CN100342463C - 使用气态转变图形化磁性薄膜的方法和系统 - Google Patents

使用气态转变图形化磁性薄膜的方法和系统 Download PDF

Info

Publication number
CN100342463C
CN100342463C CNB2004100563281A CN200410056328A CN100342463C CN 100342463 C CN100342463 C CN 100342463C CN B2004100563281 A CNB2004100563281 A CN B2004100563281A CN 200410056328 A CN200410056328 A CN 200410056328A CN 100342463 C CN100342463 C CN 100342463C
Authority
CN
China
Prior art keywords
mask
magnetic
thin film
magnetic thin
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100563281A
Other languages
English (en)
Other versions
CN1606107A (zh
Inventor
戴维·威廉·亚伯拉罕
尤金·约翰·欧'苏利瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1606107A publication Critical patent/CN1606107A/zh
Application granted granted Critical
Publication of CN100342463C publication Critical patent/CN100342463C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/308Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices lift-off processes, e.g. ion milling, for trimming or patterning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Thin Magnetic Films (AREA)

Abstract

一种图形化磁性薄膜的方法,包括对磁性薄膜的一部分使用化学转变,将该部分转变为非磁性的和电绝缘的,以及所产生的结构。

Description

使用气态转变图形化磁性薄膜的方法和系统
在本发明中美国政府的权力
本申请的主题至少一部分投资来自U.S.Defense AdvancedResearch Projects Agency(DARPA)的合同No.MDA972-99-C-0009。
技术领域
本发明一般涉及图形化薄膜的方法和系统,更具体地涉及使用气态转变图形化磁性薄膜的方法和系统。
背景技术
在例如薄膜磁盘驱动器读磁头和磁性存储器元件等的备种传感器和器件中应用的薄磁性膜的图形化依赖于通过反应离子蚀刻(RIE)、离子研磨和其它减去技术去除(例如物理去除)材料。
因此,这些方法使用材料的物理去除,以便勾画出磁和电的区域。通常,要图形化的区域为微米或亚微米尺寸,并且往往对边缘粗糙度敏感,外形和重新淀积的材料确定最终产品的质量。
最近,实验(例如,参见W.H.Bruenger等人在1999年9月21-23日的25th Internaional Conference on Micro and Nano Engineering,Rome,Italy的“Ion Projection Lithography for Resistless Patterningof Thin Magnetic Films”和2000年6月的MicroelectronicsEngineering(Netherlands)Vol.53,No.1-4的第605-608页以及B.D.Terris等人在2000年5月的Journal of Applied Physics(USA),Volume 87,No.9 Pt.1-3的第7004-7006页的“Patterning MagneticFilms by Ion Beam Irradiation”)已经利用离子束图形化(例如,通过破坏和注入),而没有材料的物理去除。具体地,这种方法使用氧注入技术。但是,在本发明之前,这种技术没有用于磁性存储器件中。
