CH706824A2 - Verankerungssystem für einen Traggrund im Bauwesen sowie Verfahren zur Anwendung desselben. - Google Patents
Verankerungssystem für einen Traggrund im Bauwesen sowie Verfahren zur Anwendung desselben. Download PDFInfo
- Publication number
- CH706824A2 CH706824A2 CH01358/12A CH13582012A CH706824A2 CH 706824 A2 CH706824 A2 CH 706824A2 CH 01358/12 A CH01358/12 A CH 01358/12A CH 13582012 A CH13582012 A CH 13582012A CH 706824 A2 CH706824 A2 CH 706824A2
- Authority
- CH
- Switzerland
- Prior art keywords
- anchor rod
- anchor
- anchoring system
- sma
- rod
- Prior art date
Links
- 238000004873 anchoring Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 9
- 238000010276 construction Methods 0.000 title description 4
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 43
- 150000001875 compounds Chemical class 0.000 claims abstract description 22
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 9
- 239000007787 solid Substances 0.000 claims abstract description 8
- 229920000642 polymer Polymers 0.000 claims abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910026551 ZrC Inorganic materials 0.000 claims description 4
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000011572 manganese Substances 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910000734 martensite Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 230000008602 contraction Effects 0.000 claims 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 239000004567 concrete Substances 0.000 abstract description 8
- 239000011435 rock Substances 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000009466 transformation Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229910018195 Ni—Co—Ti Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/41—Connecting devices specially adapted for embedding in concrete or masonry
- E04B1/4157—Longitudinally-externally threaded elements extending from the concrete or masonry, e.g. anchoring bolt with embedded head
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/01—Shape memory effect
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Piles And Underground Anchors (AREA)
- Joining Of Building Structures In Genera (AREA)
Abstract
Das Verankerungssystem ist geeignet für Fels und Beton (2) und jeglichen festen Traggrund. Der Ankerstab (4) aus zum Beispiel einer Gewindestange aus einer Formgedächtnis-Legierung (SMA) wird in der Ankerbohrung (3) mit einer Füllmasse (5) als Verankerungsmedium festgehalten. Zur Verfüllung der Ankerbohrung (3) zwischen Ankerstab (4) und Wandung der Ankerbohrung (3) wird eine hitzebeständige Füllmasse (5) aus einer Polymerverbindung auf Zweikomponenten-Basis oder einer solchen auf zementöser Basis verwendet. Dann wird der Ankerstab (4) durch Wärmeeinbringung von aussen über seinen aus der Füllmasse herausragenden Stummel auf seine austenite Phase erhitzt, was den Ankerstab (4) vorspannt. Schliesslich wird der Ankerstab (4) nach Abkühlung der Füllmasse (5) auf Aussentemperatur abgekühlt. Eine Widerlagerplatte (10) liegt auf der Aussenwand (1) um die Mündung der Ankerbohrung (3) auf und wird mit dem Ankerstab (4) verspannt.
Description
[0001] Diese Erfindung betrifft ein Verankerungssystem zum Einsatz in irgendeinem Traggrund, egal welcher Art der Traggrund ist. Das Verankerungssystem ist auch dazu geeignet, Fels- und Betonanker zu setzen, wie solche in der Bauindustrie für viele Vorhaben unabdingbar sind, und ausserdem betrifft die Erfindung das Verfahren zur Applikation dieses Systems.
[0002] Beim Erstellen eines Bauwerkes oder beim Sanieren eines bereits erstellen Bauwerks werden oftmals Anker zur Stabilisierung und Sicherung in einen bestehenden Traggrund gesetzt. Der Traggrund kann von beliebiger Gestalt sein, etwa ein natürlicher Traggrund wie zum Beispiel Fels oder Eis, oder ein künstlich erstellter Traggrund aus Beton, Stahlbeton, Holz oder einem anderen Material.
[0003] Bisher werden für die Sanierung von Baustrukturen, deren Lastaufnahme-Kapazitäten sich erniedrigten, oder solchen, die dem Risiko einer wesentlichen Deformation infolge von unvermittelt steigenden Lasten ausgesetzt sind, vor allem äussere mechanische Spannungselemente eingesetzt, die mechanisch oder hydraulisch vorgespannt werden. Im Zusammenhang mit dem Anbringen solcher Spannungselemente spielen die Anker eine grosse Rolle. Sollen Ankerstäbe in einem in das Bauwerk eingebrachten Loch hohe Lasten aufnehmen, so ist die Kraftübertragung vom Bauwerk auf den Ankerstab von entscheidender Bedeutung. Gebräuchliche Systeme setzen Stahlstangen mit unterschiedlichen Oberflächenstrukturen wie beispielsweise Gewinde, gerippte oder andere Strukturen als Ankerstäbe ein, und diese werden mittels einer Füllmasse im Ankerloch mit dem Traggrund kraftschlüssig verklebt. Die Füllmasse besteht vorzugsweise aus Polymerverbindungen auf Zweikomponenten-Basis oder solchen auf zementöser Basis. Die Füllmasse wird injiziert oder als Zweikomponenten-Patrone in das Bohrloch eingelegt. Nach Aushärtung der Füllmasse ist der Anker belastbar.
