CN100352927C - 一种生产非人转基因动物的方法 - Google Patents

一种生产非人转基因动物的方法 Download PDF

Info

Publication number
CN100352927C
CN100352927C CNB01813047XA CN01813047A CN100352927C CN 100352927 C CN100352927 C CN 100352927C CN B01813047X A CNB01813047X A CN B01813047XA CN 01813047 A CN01813047 A CN 01813047A CN 100352927 C CN100352927 C CN 100352927C
Authority
CN
China
Prior art keywords
gsk
mouse
tau
tet
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB01813047XA
Other languages
English (en)
Other versions
CN1443038A (zh
Inventor
费利克斯·埃尔南德斯·佩雷斯
赫苏斯·阿维拉·德格拉多
何塞·哈维尔·卢卡斯·洛萨诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Autonoma de Madrid
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Autonoma de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC, Universidad Autonoma de Madrid filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Publication of CN1443038A publication Critical patent/CN1443038A/zh
Application granted granted Critical
Publication of CN100352927C publication Critical patent/CN100352927C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/20Animal model comprising regulated expression system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • A01K2267/0312Animal model for Alzheimer's disease
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • A01K2267/0318Animal model for neurodegenerative disease, e.g. non- Alzheimer's

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Toys (AREA)
  • Endoscopes (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Catching Or Destruction (AREA)
  • Housing For Livestock And Birds (AREA)

