EP1528343A1 - Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand - Google Patents

Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand Download PDF

Info

Publication number
EP1528343A1
EP1528343A1 EP03024560A EP03024560A EP1528343A1 EP 1528343 A1 EP1528343 A1 EP 1528343A1 EP 03024560 A EP03024560 A EP 03024560A EP 03024560 A EP03024560 A EP 03024560A EP 1528343 A1 EP1528343 A1 EP 1528343A1
Authority
EP
European Patent Office
Prior art keywords
heat shield
combustion chamber
shield element
reinforcing
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03024560A
Other languages
English (en)
French (fr)
Inventor
Holger Grote
Wolfgang Dr. Kollenberg
Marc Tertilt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP03024560A priority Critical patent/EP1528343A1/de
Priority to EP04790917A priority patent/EP1678454A2/de
Priority to JP2006536072A priority patent/JP4499737B2/ja
Priority to PCT/EP2004/012142 priority patent/WO2005043058A2/de
Priority to US10/577,383 priority patent/US7805945B2/en
Priority to CN 200480031021 priority patent/CN1871488A/zh
Publication of EP1528343A1 publication Critical patent/EP1528343A1/de
Priority to US11/215,392 priority patent/US7540710B2/en
Priority to US12/751,194 priority patent/US8857190B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0033Linings or walls comprising heat shields, e.g. heat shieldsd
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/06Composite bricks or blocks, e.g. panels, modules
    • F27D1/08Bricks or blocks with internal reinforcement or metal backing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/10Monolithic linings; Supports therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2949Glass, ceramic or metal oxide in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Definitions