[0004] Bei vielen Bauwerken mit weit auskragenden Betondecken werden dieselben randständig und auch durch Säulen abgestützt, etwa bei Tiefgaragen. Die Ansatzstellen bei den Säulen sind besonders belastet und es droht dort ein «Durchstanzeffekt» bei Überbelastung. Zur Verhinderung dieses Effektes werden Durchstanzbewehrungen in die Betonabdeckung eingebaut. Bei einigen Bauwerken sind diese Durchstanzbewehrungen zu wenig stark ausgeführt oder fehlen überhaupt und sie sollten entsprechend saniert werden. Hierzu werden ebenfalls Anker im Bereich der Säulenabstützungen nachträglich eingebaut, wozu zylindrische Bohrungen in den Beton eingebracht werden. Die eingelassenen Anker in Form von Stahlstangen werden hernach mittels eines Injektionsmörtels oder Klebstoffes, zum Beispiel mittels eines Epoxyharzes, im Loch verklebt und mittels einer Gewindemutter und Widerlagerplatte von der Abdeckungsseite her vorgespannt.
[0005] Das Einkleben der Stahlstangen ist allerdings anfällig für Fehler. Grössere oder kleinere Lufteinschlüsse in der verankernden Masse können nicht mit Sicherheit ausgeschlossen werden. Ein weiterer Nachteil dieses Verankerns liegt darin, dass der Anker-verstärkte Bereich der Abdeckung sich weitgehend einer wärmebedingten Verformung starr widersetzt, womit bei hoher Wärmebelastung die Gefahr besteht, dass Spannungsrisse und entsprechende Abdeckungsbrüche sich von den Säulenbereichen in die freitragenden Abdeckungsbereiche verlagern. Aufgrund der entlang der Ankerstabes verteilten Verankerungsverklebung ist ein Spannen des Ankerstabes, etwa durch Anziehen einer widergelagerten Mutter an einem Endgewinde des Ankerstabes nach dem Aushärten der Klebemasse nicht mehr möglich.
[0006] Alternative Verankerungssysteme arbeiten mit einer Endverankerung. Zum Beispiel zeigt die WO 2009/027 543 ein solches Endverankerungssystem. Am Ende des erstellten Sackloches wird eine Kavität ausgeräumt, in welche nach dem Setzen des Ankers ein Epoxyharz als Verankerungsmedium unter Druck eingepumpt wird. Dabei sichert ein verbleibender Zwischenraum zwischen der Wandung der Sackbohrung und dem Ankerstab die Entlüftung des sich füllenden Raumes der Aufweitungskavität, die mit einer strukturierten Oberfläche ausgebildet wird, etwa mit umlaufenden Rillen für eine besonders gute Verkrallung. Des Weiteren sind Anker mit mechanischen Widerhaken in ihrem Endbereich bekannt. Alle Endverankerungen aber weisen den Nachteil auf, dass die Länge des Ankerstabes nicht für eine Kraftübertragung auf den Beton genutzt wird, sondern der Anker eben nur in seinem Endbereich Kraft überträgt.
[0007] Die Aufgabe der vorliegenden Erfindung ist es daher, ein Verankerungssystem und ein Verfahren zu dessen Applikation anzugeben, bei welchem die Kraftübertragung des Stahlankers in den Traggrund über die gesamte Verankerungslänge erfolgt. Das Verfahren zur Applikation soll nach Aushärtung der Füllmasse eine lineare Vorspannung des Ankers über seine gesamte Länge ermöglichen.
[0008] Diese Aufgabe wird gelöst von einem Verankerungssystem für feste Traggründe, das sich dadurch auszeichnet, dass der Ankerstab aus einer Formgedächtnis-Legierung («Shape Memory Alloy» – SMA) von polymorpher und polykristalliner Struktur besteht, welche durch Erhöhung ihrer Temperatur aus ihrem martensiten Zustand auf ihren austeniten Zustand bringbar ist, in welchem sie in einen vorgespannten Zustand übergeht wenn sie fest verankert (eingemörtelt) ist.