Abstract

一种GSK-3β蛋白被过表达的转基因动物,其可用作神经变性疾病的模型。

Description

一种生产非人转基因动物的方法
本发明涉及用于神经变性疾病,特别是阿尔茨海默氏病的动物模型。
发明背景
在发达国家,阿尔茨海默氏病(AD)氏一种最常见的神经变性疾病,其被表征为进行性的记忆力丧失和语言与行为的损伤,最终导致死亡(Alzheimer,1911;Yankner,1996)。AD中的认知力下降伴随着主要在皮层、海马和扁桃体中的神经元萎缩和缺失(Gomez-Isla等,1997)。除了神经元细胞死亡的特殊模式之外,AD的特征还在于两种神经病理学标志:老年斑和神经原纤维缠结(NFTs)。
老年斑是淀粉样原纤维的细胞外沉积,这些淀粉样原纤维由39-43个氨基酸的β淀粉样肽(AB)组成,在这些AB的周围通常环绕着营养不良的轴突(Glenner和Wong,1984;Masters等.,1985;Selkoe,1994)。
NFTs是在神经内产生的成对的螺旋纤丝(PHFs)的集合物,它们是由微管相关蛋白tau的过磷酸化类型所组成的。(Greenberg等.,1992;Grundke-Iqbal等.,1986;Lee等.,1991;Morishima-Kawashima等.,1995)。在AD的所有经历变性的脑区域中都可以发现NFTs,而且它们出现的时空模式与细胞死亡和症状学的时空模式非常相关(Arriagada等.,1992;Braak和Braak,1991;Gomez-Isla等.,1997)。
对AD发病机理的分子研究起源于对遗传型AD(FAD)感染的家族的遗传研究。这是只有很少的AD病例百分比的原因,但是这些研究却鉴别出了在三个不同基因中的突变,这些基因是引发这种疾病的原因。这些基因是早老因子(presenilins)-1和早老因子-2(PS-l和PS-2)和淀粉样前体蛋白(APP)(Hardy,1996)。在APP中的突变引起Aβ的产生增加(Price和Sisodia,1998),而PS-1和PS-2的突变倾向于将APP加工成Aβ的长而且最生成淀粉样的类型(Aβ42)(Citron等.,1997;Duff等.,1996;Price和Sisodia,1998;Scheuner等.,1996)。该遗传证据与Aβ诱导的神经毒性的体内体外研究一起,作为引发AD的关键事件指向Aβ的形成和/或累积。
虽然有人认为糖原合酶激酶-3β(GSK-3β)的活化是神经元功能异常的原因,但是对导致这种神经元功能异常的下游细胞内效应器知道的很少。
GSK-3β是一种脯氨酸介导的丝/苏氨酸激酶,由于它在糖原代谢调控中的作用而被最初鉴定,并且它在CNS中最为丰富(Woodgett,1990)。除了在胰岛素和IGF-1介导的信号转导中被涉及以外,GSK-3β还参与wnt/无翼信号通路(wnt/wingless signaling pathway),在其中它作为一种关键的酶来调控β-连环蛋白的稳定性并因此调控其核移位及其转录活性(Anderton,1999;Earth等.,1997)。
GSK-3β是产生过磷酸化的tau的最佳候选酶之一,过磷酸化的tau是PHFs的特征(Lovestone和Reynolds,1997)。GSK-3β可以纯化自微管(Ishiguro等.,1988)并且已经显示:它同时在转染细胞(Lovestone等.,1994)和体内的(Hong等.,1997;Munoz-Montano等.,1997)PHFs中的大多数过磷酸化位点使tau磷酸化。此外,GSK-3β聚集在预缠结神经元的细胞质中,而且它在AD神经原纤维改变阶段的大脑中的分布与这些变化的形成顺序相符合。
将皮层和海马的原代神经元培养物与Aβ接触,结果显示Aβ诱导GSK-3β活化(Takashima等.,1996)、tau过磷酸化(Busciglio等.,1995;Ferreira等.,1997;Takashima等.,1998)、和细胞死亡(Busciglio等.,1995;Estus等.,1997;Forloni等.,1993;Loo等.,1993;Pike等.,1991;Takashima等.,1993)。通过反义寡核苷酸或者使用锂来阻断GSK-3β的表达或者阻断其活性,可以防止Aβ诱导的皮层和海马原代培养物的神经变性(Alvarez等.,1999;Takashima等.,1993)。
已经显示:在对人脑样品进行的共免疫沉淀实验中,PS-1直接结合GSK-3β和tau(Takashima等.,1998)。因此,PS-1将GSK-3β带到tau附近的这种能力推测:PS-1可能通过GSK-3β来调控tau的磷酸化。在转染实验中,PS-1的突变型引起PS-1/GSK-3β关联性增加和tau磷酸化的增加(Takashima等.,1998)。此外,研究还表明:在转染的细胞中(Murayama等.,1998;Yu et f al.,1998)和在体内(Yu等.,1998;Zhang等.,1998),PS-1与GSK-3β的底物β-连环蛋白形成了复合体,并且这种相互作用增加了β-连环蛋白的稳定性(Zhang等.,1998)。致病的PS-1突变降低了PS-1稳定β-连环蛋白的能力,这样反过来引起在带有PS-1突变的AD患者中,β-连环蛋白的水平降低。
发明目的
现在存在着对这样一种动物模型的需要,该动物模型非常近似地摹拟神经变性疾病如AD的病理学,这对于了解该疾病和测试新治疗方法是非常重要。
本发明着手解决这个动物模型的问题。
发明概述
本发明提供了用于阿尔茨海默氏病的一种转基因动物模型,其中GSK-3β蛋白在该动物体内被过表达。
优选实施方案
特别地,本发明提供了一种转基因动物模型,其中GSK-3β蛋白的表达是条件性的。
优选地,GSK-3β是唯一被过表达的酶,而且甚至更优选它是唯一被过表达的蛋白质。GSK-3β蛋白单独地被过表达,在转基因动物中令人惊讶地产生了极其酷似AD的病理学。具体地,GSK-3β的过表达引起核β-连环蛋白的水平降低,tau蛋白的磷酸化增加,神经元细胞死亡增加,反应性星形细胞增生,和微神经胶质增生。转基因模型和天然疾病状态的类似的病理学,使本发明的模型对于疾病分析具有高度的价值。
优选地,在转基因研究中所使用的动物是哺乳动物例如小鼠,大鼠或者灵长类动物。其它用于转基因研究的合适的动物在本领域是被人熟知的。
本发明还扩展到用于生产转基因动物的方法。
本发明的动物模型,对于测试用于治疗神经变性疾病如AD的新药或者新治疗方法是有用的。因此,本发明还扩展到在AD治疗中对有用治疗方法的鉴定方法,其包含将治疗方法施用到本发明的转基因动物上,并且监测其对病理学或者行为的影响。
本发明的详细实施方案
我们优先在小鼠中使用tet-调控系统。该tet-调控系统已经在真核细胞系统中和小鼠中被用于条件性的基因表达(Gingrich和Roder,1998)。通过使用这种系统来引发huntingtin的突变类型的转基因表达,我们中的一些人近来已经建立了第一个神经变性疾病的条件性动物模型(Yamamoto等.,2000)。当模仿病理条件的时候,tet-调控体系特别有用,因为它可以被用于:防止因转基因毒性而导致的围产期致死率、只在成年阶段发动转基因的表达,并且一旦相关表型发生改变即停止转基因表达(Kelz等.,1999;Yamamoto等.,2000)。
该系统的调控是通过四环素调控的反式激活蛋白(tTA)来实现的,该反式激活蛋白是一种由tet-抑制物DNA结合结构域和VP16反式活化结构域组成的嵌合蛋白(Gossen和Bujard,1992)。该蛋白特异地结合到tetO操纵子序列上并且诱导转录从一个临近的CMV最小启动子开始转录。因此,tTA和tetO元件的结合可以使得一个特定的转基因被连续反式激活。四环素及其类似物可以结合到tTA上。当这种情况发生后,就会阻止tTA结合到tetO上,转录被抑制。
这样,我们生产出了在成年期的脑中过表达GSK-3β而避免了由胚胎转基因表达引起的围产期致死率的条件性转基因小鼠。这些小鼠在海马神经元中显示出β-连环蛋白的不稳定性和tau的过磷酸化作用,后者导致tau的预缠结样体树定位(somatodendritic localization)。呈现出tau体树定位的神经元通常表现出异常的形态学并且从周围的神经纤维网中脱离。反应性星形细胞增生和微神经胶质增生是神经元应激和死亡的指征。通过对齿状回粒细胞的TUNEL染色,进一步证实了这一发现。在皮层和海马中GSK-3β的过表达导致核β-连环蛋白的水平降低,在AD相关表位中的tau蛋白的磷酸化增加,神经元细胞死亡,反应性星形细胞增生,和微神经胶质增生。因此,我们的研究结果证实了GSK-3β在体内的过表达引起神经变性,并且提示:这些小鼠可以被用作动物模型来研究GSK-3β的去调控(deregulation)与阿尔茨海默氏病发病机理之间的相关性。
实施例
通过下面我们实验工作的实施例,对本发明进行进一步地阐述。注射片断的产生
8.0kb的Ase I片断(BitetO)被用于显微注射。为了生成BitetO,从pcDNA3-GSK3质粒中切下带有N末端MYC表位的、对应于非洲爪蟾属GSK-3β cDNA的1.5kb Hind III片断(Sanchez等.,2000)。将该片断亚克隆到用Hind III消化的pCRII克隆载体(Invitrogen)中。用XhoI消化来测试正确的方向。而后通过Nsi I-Not I消化,将一个1.5kb的片断切下来并且亚克隆到质粒的Pst I-Not I位点,该质粒含有一个双向tetO序列,此序列被带有lacZ报告基因序列的巨细胞病毒(CMV)最小启动子侧接(pBI-3,(Baron等.,1995))。最后,将8.0kb的Ase I BitetO片断显微注射到单细胞CBAxC57BL/6胚胎中。使用PCR来鉴定缔造者小鼠(founder mice)并且通过Southern分析进行确证。而后将缔造者小鼠与野生型CBAxC57BL/6小鼠杂交并且对F1后代进行Southern分析以测试显微注射片断的多重插入事件。在此报告的所有小鼠都来自单一整合事件(数据未显示)。
COS细胞转染
将COS-7细胞保持在补充了10%(v/v)胎牛血清,2mM谷氨酰胺,100单位/ml青霉素和100μg/ml链霉素的Dulbecco改良的基本培养基上(DMEM;Gibco BRL),并且在95%空气和5%二氧化碳的潮湿培养箱中37℃培养。依照生产商的建议,使用LipofectAMINE(Gibco BRL)/5μg的DNA瞬时转染在35mm直径的培养皿上50-70%汇合生长的细胞。在转染后48小时收集细胞并进行分析。
动物
将小鼠养育在Centro de Biologia Molecular″Severo Ochoa″动物装置中。每只笼子关四只小鼠,笼内具有随意获得的食物和水,将小鼠保持在12/12小时光-暗循环的温控环境中,早上7点中开始给光。
抗体
使用下面的抗tau抗体:7.51(Novak等.,1991)(惠赠自Dr.C.Wischik,MRC,Cambridge,UK),PHF-1(Greenberg等.,1992;Otvos等.,1994)(惠赠自Dr.P.Davies,Albert Einstein Coll.,Bronx,NY,美国),12E8(Seubert等.,1995)(惠赠自Dr.P.Seubert,Athena,SanFrancisco,CA,美国),AD2(Buee-Scherrer等.,1996)(惠赠自Dr.C.Mourton-Gilles,Montpellier,法国)。依照441个氨基酸长度的、最长的人tau同种型的残基编号(Goedert等.,1989),当丝氨酸262被磷酸化的时候,抗体12E8与tau反应(Seubert等.,1995)。当丝氨酸396和404被磷酸化的时候,抗体PHF-1和AD2识别tau(Buee-Scherrer等.,1996;Otvos等.,1994)。其它的单克隆抗体是:抗-GSK3-β(转导实验室),抗-β-连环蛋白(转导实验室),抗-β-微管蛋白(Sigma),抗-β-半乳糖苷酶(Promega),抗-myc(杂交瘤库发育研究所(Developmental Studies Hybridoma Bank),爱荷华州,美国),抗-GFAP(PharMingen,CA,美国),OX42(惠赠自Dra.P.Bovolenta,InstitutoCajal,西班牙),ED 1(Serotec;UK)。针对核蛋白U″snRNP产生的抗体由J.Ortin博士无偿惠赠(CNB,马德里,西班牙)。
免疫组织化学
使用鹏特塞尔深度麻痹小鼠并且使用含4%低聚甲醛的0.1M磷酸(盐)缓冲液穿心灌注10分钟。将脑在室温下用4%的低聚甲醛后固定两个小时,并且在4℃将其放置于含30%蔗糖的PBS中48个小时。在冷冻切片机上切出Sagittal切片(30μm),并且收集在PBS中。在含0.3%H2O2 PBS中对游离漂浮切片进行预处理,并且将其在4℃下,在含有0.2%Triton X-100、10%正常山羊血清(GmCO)、和1%BSA(Boehringer-Mannheim)的PBS中与第一抗体:PHF-1(1/150),AD-2(1/2000),抗-myc(1/20),抗-GSK-3β(1/500),抗-β-半乳糖苷酶(1/5000),抗-GFAP(1/250),OX42(1/1000)孵育过夜。在用PBS冲洗3次后,使用Elite Vectastain试剂盒(载体实验室),对切片实施标准的抗生物素蛋白-生物素免疫组织化学方法。用二氨基联苯胺(Sigma)和0.003%H2O2进行生色反应(chromogen reaction)10分钟。在涂有铬明矾的载波片上封固这些切片并用Aqua-PolyMount(Polysciences)将其覆盖。忽略了第一抗体会导致没有标记。
LACZ染色