在磁性存储器(MRAM)结构的情况下,隧道结器件的上述图形化对于实现最终的成功和产生高性能的产品是至关重要的。
最终产品的失败主要是由于在存储器芯片上的大约几百万个结中磁性翻转特性的不一致性造成的。这种可变性是由于许多不同因素引起的,但其中最重要的一个是在图形化工艺中。形状上的总的差别导致磁性翻转场(magnetic switching field)的变化。而且,已知边缘粗糙度导致由于磁化的边缘钉扎引起的变化。
最后,由于氧化引起边缘的磁性硬化、边缘变薄以及由于重新淀积材料引起的磁效应都会影响磁性能。在使用材料去除的所有图形化方法(例如,离子研磨、反应离子蚀刻(RIE)等)中,这些方法中的至少一种会损坏图形化区域的边缘。
因此,离子束图形化(针对离子研磨)提供显著改善性能的希望,但是还没有被证实。
但是,如上所述,虽然常规方法已经尝试用于氧化图形化的氧注入,但是对于MRAM器件还没有尝试,也还没有通过暴露在反应等离子体中图形化MRAM器件的任何尝试,更不用说使用氟化了。
发明内容
考虑到传统方法和结构的上述和其它典型的问题、缺陷和不利之处,本发明的示例性特征是提供一种方法(和所产生的结构),其中进行薄磁性膜的图形化,而没有所关心的磁性薄膜材料的物理去除。
本发明的另一个示例性特征是提供一种用于通过将磁性薄膜材料的选定部分转变(例如,化学方式)为非磁性和/或绝缘状态方法(和结构)。
本发明的再一个特征是提供一种在磁性膜的转变中使用氟化的方法(和结构)。
在本发明的第一个示例性方案中,图形化磁性薄膜的方法(和所产生的结构)包括对磁性薄膜的一部分使用化学转变,将该部分转变为非磁性的和电绝缘的,其中所述使用所述化学转变包括使用氟基反应等离子体。
在第二个示例性方案中,磁性薄膜包括图形化的磁性隧道结(MTJ)和在图形化的MTJ的第一和第二侧面上形成的氟化的、非磁性的、电绝缘部件。
在第三个示例性方案中,磁性器件包括上述第二方案中的磁性薄膜和连接到图形化的MTJ上的导电部件(例如,铜等金属)。
采用本发明独特的和不显著的特征,通过将磁性薄膜的选择部分暴露给反应等离子体,可以进行选择性的低功率等离子体转变,从而图形化MRAM器件的磁性薄膜。
另外,对于本发明,不需要防护或重新淀积材料。因此,隧道结的顶层和底层不需要短接(shorting)。此外,形貌问题很小或没有。
附图说明
通过参考附图对本发明的典型实施例的以下详细介绍,将能更好地理解上述和其它示例性目的、方案和优点,其中:
图1说明根据本发明的示例性实施例要图形化的结构100;
图2A-2C说明根据本发明用于图形化薄膜的方法200的处理步骤;
图3说明对应于在图2A-2C中示出的处理步骤的方法300的流程图;以及
图4A-4B说明表示材料的磁滞回线的图。
具体实施方式
现在参考附图,更具体地参考图1-4B,示出了根据本发明的方法和结构的优选实施例。
示例性实施例
现在参考图1,将介绍本发明的示例性方法(和由该方法形成的结构)。具体地,将描述使用化学转变将膜的不需要的部分转变为非磁性的图形化磁性薄膜(例如,在示例性实施例中为坡莫合金)的方法。
图1示出了具有衬底110的结构100。衬底可以是任何合适的材料(例如,硅、SiO2、蓝宝石等)。
在衬底110的表面(例如顶表面)上形成磁性膜120(例如,坡莫合金、镍、铁和钴的合金,以及大量其它磁性合金材料中的任一种)。最好,薄膜120的厚度范围在大约10到大约50的范围内,但是当然本发明并不局限于这些厚度,并且具有可缩放性(scalability),正如本领域的普通技术人员将本申请作为一个整体看待将知道的那样。
在形成磁性膜120之后,掩模130放在磁性膜120的选择部分上。随后,磁性膜暴露在反应等离子体140中。有利地,在较低的温度(例如,在室温下或接近室温)下暴露在等离子体中。即,即使被等离子体在一定程度上自然加热,本发明的方法也不需要加热结构中的衬底或任何其它材料。当然,在转变工艺中加热也可以提供好处。
注意,在示例性实施例中的反应等离子体中使用氟,但是也可以使用其它气体和材料。
例如,可以使用含有诸如氩的其它气体的各种碳氟化合物等离子体,以及六氟化硫等。
另外,含有预定的少量(例如,5-10%)溴化物的气体可以加到氟基气体(例如,NF3、CF4、SF6、CHF3等)中。对于等离子体的主要考虑是如上所述转变下面的薄磁性膜,同时保持膜的附着性。
因此,本发明技术的优选实现为首先使用光刻技术,以常规方式在磁性薄膜样品120的顶部上提供掩模130。在要保留的磁性薄膜区的顶部形成该掩模130,并且以依赖于光致抗蚀剂作为掩模材料120和/或包括类金刚石碳(DLC)、TiN、TaN或类似材料的硬掩模图形化层的通常方式制成。在这种情况下,可以组合或依次进行硬掩模开口和转变。
