CH703864B1 - Turbomaschine mit einer Brücke aus Keramikmatrix-Verbundwerkstoff (CMC) - Google Patents
Turbomaschine mit einer Brücke aus Keramikmatrix-Verbundwerkstoff (CMC) Download PDFInfo
- Publication number
- CH703864B1 CH703864B1 CH01548/11A CH15482011A CH703864B1 CH 703864 B1 CH703864 B1 CH 703864B1 CH 01548/11 A CH01548/11 A CH 01548/11A CH 15482011 A CH15482011 A CH 15482011A CH 703864 B1 CH703864 B1 CH 703864B1
- Authority
- CH
- Switzerland
- Prior art keywords
- flange
- transition piece
- turbomachine
- cmc
- inlet
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/60—Support structures; Attaching or mounting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/023—Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
- F05D2300/6033—Ceramic matrix composites [CMC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00012—Details of sealing devices
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Eine Turbomaschine (2) enthält einen Turbinenabschnitt (4), der einen Turbineneinlass (12) enthält. Ein Übergangsstück (10) enthält einen Übergangsstückeinlass (30) und einen Übergangsstückauslass (31). Ein Brückenelement (54, 55) aus einem Keramikmatrix-Verbundwerkstoff (CMC) verbindet den Übergangsstückauslass (31) mit dem Turbineneinlass (12).
Description
Hintergrund zu der Erfindung
[0001] Der hierin offenbarte Gegenstand betrifft eine Turbomaschine mit einer Brücke aus einem Keramikmatrix-Verbundwerkstoff, die ein Übergangsstück mit einem Turbinenabschnitt einer Turbomaschine verbindet.
[0002] Allgemein verbrennen Gasturbinenmaschinen ein Brennstoff/Luft-Gemisch, das Wärmeenergie freisetzt, um einen Hochtemperatur-Gasstrom zu bilden. Der Hochtemperatur-Gasstrom wird zu einem Turbinenabschnitt über einen Heissgaspfad geleitet. Der Turbinenabschnitt wandelt die Wärmeenergie aus dem Hochtemperatur-Gasstrom in mechanische Energie um, die eine Turbinenwelle dreht. Der Turbinenabschnitt kann in vielfältigen Anwendungen, beispielsweise zur Bereitstellung von Leistung für eine Pumpe oder einen elektrischen Generator, verwendet werden.
[0003] Viele Gasturbomaschinen enthalten eine ringförmige Brennkammer, in der Verbrennungsgase erzeugt werden, die den Hochtemperatur-Gasstrom bilden. Andere Turbomaschinen verwenden mehrere Brennkammern, die in einer kreisringförmigen Anordnung angeordnet sind. In einer derartigen Turbomaschine enthält der Heissgaspfad ein Übergangsstück, das eine Gruppe von Brennkammern mit einer ersten Stufe des Turbinenabschnitts verbindet. Die Verbrennungsgase, die in der Brennkammergruppe erzeugt werden, werden durch das Übergangsstück hindurch zu dem Turbinenabschnitt geliefert.
[0004] Die Übergangsstück/Turbinenabschnitt-Grenzstelle ist gewöhnlich hohen Temperaturen ausgesetzt und erfordert somit eine Kühlung, um die Komponentenlebensdauer zu verlängern.
[0005] Aufgabe der vorliegenden Erfindung ist daher, die Übergangsstück/Turbinenabschnitt-Grenzstelle so auszugestalten, dass sie ohne Beeinträchtigung und ohne die Notwendigkeit einer Kühlluftströmung höheren Temperaturen widersteht.
Kurze Beschreibung der Erfindung
[0006] Die Erfindung betrifft eine Turbomaschine, die einen Turbinenabschnitt mit einem Turbineneinlass sowie ein Übergangsstück mit einem Übergangsstückeinlass und einem Übergangsstückauslass aufweist. Ein Brückenelement aus einem Keramikmatrix-Verbundwerkstoff (CMC) verbindet den Übergangsstückauslass mit dem Turbineneinlass.
[0007] Weitere vorteilhafte Ausgestaltungen der Erfindung erschliessen sich aus der folgenden Beschreibung in Verbindung mit den Zeichnungen.
Kurze Beschreibung der Zeichnungen
[0008] Die beigefügten Zeichnungen zeigen:
<tb>Fig. 1<SEP>eine im Querschnitt dargestellte Teilansicht einer Turbomaschine, die eine Brücke aus einem Keramikmatrix-Verbundmaterial (CMC) enthält, die ein erstes und ein zweites CMC-Brückenelement enthält, die eine Verbindungs- bzw. Grenzstelle zwischen einem Übergangsstück und einem Turbinenabschnitt abdichten, gemäss einer beispielhaften Ausführungsform;
<tb>Fig. 2<SEP>eine Perspektivansicht von unten rechts auf das erste CMC-Brückenelement nach Fig. 1 ;
<tb>Fig. 3<SEP>eine im Querschnitt dargestellte Seitenansicht eines CMC-Brückenelementes gemäss einer weiteren beispielhaften Ausführungsform;
<tb>Fig. 4<SEP>eine im Querschnitt dargestellte Seitenansicht eines CMC-Brückenelementes gemäss einer noch weiteren beispielhaften Ausführungsform; und
<tb>Fig. 5<SEP>eine im Querschnitt dargestellte Seitenansicht eines CMC-Brückenelementes gemäss einer noch weiteren beispielhaften Ausführungsform.
[0009] Die detaillierte Beschreibung erläutert Ausführungsformen der Erfindung gemeinsam mit Vorteilen und Merkmalen anhand eines Beispiels unter Bezugnahme auf die Zeichnungen.
Detaillierte Beschreibung der Erfindung
[0010] Die Ausdrücke «axial» und «in Axialrichtung», wie sie in dieser Anmeldung verwendet werden, beziehen sich auf Richtungen und Orientierungen, die im Wesentlichen parallel zu einer zentralen Längsachse einer Turbomaschine verlaufen. Die Ausdrücke «radial» und «in Radialrichtung», wie sie in dieser Anmeldung verwendet werden, beziehen sich auf Richtungen und Orientierungen, die im Wesentlichen senkrecht zu der zentralen Längsachse der Turbomaschine verlaufen. Die Ausdrücke «stromaufwärts» und «stromabwärts», wie sie in dieser Anmeldung verwendet werden, beziehen sich auf Richtungen und Orientierungen relativ zu einer axialen Strömungsrichtung in Bezug auf die zentrale Längsachse der Turbomaschine.
[0011] Unter Bezugnahme auf Fig. 1 enthält eine Turbomaschine 2 einen Turbinenabschnitt 4, der mit einer (nicht veranschaulichten) Brennkammer über ein Übergangsstück 10 strömungsmässig verbunden ist. Der Turbinenabschnitt 4 enthält einen Turbinenabschnittseinlass 12, der durch eine Endwand 14 definiert ist. Eine erste Stufe 16 des Turbinenabschnitts 4 ist stromabwärts von dem Turbinenabschnittseinlass 12 angeordnet. Die erste Stufe 16 enthält mehrere Leitschaufeln 17, von denen nur eine in Fig. 1 gezeigt ist und die Verbrennungsgase 18 zu mehreren Laufschaufeln 19 der ersten Stufe leiten, von denen nur eine in Fig. 1 gezeigt ist. Die Verbrennungsgase 18 strömen axial in einen Übergangsstückeinlass 30 hinein, strömen durch das Übergangsstück 10 hindurch und treten aus einem Übergangsstückauslass 31 heraus in den Turbinenabschnittseinlass 12 hinein. An dieser Stelle passieren die Verbrennungsgase 18 die Leitschaufeln 17, bevor sie auf die Laufschaufeln 19 einwirken. Die Laufschaufeln 19 setzen thermische und kinetische Energie von den Verbrennungsgasen 18 in mechanische Rotationsenergie um, die verwendet wird, um eine (nicht veranschaulichte) Welle zu drehen. Zusätzlich zu den Verbrennungsgasen 18 gelangt Verdichteraustrittsluft 37 aus einem (nicht veranschaulichten) Verdichterabschnitt in einen Laufradzwischenraumabschnitt 40 des Turbinenabschnitts 4.