[0009] Die Aufgabe wird weiter gelöst durch das Verfahren zur Applikation dieses Verankerungssystems, das sich dadurch auszeichnet, dass
a) eine Ankerbohrung im zu verstärkenden Traggrund erstellt wird,
b) ein Ankerstab aus einer Formgedächtnis-Legierung (SMA) in Form einer Stange mit rauer Oberflächenstruktur in die Ankerbohrung gesetzt wird,
c) der Raum zwischen Ankerstab und Wandung der Ankerbohrung vollständig mit einer hitzebeständigen Füllmasse verfüllt wird,
d) der Ankerstab aus Formgedächtnis-Legierung (SMA) nach Aushärtung der Füllmasse von seinem aus der Füllmasse herausragenden Stummel her durch Wärmeeinbringung auf die Temperatur seiner austeniten Phase erhitzt wird, sodass eine lineare Vorspannung innerhalb der Füllmasse erzeugt wird.
[0010] Anhand der Zeichnungen wird das Verankerungssystem vorgestellt und in der nachfolgenden Beschreibung beschrieben und seine Funktion und Wirkung wird erklärt. Ausserdem wird das Verfahren zum Applizieren diese Verankerungssystems beschrieben und erklärt.
[0011] Es zeigt:
<tb>Fig. 1 :<SEP>Ein vorbereitetes Ankerloch;
<tb>Fig. 2 :<SEP>Ein Ankerloch mit eingesetztem Ankerstab vor der Verfüllung des Ankerlochs;
<tb>Fig. 3 :<SEP>Ein Ankerloch mit eingesetztem Ankerstab und Verfüllung des freibleibenden Raumes mit dem Verankerungsmedium, beim Einbringen von Wärme in den Gewindestab;
<tb>Fig. 4 :<SEP>Den fertig gesetzten und vorgespannten Anker.
[0012] Zunächst muss das Wesen von Formgedächtnis-Legierungen [engl. Shape Memory Alloy (SMA)] verstanden werden. Es handelt sich um Legierungen, die eine bestimmte Struktur aufweisen, die wärmeabhängig veränderbar ist, jedoch nach Wärmeabfuhr wieder in ihren Ausgangszustand zurückkehrt. Wie andere Metalle und Legierungen, enthalten SMA’s mehr als eine Kristallstruktur, sind also polymorph und somit polykristalline Metalle. Die dominierende Kristallstruktur der SMAs hängt einerseits von ihrer Temperatur ab, andrerseits von der von aussen wirkenden Spannung – sei es Zug oder Druck. Die Phase auf hoher Temperatur heisst austenit, jene auf der tiefen Temperatur martensit. Das Besondere an diesen SMAs ist, dass sie ihre initiale Struktur und Form nach Erhöhen der Temperatur in die hohe Temperaturphase wieder annehmen, auch wenn sie zuvor in der tiefen Temperaturphase deformiert wurden. Dieser Effekt kann ausgenutzt werden, um Vorspannkräfte in Baustrukturen zu applizieren.
[0013] Wenn keine Wärme künstlich in das SMA eingebracht oder aus ihm abgeführt wird, so befindet es sich auf der Umgebungstemperatur. Die SMAs sind innerhalb eines artspezifischen Temperaturbereichs stabil, das heisst ihre Struktur ändert sich innerhalb von gewissen Grenzen der mechanischen Belastung nicht. Für Anwendungen in der Baubranche im Aussenbereich wird der Schwankungsbereich der Umgebungstemperatur von -20 °C bis +60 °C vorausgesetzt. Innerhalb dieses Temperaturbandes sollte also ein SMA, das hier zum Einsatz kommt, seine Struktur nicht verändern. Die Transformations-Temperaturen, bei denen sich die Struktur des SMA’s ändert, kann je nach Zusammensetzung der SMAs beträchtlich variieren. Die Transformationstemperaturen sind auch lastabhängig. Mit steigender mechanischer Belastung der SMA steigen auch seine Transformationstemperaturen. Wenn das SMA innerhalb gewisser Belastungsgrenzen stabil bleiben soll, so ist diesen Grenzen grosse Beachtung zu schenken. Werden SMAs für Bauverstärkungen eingesetzt, so muss nebst der Korrosionsbeständigkeit und Relaxationseffekte auch die Ermüdungsqualität der SMAs berücksichtigt werden, besonders wenn die Lasten über die Zeit variieren. Dabei unterscheidet man zwischen der strukturellen Ermüdung und der funktionelle Ermüdung. Die strukturelle Ermüdung betrifft die Akkumulation von mikrostrukturellen Defekten wie auch die Formation und die Ausbreitung von Oberflächen-Rissen, bis das Material letztendlich bricht. Die funktionelle Ermüdung hingegen ist die Folge der graduellen Degradation entweder des Formgedächtnis-Effektes oder der Dämpfungskapazität durch auftretende mikrostrukturelle Veränderungen im SMA. Das Letztere ist verbunden mit der Modifikation der Spannungs-Dehnungskurve unter zyklischer Belastung. Die Transformations-Temperaturen werden dabei ebenfalls verändert.