不管为掩模130选择的材料如何,保护掩模不受在随后的等离子体暴露步骤中的等离子体的影响是重要的。
通过例如CF4等的低功率等离子体实现磁性膜120的暴露部分的转变。对于本发明的目的,“低功率”的意思是不希望所用的功率明显去掉材料。在选择采用的压力和功率下,将不会去掉磁性薄膜材料(例如,坡莫合金、NiFe等),而是将磁性薄膜转变为含氟的膜。
所关心的氟化层的某些特性包括磁性不活泼的(即,非铁磁性的)和电绝缘的。另外,氟化层牢固地附着在下面的衬底上。即,它不会被在制造工艺期间经历的应力剥离。因此,从衬底上剥离、剥落或吹掉氟化层的风险被减到最小。
按已知的方式(例如,如通常所进行的)进行随后的处理,制造功能磁性器件。在图2A-2C中示出了这种结构的例子。
即,图2A(例如,示出了上述低功率等离子体暴露步骤的结果)说明具有磁性薄膜的衬底210的结构200。
具体地,显示出上面具有掩模230的图形化的隧道结220。暴露在反应等离子体(氟)中的磁性薄膜显示为在图形化的隧道结220任一侧上的氟化的坡莫合金(Py)250。最好,在大约5mT到大约100mT的压力范围内进行低功率等离子体暴露,更优选大约10mT到大约30mT,最优选大约20mTorr。注意,最优选的功率对工具是特定的,但是最大功率为大约200W。
图2B(例如,示出了钝化步骤的结果)说明具有在氟化的Py250和掩模上形成的绝缘层(例如,SiO2等氧化物、SiN,SiC,SiLK(例如,在半导体器件的绝缘层中使用低介电常数的介质树脂聚合物,由DowChemical Corporation制造)等氮化物等;仅仅为了示例性的目的,下面将介绍SiO2,并且在图2B中示出)的结构200,然后进行化学机械抛光(CMP)平面化掩模和SiO2等的上表面。
图2C(例如,示出了形成接触的结果)说明通过选择性蚀刻等去掉掩模230的结构200,并且在绝缘层260和曾经是掩模230的区域(例如,过孔或栓塞)上形成导电材料(例如,金属、多晶硅等;铜、钨和铝,最优选铜)。由此,完成器件。
关于上述层的优选厚度,掩模的厚度优选为大约200到1500,金属的厚优选为大约1000到4000。
图3说明对应于图2A-2C所示的处理步骤的方法300的流程图。
具体地,在步骤310中,提供其上形成磁性薄膜的衬底。
在步骤320中,在磁性薄膜的选择部分上形成掩模。
在步骤330中,磁性膜暴露在反应等离子体(例如,氟等)中,从而将暴露在反应等离子体中的磁性膜(例如,NiFe膜等)的暴露部分转变为含氟的膜。含氟的膜是无磁性的和电绝缘的。
在步骤340中,形成功能磁性器件(例如,在步骤330中形成的结构的顶部形成接触)。
对于本发明,提供一种方法(和得到的结构),其中实现100%的磁矩减小。因此,本发明可以将磁矩减小到0。
图4A和4B说明在亚微米级完成的根据本发明的材料的磁性图形化中的磁滞现象。即,良好的翻转行为表示良好的图形化。在图4B中示出了原始数据,对应于亚微米尺寸器件的氟图形化阵列(Fluorine-patterned array)的磁滞回线。水平轴是以Oe为单位的外加磁场H。垂直轴以emu为单位,表示总样品的磁矩的测量值M(该样品具有几平方毫米的面积)。图4A中的数据中是原始数据的数值微分,用于给出翻转场并对于两个转变而展开(左至右,右到左)。在图4A中水平轴是以Oe为单位的外加磁场H,垂直轴表示总样品的磁矩对外加磁场H的微分dM/dH,单位任意或与Oe/emu成比例。
因此,对于本发明,该材料表现出图4A和4B中的磁滞回线,通过磁矩的幅度和较大的翻转场表示在亚微米级上实现了磁性图形化。
仔细观察图4A和4B,来自磁强计的数据说明在磁滞回线上存在显著的翻转场,从而表示隔离的磁性点。此外,电测量显示样品是绝缘的,预期的结果给出未保护的坡莫合金膜如上所述转变为氟化状态。
另外,原子力显微镜(AFM)图像显示表面(例如,除保留硬掩模材料之外的表面)是平坦的,所以图形化没有包括材料的实际去除,而是从原来的坡莫合金转变为绝缘的和非磁性的材料。
因此,对于本发明独特的和不明显的特征,由于以下的考虑提供了在当前处理方法中的显著改善。即,对于本发明,磁性隧道结的边缘没有暴露在氧中。
另外,与RIE或离子研磨的情况相比,本发明更锐利地勾画出边缘。边缘的平滑度最主要的是由光致抗蚀剂线边缘的粗糙度确定,而不是工艺本身。
此外,在图形化之后有很小的形貌,所以可以简化随后的制造。
虽然根据几个优选实施例描述了本发明,但是本领域的技术人员应当认识到,本发明可以在权利要求书的精神和范围内进行修改来实施。
此外,应注意申请人试图覆盖所有权利要求要素的等效物,即使在随后的诉讼期间进行修改。