[0012] Gemäss einer beispielhaften Ausführungsform enthält die Turbomaschine 2 eine Brücke 47 aus einem Keramikmatrix-Verbundwerkstoff (CMC), die den Übergangsstückauslass 31 mit dem Turbinenabschnittseinlass 12 verbindet. Gemäss der beispielhaften Ausführungsform ist die CMC-Brücke 47 aus Siliziumkarbid-Siliziumkarbid (SiC-SiC)-Verbundwerkstoffen, Oxid-Oxid-Verbundwerkstoffen und/oder Siliziumnitrid-Verbundwerkstoffen ausgebildet. Natürlich sollte verstanden werden, dass verschiedene weitere CMC-Materialien verwendet werden können. Die CMC-Brücke 47 enthält ein erstes CMC-Brückenelement 54, das an einer äusseren Grenz- bzw. Verbindungsstelle zwischen dem Übergangsstückauslass 31 und dem Turbinenabschnittseinlass 12 angeordnet ist, und ein zweites CMC-Brückenelement 55, das an einer inneren Grenz- bzw. Verbindungsstelle zwischen dem Übergangsstückauslass 31 und dem Turbinenabschnittseinlass 12 angeordnet ist. Das erste CMC-Brückenelement 54 enthält einen Hauptkörper 56, der eine Aussenfläche 57 und eine Innenfläche 58 aufweist. In gleicher Weise enthält das zweite CMC-Brückenelement 55 einen Hauptkörper 59 mit einer Aussenfläche 60 und einer Innenfläche 61.
[0013] Das erste CMC-Brückenelement 54 enthält eine Strömungsführung bzw. -leiteinrichtung 64, die an der Innenfläche 58 angeordnet ist. Die Strömungsführung 64 leitet Verbrennungsgase 18 von der Endwand 14 weg. In ähnlicher Weise enthält das zweite CMC-Brückenelement 55 eine Strömungsführung bzw. -leiteinrichtung 66, die an der Innenfläche 61 angeordnet ist. Die Strömungsführung 66 leitet Verbrennungsgase 18 von der Endwand 14 weg und/oder stört eine Querstromwirbelerzeugung. Bei dieser Anordnung ist die Endwand 14 gegen eine Beschädigung, die von einer Beaufschlagung durch Verbrennungsgase 18 herrühren kann, geschützt. Insbesondere strömen Verbrennungsgase, die in einen Einlassabschnitt 68 des CMC-Brückenelementes 54 gelangen, über der Strömungsführung 64 vorbei. Die Strömungsführung 64 richtet die Verbrennungsgase 18 durch einen Auslassabschnitt 69 des CMC-Brückenelementes 54 auf einer Bahn, die unter einem Winkel von der Endwand 14 weg verläuft. In ähnlicher Weise strömen Verbrennungsgase, die in einen Einlassabschnitt 71 des CMC-Brückenelements 55 gelangen, über der Strömungsführung 66. Die Strömungsführung 66 leitet die Verbrennungsgase 18 durch einen Auslassabschnitt 72 des CMC-Brückenelementes 55 auf einer Bahn, die unter einem Winkel von der Endwand 14 weg verläuft.
[0014] Wie am besten in Fig. 2 veranschaulicht, enthält das erste Brückenelement 54 einen ersten Abschnitt 76, der einen ersten Flansch 77 definiert. Der erste Abschnitt 76 führt zu einem zweiten Abschnitt 79, der im Wesentlichen senkrecht zu dem ersten Abschnitt 76 ausgerichtet ist. Ein dritter Abschnitt 82 erstreckt sich von dem zweiten Abschnitt 79 aus und verläuft im Wesentlichen parallel zu dem ersten Abschnitt 76. Ein vierter Abschnitt 85, der im Wesentlichen parallel zu dem zweiten Abschnitt 79 verläuft, erstreckt sich von dem dritten Abschnitt 82 aus. Ein fünfter Abschnitt 88, der im Wesentlichen parallel zu dem ersten und dem dritten Abschnitt 76 und 82 verläuft, erstreckt sich von dem vierten Abschnitt 85 aus. Der dritte, der vierte und der fünfte Abschnitt 82, 85 und 88 bilden in Kombination miteinander einen zweiten Flansch 89, der das erste CMC-Brückenelement 54 mit dem Turbinenabschnitt 4 verbindet. Zusätzlich enthält das Brückenelement 54 ein erstes und ein zweites Befestigungselement 90 und 91, die in dem zweiten Flansch 89 ausgebildet sind. Mechanische Befestigungsmittel, von denen eines bei 96 in Fig. 1 angezeigt ist, führen durch die Befestigungselemente 90, 91 und den Turbinenabschnitt 4 hindurch, um das erste CMC-Brückenelement 54 mit dem Turbinenabschnitt 4 zu verbinden. Der zweite Flansch 89 enthält ferner mehrere Montageelemente 98 und 99, die mit (nicht veranschaulichten) Zapfen ausgerichtet sind, um das erste CMC-Brückenelement 54 an dem Turbinenabschnitt 4 zu positionieren. Schliesslich ist die Turbomaschine 2 veranschaulicht, wie sie eine erste und eine zweite elastische Dichtung 104 und 106 enthält, die konfiguriert sind, um Verbrennungsgase am Austreten an der Grenzstelle zwischen dem Übergangsstückauslass 31 und dem zugehörigen einen Einlassabschnitt 68 bzw. 71 des ersten bzw. zweiten CMC-Brückenelementes 54 und 55 zu hindern.
[0015] Es wird nun auf Fig. 3 Bezug genommen, worin gleiche Bezugszeichen entsprechende Teile in den jeweiligen Ansichten kennzeichnen, um ein CMC-Brückenelement 116 zu beschreiben, das gemäss einer weiteren beispielhaften Ausführungsform aufgebaut ist. Wie nachstehend umfassender deutlich wird, ist das CMC-Brückenelement 116 an dem Turbinenabschnitt 4 über einen Haltering 118 gesichert, der an dem Turbinenabschnittseinlass 12 angeordnet ist. Das CMC-Brückenelement 116 enthält einen Hauptkörper 123, der eine Aussenfläche 130 und eine Innenfläche 131 enthält, die einen Einlassabschnitt 134 und einen Auslassabschnitt 135 definiert. Das CMC-Brückenelement 116 enthält einen ersten Flansch 140, der an dem Einlassabschnitt 134 angeordnet ist, und einen zweiten Flansch 143, der an dem Auslassabschnitt 135 angeordnet ist. Ein Befestigungselement 147 erstreckt sich im Wesentlichen senkrecht von der Aussenfläche 130 aus. Das Befestigungselement 147 enthält einen schwalbenschwanzartigen Abschnitt 149, der mit einer entsprechenden (nicht gesondert bezeichneten) Struktur an dem Haltering 118 zusammenwirkt, um das CMC-Brückenelement 116 an der Turbomaschine 2 zu sichern. Wie ferner in Fig. 3 veranschaulicht, erstreckt sich eine erste elastische Dichtung 154 zwischen dem Einlassabschnitt 134 und dem Übergangsstückauslass 31, und eine zweite elastische Dichtung 157 erstreckt sich zwischen dem Auslassabschnitt 135 und dem Turbinenabschnittseinlass 112, um Verdichteraustrittsluft daran zu hindern, die Brennkammer zu umströmen und in den Turbineneinlass 12 einzutreten.