[0014] Für das Aufnehmen von dauerhaften Lasten im Bausektor eignen sich SMA auf der Basis von Eisen Fe, Mangan Mn und Silizium Si, wobei die Zugabe von bis zu 10% Chrom Cr und Nickel Ni das SMA zu einem ähnlichen Korrosionsverhalten bringt wie rostfreier Stahl. In der Literatur findet man, dass die Zugabe von Kohlenstoff C, Kobalt Co, Kupfer Cu, Stickstoff N, Niobium Nb, Niobium-Karbid NbC, Vanadium-Stickstoff VN und Zirkonium-Karbid ZrC die Formgedächtnis-Eigenschaften in verschiedener Weise zu verbessern vermögen. Besonders gute Eigenschaften zeigt ein SMA aus Fe-Ni-Co-Ti, welches Lasten bis zu 1000 MPa aufnimmt, hoch resistent gegen Korrosion ist, und dessen obere Temperatur zur Überführung in den austeniten Zustand ca. 100 °C beträgt.
[0015] Das vorliegende Verankerungssystem macht sich die Eigenschaften von SMAs zunutze. Die Anker in Form von Rundstählen mit rauen Oberflächen, zum Beispiel mit Gewindeoberflächen, werden in die Ankerbohrungen eingesetzt und die Ankerbohrungen mit einer hitzebeständige Polymer-Masse verfüllt, wodurch die Anker darin verankert werden. Als Besonderheit bestehen die Ankerstäbe aus einer Formgedächtnis-Legierung (SMA), welche so ausgelegt ist, dass durch Wärmeintrag die Legierung in ihren Ursprungszustand zurückkehrt, das heisst in einen kontrahierten Zustand. Werden die Ankerstäbe also auf die Temperatur für den austeniten Zustand erhitzt, so nehmen sie ihre ursprüngliche Form an und behalten diese bei, auch unter Last. Der erzielte Effekt ist, dass die in die hitzebeständige Füllmasse eingegossenen Ankerstäbe nach Erhitzung infolge der durch die Einbetonierung verhinderten Rückformung ihrer Formgedächtnis-Legierung (SMA) eine Vorspannung erzeugen, wobei sich diese Vorspannung gleichmässig bzw. linear über die gesamte Länge der Anker erstreckt. Die ausgehärtete Füllmasse gewährleistet, dass Anker in der Ankerbohrung mit sehr hohen dauerhaften Klebkräften verankert ist.
[0016] Für das praktische Setzen eines solchen Ankers wird daher wie folgt vorgegangen: Zunächst wird von der Aussenwand 1 der Baustruktur aus eine Ankerbohrung 3 im Beton 2 oder Fels erstellt, wie in Fig. 1 dargestellt. Dann wird ein Anker 4 in Form einer Stahlstange aus einer Formgedächtnis-Legierung (SMA) mit rauer Oberflächenstruktur in die Ankerbohrung 3 eingesetzt, sodass diese in der Bohrung möglichst koaxial verläuft, wie das in Fig. 2 gezeigt ist. Eine Gewindestange eignet sich besonders wegen ihrer spezifischen Oberflächenstruktur als Ankerstab, wobei die Oberfläche eines Ankerstabes aber auch irgendwelche anders geformten Noppen oder Rippen aufweisen kann. Dann wird der Raum zwischen diesem Ankerstab 4 und der Wandung der Ankerbohrung 3 vollständig mit einer hitzebeständigen Füllmasse 5 verfüllt, vorteilhaft mit einer hitzebeständigen Polymermatrix. Dieser Zustand ist in Fig. 3 gezeigt. Der Ankerstab ist jetzt fest in die ausgehärtete Füllmasse eingemörtelt. Im nächsten Schritt wird der Ankerstab 4 durch Wärmeeinbringung von seinem äusseren, aus der Ankerbohrung herausragenden Stummel her auf eine Temperatur zwischen 150 °C und 300 °C erhitzt. Das kann im einfachsten Fall mittels eines Gasbrenners erfolgen, indem dessen Flamme auf den aus der Ankerbohrung 3 herausragenden Stummel der Ankerstange 4 gerichtet wird. Vorteilhafter aber wird ein elektrisch oder mittels Gas betriebenes Heizgerät 7 aussen um