Claims (27)

1、一种图形化磁性薄膜的方法,包括:
对磁性薄膜的一部分使用化学转变,将所述部分转变为非磁性的和电绝缘的,
其中所述使用所述化学转变包括使用氟基反应等离子体。
2、根据权利要求1的方法,还包括:
使用光刻工艺在要保留的磁性薄膜的所述部分上提供掩模。
3、根据权利要求1的方法,其中所述氟基反应等离子体包括NF3、CF4、SF6、CHF3中的任一个。
4、根据权利要求1的方法,其中在所述转变中使用的压力在10mT到30mT的范围内。
5、根据权利要求1的方法,其中所述磁性薄膜的所述部分包括坡莫合金以及镍、铁和钴合金中的任一个,并且所述转变包括将所述坡莫合金以及镍、铁和钴合金中的任一个转变为含氟的膜。
6、根据权利要求5的方法,其中所述含氟的膜是非铁磁性的。
7、根据权利要求2的方法,其中所述掩模包括光致抗蚀剂。
8、根据权利要求2的方法,其中所述掩模包括由类金刚石碳、TiN和TaN之一构成的硬掩模图形化层。
9、根据权利要求1的方法,用于制造功能磁性器件。
10、根据权利要求1的方法,其中在室温下进行所述化学转变。
11、根据权利要求1的方法,其中所述反应等离子体包括碳氟化合物。
12、根据权利要求1的方法,其中所述反应等离子体包括氩。
13、根据权利要求1的方法,其中所述反应等离子体包括六氟化硫。
14、根据权利要求1的方法,其中所述反应等离子体包括溴化物。
15、根据权利要求1的方法,其中对所述等离子体溅射选择性地采用压力,使得磁性薄膜材料不被腐蚀。
16、根据权利要求1的方法,还包括:
在所述磁性薄膜的转变部分和所述掩模上形成绝缘膜;以及
蚀刻所述绝缘膜和所述掩模,以平面化掩模和绝缘膜的上表面。
17、根据权利要求16的方法,还包括:
选择性地蚀刻所述掩模;以及
在绝缘层和选择性蚀刻掩模的区域上形成导电材料。
18、根据权利要求1的方法,其中所述掩模包括绝缘硬掩模,所述方法还包括:
在所述转变之后,选择性地蚀刻所述绝缘硬掩模,以图形化所述绝缘硬掩模。
19、根据权利要求18的方法,还包括:
在蚀刻绝缘硬掩模的区域上形成导电材料。
20、根据权利要求1的方法,其中所述反应等离子体包括O2和含氟的气体。
21、根据权利要求1的方法,其中所述磁性薄膜包括磁性隧道结,并且
其中在所述转变所述部分之后,磁性隧道结的边缘没有暴露在氧中。
22、根据权利要求21的方法,其中磁性隧道结的边缘平滑度由掩模的线边缘粗糙度确定。
23、一种磁性薄膜,包括:
由氟化的、非磁性的、电绝缘材料构成的周围区域定义的磁性隧道结。
24、根据权利要求23的磁性薄膜,其中所述氟化的、非磁性的、电绝缘材料包括氟化的坡莫合金材料以及镍、铁和钴的任一种的氟化合金材料中的一种。
25、一种磁性器件,包括:
权利要求23的磁性薄膜;以及
连接到所述磁性隧道结的导电部件。
26、根据权利要求25的磁性器件,其中所述氟化的、非磁性的、电绝缘材料包括氟化的坡莫合金材料以及镍、铁和钴的任一种的氟化合金材料中的一种。
27、根据权利要求25的磁性器件,还包括:
在氟化的、非磁性的、电绝缘材料上形成的绝缘层。
CNB2004100563281A 2003-10-08 2004-08-06 使用气态转变图形化磁性薄膜的方法和系统 Expired - Lifetime CN100342463C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/680,260 2003-10-08
US10/680,260 US7611911B2 (en) 2003-10-08 2003-10-08 Method and system for patterning of magnetic thin films using gaseous transformation to transform a magnetic portion to a non-magnetic portion