[0016] Es wird nun auf Fig. 4 Bezug genommen, in der gleiche Bezugszeichen entsprechende Teile in den jeweiligen Ansichten darstellen, um ein CMC-Brückenelement 167 zu beschreiben, das gemäss einer weiteren beispielhaften Ausführungsform aufgebaut ist. Das CMC-Brückenelement 167 enthält einen Hauptkörper 170, der eine Aussenfläche 172 und eine Innenfläche 173 enthält, die einen Einlassabschnitt 176 und einen Auslassabschnitt 177 definiert. Das CMC-Brückenelement 167 enthält einen ersten Flansch 180, der an dem Einlassabschnitt 176 angeordnet ist. Der erste Flansch 180 ist an dem Übergangsstückauslass 31 über ein mechanisches Befestigungsmittel 181 gesichert. Das CMC-Brückenelement 167 enthält ferner einen zweiten Flansch 183, der an dem Auslassabschnitt 177 angeordnet ist. In der veranschaulichten beispielhaften Ausführungsform enthält das Übergangsstück 10 einen Luftkanal 185, der an dem Übergangsstückauslass 31 angeordnet ist. Der Luftkanal 185 leitet ein Kühlfluid, z.B. Verdichteraustrittsluft, auf den ersten Flansch 180, um Temperaturen des CMC-Brückenelementes 167 zu reduzieren. Wie ferner in Fig. 4 veranschaulicht, erstreckt sich eine elastische Dichtung 187 zwischen dem Auslassabschnitt 177 und dem Turbinenabschnittseinlass 12, um Verdichteraustrittsluft am Umströmen der Brennkammer und Eintreten in den Turbineneinlass 12 zu hindern.
[0017] Es wird nun auf Fig. 5 Bezug genommen, in der gleiche Bezugszeichen entsprechende Teile in den jeweiligen Ansichten repräsentieren, um ein CMC-Brückenelement 197 zu beschreiben, das gemäss einer noch weiteren beispielhaften Ausführungsform aufgebaut ist. Das CMC-Brückenelement 197 enthält einen Hauptkörper 200, der eine Aussenfläche 204 und eine Innenfläche 205 enthält, die einen Einlassabschnitt 209 und einen Auslassabschnitt 210 definiert. Das CMC-Brückenelement 167 enthält einen ersten Flansch 214, der an dem Einlassabschnitt 209 angeordnet ist, und einen zweiten Flansch 217, der an dem Auslassabschnitt 210 angeordnet ist. Der zweite Flansch 217 ist über ein Befestigungselement 220 an dem Turbinenabschnittseinlass 12 gesichert. Das Befestigungselement 220 enthält eine (nicht veranschaulichte) Gleitverbindungseinrichtung, die mit einer zugehörigen Struktur an dem Turbinenabschnitt 4 in Eingriff gelangt. Das CMC-Brückenelement 197 enthält ferner eine elastische Dichtung 224, die sich zwischen dem Einlassabschnitt 209 und dem Übergangsstückauslass 31 erstreckt, um Verdichteraustrittsluft am Umströmen der Brennkammer und Eintreten in den Turbineneinlass 12 zu hindern.
[0018] An dieser Stelle sollte verstanden werden, dass die CMC-Brückenelemente gemäss der beispielhaften Ausführungsformen eine Abdichtung zwischen der Übergangsstück/Turbinenabschnitt-Grenze bzw. -Verbindung schafft, um es zu begrenzen und/oder zu verhindern, dass Verdichteraustrittsluft in den Turbineneinlass eintritt. Die Übergangsstück/Turbinenabschnitt-Grenzstelle ist gewöhnlich hohen Temperaturen ausgesetzt und erfordert somit eine Kühlung, um die Komponentenlebensdauer zu verlängern. Dagegen stellt die vorliegende Erfindung eine Brücke bereit, die aus CMC-Materialien hergestellt ist, die in der Lage sind, ohne Beeinträchtigung höheren Temperaturen zu widerstehen. Durch Verwendung der CMC-Brückenelemente gemäss den beispielhaften Ausführungsformen wird die Notwendigkeit einer Kühlluftströmung an der Übergangsstück/Turbinenabschnitt-Grenzstelle deutlich reduziert, wodurch der Turbomaschinenwirkungsgrad verbessert wird. Der reduzierte Kühlfluss stellt eine zusätzliche Strömung zur Verfügung, die verwendet werden kann, um Arbeit aus der Turbine zu extrahieren.
[0019] Während die Erfindung in Einzelheiten in Verbindung mit lediglich einer begrenzten Anzahl von Ausführungsformen beschrieben worden ist, sollte ohne weiteres verstanden werden, dass die Erfindung nicht auf derartige offenbarte Ausführungsformen beschränkt ist.
Bezugszeichenliste
[0020]
<tb>2<SEP>Turbomaschine
<tb>4<SEP>Turbinenabschnitt
<tb>6<SEP>Brennkammer
<tb>10<SEP>Übergangsstück
<tb>12<SEP>Turbinenabschnittseinlass
<tb>14<SEP>Endwand
<tb>16<SEP>Erste Stufe (4)
<tb>17<SEP>Leitschaufel der ersten Stufe
<tb>18<SEP>Verbrennungsgase
<tb>19<SEP>Laufschaufel der ersten Stufe (stromabwärts)
<tb>21<SEP>Welle (nicht veranschaulicht)
<tb>30<SEP>Übergangsstückeinlass
<tb>31<SEP>Übergangsstückauslass
<tb>37<SEP>Verdichteraustrittsluft (Axialströmung)
<tb>40<SEP>Laufradzwischenraumabschnitt
<tb>47<SEP>Brücke
<tb>48<SEP>CMC
<tb>54<SEP>Erstes Brückenelement
<tb>55<SEP>Zweites Brückenelement
<tb>56, 59, 123, 170, 200<SEP>Hauptkörper
<tb>57, 60, 130, 172, 204<SEP>Aussenfläche (54)
<tb>58, 61, 131, 173, 205<SEP>Innenfläche (54)
<tb>64, 66<SEP>Strömungsführung, -leiteinrichtung (55)
<tb>68, 71, 134, 176, 209<SEP>Einlassabschnitt (54)
<tb>69, 72, 135, 177, 210<SEP>Auslassabschnitt (55)
<tb>76<SEP>Erster Abschnitt
<tb>77, 140, 180, 214<SEP>Erster Flansch
<tb>79<SEP>Zweiter Abschnitt
<tb>82<SEP>Dritter Abschnitt
<tb>85<SEP>Vierter Abschnitt
<tb>88<SEP>Fünfter Abschnitt
<tb>89, 143, 183, 217<SEP>Zweiter Flansch
<tb>90, 91, 147, 220<SEP>Befestigungselement
<tb>96<SEP>Mechanisches Befestigungsmittel
<tb>98, 99<SEP>Montageelement
<tb>104, 106, 187, 224<SEP>Elastische Dichtung (54)
<tb>116, 167, 197<SEP>CMC-Brückenelement
<tb>118<SEP>Haltering
<tb>149<SEP>Schwalbenschwanzartiger Abschnitt
<tb>154<SEP>Erste elastische Dichtung
<tb>157<SEP>Zweite elastische Dichtung
<tb>181<SEP>Mechanisches Befestigungsmittel
<tb>185<SEP>Luftkanal
Claims (10)
1. Turbomaschine (2), die aufweist:
einen Turbinenabschnitt (4), der einen Turbineneinlass (12) enthält;
ein Übergangsstück (10), das einen Übergangsstückeinlass (30) und einen Übergangsstückauslass (31) enthält; und
wenigstens ein Keramikmatrix-Verbundwerkstoff-Brückenelement (116, 167, 197), das den Übergangsstückauslass (31) und den Turbineneinlass (12) miteinander verbindet.