LacZ染色的操作如下。用含4%低聚甲醛的Soren′s缓冲液对新鲜的冰冻切片进行后固定10分钟。而后将载波片在lacZ染色溶液(在PBS中含有1mg/ml X-gal(4-氯-5-溴-3-吲哚基-β-半乳糖苷酶,BoehringerMannheim),5mM亚铁氰化钾,5mM铁氰化钾和2 mM MgCl2)中30℃培育1小时。染色后,清洗切片并且干燥封固。
TUNEL分析
在低聚甲醛后固定的脑中,用TUNEL方法检测凋亡的DNA断裂特性。按照生产商的说明书,对振动切片机切片进行TUNEL染色(原位细胞死亡检测,POD;Boehringer Mannheim)。用Dnase I进行的处理被用作阳性对照。
亚细胞的分级分离
为了制备膜和细胞溶质的提取物,用冰冷的磷酸(盐)缓冲的盐水对组织进行冲洗,并且将其在低渗缓冲液(0.25M蔗糖,20mM HEPES pH7.4,2mM EGTA,1mM PMSF,10μg/ml抑酶肽,10μg/ml亮抑蛋白酶肽(leupeptine)和10μg/ml胃酶抑制剂(pepstatine))中匀浆。通过在4℃以850×g离心15分钟来澄清匀浆(全部细胞组分);随后在4℃下将所得到的上清液100.000×g离心一个小时,以分离作为沉淀的膜组分和作为上清液的细胞质组分。
通过2M的蔗糖垫沉淀脑核。通过使用Potter匀浆器,该匀浆器装备有松散装配的Teflon研杵,将来自三个动物的脑区域在0.32M蔗糖,10mM Tris-HCl pH7.4,3mM MgCl2,1mM DTT,0.1%Triton X-100,10μg/ml抑酶肽,10μg/ml亮抑蛋白酶肽和10μg/ml胃酶抑制剂中匀浆。将匀浆通过干酪纱布过滤并且在1000×g下离心10分钟。将沉淀重悬于3ml的、不含Triton并且补充了1.9M蔗糖的同质化培养基中。将该制备物在2M的蔗糖垫(10ml)上分层并且在HB4转子(Sorvall)中以12,000×g离心。将沉淀重悬于0.5ml的0.32M蔗糖中。在结晶紫染色后,用光学显微镜评价脑核的纯度。此外,一种已知的核蛋白——U2snRNP在蛋白印迹分析中用作核标记。
蛋白印迹分析
将脑在冰冷的板上迅速切割。通过在冰冷的提取缓冲液中匀浆脑区域来制备用于蛋白印迹分析的提取物,缓冲液组成如下:20mM HEPES,pH7.4,100mM NaCl,20mM NaP,1%Triton X-100,1mM原钒酸钠,5mMEDTA,和蛋白酶抑制剂(2mM PMSF,10μg/ml抑酶肽,10μg/ml亮抑蛋白酶肽和10μg/ml胃酶)。将这些样品匀浆并且在4℃以15,000g离心20分钟。收集所得到的上清液,用Bradford确定蛋白含量。将30微克的总蛋白在10%的十二烷基硫酸钠-聚丙烯酰胺凝胶上电泳并且将其转移到硝酸纤维素膜上(Schleicher和Schuell)。使用下面的第一单克隆抗体进行实验:抗-GSK3β(1/2000),PHF-1(1/200),AD2(1/2000),12E8(1/200),7.51(1/100),抗-MYC(1/100),抗-β-微管蛋白(1/5000),抗-β-半乳糖苷酶(1/5000)。将滤液与抗体在5%的脱脂奶粉中4℃培育过夜。第二羊抗鼠抗体(1/5000;Gmco)和ECL检测试剂(Amersham),用于免疫检测。通过光密度扫描来进行免疫反应性的量化。使用研究者t测试来进行统计分析。
用于电子显微镜的组织处理
将振动切片机的切片用于电子显微镜检查。一旦被免疫染色,将该切片在2%的OsO4中后固定一个小时,脱水,包埋入环氧树脂并且使用塑料盖波片平面封固于透明塑胶(Formvar)包被的载波片中。聚合以后,对选择的区域照相,修整,重新包埋到环氧树脂中并且以1微米重新切片。对这些半薄切片再照相并且再进行超薄切片。在Jeol电子显微镜中观察这些超薄切片,不使用重金属染色以避免人为沉淀物(artifactualprecipitates)。
图1.小鼠设计A,BitetO构建体的图示。其由7个拷贝的、被两个不同方向的CMV启动子序列侧接的回文tet操纵子序列组成。此双向启动子的后面在一个方向上是GSK-3β cDNA序列(在其5’末端编码MYC表位),另一个方向上是包含核定位信号(NLS)的β-半乳糖苷酶(LacZ)序列。B,COS细胞被含有BitetO构建体的质粒和一个编码人tau的表达载体共转染(泳道1-6),第三个允许tTA表达的质粒在培养基中不存在(泳道3和4)或者存在(泳道5和6)1μg/ml四环素的情况下加入。用抗GSK-3β,AD样磷酸化的tau(PHF-1),全部tau(7.51)和β-半乳糖苷酶的抗体来探查蛋白提取物。C,通过将以下两种小鼠杂交来产生Tet/GSK-3β小鼠:在CamKlIa启动子(tTA)控制下表达tTA的小鼠,和在基因组中整合了BitetO构建体的小鼠(TetO)。除非经口给予四环素或者类似物从而防止了tTA的反式激活作用,预计该双转基因后代(Tet/GSK-3β)能够在脑中组成性地表达GSK-3β。
图2.在Tet/GSK-3β小鼠中的转基因表达模式。A-B,来自POTet/GSK-3β小鼠的脑矢状切面的X-gal染色,这些小鼠或者是首次用药的(A),或者是在出生前的5天时间里,立即给予其母体强力霉素而后出生的小鼠(B)。C-E,对成年(三个月)Tet/GSK-3β小鼠的脑矢状切面进行的β-半乳糖苷酶免疫组化揭示了其在皮层的不同神经元层中(C),在海马中(D),和在纹状体(E)中的表达。H,海马;Cx,皮层;St,纹状体;11-VI,皮层;cc,胼胝体;DG,齿状回,Hil;门(hillus);GP,苍白球。在A-B中,B中的刻度线相当的1mm。在C-E中,E中的刻度线相当于的200μm。
图3.在Tet/GSK-3β小鼠的皮层和海马中GSK-3B的过表达。A,来自野生型(泳道1,3,和5)或者Tet/GSK-3β(泳道2,4,和6)小鼠的皮层(泳道1和2),小脑(泳道3和4),和海马(泳道5和6)的蛋白提取物的蛋白印迹。B,显示Tet/GSK-3β小鼠中GSK-3β水平的百分比增加的柱形图。C-E,野生型(C)或者Tet/GSK-3β(D和E)小鼠的皮层切片中的免疫组化;使用抗GSK-3B(C和D)或者MYC(E)的抗体进行。F-H,野生型(F)或者Tet/GSK-3β(G和H)小鼠的海马切片中的免疫组化;使用抗GSK-3β(F和G)或者MYC(H)的抗体进行。I-K,在F-H中显示的齿状回的高倍放大。在C-E中,刻度线相当于100μm,在I-I中相当于60μm,和在K中相当于40μm。
图4.GSK-3β过表达对β-连环蛋白水平和tau磷酸化的影响。A,使用抗-β-连环蛋白抗体进行探查的,对来自野生型(Wt)或者Tet/GSK-3β(TG)小鼠的皮层(Cx)和海马(Hipp)的整个细胞、膜、细胞溶质和核制备物进行的蛋白印迹。B,使PHF-1和β-微管蛋白抗体进行探查的,对野生型(Wt)或者Tet/GSK-3β(TG)小鼠的皮层(Cx),小脑(Cb)和海马(Hipp)的蛋白提取物进行的蛋白印迹。C,使用所示抗体进行探查的,对来自野生型(Wt),tTA,TetO,或者Tet/GSK-3β小鼠的海马提取物进行的蛋白印迹。
图5.Tet/GSK-3β小鼠中的tau的体树定位.A-D,野生型(A和B)或者Tet/GSK-3β(C和D)小鼠齿状回中的PHF-1免疫组化。E-F,在野生型(E)或者Tet/GSK-3β(F)小鼠齿状回中,使用7.51抗体进行的免疫组化。B中的箭号标记显示了微弱染色的苔藓纤维。C中的插页显示了PHF-1免疫染色的粒细胞的高倍放大。在A-D中的刻度线相当于200μm,和在E-F中相当于60μm。
图6.对PHF-1阳性神经元的电子显微镜研究。A,来自Tet/GSK-3β小鼠海马齿状回的两个神经元的电子显微照片。N1:除了扩散的(diffiulse)细胞质免疫染色外,PHF-I免疫阳性神经元的核,显示其圆周的大部分与周围的神经纤维网脱离(箭头)。N2:PHF-1免疫阴性神经元的核。B,来自相同小鼠4A的齿状回的另一个PHF-1免疫阳性神经元,其显示PHF-1反应产物成膜片状并且与粗面内质网相关。N:未标记的核。C,图4B中加外框部分的高度放大,显示了反应产物的膜片(箭号标记)和粗面内质网的标记。不进行重金属染色。校准线在所有板块中相当于5μm。
图7.Tet/GSK-3β小鼠中的神经元死亡和反应性神经胶质增生。A-B,野生型(A)或者Tet/GSK-3β(B)小鼠齿状回的TUNEL染色。箭号标记表示TUNEL阳性的核。C-D,野生型(C)或者Tet/GSK-3β(D)小鼠齿状回中的GFAP免疫组化。E,Tet/GSK-3β小鼠海马的齿状回的电子显微照片,其显示了环绕着PHF-1免疫染色的神经元的肥大星形细胞突起。N:核。星号:扩散的细胞质免疫染色。黑星:肥大星形细胞突起。插页:星形细胞突起的高度放大,显示了神经胶质中间纤丝维管束的特性。F,Tet/GSK-3β小鼠齿状回的OX-42免疫染色。箭号标记表示良好免疫反应性的微神经胶质突起。箭头表示免疫染色的反应性细胞体。SM,分子层(stratum moleculare);SG,颗粒层(stratum granulare);H,门(hillus)。在A-B中的刻度线相当于50μm,在C-D中相当于60μm,在E中相当于0.5μm,和在F中相当于30μm。
小鼠构建体
我们生成了一种携带双向tet效应启动子的质粒(Biteto)(Baron等.,1995),该启动子的后面在一个方向上是GSK-3β cDNA序列(在其5’末端编码MYC表位),在另一个方向上,是一个编码融合到核定位信号上的β-半乳糖苷酶(β-gal)的cDNA(图1A)。在COS细胞的转染实验中对该质粒进行分析(图1B)。使用抗GSK-3β的抗体的蛋白印迹证实:质粒本身或者与编码tau的表达载体共转染(图1B,泳道1和2),对GSK-3β的水平没有影响。当其与允许tTA表达的质粒共转染的时候(图1B,泳道3和4),很清楚地发现GSK-3β的水平明显增高。使用识别PHF tau磷酸化表位的PHF-1抗体的蛋白印迹证实:这导致tau的磷酸化增加。当四环素存在时(图1B,泳道5和6),GSK-3β的反式激活作用丧失。这些实验因此证实了来自BitetO构建体的GSK-3β的条件性表达(图1A)。
而后将BitetO构建体显微注射到卵母细胞中并且将所得到的5只转基因小鼠系从种属上命名为TetO(图1C)。在tTA小鼠系中,tTA转基因受控于钙调蛋白激酶lIa启动子(CamKlIa-tTA系E和B)(Mayford等.,1996)。对这些tTA系进行选择以允许在CNS中限制性、条件性的表达,在前脑中特别高的表达(Mayford等.,1996;Yamamoto等.,2000)。当TetO小鼠与tTA小鼠杂交的时候,预计所得到的双转基因后代(命名为Tet/GSK-3β)能够组成性地表达两种转基因(图1C)。但是在四环素及其类似物存在的情况下,这种表达可以被消除。
我们以前产生具有tet-调控系统的条件性转基因小鼠的经验指出:插入的基因组位点和/或tetO构建体的拷贝数目影响着tTA反式激活的最终模式和水平。BitetO构建体中的β-Gal报告基因序列允许在双转基因小鼠中通过对β-Gal的X-Gal染色或免疫组化对转基因表达模式进行快速分析,而且,还允许通过四环素来测试转基因沉默的效力。我们利用这点来确定哪一个TetO鼠系对我们的研究更为合适。
不同TET/GSK-3β鼠系的特性
当5个TetO系与tTA系繁殖的时候,其中三个显示β-Gal仅在纹状体中表达(数据未显示)。剩下的两个TetO系(系G6和G7)特别适合于我们的研究工作,因为它们在相关于AD的脑区域例如皮层和海马中表现出高水平的转基因表达,而且我们因此将余下的研究集中在系G6和G7上。这两个系以与内源CamKllcα极其相似的空间模式反式激活β-Gal,明显的表达在皮层,海马,纹状体和扁桃体中(图2)。成年Tet/GSK-3β小鼠脑切片的免疫组化显示:β-Gal在皮层的不同神经元层,在海马的不同区域(包括脑下脚,CA1,CA2,CA3,和齿状回),和在1.1纹状体中(图2C-E)表达。在其它脑区域例如苍白球,丘脑,脑干和小脑中,没有检测到β-Gal表达(图2A,2E,3A,和未显示)。当CamKIIα-tTA系(E或者B)被结合了一种TetO系(G6或者G7)的时候,得到了类似的转基因表达模式和水平。在此研究中,我们可替换地使用了每种组合,因此,今后我们将对单转基因小鼠使用术语tTA和TetO,对双转基因小鼠使用术语Tet/GSK-3β。
Tet GSK-3β是能存活的并且是能生育的,并且看起来正常,没有药理学干扰而抑制其转基因表达。这似乎与先前假定的、在脑中增加的GSK-3β表达的毒性相抵触(Brownlees等.,1997)。但是,tTA和TetO小鼠之间的杂合子杂交未产生对每个基因型(野生型,tTA,TetO,和Tet/GSK-3β)预计的25%的频率。Tet/GSK-3β小鼠没有充分出现(14%,n=401)。这可能是由于在Tet/GSK-3β小鼠中因胚胎过表达GSK-3β而引起致死率的一个表征。
以前,在我们的CamKIIα-tTA引发的亨延顿舞蹈病动物模型(HD94)中,我们观察到了围产期的转基因表达和致死率(Yamamoto等.,2000)。在为HD94小鼠的情况下,如果从E15到出生期间,通过在任意饮用水中给予怀孕小鼠四环素类似物强力霉素(2mg/ml),仅在出生后发生转基因表达,而且四个预计基因型的频率恢复到25%。我们因此决定对Tet/GSK-3B小鼠实行相同的围产期强力霉素处理程序。我们发现在PO中,未处理的小鼠在前脑显示出X-gal染色,而在处理过的小鼠(图2A和B)中则没有被染色。这证明Tet/GSK-3β小鼠的转基因表达起始于胚胎期并且可以被强力霉素抑制。如所预料的那样,出生前的强力霉素处理将Tet/GSK-3β小鼠的频率正常化到25%,因此,将同窝鼠中的双转基因小鼠的产率最大化,围产期强力霉素处理被常规使用。