den aus der Gebäudestruktur herausragenden Ankerstab 4 angelegt, und Wärme H wird von demselben kontrolliert in den Ankerstab 4 eingeleitet. Die Pfeile im Heizgerät 7 deuten den Wärmefluss vom Gerät in den Ankerstab 4 an. Die nötige Temperatur soll 150 bis 300 °C betragen, je nach der eingesetzten Formgedächtnis-Legierung (SMA) des Ankerstabs 4. Das Heizgerät 7 mit elektrischem Kabel 8 kann hierzu einen Temperaturfühler aufweisen, welcher auf dem herausragenden Ankerstab 4 anliegt und dessen Temperatur misst. Die Temperatur muss einfach sicherstellen, dass der Austenit-Zustand des Ankerstabs 4 über seine ganze Länge sicher erreicht wird. Es wird eine Zeitlang dauern, bis die Wärme H bis zuhinterst in das Ende des Ankerstabs 4 geflossen ist. Der Ankerstab 4 erwärmt auch die anliegende Füllmasse, weswegen diese hitzebeständig sein muss und wenigstens die erreichten Temperaturen von zwischen 150 bis 300 °C unbeschadet aushalten muss, ohne ihre Struktur zu verändern.
[0017] Nach Abkühlung der Füllmasse 5 auf die Aussentemperatur bleibt der nun innerhalb seiner Verankerung vorgespannte Ankerstab 4 dank seiner Materialeigenschaft dauerhaft weiter vorgespannt, auf einem Zug von 200 bis 500 Mega-Pascal (1 MPa = 10<6>N/m<2>). Er kann mittels einer Gewindemutter 9 und einer Widerlagerplatte 10, welche auf die Aussenwand 1 um die Ankerbohrung 3 gelegt wird, auf dieselbe einwirken. Solchermassen befestigte Ankerstäbe 4 sind aber in jedem Fall über ihre gesamte Länge gleichmässig gespannt.
Claims (9)
1. Verankerungssystem für feste Traggründe aller Art, mit einer Ankerbohrung (3) im Traggrund und in der Ankerbohrung (3) eingemörteltem Ankerstab (4), dadurch gekennzeichnet, dass der Ankerstab (4) aus einer Formgedächtnis-Legierung (SMA) von polymorpher und polykristalliner Struktur besteht, welche durch Erhöhung ihrer Temperatur aus ihrem martensiten Zustand auf ihren austeniten Zustand bringbar ist, in welchem sie in einen vorgespannten Zustand übergeht wenn sie fest verankert (eingemörtelt) ist.
2. Verankerungssystem für feste Traggründe aller Art nach Anspruch 1, dadurch gekennzeichnet, dass der Ankerstab (4) aus einer Formgedächtnis-Legierung (SMA) aus Eisen Fe, Mangan Mn und Silizium Si, mit einer Zugabe von bis zu 10% Chrom Cr und Nickel Ni besteht.
3. Verankerungssystem für feste Traggründe aller Art nach Anspruch 1, dadurch gekennzeichnet, dass der Ankerstab (4) aus einer Formgedächtnis-Legierung (SMA) aus Eisen Fe, Nickel Ni, Cobalt CO und Titanium Tl besteht, welche Lasten bis zu 1000 MPa aufnimmt und hoch resistent gegen Korrosion ist, und die einen Übergang in die austenite Phase auf ca. 100 °C aufweist.
4. Verankerungssystem für feste Traggründe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Ankerstab (4) aus einer Formgedächtnis-Legierung besteht, die zusätzlich versetzt ist mit einem oder mehreren der folgenden Elemente: Kohlenstoff C, Kobalt Co, Kupfer Cu, Stickstoff N, Niobium Nb, Niobium-Karbid NbC, Vanadium-Stickstoff VN und Zirkonium-Karbid ZrC.
5. Verankerungssystem für feste Traggründe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Ankerstab (4) aussen die Form eines Gewindestabes aufweist.
6. Verankerungssystem für feste Traggründe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oberfläche des Ankerstabs (4) mit unterschiedlich ausgerichtete Rippen nach Art von Armierungsstäben geformt ist.