2. Turbomaschine (2) nach Anspruch 1, wobei das Keramikmatrix-Verbundwerkstoff-Brückenelement (116, 167, 197) eine Aussenfläche (57, 60, 130, 172, 204) und eine Innenfläche (58, 61, 131, 173, 205) aufweist, die im Betrieb den vom Übergangsstück (10) in den Turbinenabschnitt (4) strömenden Verbrennungsgasen (18) ab- bzw. zugewandt ist, wobei die Innenfläche (58, 61, 131, 173, 205) eine Strömungsleiteinrichtung (64, 66) aufweist, die dazu ausgebildet ist, Verbrennungsgase (18) in den Turbineneinlass (12) zu leiten.
3. Turbomaschine (2) nach Anspruch 2, wobei die Strömungsleiteinrichtung (64, 66) dazu eingerichtet und angeordnet ist, um Verbrennungsgase (18) von einem Abschnitt einer Endwand (14) des Turbineneinlasses (12) wegzuleiten.
4. Turbomaschine (2) nach Anspruch 1, wobei das wenigstens eine Keramikmatrix-Verbundwerkstoff-Brückenelement (116, 167, 197) einen Hauptkörper (56, 59, 123, 170, 200) aufweist, der einen Einlassabschnitt (68, 71, 134, 176, 209), der mit dem Übergangsstück (10) betriebsmässig verbunden ist, und einen Auslassabschnitt (69, 72, 135, 177, 210) aufweist, der mit dem Turbinenabschnitt (4) betriebsmässig verbunden ist.
5. Turbomaschine (2) nach Anspruch 4, wobei das wenigstens eine Keramikmatrix-Verbundwerkstoff-Brückenelement (116, 167, 197) einen ersten Flansch (77, 140, 180, 214), der an dem Einlassabschnitt (68, 71, 134, 176, 209) angeordnet ist, und einen zweiten Flansch (89, 143, 183, 217), der an dem Auslassabschnitt (69, 72, 135, 177, 210) angeordnet ist, aufweist.
6. Turbomaschine (2) nach Anspruch 5, wobei entweder der erste Flansch (180, 214) an der Brennkammer (6) oder der zweite Flansch (183, 217) an dem Turbinenabschnitt (4) befestigt ist.
7. Turbomaschine (2) nach Anspruch 6, die ferner ein Dichtungselement (187, 224) aufweist, das zwischen dem zweiten Flansch (183) und dem Turbinenabschnitt (4) angeordnet ist, sofern der erste Flansch (180) an der Brennkammer (6) befestigt ist, oder das zwischen dem ersten Flansch (214) und dem Übergangsstück (10) angeordnet ist, sofern der zweite Flansch (217) an dem Turbinenabschnitt (4) befestigt ist.
8. Turbomaschine (2) nach Anspruch 5, wobei das wenigstens eine Keramikmatrix-Verbundwerkstoff-Brückenelement (116, 167, 197) ein Befestigungselement (147) aufweist, das zwischen dem ersten (140) und dem zweiten Flansch (143) von dem Hauptkörper (123) radial nach aussen ragt.
9. Turbomaschine (2) nach Anspruch 8, die ferner aufweist: einen Haltering (118), der mit dem Turbinenabschnitt (4) betriebsmässig verbunden ist, wobei das wenigstens eine Brückenelement (116) über das Befestigungselement (147) an dem Haltering (118) gesichert ist.
10. Turbomaschine (2) nach Anspruch 9, die ferner zwei Dichtungselemente aufweist, ein erstes Dichtungselement (154), das zwischen dem ersten Flansch (140) und der Brennkammer (6) angeordnet ist, und ein zweites Dichtungselement (157), das zwischen dem zweiten Flansch (143) und dem Turbinenabschnitt (4) angeordnet ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/889,860 US8347636B2 (en) | 2010-09-24 | 2010-09-24 | Turbomachine including a ceramic matrix composite (CMC) bridge |
Publications (2)
Publication Number | Publication Date |
---|---|
CH703864A2 CH703864A2 (de) | 2012-03-30 |
CH703864B1 true CH703864B1 (de) | 2016-01-15 |
Family
ID=45804823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH01548/11A CH703864B1 (de) | 2010-09-24 | 2011-09-16 | Turbomaschine mit einer Brücke aus Keramikmatrix-Verbundwerkstoff (CMC) |
Country Status (5)
Country | Link |
---|---|
US (1) | US8347636B2 (de) |
JP (1) | JP5548661B2 (de) |
CN (1) | CN102418602B (de) |
CH (1) | CH703864B1 (de) |
DE (1) | DE102011053534A1 (de) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2852735B1 (de) * | 2011-10-24 | 2016-04-27 | Alstom Technology Ltd | Gasturbine |
FR2989426B1 (fr) * | 2012-04-11 | 2014-03-28 | Snecma | Turbomachine, telle qu'un turboreacteur ou un turbopropulseur d'avion |
US10633985B2 (en) | 2012-06-25 | 2020-04-28 | General Electric Company | System having blade segment with curved mounting geometry |
US10436445B2 (en) * | 2013-03-18 | 2019-10-08 | General Electric Company | Assembly for controlling clearance between a liner and stationary nozzle within a gas turbine |
EP2952812B1 (de) * | 2014-06-05 | 2018-08-08 | General Electric Technology GmbH | Ringbrennkammer einer gasturbine und verkleidungssegment |
US20160131045A1 (en) * | 2014-11-12 | 2016-05-12 | Siemens Energy, Inc. | Emissions control system for a gas turbine engine |
US10077669B2 (en) * | 2014-11-26 | 2018-09-18 | United Technologies Corporation | Non-metallic engine case inlet compression seal for a gas turbine engine |
US10030541B2 (en) | 2015-07-01 | 2018-07-24 | Rolls-Royce North American Technologies Inc. | Turbine shroud with clamped flange attachment |
US10577951B2 (en) | 2016-11-30 | 2020-03-03 | Rolls-Royce North American Technologies Inc. | Gas turbine engine with dovetail connection having contoured root |
US11187105B2 (en) * | 2017-02-09 | 2021-11-30 | General Electric Company | Apparatus with thermal break |
US10837299B2 (en) | 2017-03-07 | 2020-11-17 | General Electric Company | System and method for transition piece seal |
CN107143385B (zh) * | 2017-06-26 | 2019-02-15 | 中国科学院工程热物理研究所 | 一种燃气涡轮导向器前缘安装边结构及具有其的燃气轮机 |
US10648407B2 (en) * | 2018-09-05 | 2020-05-12 | United Technologies Corporation | CMC boas cooling air flow guide |
FR3107725B1 (fr) * | 2020-02-27 | 2023-12-22 | Safran Aircraft Engines | Ensemble pour stator de turbomachine d’aéronef, à étanchéité renforcée entre une virole externe et une couronne aubagée de stator entourée par cette virole |
US11174754B1 (en) | 2020-08-26 | 2021-11-16 | Solar Turbines Incorporated | Thermal bridge for connecting sections with a large temperature differential under high-pressure conditions |
CN112460630A (zh) * | 2020-10-27 | 2021-03-09 | 中国船舶重工集团公司第七0三研究所 | 一种燃气轮机高温区间隙平面间密封组件 |
CN115218223B (zh) * | 2022-07-20 | 2024-06-25 | 中国航发湖南动力机械研究所 | 陶瓷基火焰筒出口密封结构、涡轮发动机 |
Family Cites Families (169)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5265412A (en) * | 1992-07-28 | 1993-11-30 | General Electric Company | Self-accommodating brush seal for gas turbine combustor |
US5687572A (en) * | 1992-11-02 | 1997-11-18 | Alliedsignal Inc. | Thin wall combustor with backside impingement cooling |
US5657998A (en) * | 1994-09-19 | 1997-08-19 | General Electric Company | Gas-path leakage seal for a gas turbine |