Tet/GSK-3β小鼠在皮层和海马中过表达GSK-3β。我们随后通过蛋白印迹分析确证了显示β-Gal表达的脑区域同样显示了增加水平的GSK-3β。用抗-MYC抗体探查蛋白提取物,结果显示:转基因GSK-3β在海马中表达水平最高,其次是皮层(图3A),而在纹状体中只能检测到很少的表达(未显示)。因此,使用抗GSK-3β的抗体来探查来自3月龄小鼠的提取物(图3A和B),我们发现相对于野生型小鼠,Tet/GSK-3β小鼠的海马中GSK-3β水平有显著的(p<0.02)40+/-12.4%提高。在Tet/GSK-3β小鼠皮层提取物中同样显示了增加(17+/-5%)水平的GSK-3β。在纹状体(未显示)或者非前脑区域如小脑中(图3B),没有发现GSK-3β水平的差异。我们随后监测在1-12月龄Tet/GSK-3β小鼠的海马和皮层中发生的GSK-3β增加情况。所有测试年龄中的过表达水平相似(未显示),本研究余下的实验在2.5-6月龄的成年小鼠中进行。
为了了解哪些细胞群过表达GSK-3β,我们同时使用抗-MYC和抗GSK-3β抗体进行免疫组化。在皮层中,在层II和III的锥形皮层神经元中(图3C-E)和在临近胼胝体的VI神经元层中(未显示)发现了GSK-3β增加的免疫活性(IR)。
在海马中,GSK-3β的过表达在所有区域(脑下脚,CA1,CA2,CA3,和齿状回)中都明显,齿状回和CA2呈现出最普遍的增加(图3F-H)。野生型小鼠的齿状回GSK-3β显示出非常弱的IR(图3F和31)而Tet/GSK-3β小鼠齿状回中的每一个神经元都过表达GSK-3β(图3G和31)。同时使用抗GSK-3β和抗MYC抗体,这些神经元中有-些显示出非常高的染色(图31-K)而且它们通常表现出异常的形态学例如收缩的细胞体(未显示)。在CA2锥形神经元中,发现在Tet/GSK-3β小鼠的细胞体和树突中均有明显的染色(图3G-H)。
我们接下来通过蛋白印迹来分析GSK-3β过表达对其AD相关的底物β-连环蛋白和tau的影响。β-连环蛋白不但是细胞-细胞之间粘接的组分,而且与Tcf/LEF家族的HMG-盒转录因子相关,并且促进靶基因
的转录。GSK-3β是调节β-连环蛋白稳定性和随后核移位的关键酶(Anderton,1999:Barth等.,1997)。
我们首先分析了在整个皮层和海马提取物中β-连环蛋白的水平(图4A)。在野生型和Tet/GSK-3β小鼠之间没有差别。我们随后分析了在不同细胞区域中β-连环蛋白的水平。我们可以在图4A中看出,在来自皮层或者海马的膜或胞质的提取物中,没有观察到β-连环蛋白水平的变化。当分析核提取物的时候,在皮层中观察到β-连环蛋白水平没有明显差别。但是,在海马中,与野生型同窝出生仔鼠相比,我们观察到Tet/GSK-3β小鼠的β-连环蛋白水平显著(p<0.05,n=6)35+/-8%降低。通过免疫-电镜观察到在Tet/GSK-3β小鼠的齿状回中,核β-连环蛋白水平的减少同样明显(未显示)。
我们接下来使用tau抗体,在那些显示MYC表达的脑区域(皮层,纹状体,和海马)以及小脑中进行蛋白印迹。用PHF-1抗体检测,只有海马显示出增加的tau磷酸化水平(图4B和未显示)。通过使用抗相同的tau磷酸表位的AD2抗体,重现了用PHF-1抗体检测到的、AD样tau磷酸化的增加(图4C)。因为没有观察到识别所有tau同种型的、单独的tau抗体7.51的磷酸化增加,因此Tet/GSK-3β小鼠中PHF-1和AD2IR的增加并不是由于全部tau的改变水平。此外,通过12E8抗体的检测发现:不临近脯氨酸残基并且已显示在体内独立于GSK-3β(Munoz-Montano等.,1997)的丝氨酸262的磷酸化在Tet/GSK-3β小鼠中不受影响(图4C)。
我们比较在四种可能基因型(野生型,tTA,TetO,和Tet/GSK-3β)中tau的磷酸化和转基因蛋白表达(图4C)。只有Tet/GSK-3β小鼠显示出β-Gal表达和升高水平的GSK-3β和PHF-1和AD2 tau,从而证明:在Tet/GSK-3β小鼠中的转基因表达和随后的作用是由于BitetO构建体的tTA的反式激活作用导致的,而不是由于在TetO小鼠中因后者的渗漏而导致的。
AD样过磷酸化的tau的体树定位
我们对通过蛋白印迹观察到的、呈现出PHF-1 IR增加的海马神经元群进行免疫组化分析。增加的PHF-1免疫染色在齿状回中是最明显的(图5)。在野生型小鼠中,齿状回的粒细胞显示无可检测的PHF-1 IR(图SA),尽管可以在凸向CA3的苔藓纤维中检测到一些染色(图5B)。Tet/GSK-3β小鼠在苔藓纤维染色中显示出显著的增加(图5D),而且,有趣的是,多数粒细胞显示出很强的体树PHF-1免疫染色,因此类似于AD神经原纤维变性的预缠结阶段(图5C)。
GSK-3β对tau的磷酸化作用降低了tau在体外和转染细胞中对微管的亲和性(Lovestone等.,1996)。这可以在某种程度上解释使用PHF-1抗体发现的体树染色。为了对其进行测试,我们使用7.51进行免疫组化,7.51是一种抗tau微管蛋白结合结构域的抗体并且因而只有在它没有结合微管的时候识别tau。有趣的是,7.51抗体染色Tet/GSK-3β的胞体但是不染色野生型齿状回粒细胞(图5F)。7.51染色的细胞的形态学与使用PHF-1抗体观察到的形态学非常相似(见图5C的插页)。
过磷酸化的tau的强烈的体树免疫染色同样可以是tau的异常聚集的形态例如PHFs的表征。AD脑中的硫黄素-S染色同时显示神经原纤维缠结和淀粉样斑。因此,我们对Tet/GSK-3β小鼠的脑切片进行硫黄素-S染色。在齿状回的粒细胞中或者任何其它脑区域中没有检测到硫黄素-S荧光,这表明没有PHF维管束而且没有β片层蛋白聚集物。缺少硫黄素-S荧光仍然可以与少量、短PHFs的存在相容,因此代表了神经原纤维变性的初始步骤。
为了分析这种可能性,我们随后用电子显微镜研究了Tet/GSK-3β粒细胞,因为它们对PHF-1显示出很强的体树免疫标记。尽管在一些情况下我们也观察到暗反应产物的膜片(图6C),但是在这些神经元的核周体中出现扩散的反应产物(图6A-C)。然而,在暗反应产物膜片或者在扩散的免疫标记细胞质的其它部分中没有观察到PHFs。有趣的是,通常发现免疫标记物沿着粗面内质网(RER)潴泡的细胞质面,而且在一些情况下,上述的暗染色膜片与这些标记的RER潴泡非常接近(图6C)。有趣的是,带有非常频繁出现的、扩散的PHF-1细胞质标记的Tet/GSK-3β神经元从周围的神经纤维网脱离,沿着它们周边的大部分显示出变宽的细胞外间隙(图6A),而没有标记的神经元不显示任何脱离。我们同样观察到野生型小鼠的粒细胞神经元没有脱离。
在TET/GSK-3β小鼠的海马中的神经元细胞死亡和反应性神经胶质增生
以前的研究已经证实:GSK-3β被防止凋亡的PI 3激酶/PKB存活路径抑制(Cross等.,1995;Cross等.,1994;Hurel等.,1996;Saito等.,1994)。这一研究结果,与下列的发现一起,促使我们探索是否凋亡作为GSK-3β过表达的结果在Tet/GSK-3β小鼠中发生,所述的发现是通过在PS-1中的突变,β-连环蛋白的去稳定作用增强了神经元凋亡(Zhang etat.,1998)。
Tet/GSK-3β小鼠不同的神经元群显示:在野生型小鼠中没有的TUNEL标记。这主要在齿状,脑回的粒细胞中被观察到(标记的粒细胞/30μm Tet/GSK-3β齿状回切片对野生型齿状回的无标记高达5。图4A和B)。在Tet/GSK-3β小鼠皮层的层VI中同样观察到一些TUNEL阳性细胞靠近胼胝体(未显示)。
我们接下来测试是否在Tet/GSK-3β小鼠中由GSK-3β过表达引发的神经元改变和/或死亡伴随着神经胶质改变例如反应性星形细胞增生和微神经胶质增生。使用针对神经胶质原纤维酸性蛋白(GFAP)的抗体进行的免疫组化,显示了不同脑区域的反应性星形细胞增生。与TUNEL标记相一致,GFAP染色在齿状回和深皮质层最普遍(图7C和D,和未显示)。电子显微镜研究证实:在Tet/GSK-3β小鼠的齿状回中存在着高度活化的星形细胞突起,其充满了神经胶质中间丝。这些通常在PHF-1IR神经元周围发现(图7E)。
为了测试在Tet/GSK-3β小鼠的海马中是否发生了微神经胶质增生,我们用OX42,LN-3,和ED 1抗体进行免疫组化。在所有这三种抗体中得到了类似的结果(图7F显示了OX-42的免疫组化)。当与野生型海马切片作比较时,在Tet/GSK-3β小鼠的颗粒层中发现精细的微神经胶质突起。此外,仅在Tet/GSK-3β小鼠,主要是在海马的分子层中发现了相应于反应性微胶质细胞的免疫染色的细胞体(7F中的箭头)。
讨论
通过使用条件性转基因方法,我们在此显示GSK-3β的体内过表达引起神经变性。过表达GSK-3β的条件性转基因小鼠还模仿了AD的不同生化和细胞形态例如β-连环蛋白去稳定作用和过磷酸化tau的预缠结样体树定位。我们的研究结果因此支持这样的假说:GSK-3β的去调控可能是AD发病机理中的重要事件,并且产生了某种可能性即这些小鼠可作为研究这种病理学的某些方面的有用的动物模型。
在动物发育过程中,GSK-3β作为Wnt信号通路的组分是有活性的,并且它在决定细胞-命运和形成模式中起重要的作用(Bourouis等.,1990;Ruel等.,1993;Siegfried等.,1992;Siegfried等.,1994)。因此,已推测锂抑制GSK-3β的能力是其致畸态效应的原因(Klein和Melton,1996;Stambolic等.,1996)。除了它们在早期发育中已经被很好确立的角色,已经表明Wnt信号和GSK-3β参与了出生后小脑粒细胞的突触发生(Hall等.,2000;Lucas和Salinas,1997)。在CNS的胚胎和出生后发育的过程中,GSK-3β过表达的毒性可以解释为什么Brownlees及其同事即使使用神经元特异的启动子仍然无法产生具有可检测的GSK-3β过表达的转基因小鼠。这促使这些作者提出使用严格控制的可诱导表达体系(Brownlees等.,1997)。在我们的研究中,我们也发现一部分双转基因小鼠在围产期死亡,而且这可以通过在胚胎期的沉默转基因表达来挽救。但是,一些小鼠可以在没有药物干预的情况下存活。这种情况的发生至少存在两个原因。第一,我们使用的启动子(CamKlIα)比Brownlees及其同事所使用的启动子(NF-L)具有更为严格的表达模式。第二,在我们的二元体系中,转基因本身是沉默的。这避免了因转基因毒性而导致的缔造者致死率。随后与tTA小鼠的繁殖允许选择那些双转基因后代,这些转基因后代带有允许转基因的胚胎过表达的遗传背景。
过磷酸化tau蛋白的体树累积是AD神经原纤维变性演化的早期事件(Braak等.,1994)。在过表达不同同种型的tau的转基因小鼠中发现了tau的预缠结样免疫染色(Brion等.,1999;Gotz等.,1995;Ishihara等.,1999;Spittaels等.,1999)。在这些小鼠中tau的体树定位可能是由于tau的微管结合能力的饱和。过量的tau因而易于在胞体中积累并且经受进一步的修饰例如磷酸化作用和构象变化。在Tet/GSK-3β小鼠中,tau的过磷酸化作用和体树定位的发生不影响整体tau水平,因此,其与在AD和其它tau相关病(taupathie)中发现的情况非常相似。依照在Tet/GSK-3β小鼠中发现的7.51免疫染色增加和依照以前的体外研究(Novak等.,1991),在Tet/GSK-3B小鼠中增加的tau磷酸化作用最可能引起tau对微管亲和性的降低和随后在胞体中蛋白的累积。
我们发现:在Tet/GSK-3β小鼠中的体树tau通常与内质网相关。在表达最短的tau同种型的转基因小鼠(Brion等.,1999)和衰老的绵羊中(Nelson等.,1993)发现了类似的结果。在所有这些情况下,用识别在PHF-tau中发现的磷酸化作用或者构象表位的抗体来进行免疫检测。有趣的是,通常发现AD脑中的PHFs来源于内质网和其它膜结构(Gray等.,1987;Metuzals等.,1988;Papasozomenos,1989)。因此,在动物模型中,tau与内质网的关联可能代表神经原纤维损伤形成的早期阶段。对tau与内质网关联的另外的和合适的解释可能是其与PS-1的相互作用。已发现PS-1在对人脑提取物的共免疫沉淀实验中同时与tau和GSK-3β结合(Takashima等.,1998),PS-1主要位于内质网和高尔基体中(Selkoe,1998)。
有几种机制可能解释在小鼠Tet/GSK-3β中检测到的神经元应激和死亡(由反应性神经胶质和TUNEL染色揭示)。由于GSK-3β的过表达对tau磷酸化和区室化的影响,一种可能的机制可以是微管细胞骨架的组织破坏。在这种情况下,作为tau降低微管稳定性的结果,预计将在Tet/GSK-3β小鼠中出现类似于在AD脑中发现的微管含量的降低(Terry,1998)。此外,GSK-3β被涉及PI-3激酶的存活通路负调控(Cross等.,1995;Cross等.,1994;Hurel等.,1996;Saito等.,1994)而且用撤销营养因子或者用PI-3激酶抑制剂激发培养的皮层神经元引起导致凋亡的GSK-3β刺激作用(Hetman等.,2000;Pap和Cooper,1998)。最后,已经证明降低的β-连环蛋白介导的转录增强了在与β-淀粉样蛋白接触后的(Zhang等,1998)或者用突变PS-1转染的(Weihl等.,1999)原初神经元培养物的神经元凋亡。对于由β-连环蛋白反式激活的靶基因知之甚少,这些基因是凋亡易感性增加的原因。Tet/GSK-3β小鼠可能是通过差异显示或者DNA微阵列方法来鉴别这些基因的一种有效的体系。