Publications (2)

Publication Number Publication Date
CN1606107A CN1606107A (zh) 2005-04-13
CN100342463C true CN100342463C (zh) 2007-10-10

Family

ID=34422189

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100563281A Expired - Lifetime CN100342463C (zh) 2003-10-08 2004-08-06 使用气态转变图形化磁性薄膜的方法和系统

Country Status (4)

Country Link
US (2) US7611911B2 (zh)
JP (1) JP4124757B2 (zh)
CN (1) CN100342463C (zh)
TW (1) TWI348696B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598131A (zh) * 2009-11-04 2012-07-18 应用材料公司 用于图案化的磁盘媒体应用的等离子体离子注入工艺

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211446B2 (en) * 2004-06-11 2007-05-01 International Business Machines Corporation Method of patterning a magnetic tunnel junction stack for a magneto-resistive random access memory
US7601567B2 (en) * 2005-12-13 2009-10-13 Samsung Mobile Display Co., Ltd. Method of preparing organic thin film transistor, organic thin film transistor, and organic light-emitting display device including the organic thin film transistor
US20090201722A1 (en) * 2008-02-12 2009-08-13 Kamesh Giridhar Method including magnetic domain patterning using plasma ion implantation for mram fabrication
US20090199768A1 (en) * 2008-02-12 2009-08-13 Steven Verhaverbeke Magnetic domain patterning using plasma ion implantation
US8535766B2 (en) 2008-10-22 2013-09-17 Applied Materials, Inc. Patterning of magnetic thin film using energized ions
US8551578B2 (en) * 2008-02-12 2013-10-08 Applied Materials, Inc. Patterning of magnetic thin film using energized ions and thermal excitation
CN102197426B (zh) * 2008-10-22 2014-11-05 应用材料公司 使用能量化离子以图案化磁性薄膜的方法
US9685186B2 (en) * 2009-02-27 2017-06-20 Applied Materials, Inc. HDD pattern implant system
US7863060B2 (en) * 2009-03-23 2011-01-04 Magic Technologies, Inc. Method of double patterning and etching magnetic tunnel junction structures for spin-transfer torque MRAM devices
CN102362311B (zh) * 2009-04-10 2016-04-20 应用材料公司 用特殊离子源装置和以分子离子注入处理有图案化磁畴的hdd(高密度磁盘)
US8962493B2 (en) * 2010-12-13 2015-02-24 Crocus Technology Inc. Magnetic random access memory cells having improved size and shape characteristics
US9234876B2 (en) 2013-03-29 2016-01-12 Stmicroelectronics Pte Ltd. Durable miniature gas composition detector having fast response time
KR102152145B1 (ko) 2013-09-09 2020-09-07 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
JP6498968B2 (ja) 2015-03-11 2019-04-10 株式会社東芝 磁気抵抗素子および磁気メモリ
US10840441B2 (en) 2018-09-14 2020-11-17 International Business Machines Corporation Diamond-like carbon hardmask for MRAM
CN112438962A (zh) * 2019-08-12 2021-03-05 湖南早晨纳米机器人有限公司 磁性载药纳米机器人及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103574A (ja) * 1992-05-01 1994-04-15 Internatl Business Mach Corp <Ibm> 磁気モーメント低下方法及びデータ記憶装置
US5607599A (en) * 1994-11-17 1997-03-04 Kabushiki Kaisha Toshiba Method of processing a magnetic thin film
US6426012B1 (en) * 2000-08-24 2002-07-30 International Business Machines Corporation Wet chemical etch process for patterning MRAM magnetic layers