IN187185B (de) | 1995-04-25 | 2002-02-23 | Siemens Ag | |
JP2000502039A (ja) | 1995-12-15 | 2000-02-22 | ウエスチングハウス・エレクトリック・コーポレイション | 高温環境用の酸化物系セラミック複合材料、装置、方法及び構成材料 |
DE69706850T2 (de) | 1996-06-13 | 2002-05-16 | Siemens Ag | Artikel mit schutzschicht, enthaltend eine verbesserte verankerungsschicht und seine herstellung |
EP0925426A1 (de) | 1996-09-04 | 1999-06-30 | Siemens Aktiengesellschaft | Turbinenschaufel, welche einem heissen gasstrom aussetzbar ist |
US6835465B2 (en) | 1996-12-10 | 2004-12-28 | Siemens Westinghouse Power Corporation | Thermal barrier layer and process for producing the same |
US6258467B1 (en) | 2000-08-17 | 2001-07-10 | Siemens Westinghouse Power Corporation | Thermal barrier coating having high phase stability |
US6930066B2 (en) | 2001-12-06 | 2005-08-16 | Siemens Westinghouse Power Corporation | Highly defective oxides as sinter resistant thermal barrier coating |
EP0984839B1 (de) | 1997-05-28 | 2002-03-20 | Siemens Aktiengesellschaft | Metall-keramik-gradientenwerkstoff, erzeugnis daraus und verfahren zur herstellung eines metall-keramik-gradientenwerkstoffes |
JP2001521992A (ja) | 1997-11-03 | 2001-11-13 | シーメンス アクチエンゲゼルシヤフト | 高温ガスの衝流を受ける構造部材及びこの構造部材への被膜の形成方法 |
US6111599A (en) | 1998-01-14 | 2000-08-29 | Westinghouse Savannah River Company | Apparatus for observing a hostile environment |
EP0933343B1 (de) | 1998-01-29 | 2003-06-25 | Coi Ceramics, Inc. | Verfahren zur Herstellung von geschlichteten beschichteten keramischen Fasern |
US7563504B2 (en) | 1998-03-27 | 2009-07-21 | Siemens Energy, Inc. | Utilization of discontinuous fibers for improving properties of high temperature insulation of ceramic matrix composites |
US7067181B2 (en) | 2003-08-05 | 2006-06-27 | Siemens Power Generation, Inc. | Insulating ceramic based on partially filled shapes |
US7179524B2 (en) | 1998-03-27 | 2007-02-20 | Siemens Power Generation, Inc. | Insulated ceramic matrix composite and method of manufacturing |
US6977060B1 (en) | 2000-03-28 | 2005-12-20 | Siemens Westinghouse Power Corporation | Method for making a high temperature erosion resistant coating and material containing compacted hollow geometric shapes |
US6197424B1 (en) | 1998-03-27 | 2001-03-06 | Siemens Westinghouse Power Corporation | Use of high temperature insulation for ceramic matrix composites in gas turbines |
US6641907B1 (en) | 1999-12-20 | 2003-11-04 | Siemens Westinghouse Power Corporation | High temperature erosion resistant coating and material containing compacted hollow geometric shapes |
US6733907B2 (en) * | 1998-03-27 | 2004-05-11 | Siemens Westinghouse Power Corporation | Hybrid ceramic material composed of insulating and structural ceramic layers |
US6013592A (en) | 1998-03-27 | 2000-01-11 | Siemens Westinghouse Power Corporation | High temperature insulation for ceramic matrix composites |
US6676783B1 (en) | 1998-03-27 | 2004-01-13 | Siemens Westinghouse Power Corporation | High temperature insulation for ceramic matrix composites |
US6743393B1 (en) | 1998-06-17 | 2004-06-01 | Coi Ceramics, Inc. | Method for producing ceramic matrix composites |
US6106959A (en) | 1998-08-11 | 2000-08-22 | Siemens Westinghouse Power Corporation | Multilayer thermal barrier coating systems |
EP1115906B1 (de) | 1998-09-21 | 2003-02-05 | Siemens Aktiengesellschaft | Verfahren zur innenbearbeitung eines hohlen bauteils |
EP1123455B1 (de) | 1998-10-22 | 2003-09-17 | Siemens Aktiengesellschaft | Erzeugnis mit wärmedämmschicht sowie verfahren zur herstellung einer wärmedämmschicht |
US6350713B1 (en) | 1998-11-24 | 2002-02-26 | Dow Corning Corporation | Ceramic matrix composites |
US6296945B1 (en) | 1999-09-10 | 2001-10-02 | Siemens Westinghouse Power Corporation | In-situ formation of multiphase electron beam physical vapor deposited barrier coatings for turbine components |
US6933060B2 (en) | 1999-02-05 | 2005-08-23 | Siemens Westinghouse Power Corporation | Thermal barrier coating resistant to sintering |
US6235370B1 (en) | 1999-03-03 | 2001-05-22 | Siemens Westinghouse Power Corporation | High temperature erosion resistant, abradable thermal barrier composite coating |
JP4031590B2 (ja) * | 1999-03-08 | 2008-01-09 | 三菱重工業株式会社 | 燃焼器の尾筒シール構造及びその構造を用いたガスタービン |
US6060174A (en) | 1999-05-26 | 2000-05-09 | Siemens Westinghouse Power Corporation | Bond coats for turbine components and method of applying the same |
US6294260B1 (en) | 1999-09-10 | 2001-09-25 | Siemens Westinghouse Power Corporation | In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components |
US20080101683A1 (en) | 1999-12-22 | 2008-05-01 | Siemens Power Generation, Inc. | System and method of evaluating uncoated turbine engine components |
EP1126221A1 (de) | 2000-02-17 | 2001-08-22 | Siemens Aktiengesellschaft | Gepolsterter Hitzeschildstein zur Auskleidung einer Gasturbinenbrennkammerwand |
US6384365B1 (en) | 2000-04-14 | 2002-05-07 | Siemens Westinghouse Power Corporation | Repair and fabrication of combustion turbine components by spark plasma sintering |
US6528190B1 (en) | 2000-08-02 | 2003-03-04 | Siemens Westinghouse Power Corporation | Fiber coating compounds for reinforced ceramic matrix composites |
US6670046B1 (en) | 2000-08-31 | 2003-12-30 | Siemens Westinghouse Power Corporation | Thermal barrier coating system for turbine components |
US6514046B1 (en) | 2000-09-29 | 2003-02-04 | Siemens Westinghouse Power Corporation | Ceramic composite vane with metallic substructure |
US6512379B2 (en) | 2001-02-05 | 2003-01-28 | Siemens Westinghouse Power Corporation | Condition monitoring of turbine blades and vanes in service |
US6939603B2 (en) | 2001-03-22 | 2005-09-06 | Siemens Westinghouse Power Corporation | Thermal barrier coating having subsurface inclusions for improved thermal shock resistance |
GB0108398D0 (en) * | 2001-04-04 | 2001-05-23 | Siemens Ag | Seal element for sealing a gap and combustion turbine having a seal element |
US20020197465A1 (en) | 2001-04-24 | 2002-12-26 | Butner Steven Carl | Damage tolerant CMC using sol-gel martix slurry |
US6719853B2 (en) | 2001-04-27 | 2004-04-13 | Siemens Aktiengesellschaft | Method for restoring the microstructure of a textured article and for refurbishing a gas turbine blade or vane |
US6617013B2 (en) | 2001-05-10 | 2003-09-09 | Siemens Westinghouse Power Corporation | Ceramic matrix composite having improved interlaminar strength |
US6846574B2 (en) | 2001-05-16 | 2005-01-25 | Siemens Westinghouse Power Corporation | Honeycomb structure thermal barrier coating |