在过去的几年中,在AD转基因小鼠模型形成,特别是关于β-淀粉样蛋白毒性级联和斑块形成方面取得了重要进步(Price和Sisodia,1998)。通过产生带有更高APP突变类型的表达水平的小鼠并且通过将它们与倾向于将APP加工成A β42的突变PS-1转基因小鼠繁殖,已经取得了不断的进步(Guenette和Tanzi,1999)。但是,如果在AD发病机制中GSK-3β去调控是一个关键事件,那么Tet/GSK-3β小鼠可以组成一个候选的和/或补充的AD小鼠模型。
迄今为止,关于AD的转基因模型所做的大多数努力都集中在摹拟AD的神经病理学的特征。这可能需要大量地人工修饰来在小鼠的寿命期中再现在人体中需要很多年才能形成的一些情况。或者,在小鼠中摹拟AD神经病理学的所有方面根本是不可能的,因为它需要人类特异的线索(例如在体内β-淀粉样蛋白诱导的毒性的情况)(Geula等.,1998)。GSK-3β是一种在涉及AD样tau过磷酸化、β-淀粉样蛋白诱导的毒性和PS-1突变的路径汇集处发现的酶。当与早已存在的AD小鼠模型比较的时候,Tet/GSK-3β小鼠在下面的这种意义上是独一无二的:它们再现了下游的、可能最终导致AD某些方面的神经内功能障碍。对这个假说的一个预测是可能是在AD患者中发现GSK-3β水平(或者活性)和底物可以被改变。支持其的证据早已有报道(Pei等.,1999;Shiurba等.,1996)。
Tet/GSK-3β小鼠的神经变性与锂的神经保护性作用非常一致,锂是一种相对特异的GSK-3β抑制剂。锂的神经保护作用归功于它抑制GSK-3β(Alvarez等.,1999;Hetman等.,2000)以及在神经元中上调Bcl-2(Chen等.,1999)和下调Bax蛋白(Chen和Chuang,1999)的能力(在Manji等.,1999中修订)。Tet/GSK-3β小鼠因此是测试即将出现的GSK-3β特异性抑制剂的神经保护作用的良好的工具。此外,通过给予四环素类似物可以将它们的效力与沉默转基因表达的效果相比较。
参考文献
Alvarez,G.,Munoz-Montano,I.R.,Satrustegui,I.,Avila,I.,Bogonez,E.,andDiaz-Nido,J(1999).Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration.FEBS Lett 453,260-4.
Alzheimer,A.(1911).über eigernartige krankhertsfülle des spteren alters.z.Ges.Neurol.Psychiat.4,356-385.
Anderton,B.H.(1999).Alzheimer′s disease:clues from flies and worms.CurrBiol 9,R106-9.
Arriagada,P.V.,Growdon,J.H.,Hedley-Whyte,E.T.,and Hyman,B.T.(1992).Neurofibrillary tangles but not senile plaques parallel duration andseverityof Alzheimer′s disease.Neurology 42,631-9.
Baron,U.,Freundlieb,S.,Gossen,M.,and Bujard,H.(1995).Co-regulationof two gene activities by tetracycline via a bidirectional promoter.NucleicAcids Res 23,3605-6.
Barth,A.I.,Nathke,I.S.,and Nelson,W.J.(1997).Cadherins,cateninsand APC protein:interplay between cytoskeletal complexes andsignaling pathways.Curr Opin Cell Bio 19,683-90.
Bourouis,M.,Moore,P.,Ruel,L,Grau,Y.,Heitzler,P.,and Simpson,P.(1990).An early embryonic product of the gene shaggy encodes aserine/threonine protein kinase related to the CDC28/cdc2+subfamily.Embo19,2877-84.
Braak,E.,Braak,H.,and Mandelkow,E.M.(1994).A sequence ofcytoskeleton changes related to the formation of neurofibrillary tangles andneuropil threads.Acta Neuropathol 87,554-67.
Braak,H.,and Braak,E.(1991).Neuropathological stageing ofAlzheimer-related changes.Acta Neuropathol 82,239-59.
Brion,J.P.,Tremp,G.,and Octave,J.N.(1999).Transgenic expression ofthe shortest human tau affects its compartmentalization and itsphosphorylation as in the pretangle stage of Alzheimer′s disease[seecomments].Am J.Pathol 154,255-70.
Brownlees,J.,Irving,N.G.,Brion,J.P.,Gibb,B.J.,Wagner,U.,Woodgett,J.,and Miller,C.C.(1997).Tau phosphorylation in transgenic mice expressingglycogen synthase kinase-3beta transgenes.Neuroreport 8,3251-5.
Buee-Scheffer,V.,Condamines,O.,Mourton-Gilles,C.,Lakes,R.,Goedert,M.,Pau,B.,and Delacourte,A.(1996).AD2,a phosphorylation-dependentmonoclonal antibody directed against tau proteins found in Alzheimer′sdisease.Brain Res Mol Brain Res 39,79-88.
Busciglio,J.,Lorenzo,A.,Yeh,J.,and Yankner,B.A.(1995).beta-amyloidfibrils induce tau phosphorylation and loss of microtubule binding.Neuron14,879-88.
Chen,G.,Zeng,W.Z.,Yuan,P.X.,Huang,L.D.,Jiang,Y.M.,Zhao,Z.H.,and Manji,H.K.(1999).The mood-stabilizing agents lithium and valproaterobustly increase the levels of the neuroprotective protein bcl-2 in the CNS.JNeurochem 72,879-82.
Chen,R.W.,and Chuang,D.M.(1999).Long term lithium treatmentsuppresses p53 and Bax expression but increases Bcl-2 expression.Aprominent role in neuroprotection against excitotoxicity.J BioI Chem 274,6039-42.
Citron,M.,Westaway,D.,Xia,W.,Carlson,G.,Diehl,T.,Levesque,G.,Johnson-Wood,K.,Lee,M.,Seubert,P.,Davis,A.,Kholodenko,D.,Motter,R.,Sherrington,R.,Perry,B.,Yao,H.,Strome,R.,Lieberburg,I.,Rommens,J.,Kim,S.,Schenk,D.,Fraser,P.,St George Hyslop,P.,and Selkoe,D.J.(1997).Mutant presenilins of Alzheimer′s disease increase production of42-residue amyloid beta-protein in both transfected cells and transgenic mice[see comments].Nat Med 3,67-72.
Cross,D.A.,Alessi,D.R.,Cohen,P.,Andjelkovich,M.,and Hemrnings,B.A.(1995).Inhibition of glycogen synthase kinase-3 by insulin mediated byprotein kinase B.Nature 378,785-9.
Cross,D.A.,Alessi,D.R.,Vandenheede,J.R.,McDowell,H.E.,Hundal,H.S.,and Cohen,P.(1994).The inhibition of glycogen synthase kinase-3 byinsulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 isblocked by wortmannin,but not by rapamycin:evidence that wortmanninblocks activation of the mitogen-activated protein kinase pathway in L6 cellsbetween Ras and Raf.Biochem J 303,21-6.
Duff,K.,Eckman,C.,Zehr,C.,Yu,X.,Prada,C.M.,Perez-tur,J.,Hutton,M.,Buee,L.,Harigaya,Y,Yager,D.,Morgan,D.,Gordon,M.N.,Holcomb,L.,Refolo,L.,Zenk,B.,Hardy,J.,and Younkin,S.(1996).Increasedamyloid-beta42(43)in brains of mice expressing mutant presenilin 1.Nature 383,710-3.
Estus,S.,Tucker,H.M.,van Rooyen,C.,Wright,S.,Brigham,E.F.,Wogulis,M.,and Rydel,R.E.(1997).Aggregated amyloid-beta protein inducescortical neuronal apoptosis and concomitant″apoptotic″pattern of geneinduction.J Neurosci 17,7736-45.
Ferreira,A.,Lu,Q.,Orecchio,L.,and Kosik,K.S.(1997).Selectivephosphorylation of adult tau isoforms in mature hippocampal neurons exposedto fibrillar A beta.Mol Cell Neurosci 9,220-34.
Forloni,G.,Chiesa,R.,Smiroldo,S.,Verga,L.,Salmona,M.,Tagliavini,F.,and Angeretti,N.(1993).Apoptosis mediated neurotoxicity induccd bychronic application of beta amyloid fragment 25-35.Neuroreport 4,523-6.Geula,C.,Wu,C.K.,Saroff,D.,Lorenzo,A.,Yuan,M.,and Yankner,B.A.(1998).Aging renders the brain vulnerable to amyloid beta-proteinneurotoxicity[see comments].Nat Med 4,827-31.
Gingrich,J.R.,and Roder,J.(1998).Inducible gene expression in thenervous system of transgenic mice.Annu Rev Neurosci 21,377-405.
Glenner,G.G.,and Wong,C.W.(1984).Alzheimer′s disease:initial reportof the purification and characterization of a novel cerebrovascular amyloidprotein.Biochem Biophys Res Commun 120,885-90.1