7. Verfahren zur Applikation dieses Verankerungssystems, dadurch gekennzeichnet, dass
e) eine Ankerbohrung (3) im zu verstärkenden Traggrund (2) erstellt wird,
f) ein Ankerstab (4) aus einer Formgedächtnis-Legierung (SMA) in Form einer Stange mit rauer Oberflächenstruktur in die Ankerbohrung (3 gesetzt wird,
g) der Raum zwischen Ankerstab (4) und Wandung der Ankerbohrung (3) vollständig mit einer hitzebeständigen Füllmasse (5) verfüllt wird,
h) der Ankerstab (4) aus Formgedächtnis-Legierung (SMA) nach Aushärtung der Füllmasse (5) von seinem aus der Füllmasse herausragenden Stummel her durch Wärmeeinbringung auf die Temperatur seiner austeniten Phase erhitzt wird, sodass er infolge der verhinderten Kontraktion eine lineare Vorspannung innerhalb der Füllmasse (5) erzeugt.
8. Verfahren zur Applikation dieses Verankerungssystems nach Anspruch 7, dadurch gekennzeichnet, dass unter
c) der Raum zwischen Ankerstab (4) und Wandung der Ankerbohrung (3) vollständig mit einer hitzebeständigen Füllmasse (5) aus einer Polymerverbindung auf Zweikomponenten-Basis oder einer solchen auf zementöser Basis verfüllt wird,
d) der Ankerstab (4) aus Formgedächtnis-Legierung (SMA) nach Aushärtung der Füllmasse (5) von seinem aus der Füllmasse (5) herausragenden Stummel her durch Wärmeeinbringung auf eine Temperatur zwischen 150 °C und 300 °C in seine austenite Phase überführt wird, sodass er infolge der verhinderten Kontraktion eine lineare Vorspannung innerhalb der Füllmasse (5) im Bereich von 200 bis 500 Mega-Pascal (1 MPa = 10<6>N/m<2>) erzeugt.
9. Verfahren zur Applikation dieses Verankerungssystems nach einem der Ansprüche 7 bis 8, dadurch gekennzeichnet, dass nach Vorspannung des Ankerstabes (4) in der Füllmasse (5) eine Widerlagerplatte (10) den Bereich um die Mündung der Ankerbohrung (3) aufgelegt wird und mit dem Ankerstab (4) verspannt wird.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01358/12A CH706824B1 (de) | 2012-08-14 | 2012-08-14 | Verankerungssystem für einen Traggrund im Bauwesen, sowie Verfahren zum Anbringen und Vorspannen eines Ankerstabes. |
US14/421,398 US9476195B2 (en) | 2012-08-14 | 2013-08-07 | Anchoring system for a bearing ground in the building industry as well as procedure for applying the same |
PT137587143T PT2885439T (pt) | 2012-08-14 | 2013-08-07 | Sistema de ancoragem para uma base de suporte na construção civil, bem como processo para a aplicação do mesmo |
PCT/CH2013/000137 WO2014026299A1 (de) | 2012-08-14 | 2013-08-07 | Verankerungssystem für einen traggrund im bauwesen, sowie verfahren zur anwendung desselben |
CA2882097A CA2882097C (en) | 2012-08-14 | 2013-08-07 | Anchoring system for a bearing ground in the building industry as well as procedure for applying the same |
EP13758714.3A EP2885439B1 (de) | 2012-08-14 | 2013-08-07 | Verankerungssystem für einen traggrund im bauwesen, sowie verfahren zur anwendung desselben |
ES13758714T ES2784135T3 (es) | 2012-08-14 | 2013-08-07 | Sistema de anclaje para una base de soporte en la construcción, así como procedimiento para su utilización |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01358/12A CH706824B1 (de) | 2012-08-14 | 2012-08-14 | Verankerungssystem für einen Traggrund im Bauwesen, sowie Verfahren zum Anbringen und Vorspannen eines Ankerstabes. |
Publications (2)
Publication Number | Publication Date |
---|---|
CH706824A2 true CH706824A2 (de) | 2014-02-14 |
CH706824B1 CH706824B1 (de) | 2016-10-14 |
Family
ID=49117596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH01358/12A CH706824B1 (de) | 2012-08-14 | 2012-08-14 | Verankerungssystem für einen Traggrund im Bauwesen, sowie Verfahren zum Anbringen und Vorspannen eines Ankerstabes. |