US6602053B2 (en) | 2001-08-02 | 2003-08-05 | Siemens Westinghouse Power Corporation | Cooling structure and method of manufacturing the same |
US6703137B2 (en) | 2001-08-02 | 2004-03-09 | Siemens Westinghouse Power Corporation | Segmented thermal barrier coating and method of manufacturing the same |
US7080513B2 (en) | 2001-08-04 | 2006-07-25 | Siemens Aktiengesellschaft | Seal element for sealing a gap and combustion turbine having a seal element |
US7001679B2 (en) | 2001-08-09 | 2006-02-21 | Siemens Westinghouse Power Corporation | Protective overlayer for ceramics |
US6746755B2 (en) | 2001-09-24 | 2004-06-08 | Siemens Westinghouse Power Corporation | Ceramic matrix composite structure having integral cooling passages and method of manufacture |
US7541005B2 (en) | 2001-09-26 | 2009-06-02 | Siemens Energy Inc. | Catalytic thermal barrier coatings |
US6884384B2 (en) | 2001-09-27 | 2005-04-26 | Siemens Westinghouse Power Corporation | Method for making a high temperature erosion resistant material containing compacted hollow geometric shapes |
US7017415B2 (en) | 2001-09-27 | 2006-03-28 | Siemens Westinghouse Power Corporation | Apparatus for sensing pressure fluctuations in a hostile environment |
US6827312B2 (en) | 2001-11-27 | 2004-12-07 | Coi Ceramics, Inc. | Method and system of thermal protection |
US6528178B1 (en) | 2001-12-17 | 2003-03-04 | Siemens Westinghouse Power Corporation | High temperature resistant article with improved protective coating bonding and method of manufacturing same |
EP1321625B1 (de) | 2001-12-21 | 2004-09-22 | Siemens Aktiengesellschaft | Verfahren zum Abtragen einer Metallschicht |
EP1329592A1 (de) | 2002-01-18 | 2003-07-23 | Siemens Aktiengesellschaft | Turbine mit mindestens vier Stufen und Verwendung einer Turbinenschaufel mit verringerter Masse |
US6902360B2 (en) * | 2002-02-08 | 2005-06-07 | General Electric Company | Method of cutting a hole in a composite material workpiece |
EP1352989A1 (de) | 2002-04-10 | 2003-10-15 | Siemens Aktiengesellschaft | Bauteil mit einer Maskierungsschicht |
US6677064B1 (en) | 2002-05-29 | 2004-01-13 | Siemens Westinghouse Power Corporation | In-situ formation of multiphase deposited thermal barrier coatings |
US6709230B2 (en) | 2002-05-31 | 2004-03-23 | Siemens Westinghouse Power Corporation | Ceramic matrix composite gas turbine vane |
US6648597B1 (en) | 2002-05-31 | 2003-11-18 | Siemens Westinghouse Power Corporation | Ceramic matrix composite turbine vane |
US6929852B2 (en) | 2002-08-08 | 2005-08-16 | Siemens Westinghouse Power Corporation | Protective overlayer for ceramics |
US6998616B2 (en) | 2002-08-28 | 2006-02-14 | Wayne State University | System and method for acoustic chaos and sonic infrared imaging |
US7291407B2 (en) | 2002-09-06 | 2007-11-06 | Siemens Power Generation, Inc. | Ceramic material having ceramic matrix composite backing and method of manufacturing |
US6758653B2 (en) | 2002-09-09 | 2004-07-06 | Siemens Westinghouse Power Corporation | Ceramic matrix composite component for a gas turbine engine |
US9068464B2 (en) | 2002-09-17 | 2015-06-30 | Siemens Energy, Inc. | Method of joining ceramic parts and articles so formed |
US7093359B2 (en) | 2002-09-17 | 2006-08-22 | Siemens Westinghouse Power Corporation | Composite structure formed by CMC-on-insulation process |
US20050198967A1 (en) | 2002-09-23 | 2005-09-15 | Siemens Westinghouse Power Corp. | Smart component for use in an operating environment |
US7618712B2 (en) | 2002-09-23 | 2009-11-17 | Siemens Energy, Inc. | Apparatus and method of detecting wear in an abradable coating system |
US6838157B2 (en) | 2002-09-23 | 2005-01-04 | Siemens Westinghouse Power Corporation | Method and apparatus for instrumenting a gas turbine component having a barrier coating |
US7582359B2 (en) | 2002-09-23 | 2009-09-01 | Siemens Energy, Inc. | Apparatus and method of monitoring operating parameters of a gas turbine |
US7270890B2 (en) | 2002-09-23 | 2007-09-18 | Siemens Power Generation, Inc. | Wear monitoring system with embedded conductors |
US7572524B2 (en) | 2002-09-23 | 2009-08-11 | Siemens Energy, Inc. | Method of instrumenting a component |
EP1422054A1 (de) | 2002-11-21 | 2004-05-26 | Siemens Aktiengesellschaft | Schichtsystem für eine Verwenbdung in Gasturbinen |
US6860108B2 (en) * | 2003-01-22 | 2005-03-01 | Mitsubishi Heavy Industries, Ltd. | Gas turbine tail tube seal and gas turbine using the same |
US6767659B1 (en) | 2003-02-27 | 2004-07-27 | Siemens Westinghouse Power Corporation | Backside radiative cooled ceramic matrix composite component |
US7413798B2 (en) | 2003-04-04 | 2008-08-19 | Siemens Power Generation, Inc. | Thermal barrier coating having nano scale features |
US7198860B2 (en) | 2003-04-25 | 2007-04-03 | Siemens Power Generation, Inc. | Ceramic tile insulation for gas turbine component |
US7311790B2 (en) | 2003-04-25 | 2007-12-25 | Siemens Power Generation, Inc. | Hybrid structure using ceramic tiles and method of manufacture |
US6984277B2 (en) | 2003-07-31 | 2006-01-10 | Siemens Westinghouse Power Corporation | Bond enhancement for thermally insulated ceramic matrix composite materials |
US7108925B2 (en) | 2003-09-22 | 2006-09-19 | Siemens Power Generation, Inc. | High temperature insulation utilizing zirconia-hafnia |
EP1522604B1 (de) | 2003-10-02 | 2007-02-14 | Siemens Aktiengesellschaft | Schichtsystem und Verfahren zur Herstellung eines Schichtsystems |
EP1522375A1 (de) | 2003-10-06 | 2005-04-13 | Siemens Aktiengesellschaft | Verfahren zur Herstellung eines Schichtsystems |
EP1528343A1 (de) | 2003-10-27 | 2005-05-04 | Siemens Aktiengesellschaft | Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand |
EP1533113A1 (de) | 2003-11-14 | 2005-05-25 | Siemens Aktiengesellschaft | Hochtemperatur-Schichtsystem zur Wärmeableitung und Verfahren zu dessen Herstellung |
EP1559499A1 (de) | 2004-01-27 | 2005-08-03 | Siemens Aktiengesellschaft | Verfahren zur Reparatur eines Bauteils einer Strömungsmaschine |
US7351364B2 (en) | 2004-01-29 | 2008-04-01 | Siemens Power Generation, Inc. | Method of manufacturing a hybrid structure |
US7509735B2 (en) | 2004-04-22 | 2009-03-31 | Siemens Energy, Inc. | In-frame repairing system of gas turbine components |
US7066717B2 (en) | 2004-04-22 | 2006-06-27 | Siemens Power Generation, Inc. | Ceramic matrix composite airfoil trailing edge arrangement |