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204186A (en) * 1981-06-10 1982-12-14 Hitachi Ltd Electrode processing method for magnetic reluctance element
US4536520A (en) * 1984-06-11 1985-08-20 Ethyl Corporation Polyphosphazene foam process
US5650958A (en) * 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
EP0895278A3 (de) * 1997-08-01 2000-08-23 Siemens Aktiengesellschaft Strukturierungsverfahren
US6024885A (en) * 1997-12-08 2000-02-15 Motorola, Inc. Process for patterning magnetic films
US6072718A (en) * 1998-02-10 2000-06-06 International Business Machines Corporation Magnetic memory devices having multiple magnetic tunnel junctions therein
US6093659A (en) * 1998-03-25 2000-07-25 Texas Instruments Incorporated Selective area halogen doping to achieve dual gate oxide thickness on a wafer
US5940319A (en) 1998-08-31 1999-08-17 Motorola, Inc. Magnetic random access memory and fabricating method thereof
US6168845B1 (en) * 1999-01-19 2001-01-02 International Business Machines Corporation Patterned magnetic media and method of making the same using selective oxidation
US6165803A (en) * 1999-05-17 2000-12-26 Motorola, Inc. Magnetic random access memory and fabricating method thereof
US6331364B1 (en) 1999-07-09 2001-12-18 International Business Machines Corporation Patterned magnetic recording media containing chemically-ordered FePt of CoPt
US6440520B1 (en) * 1999-07-09 2002-08-27 International Business Machines Corporation Patterned magnetic recording disk with substrate patterned by ion implantation
JP2001167432A (ja) 1999-12-08 2001-06-22 Hitachi Ltd 高密度磁気記録媒体およびその作製方法
JP2001250217A (ja) 2000-03-07 2001-09-14 Hitachi Maxell Ltd 情報記録媒体及びその製造方法
US6383597B1 (en) 2000-06-21 2002-05-07 International Business Machines Corporation Magnetic recording media with magnetic bit regions patterned by ion irradiation
US6391430B1 (en) * 2000-06-21 2002-05-21 International Business Machines Corporation Patterned magnetic recording media with discrete magnetic regions separated by regions of antiferromagnetically coupled films
US6383598B1 (en) * 2000-06-21 2002-05-07 International Business Machines Corporation Patterned magnetic recording media with regions rendered nonmagnetic by ion irradiation
JP3852310B2 (ja) * 2000-08-07 2006-11-29 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関
US6724674B2 (en) * 2000-11-08 2004-04-20 International Business Machines Corporation Memory storage device with heating element
US6385082B1 (en) * 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)
US6440753B1 (en) * 2001-01-24 2002-08-27 Infineon Technologies North America Corp. Metal hard mask for ILD RIE processing of semiconductor memory devices to prevent oxidation of conductive lines
JP4818519B2 (ja) 2001-02-06 2011-11-16 ルネサスエレクトロニクス株式会社 磁気記憶装置
JP3886802B2 (ja) 2001-03-30 2007-02-28 株式会社東芝 磁性体のパターニング方法、磁気記録媒体、磁気ランダムアクセスメモリ
US6631055B2 (en) * 2001-06-08 2003-10-07 International Business Machines Corporation Tunnel valve flux guide structure formed by oxidation of pinned layer
US6849349B2 (en) 2001-10-22 2005-02-01 Carnegie Mellon University Magnetic films having magnetic and non-magnetic regions and method of producing such films by ion irradiation
JP2003258129A (ja) 2002-03-01 2003-09-12 Seiko Epson Corp 不揮発性記憶装置の製造方法
KR100434956B1 (ko) * 2002-05-29 2004-06-11 주식회사 하이닉스반도체 마그네틱 램의 제조방법
JP4400037B2 (ja) * 2002-10-31 2010-01-20 日本電気株式会社 磁気ランダムアクセスメモリ,及びその製造方法
US6911156B2 (en) * 2003-04-16 2005-06-28 Freescale Semiconductor, Inc. Methods for fabricating MRAM device structures
US6881351B2 (en) * 2003-04-22 2005-04-19 Freescale Semiconductor, Inc. Methods for contacting conducting layers overlying magnetoelectronic elements of MRAM devices
US6798004B1 (en) * 2003-04-22 2004-09-28 Freescale Semiconductor, Inc. Magnetoresistive random access memory devices and methods for fabricating the same
KR100560661B1 (ko) * 2003-06-19 2006-03-16 삼성전자주식회사 자기 메모리의 읽기 방법
US7211446B2 (en) * 2004-06-11 2007-05-01 International Business Machines Corporation Method of patterning a magnetic tunnel junction stack for a magneto-resistive random access memory
JP5794892B2 (ja) * 2010-11-26 2015-10-14 ルネサスエレクトロニクス株式会社 磁気メモリ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103574A (ja) * 1992-05-01 1994-04-15 Internatl Business Mach Corp <Ibm> 磁気モーメント低下方法及びデータ記憶装置
US5607599A (en) * 1994-11-17 1997-03-04 Kabushiki Kaisha Toshiba Method of processing a magnetic thin film
US6426012B1 (en) * 2000-08-24 2002-07-30 International Business Machines Corporation Wet chemical etch process for patterning MRAM magnetic layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598131A (zh) * 2009-11-04 2012-07-18 应用材料公司 用于图案化的磁盘媒体应用的等离子体离子注入工艺
CN102598131B (zh) * 2009-11-04 2016-04-13 应用材料公司 用于图案化的磁盘媒体应用的等离子体离子注入工艺