Goedert,M.,Spillantini,M.G.,Potier,M.C.,Ulrich,I,and Crowther,R.A.(1989).Cloning and sequencing of the cDNA encoding an isoform ofmicrotubule-associated protein tau containing four tandem repeats:differentialexpression of tau protein mRNAs in human brain.Embo 18,393-9.
Gomez-Isla,T.,Hollister,R.,West,H.,Mui,S.,Growdon,I.H.,Petersen,R.C.,Parisi,I.E.,and Hyman,B.T.(1997).Neuronal loss correlates with butexceeds neurofibrillary tangles in Alzheimer′s disease.Ann Neurol 41,1724.Gossen,M.,and Bujard,H.(1992).Tight control of gene expression inmammalian cells by tetracycline-responsive promoters.Proc Natl Acad SciUSA 89,5547-51.
Gotz,J.,Probst,A.,Spillantini,M.G.,Schafer,T.,lakes,R.,Burki,K.,andGoedert,M.(1995).Somatodendritic localization and hyperphosphorylationof tau protein in transgenic mice expressing the longest human brain tauisoform.Embo J 14,1304-13.
Gray,E.G.,Paula-Barbosa,M.,and Roher,A.(1987).Alzheimer′s disease:paired helical filaments and cytomembranes.Neuropathol Appl Neurobioll3,91-110.
Greenberg,S.G.,Davies,P.,Schein,I.D.,and Binder,L.I.(1992).Hydrofluoric acid-treated tau PHF proteins display the same biochemicalproperties as normal tau.J BioI Chem 267,564-9.
Grundke-Iqbal,I.,Iqbal,K.,Tung,Y.C.,Quinlan,M.,Wisniewski,H.M.,andBinder,L.I.(1986).Abnormal phosphorylation of the microtubule-associated protein tau(tau)in Alzheimer cytoskeletal pathology.ProcNatlAcad Sci USA 83,4913-7.
Guenette,S.Y.,and Tanzi,R.E.(1999).Progress toward valid transgenicmouse models for Alzheimer′s disease.Neurobiol Aging 20,201-11.Hall,A.C.,Lucas,F.R.,and S alinas,P.C.(2000).Axonal remodeling andsynaptic differentiation in the cerebellum is regulated by WNT-7a signaling[In Process Citation].Cell 100,525-35.
Hardy,I.(1996).New insights into the genetics of Alzheimer′s disease.AnnMed 28,255-8.
Hetman,M.,Cavanaugh,I.E.,Kimelman,D.,and Xia,z.(2000).Role ofGlycogen Synthase Kinase-3beta in Neuronal Apoptosis Induced by TrophicWithdrawal.J Neurosci 20,2567-2574.
Hong,M.,Chen,D.C.,Klein,P.S.,and Lee,V.M.(1997).Lithium reducestau phosphorylation by inhibition of glycogen synthase kinase-3.J BioI Chem272,25326-32.
Hurel,S.J.,Rochford,J.J.,Borthwick,A.C.,Wells,A.M.,Vandenheede,J.R.Tumbull,D.M.,and Yeamah,S.J.(1996).Insulin action in cultured humanmyoblasts:contribution of different signalling pathways to regulation ofglycogen synthesis.Biochem J 320,871-7.
Ishiguro,K.,Ihara,Y.,Uchida,T.,and Imahori,K.(1988).A novel tubulin-dependent protein kinase forming a paired helical filament epitope on tau.JBiochem(Tokyo)104,319-21.
Ishihara,T.,Hong,M.,Zhang,B.,Nakagawa,Y.,Lee,M.K.,Trojanowski,J.Q.,and Lee,V.M.(1999).Age-dependent emergence and progression of atauopathy in transgenic mice overexpressing the shortest human tau isoform.Neuron 24,751-62.
Kelz,M.B.,Chen,J.,Carlezon,W.A.,Jr.,Whisler,K.,Gilden,L.,Beckmann,A.M.,Steffen,C.,Zhang,Y.J.,Marotti,L.,Self,D.W.,Tkatch,T.,Baranauskas,G.,Surnmeier,D.J.,Neve,R.L.,Duman,R.S.,Picciotto,M.R.,and Nestler,E.J.(1999).Expression of the transcription factor deltaFosB inthe brain controls sensitivity to cocaine.Nature 401,272-6.
Klein,P.S.,and Melton,D.A.(1996).A molecular mechanism for the effectlithium on development.Proc.Natl.Acad.Sci.USA 93,8455-8459.
Lee,V.M.,Balin,B.J.,Otvos,L.,Jr.,and Trojanowski,J.Q.(1991).A68:amajor subunit of paired helical filaments and derivatized forms of normal Tau.Science 251,675-8.
Loo,D.T.,Copani,A.,Pike,C.J.,Whittemore,E.R.,Walencewicz,A.J.,andCotman,C.W.(1993).Apoptosis is induced by beta-amyloid in culturedcentral nervous system neurons.Proc Natl Acad Sci USA 90,7951-5.
Lovestone,S.,Hartley,C.L.,Pearce,J.,and Anderton,B.H.(1996).Phosphorylation of tau by glycogen synthase kinase-3 beta in intactmammalian cells:the effects on the organization and stability of microtubules.Neuroscience 73,1145-57.
Lovestone,S.,and Reynolds,C.H.(1997).The phosphorylation of tau:acritical stage in neurodevelopment and neurodegenerative processes.Neuroscience 78,309-24.
Lovestone,S.,Reynolds,C.H.,Latimer,D.,Davis,D.R.,Anderton,B.H.,Gallo,J.M.,Hanger,D.,Mulot,S.,Marquardt,B.,Stabel,S.,and et at.(1994).Alzheimer′s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase:kinase-3 in transfectedmammalian cells.Curr BioI 4,1077-86.
Lucas,F.R.,and Salinas,P.C.(1997).WNT-7a induces axonal remodelingand increases synapsin I levels in cerebellar neurons.Dev Biol 192,31-44.Manji,H.K.,Moore,G.J.,and Chen,G.(1999).Lithium at 50:have theneuroprotective effects of this unique cation been overlooked?BioIPsychiatry 46,929-40.
Masters,C.L.,Simms,G.,Weinman,N.A.,Multhaup,G.,McDonald,B.L.,and Beyreuther,K.(1985).Amyloid plaque core protein in Alzheimerdisease and Down syndrome.Proc Natl Acad Sci USA 82,4245-9.Mayford,M.,Bach,M.E.,Ruang,Y.Y.,Wang,L.,Rawkins,R.D.,andKandel,E.R.(1996).Control of memory formation through regulatedexpression of a CaMKII transgene.Science 274,1678-83.
Metuzals,J.,Robitaille,Y.,Roughton,S.,Gauthier,S.,Kang,C.Y.,andLeblanc,R.(1988).Neuronal transformations in Alzheimer′s disease.CellTissue Res 252,239-48.
Morishima-Kawashima,M.,Rasegawa,M.,Takio,K.,Suzuki,M.,Yoshida,R.,Titani,K.,and Ihara,Y.(1995).Proline-directed and non-proline-directedphosphorylation of PHF-tau.J BioI Chem 270,823-9.
Munoz-Montano,J.R.,Moreno,F.J.,Avila,J.,and Diaz-Nido,J.(1997).Lithium inhibits Alzheimer′s disease-like tau protein phosphorylationin neurons.FEBS Lett 411,183-8.
Murayama,M.,Tanaka,S.,Palacino,J.,Murayama,O.,Ronda,T.,Sun,X.,Yasutake,K.,Nihonmatsu,N.,Wolozin,B.,and Takashima,A.(1998).Direct association of presenilin-1 with beta-catenin.FEBS Lett 433,73-7.
Nelson,P.T.,Marton,L,and Saper,C.B.(1993).Alz-50immunohistochemistry in the normal sheep striatum:a light and electronmicroscope study.Brain Res 600,285-97.
Novak,M.,lakes,R.,Edwards,P.C.,Milstein,C.,and Wischik,C.M.(1991).Difference between the tau protein of Alzheimer paired helicalfilament core and normal tau revealed by epitope analysis of monoclonalantibodies 423 and 7.51.Proc Natl Acad Sci USA 88,5837-41.