Country Status (7)
Country | Link |
---|---|
US (1) | US9476195B2 (de) |
EP (1) | EP2885439B1 (de) |
CA (1) | CA2882097C (de) |
CH (1) | CH706824B1 (de) |
ES (1) | ES2784135T3 (de) |
PT (1) | PT2885439T (de) |
WO (1) | WO2014026299A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115030753A (zh) * | 2022-05-11 | 2022-09-09 | 中国科学院西北生态环境资源研究院 | 防冻胀巷道保温支护系统及其施工方法和保温控制方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012113053A1 (de) * | 2012-12-21 | 2014-06-26 | Thyssenkrupp Steel Europe Ag | Verbindungsmittel mit Formgedächtnis |
CH707301B1 (de) * | 2013-04-08 | 2014-06-13 | Empa | Verfahren zum Erstellen von vorgespannten Betonbauwerken mittels Profilen aus einer Formgedächtnis-Legierung sowie Bauwerk, hergestellt nach dem Verfahren. |
JP6403394B2 (ja) * | 2014-02-25 | 2018-10-10 | 旭化成ホームズ株式会社 | アンカーボルトの施工方法 |
JP6643001B2 (ja) * | 2015-08-07 | 2020-02-12 | 前田工繊株式会社 | アンカー工法 |
JP6516631B2 (ja) * | 2015-08-27 | 2019-05-22 | 株式会社夏目建設 | 埋め込みボルトの取り付け方法及び取り付け構造 |
JP6632276B2 (ja) * | 2015-09-09 | 2020-01-22 | 大成建設株式会社 | 定着筋の定着方法 |
RU2619578C1 (ru) * | 2015-10-29 | 2017-05-16 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ухтинский государственный технический университет" | Способ создания предварительного напряженного состояния в армированной бетонной конструкции |
DE102016124223A1 (de) | 2015-12-16 | 2017-06-22 | Technische Universität Dresden | Verbindungselementesatz für Bauteile |
JP6275798B1 (ja) * | 2016-10-18 | 2018-02-07 | 株式会社シェルター | 接合金物 |
CN106320537A (zh) * | 2016-10-31 | 2017-01-11 | 华侨大学 | 一种装配式方钢管混凝土柱与钢梁连接节点 |
CN107100278A (zh) * | 2017-06-22 | 2017-08-29 | 绍兴明煌建材科技有限公司 | 一种混凝土预埋螺纹套及其使用方法 |
JP7477381B2 (ja) * | 2020-06-30 | 2024-05-01 | 積水ハウス株式会社 | 木材の接合具、木材の接合構造および面材耐力壁 |
CN118325293B (zh) * | 2023-12-25 | 2024-09-20 | 中煤科工开采研究院有限公司 | 一种具有形状记忆性能的无锚固剂自紧固型玻璃钢锚杆及其制备方法和应用 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4295761A (en) * | 1979-12-10 | 1981-10-20 | Stratabolt Corporation | Post tensionable grouted anchor assembly |
US4452028A (en) * | 1980-09-19 | 1984-06-05 | Willard S. Norton | Structure and method for reinforcing a wall |
US4662795A (en) * | 1981-10-13 | 1987-05-05 | Clark Carl A | Method of supporting a mine roof using nut element with breakable portion |
US4699547A (en) * | 1985-03-15 | 1987-10-13 | Seegmiller Ben L | Mine truss structures and method |
US5093065A (en) * | 1987-06-02 | 1992-03-03 | General Atomics | Prestressing techniques and arrangements |
GB8820608D0 (en) * | 1988-08-31 | 1988-09-28 | Shell Int Research | Method for placing body of shape memory within tubing |
US5289626A (en) * | 1989-03-27 | 1994-03-01 | Kajima Corporation | Foundation anchor and method for securing same to a foundation |
DE4120346A1 (de) * | 1991-06-19 | 1992-12-24 | Krupp Industrietech | Eisen-nickel-kobalt-titan-formgedaechtnislegierung und verfahren zu ihrer herstellung |
AU2114995A (en) * | 1994-10-19 | 1996-05-15 | Dpd, Inc. | Shape-memory material repair system and method of use therefor |
US6233826B1 (en) * | 1997-07-21 | 2001-05-22 | Henkel Corp | Method for reinforcing structural members |
US6632048B2 (en) * | 1999-06-14 | 2003-10-14 | Pyramid Retaining Walls, Llc | Masonry retainer wall system and method |
GB2362183A (en) * | 2000-05-10 | 2001-11-14 | Secr Defence | Method of reinforcing structures |
US6775894B2 (en) * | 2001-07-11 | 2004-08-17 | Aera Energy, Llc | Casing patching tool |
US7033116B1 (en) * | 2004-09-03 | 2006-04-25 | Thomas Ward | Post-tensioned rammed earth construction |
EP2141251B1 (de) * | 2008-06-25 | 2016-12-28 | EMPA Dübendorf | Auf Eisen, Mangan und Silizium basierende Formgedächtnislegierungen |
