、Pr、Eu激活中心掺杂连续变化的GdAlO3基材料芯片。图6是芯片夹层设计示意图。图7为该薄膜紫外光激发发光示意图。
实施例4-单一掺杂发光薄膜材料芯片制备(连续移动掩膜制备,基质中的Gd和Al化学计量比连续变化)
按实施例1中(1)和(2)相同方式制备Gd2O3、Eu2O3氧化物靶材,并粘接。采用商品化Al金属箔靶材掺入Al成分。控制离子束溅射仪按实施例1中(3)所优选的工作条件,在Si(100)衬底上完成顺序沉积,沉积顺序为基层膜-夹层膜A-夹层膜B-夹层膜A-基层膜,夹层膜A为Al膜,夹层膜B为掺杂量恒定的Eu2O3、Pr2O3或CeO2中一种。基层膜是由Gd2O3(600)膜组成。Al膜层厚度由左至右厚度连续增加,由上而下四条薄膜中Al膜厚度分别为0~300、300~600、600~900、700~1000,即Al与Gd比变化范围分别为0~1∶2;1~2∶2;2~3∶2;7~10∶6。Eu2O3膜层是由Eu2O3(240)膜组成(Eu量为20%mol的Gd量)。按实施例1中(5)步骤对多层膜进行热处理,得到Gd和Al化学计量比为连续变化的材料芯片。图8是芯片设计示意图。图9为该薄膜紫外光激发发光示意图。

Claims (3)

1、一种铝酸钆基发光薄膜材料芯片,其特征在于薄膜材料芯片的化学组成为:
Gd1-xAlyOz:Rex
式中Re为Eu、Pr或Ce三种稀土元素中的任意一种或三种同时掺杂,0≤x≤0.25,0≤y≤5/3,3/2≤z≤4。
2、制备如权利要求1所述的铝酸钆基发光薄膜材料芯片的方法,包括靶材制备、靶材粘接、离子束溅射参数优化、各组元顺序沉积及沉积层的低温互扩散和高温晶化五个过程,其特征在于可以采用下面两种方法中的任意一种方法来制备所述的单一掺杂发光薄膜芯片材料:(1)在单晶硅(100)面和单晶MgO(100)面的衬底上完成顺序沉积,沉积顺序为基层膜-夹层膜-基层膜,基层膜为GdAlO3,夹层膜为Eu,Pr或Ce中的一种;在衬底上沉积的多层前驱膜在400℃进行120小时低温成份相互扩散,之后在1 300℃进行4小时的高温晶化热处理,最终制成化学表达式为Gd1-xAlyOz:Rex的薄膜材料芯片,Re为Eu,Pr或Ce中的一种;式中0≤x≤0.25,0≤y≤5/3,3/2≤z≤4;
(2)在单晶Si(100)面和单晶MgO(100)面衬底上完成顺序沉积,沉积顺序为基层膜-夹层膜A-夹层膜B-夹层膜A-基层膜,基层膜为Gd2O3;夹层膜A为Al膜,由上至下四条Al膜厚度分别为0~300、300~600、600~900、700~1000,即Al与Gd比变化范围分别为0~1∶2;1~2∶2;2~3∶2;7~10∶6;夹层膜B为掺杂量恒定的Eu2O3PrO3或CeO2一种所得多层前驱膜于400℃进行120小时低温成分互扩散,之后在1300℃进行4小时的高温晶化热处理,得到Gd和Al化学比例连续变化的Gd1-xAlyOz:Rex基的薄膜材料芯片,式中0≤x≤0.25,0≤y≤5/3,3/2≤z≤4;
所述的各组元的化学计量比=各组元膜厚比×(相应厚度薄膜的理论密度/克分子量)。
3、制备如权利要求1所述的铝酸钆基发光薄膜材料芯片的方法,包括靶材制备、靶材粘接、离子束溅射参数优化、各组元顺序沉积及沉积层的低温互扩散和高温晶化五个过程,其特征在于可以采用下面三种方法中的任意一种来制备所述的复合掺杂发光薄膜材料芯片:
(1)在单晶Si(100)面和单晶MgO(100)面衬底上完成顺序沉积,沉积顺序为基层膜-夹层膜-小夹层膜-夹层膜-基层膜,基层膜是GdAlO3,夹层膜设计是把8×8的样品阵列四等分分成掺杂Ce、Pr、Eu和不掺杂4个大区,每区为4×4阵列;小夹层膜则将每个4×4夹层膜大区再四等分分为Ce、Pr、Eu和不掺杂4个小区,每个小区为2×2阵列;所得多层前驱膜于400℃进行120小时低温成分互扩散,之后在1300℃进行4小时的高温晶化热处理,得到Ce、Pr、Eu激活中心掺杂连续变化的Gd1-xAlyOz:Rex基薄膜材料芯片;式中0≤x≤0.25,0≤y≤5/3,3/2≤z≤4;
(2)在单晶Si(100)面和单晶MgO(100)面衬底上完成顺序沉积,沉积顺序为基层膜-夹层膜-基层膜,基层膜为GdAlO3,夹层膜由上至下8条薄膜成份分别为不掺杂、掺CeO2、不掺杂、掺Pr6O11、不掺杂、不掺杂、不掺杂、掺Eu2O3,每层夹层膜由左至右厚度由零连续增加至200nm;所得多层前驱膜于400℃进行120小时低温成分互扩散,之后在1300℃进行4小时的高温晶化热处理,得到Ce、Pr、Eu激活中心掺杂连续变化的GdAlO3基薄膜材料芯片;式中0≤x≤0.25,0≤y≤5/3,3/2≤z≤4;
所述的各组元的化学计量比=各组元膜厚比×(相应厚度薄膜的理论密度/克分子量)。
CNB2003101078306A 2003-10-09 2003-10-09 铝酸钆基发光薄膜材料芯片及其制备方法 Expired - Fee Related CN100354389C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2003101078306A CN100354389C (zh) 2003-10-09 2003-10-09 铝酸钆基发光薄膜材料芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2003101078306A CN100354389C (zh) 2003-10-09 2003-10-09 铝酸钆基发光薄膜材料芯片及其制备方法