Otvos,L.,Jr.,Feiner,L.,Lang,E.,Szendrei,G.I.,Goedert,M.,and Lee,V.M.(1994).Monoclonal antibody PHF-1 recognizes tau protein phosphorylatedat serine residues 396 and 404.J Neurosci Res 39,669-73.
Pap,M.,and Cooper,G.M.(1998).Role of glycogen synthase kinase-3 inthe phosphatidylinositol 3-Kinase/Akt cell survival pathway.J BioI Chem 273,19929-32.
Papasozomenos,S.C.(1989).Tau protein immunoreactivity in dementia ofthe Alzheimer type:II.Electron microscopy and pathogenetic implications.Effects of fixation on the morphology of the Alzheimer′s abnormal filaments.Lab Invest 60,375-89.
Pei,J.J.,Braak,E.,Braak,R.,Grundke-Iqbal,I.,Iqbal,K.,Winblad,B.,andCowburn,R.F.(1999).Distribution of active glycogen synthase kinase 3beta(GSK-3beta)in brains staged for Alzheimer disease neurofibrillary changes.J Neuropathol Exp Neurol 58,1010-9.
Pike,C.J.,Walencewicz,A.J.,Glabe,C.G.,and Cotman,C.W.(1991).Invitro aging of beta-amyloid protein caus~s peptide aggregation andneurotoxicity.Brain Res 563,311-4.
Price,D.L,and Sisodia,S.S.(1998).Mutant genes in familial Alzheimer′sdisease and transgenic models.Annu Rev Neurosci 21,479-505.
Ruel,L.,Bourouis,M.,Heitzler,P.,Pantesco,V.,and Simpson,P.(1993).Drosophila shaggy kinase and rat glycogen synthase kinase-3 haveconserved activities and act downstream of Notch.Nature 362,557-60.Saito,Y.,Vandenheede,J.R.,and Cohen,P.(1994).The mechanism bywhich epidermal,growth factor inhibits glycogen synthase kinase 3 in A431cells.Biochem J 303,27-31.
Sanchez,S.,Sayas,L.,Lim,F.,Diaz-Nido,J.,Avila,J.,and Wandosell,F.(2000).The inhibition of PI3-K induces neurite rectraction and activatesGSK-3b.submitted.
Scheuner,D.,Eckman,C.,Jensen,M.,Song,X.,Citron,M.,Suzuki,N.,Bird,T.D.,Hardy,J.,Hutton,M.,Kukull,W.,Larson,E.,Levy-Lahad,E.,Viitanen,M.,Peskind,E.,Poorkaj,P.,Schellenberg,G.,Tanzi,R.,Wasco,W.,Lannfelt,L.,Selkoe,D.,and Younkin,S.(1996).Secreted amyloid beta-protein similarto that in the senile plaques of Alzheimer′s disease is increased in vivo by thepresenilin land 2 and APP mutations linked to familial Alzheimer′s disease[see comments].Nat Med 2,864-70.
Selkoe,D.J.(1998).The cell biology ofbeta-amyloid precursor protein andpresenilin in Alzheimer′s disease.Trends Cell Biol8,447-53.
Selkoe,D.J.(1994).Normal and abnormal biology of the beta-amyloidprecursor protein.Annu Rev Neurosci 17,489-517.
Seubert,P.,Mawal-Dewan,M.,Barbour,R.,Jakes,R.,Goedert,M.,Johnson,G.V.,Litersky,J.M.,Schenk,D.,Lieberburg,I.,Trojanowski,J.Q.,and et.al.(1995).Detection of phosphorylated Ser262 in fetal tau,adult tau,andpaired helical filament tau.J Biol Chem 270,18917-22.
Shiurba,R.A.,Ishiguro,K.,Takahashi,M.,Sato,K.,Spooner,E.T.,Mercken,M.,Yoshida,R.,Wheelock,T.R.,Yanagawa,H.,Imahori,K.,and Nixon,R.A.(1996).Immunocytochemistry of tau phosphoserine 413 and tau proteinkinase I in Alzheimer pathology.Brain Res 737,119-32.
Siegfried,E.,Chou,T.B.,and Perrimon,N.(1992).Wingless signaling actsthrough zeste-white 3,the Drosophila homolog of glycogen synthase kinase3,to regulate engrailed and establish cell fate.Cell 71,1167-79.
Siegfried,E.,Wilder,E.L.,and Perrimon,N.(1994).Components ofwingless signalling in Drosophila.Nature 367,76-80.
Spittaels,K.,Van den Haute,C.,Van Dorpe,J.,Bruynseels,K.,Vandez ande,K.,Laenen,I.,Geerts,H.,Mercken,M.,Sciot,R.,Van Lommel,A.,Loos,R.,and Van Leuven,F.(1999).Prominent axonopathy in the brain and spinalcord of transgenic mice overexpressing four-repeat human tau protein.Am JPathol 155,2153-65.
Stambolic,V.,Ruel,L.,and Woodgett,J.R.(1996).Lithium inhibitsglycogen synthase kinase-3 activity and mimics wingless signalling in intactcells[published erratum appears in Curr BioI 1997 Mar 1;7(3):196].CnrrBioI 6,1664-8.
Takashima,A.,Honda,T.,Yasutake,K.,Michel,G.,Murayama,O.,Murayama,M.,Ishiguro,K.,and Yamaguchi,H.(1998).Activation of tauprotein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide(25-35)enhances phosphorylation of tau in hippocampal neurons.NeurosciRes 31,317-23.
Takashima,A.,Murayama,M.,Murayama,O.,Kohno,T.,Honda,T.,Yasutake,K.,Nihonmatsu,N.,Mercken,M.,Yamaguchi,H.,Sugihara,S.,and Wolozin,B.(1998).Presenilin 1 associates with glycogen synthase kinase-3beta andits substrate tau.Proc Natl Acad Sci US A 95,9637-41.
Takashima,A.,Noguchi,K.,Michel,G.,Mercken,M.,Hoshi,M.,Ishiguro,K.,and Imahori,K.(1996).Exposure of rat hippocampal neurons to amyloidbeta peptide(25-35)induces the inactivation of phosphatidyl inositol-3kinase and the activation of tau protein kinase I/glycogen synthase kinase-3beta.Neurosci Lett 203,33-6.
Takashima,A.,Noguchi,K.,Sato,K.,Hoshino,T.,and Imahori,K.(1993).Tau protein kinase I is essential for amyloid beta-protein-inducedneurotoxicity.Proc Natl Acad Sci USA 90,7789-93.
Terry,R.D.(1998).The cytoskeleton in Alzheimer disease.I Neural TransmSuppl 53,141-5.
Weihl,C.C.,Ghadge,G.D.,Kennedy,S.G.,Hay,N.,Miller,R.J.,and Roos,R.P.(1999).Mutant presenilin-1 induces apoptosis and downregulatesAkt/PKB.J Neurosci 19,5360-9.
Woodgett,J.R.(1990).Molecular cloning and expression of glycogensynthase kinase-3/factor A.Embo I 9,2431-8.
Yamamoto,A.,Lucas,J.J.,and Hen,R.(2000).Reversal of neuropathologyand motor dysfunction in a conditional model ofHuntington′s disease.Cell101,57-66.
Yankner,B.A.(1996).Mechanisms of neuronal degeneration in Alzheimer′sdisease.Neuron 16,921-32.
Yu,G.,Chen,F.,Levesque,G.,Nishimura,M.,Zhang,D.M.,Levesque,L.,Rogaeva,E.,Xu,D.,Liang,Y.,Duthie,M.,St George-Hyslop,P.H.,andFraser,P.E.(1998).The presenilin 1 protein is a component of a highmolecular weight intracellular complex that contains beta-catenins.IBioIChem 273,16470-5.
Zhang,Z.,Hartmann,H.,Do,V.M.,Abramowski,D.,SturcWer-Pierrat,C.,Staufenbiel,M.,Sommer,B.,van de Wetering,M.,Clevers,H.,Saftig,P.,De Strooper,B.,He,X.,and Yankner,B.A.(1998).Destabilization ofbeta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis.Nature 395,698-702.