Also Published As

Publication number Publication date
JP2005117021A (ja) 2005-04-28
CN1606107A (zh) 2005-04-13
US20050079647A1 (en) 2005-04-14
US20090309145A1 (en) 2009-12-17
TWI348696B (en) 2011-09-11
US7611911B2 (en) 2009-11-03
JP4124757B2 (ja) 2008-07-23
TW200514079A (en) 2005-04-16

Similar Documents

Publication Publication Date Title
CN100342463C (zh) 使用气态转变图形化磁性薄膜的方法和系统
US8422276B2 (en) Spacer structure in MRAM cell and method of its fabrication
US10847715B2 (en) Magnetoresistive device and method of manufacturing same
US6806546B2 (en) Passivated magneto-resistive bit structure
US6713802B1 (en) Magnetic tunnel junction patterning using SiC or SiN
TWI282162B (en) Magnetic yoke structures in MRAM devices to reduce programming power consumption and a method to make the same
US20070020775A1 (en) System and method for reducing shorting in memory cells
US20060276034A1 (en) Forming via contacts in MRAM cells
KR102230436B1 (ko) 60 nm 이하 MRAM의 복수 스페이서 보조 물리적 에칭
EP1157388A1 (de) Speicherzellenanordnung und verfahren zu deren herstellung
CN1820359A (zh) 具有凹陷的对准标记的平面磁隧道结衬底
US8519497B2 (en) Template-registered diblock copolymer mask for MRAM device formation
US6849465B2 (en) Method of patterning a magnetic memory cell bottom electrode before magnetic stack deposition
US7383626B2 (en) Methods for fabricating giant magnetoresistive (GMR) devices
US20200212298A1 (en) Self-Aligned Magnetic Metal Shield to Enhance the Coercivity of STT-MRAM Devices
CN114188474A (zh) 磁随机存取存储器及其形成方法
JP2002230720A (ja) 薄膜磁気ヘッドの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20071010