US7334330B2 (en) | 2004-04-28 | 2008-02-26 | Siemens Power Generation, Inc. | Thermally insulating layer incorporating a distinguishing agent and method for inspecting the same |
US8004423B2 (en) | 2004-06-21 | 2011-08-23 | Siemens Energy, Inc. | Instrumented component for use in an operating environment |
DE102004045934B4 (de) | 2004-09-22 | 2008-01-31 | Siemens Ag | Sensoreinrichtung |
JP2006097518A (ja) * | 2004-09-29 | 2006-04-13 | Mitsubishi Heavy Ind Ltd | ガスタービンにおける燃焼器尾筒とガスパスとの連結構造 |
EP1645652A1 (de) | 2004-10-07 | 2006-04-12 | Siemens Aktiengesellschaft | Verfahren zur Herstellung eines Schichtsystems |
EP1645653A1 (de) | 2004-10-07 | 2006-04-12 | Siemens Aktiengesellschaft | Schichtsystem |
US7237389B2 (en) | 2004-11-18 | 2007-07-03 | Siemens Power Generation, Inc. | Attachment system for ceramic combustor liner |
EP1739356A1 (de) | 2005-07-01 | 2007-01-03 | Siemens Aktiengesellschaft | Formmasse zum Herstellen einer feuerfesten Auskleidung |
US7402347B2 (en) | 2004-12-02 | 2008-07-22 | Siemens Power Generation, Inc. | In-situ formed thermal barrier coating for a ceramic component |
US7255535B2 (en) | 2004-12-02 | 2007-08-14 | Albrecht Harry A | Cooling systems for stacked laminate CMC vane |
US7247002B2 (en) | 2004-12-02 | 2007-07-24 | Siemens Power Generation, Inc. | Lamellate CMC structure with interlock to metallic support structure |
US7247003B2 (en) | 2004-12-02 | 2007-07-24 | Siemens Power Generation, Inc. | Stacked lamellate assembly |
US7153096B2 (en) | 2004-12-02 | 2006-12-26 | Siemens Power Generation, Inc. | Stacked laminate CMC turbine vane |
US7198458B2 (en) | 2004-12-02 | 2007-04-03 | Siemens Power Generation, Inc. | Fail safe cooling system for turbine vanes |
US7527469B2 (en) * | 2004-12-10 | 2009-05-05 | Siemens Energy, Inc. | Transition-to-turbine seal apparatus and kit for transition/turbine junction of a gas turbine engine |
US7123031B2 (en) | 2004-12-20 | 2006-10-17 | Siemens Power Generation, Inc. | System for on-line assessment of the condition of thermal coating on a turbine vane |
US7435058B2 (en) | 2005-01-18 | 2008-10-14 | Siemens Power Generation, Inc. | Ceramic matrix composite vane with chordwise stiffener |
US7258530B2 (en) | 2005-01-21 | 2007-08-21 | Siemens Power Generation, Inc. | CMC component and method of fabrication |
US7217088B2 (en) | 2005-02-02 | 2007-05-15 | Siemens Power Generation, Inc. | Cooling fluid preheating system for an airfoil in a turbine engine |
US7326030B2 (en) | 2005-02-02 | 2008-02-05 | Siemens Power Generation, Inc. | Support system for a composite airfoil in a turbine engine |
US7341428B2 (en) | 2005-02-02 | 2008-03-11 | Siemens Power Generation, Inc. | Turbine blade for monitoring torsional blade vibration |
US7387758B2 (en) | 2005-02-16 | 2008-06-17 | Siemens Power Generation, Inc. | Tabbed ceramic article for improved interlaminar strength |
ES2305920T3 (es) | 2005-02-18 | 2008-11-01 | Siemens Aktiengesellschaft | Aleacion de mcralx, capa protectora de aleacion de mcralx, y procedimiento para su obtencion. |
US7176681B2 (en) | 2005-03-08 | 2007-02-13 | Siemens Power Generation, Inc. | Inspection of composite components using magnetic resonance imaging |
US7300621B2 (en) | 2005-03-16 | 2007-11-27 | Siemens Power Generation, Inc. | Method of making a ceramic matrix composite utilizing partially stabilized fibers |
US7230205B2 (en) | 2005-03-29 | 2007-06-12 | Siemens Power Generation, Inc. | Compressor airfoil surface wetting and icing detection system |
ATE471395T1 (de) | 2005-04-01 | 2010-07-15 | Siemens Ag | Schichtsystem |
US7316539B2 (en) | 2005-04-07 | 2008-01-08 | Siemens Power Generation, Inc. | Vane assembly with metal trailing edge segment |
US7452182B2 (en) | 2005-04-07 | 2008-11-18 | Siemens Energy, Inc. | Multi-piece turbine vane assembly |
US7393183B2 (en) | 2005-06-17 | 2008-07-01 | Siemens Power Generation, Inc. | Trailing edge attachment for composite airfoil |
US7494317B2 (en) | 2005-06-23 | 2009-02-24 | Siemens Energy, Inc. | Ring seal attachment system |
US7721547B2 (en) | 2005-06-27 | 2010-05-25 | Siemens Energy, Inc. | Combustion transition duct providing stage 1 tangential turning for turbine engines |
US7745022B2 (en) | 2005-07-22 | 2010-06-29 | Siemens Energy, Inc. | CMC with multiple matrix phases separated by diffusion barrier |
CA2616475C (en) | 2005-07-25 | 2011-03-29 | Siemens Power Generation, Inc. | Method of forming cmc component |
US7563071B2 (en) | 2005-08-04 | 2009-07-21 | Siemens Energy, Inc. | Pin-loaded mounting apparatus for a refractory component in a combustion turbine engine |
US7785076B2 (en) | 2005-08-30 | 2010-08-31 | Siemens Energy, Inc. | Refractory component with ceramic matrix composite skeleton |
WO2007025842A1 (en) | 2005-08-30 | 2007-03-08 | Siemens Aktiengesellschaft | The invention relates to a turbine or vane, in particular for use in a combustion turbine |
US7632012B2 (en) | 2005-09-01 | 2009-12-15 | Siemens Energy, Inc. | Method of measuring in situ differential emissivity and temperature |
US20070075455A1 (en) | 2005-10-04 | 2007-04-05 | Siemens Power Generation, Inc. | Method of sealing a free edge of a composite material |
US7278820B2 (en) | 2005-10-04 | 2007-10-09 | Siemens Power Generation, Inc. | Ring seal system with reduced cooling requirements |
JP2007120340A (ja) * | 2005-10-26 | 2007-05-17 | Mitsubishi Heavy Ind Ltd | ガスタービンの燃焼器尾筒シール構造 |
EP1787967B1 (de) | 2005-11-21 | 2010-05-26 | Siemens Aktiengesellschaft | Verfahren zum Herstellen eines gebrannten Formteils einer feuerfesten Auskleidung |
US7481621B2 (en) | 2005-12-22 | 2009-01-27 | Siemens Energy, Inc. | Airfoil with heating source |
US7371043B2 (en) | 2006-01-12 | 2008-05-13 | Siemens Power Generation, Inc. | CMC turbine shroud ring segment and fabrication method |
US7700202B2 (en) | 2006-02-16 | 2010-04-20 | Alliant Techsystems Inc. | Precursor formulation of a silicon carbide material |
US7604456B2 (en) * | 2006-04-11 | 2009-10-20 | Siemens Energy, Inc. | Vane shroud through-flow platform cover |
US7534086B2 (en) | 2006-05-05 | 2009-05-19 | Siemens Energy, Inc. | Multi-layer ring seal |
US7762766B2 (en) | 2006-07-06 | 2010-07-27 | Siemens Energy, Inc. | Cantilevered framework support for turbine vane |
US20080025838A1 (en) | 2006-07-25 | 2008-01-31 | Siemens Power Generation, Inc. | Ring seal for a turbine engine |
US7600978B2 (en) | 2006-07-27 | 2009-10-13 | Siemens Energy, Inc. | Hollow CMC airfoil with internal stitch |
US7488157B2 (en) | 2006-07-27 | 2009-02-10 | Siemens Energy, Inc. | Turbine vane with removable platform inserts |