WO2009027543A2 (de) | 2008-11-28 | 2009-03-05 | Desimir Kitic | Verfahren zum erstellen eines bauwerkes und mauerwerk-verankerungssystem |
CH707301B1 (de) * | 2013-04-08 | 2014-06-13 | Empa | Verfahren zum Erstellen von vorgespannten Betonbauwerken mittels Profilen aus einer Formgedächtnis-Legierung sowie Bauwerk, hergestellt nach dem Verfahren. |
-
2012
- 2012-08-14 CH CH01358/12A patent/CH706824B1/de not_active IP Right Cessation
-
2013
- 2013-08-07 US US14/421,398 patent/US9476195B2/en active Active
- 2013-08-07 PT PT137587143T patent/PT2885439T/pt unknown
- 2013-08-07 WO PCT/CH2013/000137 patent/WO2014026299A1/de active Application Filing
- 2013-08-07 EP EP13758714.3A patent/EP2885439B1/de active Active
- 2013-08-07 CA CA2882097A patent/CA2882097C/en active Active
- 2013-08-07 ES ES13758714T patent/ES2784135T3/es active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115030753A (zh) * | 2022-05-11 | 2022-09-09 | 中国科学院西北生态环境资源研究院 | 防冻胀巷道保温支护系统及其施工方法和保温控制方法 |
CN115030753B (zh) * | 2022-05-11 | 2023-08-08 | 中国科学院西北生态环境资源研究院 | 防冻胀巷道保温支护系统及其施工方法和保温控制方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2885439A1 (de) | 2015-06-24 |
ES2784135T3 (es) | 2020-09-22 |
WO2014026299A1 (de) | 2014-02-20 |
CA2882097A1 (en) | 2014-02-20 |
CH706824B1 (de) | 2016-10-14 |
CA2882097C (en) | 2021-07-27 |
US20150218797A1 (en) | 2015-08-06 |
US9476195B2 (en) | 2016-10-25 |
EP2885439B1 (de) | 2020-01-15 |
PT2885439T (pt) | 2020-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2885439B1 (de) | Verankerungssystem für einen traggrund im bauwesen, sowie verfahren zur anwendung desselben | |
EP3234277B1 (de) | Verfahren zum erstellen von vorgespannten bauwerken und bauteilen mittels fgl-zugelementen sowie damit ausgerüstetes bauwerk und bauteil | |
EP2984197A2 (de) | Verfahren zum erstellen von vorgespannten betonbauwerken mittels profilen aus einer formgedächtnis-legierung, sowie bauwerk, hergestellt nach dem verfahren | |
DE2041526A1 (de) | Zugglied zum Herstellen eines vorgespannten Zugankers im Erdboden | |
EP2817465B1 (de) | Vorrichtung zur krafteinleitung in zugglieder aus faserverstärkten kunststoff-flachbandlamellen | |
EP2606185B1 (de) | Vorrichtung zur krafteinleitung in zugglieder aus faserverstärkten kunststoff-flachbandlamellen | |
EP0976873A1 (de) | Injektions- oder Verpresskörper | |
DE102011105061B4 (de) | Einbetonierbare, verschieblich ausgebildete Kopfkonstuktion zur Verankerung von Zugelementen an zyklisch beanspruchten Bauteilen | |
EP3336259B1 (de) | Anker zur verankerung im boden und/oder felsen mit rückbaubarem zugglied | |
DE202013012224U1 (de) | Anordnung zur hochfesten Verankerung eines einen Spannstab aufweisenden Spannglieds in einem Bauteil | |
WO2022171253A1 (de) | Anker zur aufnahme und/oder übertragung von kräften in einen untergrund, meterware und verfahren zum einbringen und befestigen | |
WO2021094498A1 (de) | Verfahren zum erstellen von mit profilen aus superelastischen formgedächtnislegierungen verstärkten betonstrukturen sowie bauwerk aus solchen betonstrukturen | |
EP2808449B1 (de) | Bohrverpresspfahl | |
WO2018086781A1 (de) | Ankeranordnung mit boden, bodenanker und verfahren zum verankern | |
Städing et al. | Application of the partial safety factor concept for the structural design of tunnels in Germany | |
CH697097A5 (de) | Gleitverankerung. | |
CH494320A (de) | Zuganker, Verfahren zur Herstellung desselben und Einrichtung zur Durchführung des Verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCAR | Change of the address of the representative |
Free format text: NEW ADDRESS: DUFOURSTRASSE 116, 8008 ZUERICH (CH) |
|
PL | Patent ceased |