Publications (2)

Publication Number Publication Date
CN1528856A CN1528856A (zh) 2004-09-15
CN100354389C true CN100354389C (zh) 2007-12-12

Family

ID=34304495

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101078306A Expired - Fee Related CN100354389C (zh) 2003-10-09 2003-10-09 铝酸钆基发光薄膜材料芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN100354389C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347267C (zh) * 2005-03-21 2007-11-07 南昌大学 石榴石型铝酸钆基荧光粉体及其制备方法
CN100343360C (zh) * 2005-04-27 2007-10-17 南昌大学 单斜型铝酸钆基荧光粉体及其制备方法
CN109592978B (zh) * 2018-12-03 2021-07-23 江苏师范大学 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250386A (ja) * 1985-08-23 1987-03-05 スタンダ−ド・エレクトリツク・ロ−レンツ・アクチエンゲゼルシヤフト 発光材料およびその製造方法
CN1241552A (zh) * 1999-07-23 2000-01-19 中国科学院上海硅酸盐研究所 一种无团聚钇铝石榴石纳米粉体的制备方法
JP2001183463A (ja) * 1999-12-24 2001-07-06 Hitachi Medical Corp シンチレータ、それを用いた放射線検出器及びx線ct装置
CN1319899A (zh) * 2000-03-27 2001-10-31 通用电气公司 具有改善的颜色输出的白光照明系统
CN1327706A (zh) * 1999-07-23 2001-12-19 奥斯兰姆奥普托半导体股份有限两合公司 荧光装置,波长转换的浇注料和光源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250386A (ja) * 1985-08-23 1987-03-05 スタンダ−ド・エレクトリツク・ロ−レンツ・アクチエンゲゼルシヤフト 発光材料およびその製造方法
CN1241552A (zh) * 1999-07-23 2000-01-19 中国科学院上海硅酸盐研究所 一种无团聚钇铝石榴石纳米粉体的制备方法
CN1327706A (zh) * 1999-07-23 2001-12-19 奥斯兰姆奥普托半导体股份有限两合公司 荧光装置,波长转换的浇注料和光源
JP2001183463A (ja) * 1999-12-24 2001-07-06 Hitachi Medical Corp シンチレータ、それを用いた放射線検出器及びx線ct装置
CN1319899A (zh) * 2000-03-27 2001-10-31 通用电气公司 具有改善的颜色输出的白光照明系统

Also Published As

Publication number Publication date
CN1528856A (zh) 2004-09-15

Similar Documents

Publication Publication Date Title
Sun et al. Identification and optimization of advanced phosphors using combinatorial libraries
CN101536199A (zh) 包括单片陶瓷发光转换器的照明系统
US20100224896A1 (en) Light emitting device comprising a composite sialon-based ceramic material
KR100487895B1 (ko) 형광체박막, 그 제조방법 및 el패널
Fukada et al. Blue PL and EL emissions from Bi-activated binary oxide thin-film phosphors
Sun Combinatorial search for advanced luminescence materials
US6627251B2 (en) Phosphor thin film, preparation method, and EL panel
CN100354389C (zh) 铝酸钆基发光薄膜材料芯片及其制备方法
CN101928139A (zh) 一种钛酸铋钙基发光压电陶瓷材料及制备方法
Wen et al. Thermal conductivity of Ce3+ doped (Y, Gd) 3Al5O12 ceramic phosphor
CN102071015A (zh) 一种铕、锰共掺激活的白光荧光粉及其制备方法
CN106590655A (zh) 一种Ce3+、Mn2+双掺杂的磷灰石结构氮氧化物白光荧光粉及其制备方法和应用
US20030184216A1 (en) EL panel
JP3472236B2 (ja) 蛍光体薄膜とその製造方法およびelパネル
CN1208423C (zh) 一种掺铕的红色荧光粉的制备方法
CN100475704C (zh) 三重价态钙钛矿型锰氧化物薄膜材料及其制备和应用
CA2352590C (en) Phosphor thin film, preparation method, and el panel
CN113956040B (zh) 一种具有超高压电系数及超强光致发光性能的透明光电陶瓷材料及其制备方法
Sun General Electric Company, Schenectady, New York, USA
EP2225347A1 (en) Red emitting sia1on-based material
CN102604636A (zh) 红光和绿光的氟硫化物荧光材料、制备方法与其白光发光二极管装置
Minami et al. Luminescent characteristics in blue-emitting Bi-activated multicomponent oxide phosphor thin films
Sun Combinatorial Synthesis of Display Phosphors
CN117777999A (zh) 蓝光激发宽带近红外发射的发光材料及其制备方法
CN105503186A (zh) 荧光可控的光致变色铁电材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071212

Termination date: 20121009