US7784264B2 (en) * | 2006-08-03 | 2010-08-31 | Siemens Energy, Inc. | Slidable spring-loaded transition-to-turbine seal apparatus and heat-shielding system, comprising the seal, at transition/turbine junction of a gas turbine engine |
US7631499B2 (en) | 2006-08-03 | 2009-12-15 | Siemens Energy, Inc. | Axially staged combustion system for a gas turbine engine |
EP1903184B1 (de) | 2006-09-21 | 2019-05-01 | Siemens Energy, Inc. | Subsystem einer Verbrennungsturbine mit verwundenem Übergangskanal |
US7950234B2 (en) | 2006-10-13 | 2011-05-31 | Siemens Energy, Inc. | Ceramic matrix composite turbine engine components with unitary stiffening frame |
US7686577B2 (en) | 2006-11-02 | 2010-03-30 | Siemens Energy, Inc. | Stacked laminate fiber wrapped segment |
US20080274336A1 (en) | 2006-12-01 | 2008-11-06 | Siemens Power Generation, Inc. | High temperature insulation with enhanced abradability |
US7722317B2 (en) | 2007-01-25 | 2010-05-25 | Siemens Energy, Inc. | CMC to metal attachment mechanism |
US7871244B2 (en) | 2007-02-15 | 2011-01-18 | Siemens Energy, Inc. | Ring seal for a turbine engine |
US7798769B2 (en) | 2007-02-15 | 2010-09-21 | Siemens Energy, Inc. | Flexible, high-temperature ceramic seal element |
US20080199661A1 (en) | 2007-02-15 | 2008-08-21 | Siemens Power Generation, Inc. | Thermally insulated CMC structure with internal cooling |
US20080207075A1 (en) | 2007-02-22 | 2008-08-28 | Siemens Power Generation, Inc. | Optimized fabric lay-up for improved ceramic matrix composites |
US20080206542A1 (en) | 2007-02-22 | 2008-08-28 | Siemens Power Generation, Inc. | Ceramic matrix composite abradable via reduction of surface area |
US7887300B2 (en) | 2007-02-27 | 2011-02-15 | Siemens Energy, Inc. | CMC airfoil with thin trailing edge |
US9297269B2 (en) | 2007-05-07 | 2016-03-29 | Siemens Energy, Inc. | Patterned reduction of surface area for abradability |
US7819625B2 (en) | 2007-05-07 | 2010-10-26 | Siemens Energy, Inc. | Abradable CMC stacked laminate ring segment for a gas turbine |
US7824152B2 (en) | 2007-05-09 | 2010-11-02 | Siemens Energy, Inc. | Multivane segment mounting arrangement for a gas turbine |
US7648605B2 (en) | 2007-05-17 | 2010-01-19 | Siemens Energy, Inc. | Process for applying a thermal barrier coating to a ceramic matrix composite |
US8061977B2 (en) | 2007-07-03 | 2011-11-22 | Siemens Energy, Inc. | Ceramic matrix composite attachment apparatus and method |
US20090014926A1 (en) | 2007-07-09 | 2009-01-15 | Siemens Power Generation, Inc. | Method of constructing a hollow fiber reinforced structure |
US7908867B2 (en) | 2007-09-14 | 2011-03-22 | Siemens Energy, Inc. | Wavy CMC wall hybrid ceramic apparatus |
US8128350B2 (en) | 2007-09-21 | 2012-03-06 | Siemens Energy, Inc. | Stacked lamellae ceramic gas turbine ring segment component |
US8974891B2 (en) | 2007-10-26 | 2015-03-10 | Coi Ceramics, Inc. | Thermal protection systems comprising flexible regions of inter-bonded lamina of ceramic matrix composite material and methods of forming the same |
JP2009167905A (ja) * | 2008-01-16 | 2009-07-30 | Mitsubishi Heavy Ind Ltd | ガスタービン燃焼器出口シール構造 |
FR2929689B1 (fr) * | 2008-04-03 | 2013-04-12 | Snecma Propulsion Solide | Chambre de combustion de turbine a gaz a parois interne et externe sectorisees |
FR2929690B1 (fr) * | 2008-04-03 | 2012-08-17 | Snecma Propulsion Solide | Chambre de combustion sectorisee en cmc pour turbine a gaz |
US8162598B2 (en) * | 2008-09-25 | 2012-04-24 | Siemens Energy, Inc. | Gas turbine sealing apparatus |
-
2010
- 2010-09-24 US US12/889,860 patent/US8347636B2/en not_active Expired - Fee Related
-
2011
- 2011-09-12 DE DE102011053534A patent/DE102011053534A1/de not_active Withdrawn
- 2011-09-12 JP JP2011197782A patent/JP5548661B2/ja not_active Expired - Fee Related
- 2011-09-16 CH CH01548/11A patent/CH703864B1/de not_active IP Right Cessation
- 2011-09-22 CN CN201110291650.2A patent/CN102418602B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102418602A (zh) | 2012-04-18 |
DE102011053534A1 (de) | 2012-03-29 |
US8347636B2 (en) | 2013-01-08 |
JP5548661B2 (ja) | 2014-07-16 |
CN102418602B (zh) | 2016-01-06 |
CH703864A2 (de) | 2012-03-30 |
JP2012067745A (ja) | 2012-04-05 |
US20120073304A1 (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH703864B1 (de) | Turbomaschine mit einer Brücke aus Keramikmatrix-Verbundwerkstoff (CMC) | |
DE69919187T2 (de) | Federbelasteter diffusor mit schaufeln | |
EP1736635B1 (de) | Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks | |
DE102011052677B4 (de) | Elastische Halterungsvorrichtung für ein Turbinengehäuse geringer Duktilität | |
EP3118417A1 (de) | Ummantelungsanordnung für ein gasturbinentriebwerk | |
DE102008002932B4 (de) | Klemmplattendichtung | |
DE102010017362A1 (de) | Mechanische Verbindung für eine Gasturbinenmaschine | |
DE112011104298B4 (de) | Gasturbinenmotor mit Sekundärluftstromkreis | |
US10815789B2 (en) | Impingement holes for a turbine engine component | |
DE2261443A1 (de) | Turbinenanordnung mit zweistromkuehlung fuer gasturbinentriebwerke | |
US20160319680A1 (en) | Blade/disk dovetail backcut for blade/disk stress reduction for a second stage of a turbomachine | |
US9976431B2 (en) | Mid-turbine frame and gas turbine engine including same | |
US20170356298A1 (en) | Stator vane | |
CH709266B1 (de) | Turbinenschaufel und Verfahren zum Auswuchten eines Spitzendeckbandes einer Turbinenschaufel und Gasturbine. | |
DE102014101360A1 (de) | Kühlstruktur für Turbomaschine | |
EP3064706A1 (de) | Leitschaufelreihe für eine axial durchströmte Strömungsmaschine | |
EP2084368A1 (de) | Turbinenschaufel | |
EP0806547B1 (de) | Axialturbine eines Abgasturboladers | |
CH709047A2 (de) | Turbinenschaufel und Verfahren zur Kühlung einer Turbinenschaufel einer Gasturbine. | |
CH702543A2 (de) | Turbomaschine mit einer Einspritzdüsenanordnung. | |
EP1731715A1 (de) | Übergangsbereich zwischen einer Brennkammer und einer Turbineneinheit | |
WO2015000830A2 (de) | Rotor für eine turbine | |
DE112017002151T5 (de) | Verdichterdiffusor und gasturbine | |
CH710372A2 (de) | Turbomaschine mit einem Dichtungselement für variable Spülströmung zwischen einem Übergangsstück und einem Turbinenabschnit. | |
EP2527618A2 (de) | Zapfluftauslassvorrichtung eines Gasturbinentriebwerks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NV | New agent |
Representative=s name: GENERAL ELECTRIC TECHNOLOGY GMBH GLOBAL PATENT, CH |
|
PL | Patent ceased |