Claims (5)

1、一种用于生产非人转基因动物的方法,其包含在动物中过表达GSK-3β蛋白的步骤,其中GSK-3β蛋白的表达在tet-调控的条件性GSK-3β表达系统的控制之下。
2、根据权利要求1的方法,其中GSK-3β是唯一被过表达的酶。
3、根据权利要求1的方法,其中的GSK-3β是唯一被过表达的蛋白质。
4、根据前述权利要求任一项的方法,其中所述动物是哺乳动物。
5、根据权利要求4的方法,其中的哺乳动物是小鼠,大鼠或者灵长类动物。
CNB01813047XA 2000-05-18 2001-05-18 一种生产非人转基因动物的方法 Expired - Fee Related CN100352927C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0012056.8 2000-05-18
GBGB0012056.8A GB0012056D0 (en) 2000-05-18 2000-05-18 Model for neurodegenerative disease

Publications (2)

Publication Number Publication Date
CN1443038A CN1443038A (zh) 2003-09-17
CN100352927C true CN100352927C (zh) 2007-12-05

Family

ID=9891881

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB01813047XA Expired - Fee Related CN100352927C (zh) 2000-05-18 2001-05-18 一种生产非人转基因动物的方法

Country Status (17)

Country Link
US (1) US7265259B2 (zh)
EP (1) EP1280404B1 (zh)
JP (2) JP2003533227A (zh)
KR (1) KR100764889B1 (zh)
CN (1) CN100352927C (zh)
AT (1) ATE332078T1 (zh)
AU (2) AU2001262482B2 (zh)
CA (1) CA2409075A1 (zh)
CY (1) CY1105641T1 (zh)
DE (1) DE60121324T2 (zh)
DK (1) DK1280404T3 (zh)
ES (1) ES2267773T3 (zh)
GB (1) GB0012056D0 (zh)
IL (2) IL152844A0 (zh)
MX (1) MXPA02011391A (zh)
PT (1) PT1280404E (zh)
WO (1) WO2001088109A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE366238T1 (de) 2000-05-11 2007-07-15 Consejo Superior Investigacion Heterocyclischen inhibitoren von glycogen synthase kinase gsk-3
KR101040757B1 (ko) * 2008-04-11 2011-06-10 임재주 안전모
WO2016086197A1 (en) 2014-11-25 2016-06-02 The Brigham And Women's Hospital, Inc. Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease
EP3224380A1 (en) 2014-11-25 2017-10-04 The Broad Institute Inc. Clonal haematopoiesis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005466A1 (en) * 1993-08-12 1995-02-23 Institute Of Psychiatry Models of alzheimer's disease

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2923279C2 (de) * 1979-06-08 1987-07-09 Kali-Chemie Pharma Gmbh, 3000 Hannover Verfahren zur Herstellung von Pankreatin-Pellets und diese enthaltende Arzneimittel
ATE394481T1 (de) * 1996-07-24 2008-05-15 Novartis Pharma Gmbh Transgentier-modell für die krankheit von alzheimer
AU782281B2 (en) * 1999-07-02 2005-07-14 Janssen Pharmaceutica N.V. Transgenic animals as models for neurodegenerative disease

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005466A1 (en) * 1993-08-12 1995-02-23 Institute Of Psychiatry Models of alzheimer's disease

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
al.Tau phosphorylation in transgenic mice expression glycogensynthase kinase-3beta transgenes. Brownlees J et.Neuroreport,rapid communications of oxford,Vol.8 No.15. 1997 *
control of memory formation through regulated expression of aCaMKII transgene. mayford met al.science,american association for the advacement of science,Vol.274. 1996 *

Also Published As

Publication number Publication date
US7265259B2 (en) 2007-09-04
DE60121324D1 (de) 2006-08-17
CN1443038A (zh) 2003-09-17
ATE332078T1 (de) 2006-07-15
ES2267773T3 (es) 2007-03-16
WO2001088109A2 (en) 2001-11-22
AU2001262482B2 (en) 2006-06-08
KR20030027892A (ko) 2003-04-07
KR100764889B1 (ko) 2007-10-09
MXPA02011391A (es) 2004-08-12
JP2012085653A (ja) 2012-05-10
EP1280404A2 (en) 2003-02-05
IL152844A (en) 2008-11-26
DK1280404T3 (da) 2006-10-30
JP2003533227A (ja) 2003-11-11
AU6248201A (en) 2001-11-26
WO2001088109A8 (en) 2002-09-26
US20030177510A1 (en) 2003-09-18
GB0012056D0 (en) 2000-07-12
IL152844A0 (en) 2003-06-24
DE60121324T2 (de) 2007-07-05
EP1280404B1 (en) 2006-07-05
CY1105641T1 (el) 2010-12-22
CA2409075A1 (en) 2001-11-22
PT1280404E (pt) 2006-11-30
WO2001088109A3 (en) 2002-07-04

Similar Documents

Publication Publication Date Title
Sennvik et al. Tau‐4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/knockout mice
CN101802000A (zh) 转基因小鼠
JP2005532802A (ja) アルツハイマーtauタンパク質を発現するトランスジェニック動物
US7161060B1 (en) Transgenic mice comprising a genomic human tau transgene
Newman et al. Animal models of Alzheimer’s disease
Lee et al. Progressive neuronal loss and behavioral impairments of transgenic C57BL/6 inbred mice expressing the carboxy terminus of amyloid precursor protein
Czech et al. Proteolytical processing of mutated human amyloid precursor protein in transgenic mice
CN100352927C (zh) 一种生产非人转基因动物的方法
US20080301827A1 (en) Transgenic animal model of neurodegenerative disorders
AU782281B2 (en) Transgenic animals as models for neurodegenerative disease
ES2262662T3 (es) Modelo de animal transgenico que presenta desordenes neurodegenerativos.
AU2001262482A1 (en) Model for neurodegenerative disease
KR100699453B1 (ko) 신경퇴행성 질환용 모델로서의 형질전환 동물
CA2814737C (en) Use of an a.beta.42 peptide to reduce a cognitive deficit in a subject
US20060168673A1 (en) Transgenic animals as models for neurodegenerative disease
Hernández Pérez et al. Model for neurodegenerative diseases
Götz et al. Human tau transgenic mice: towards an animal model for neuro-and glialfibrillary lesion formation
US6958433B2 (en) Transgenic mice overexpressing aspartyl protease 2 (ASP2)
Von Koch Molecular analysis of a homologue of the mouse beta-amyloid precursor protein, APLP2: Isolation of APLP2cDNA, characterization of the APLP2 gene promoter and gene targeting of APLP2
Van Dorpe et al. Neuropathobiology in Transgenic Mice

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071205

Termination date: 20120518