  • the invention relates to a heat shield element, in particular for the inner lining of a combustion chamber or a Oven.
  • the invention further relates to a combustion chamber with an inner lining formed of heat shield elements and a gas turbine with a combustion chamber.
  • a thermally and / or thermomechanically highly loaded Combustion chamber such as a kiln, a hot gas channel or a combustion chamber in a gas turbine in which a hot Medium is generated and / or out, is for protection against high thermal stress with a corresponding lining Mistake.
  • the lining is usually made heat-resistant material and protects a wall of the combustion chamber before direct contact with the hot medium and the associated strong thermal load.
  • US Pat. No. 4,840,131 relates to an attachment of ceramic lining elements on a wall of a furnace.
  • a rail system which is attached to the wall is.
  • the lining elements have a rectangular shape with a planar surface and consist of a heat insulating, refractory, ceramic fiber material.
  • U.S. Patent 4,835,831 also deals with application a refractory lining from a wall of a Furnace, in particular a vertically arranged wall.
  • a refractory lining from a wall of a Furnace, in particular a vertically arranged wall.
  • On the metallic wall of the furnace becomes one of glass, ceramic, or mineral fibers existing layer applied.
  • These Layer is attached by metallic clips or by adhesive attached to the wall.
  • On this layer is a wire mesh with applied honeycomb meshes. The mesh is used also securing the layer of ceramic fibers against a fall down.
  • it is fastened by means of a bolt a uniform closed surface of refractory Material applied.
  • a ceramic lining of the walls of thermally highly stressed combustion chambers for example of gas turbine combustion chambers, is described in EP 0 724 116 A2.
  • the lining consists of wall elements made of high temperature resistant structural ceramic, such. As silicon carbide (SiC) or silicon nitrite (Si 3 N 4 ).
  • the wall elements are mechanically fixed by means of a central fastening bolt to a metallic support structure (wall) of the combustion chamber.
  • a thick thermal insulation layer is provided, so that the wall element is spaced correspondingly from the wall of the combustion chamber.
  • About three times as thick in relation to the wall element insulation layer consists of ceramic fiber material, which is prefabricated in blocks. The dimensions and the external shape of the wall elements are adaptable to the geometry of the space to be lined.
  • the lining consists of heat shield elements that mechanically a metallic wall of the combustion chamber are supported.
  • the heat shield elements touch the metallic wall directly.
  • z. B. as a result of direct heat transfer from the heat shield element or by penetration of hot medium in the through formed the adjacent heat shield elements Column, is that of the wall of the combustion chamber and the heat shield element formed space with cooling or sealing air acted upon. The blocking air prevents the penetration of hot Medium up to the wall and at the same time cool the wall and the heat shield element.
  • WO 99/47874 relates to a wall segment for a combustion chamber and a combustion chamber of a gas turbine.
  • This is a Wall segment for a combustion chamber, which with a hot Fluid, e.g. As a hot gas, can be acted upon, with a metallic Support structure and one on the metallic support structure attached heat shield element specified.
  • a hot Fluid e.g. As a hot gas
  • the possible relative movements receive the heat shield element and the support structure and compensate.
  • Such relative movements can for example, in the combustion chamber of a gas turbine, in particular an annular combustion chamber, by different thermal expansion behavior the materials used and pulsations in the combustion chamber, during an irregular combustion can arise to produce the hot working medium, be caused.
  • the separating layer causes that the relatively inelastic heat shield element as a whole area on the release layer and the metallic support structure rests, since the heat shield element partially in the release layer penetrates.
  • the release layer can be so production-related Unevenness on the support structure and / or the heat shield element, locally to an unfavorable point force entry can lead, balance.
  • the invention is based on the object, a heat shield element specify that a high strength at a particular have a long life. Furthermore, a special Low-maintenance combustion chamber and a gas turbine with a be specified such combustion chamber.
  • this object is achieved according to the invention dissolved with a solidified poured one formed ceramic material body, in a number is introduced by reinforcing elements.
  • the invention is based on the consideration that a for a particularly long life designed heat shield element in particular to the extreme conditions of use should be adjusted. To make this possible and a special one high number of degrees of freedom for individual adaptation measures To provide, is moving away from the past customary production of the heat shield elements by pressing now a preparation provided by pouring. Indeed could be due to a cast ceramic heat shield a comparatively low tensile strength in particular in the longitudinal and transverse direction of the heat shield element the life be limited by the heat shield element.
  • reinforcing elements provided in the body of the heat shield element are integrated. These reinforcing elements should firmly connected to the heat shield element to the material property of the tensile strength of the reinforcing elements to transfer to the heat shield element. These Function is positioned by those within the heat shield elements Reinforced elements fulfilled by the ceramic Casting material poured into the body and characterized are firmly connected to this or with the ceramic.
  • the respective reinforcing element is advantageously formed of a ceramic material, preferably of an oxide ceramic material with an Al 2 O 3 Content of at least 60% by weight and with an SiO 2 content of at most 20% by weight. This has a comparatively high tensile strength and combines due to the similar ceramic materials in solidification with the ceramic casting material.
  • the thermal expansion of the reinforcing material is similar to the remaining ceramic material of the heat shield element, so that no adverse stresses occur in the heat shield element with temperature changes.
  • the reinforcing element may advantageously be made of ceramic fibers such as CMC materials or structural ceramic material having a pore content of at most 10%.
  • the respective reinforcing element is preferably of the type a long, round ceramic rod in the style of a Reinforcement performed.
  • a reinforcing element especially firmly integrated into a heat shield element and around the reinforcing element as stiff as possible this has expediently a number of beads and thickenings on. Over this is the reinforcing element in the surrounding Anchored ceramic material, which increases the tensile strength of Reinforcement element on the entire heat shield element transfers.
  • the reinforcing element especially at its end areas Have thickening, so that results in a bone shape.
  • this compound can also be non-positively, for example via a sintering process or a grain, be executed.
  • a reinforcing element expediently also be designed plate-shaped, in particular a parallel and spaced from the surface of the heat shield element arranged flat plate can be provided. It can each a plate on the working medium side facing be positioned during the cooler side of the heat shield element also assigned a plate for reinforcement is.
  • the plate advantageously a number of recesses.
  • the plate can in particular as a perforated plate be executed, where number, size and positioning the holes expediently depending on input purpose and material parameters are selected appropriately.
  • a reinforcing element of a heat shield element preferably a grid structure on.
  • the grid elements one with diamond-shaped or square cutouts train structured grid.
  • a reinforcing element can also be formed by a plate, the circular Has recesses that are evenly spaced from each other are positioned so that a grid-shaped structure arises.
  • a reinforcing element is suitably rod-shaped and along a peripheral edge positioned the heat shield element.
  • a reinforcing element preferably an annular closed shape and extends along the circumference of the heat shield element.
  • a heat shield element For stabilization and consolidation of the corners of a heat shield element has a reinforcing element advantageously a cruciform shape, with the ends in the region of Corners of the heat shield element are positioned.
  • a reinforcing element advantageously a cruciform shape, with the ends in the region of Corners of the heat shield element are positioned.
  • the ends of the cross-shaped reinforcing element thickened be such that the reinforcing element in the heat shield element is anchored.
  • heat shield elements are those described above Type components of the inner lining of a combustion chamber.
  • This combustion chamber is advantageously part of a Gas turbine.
  • the combustion chamber could be silo-shaped Combustion chamber or as from several smaller combustion systems
  • the composite combustion chamber is designed to be preferably formed as an annular combustion chamber.
  • the advantages achieved by the invention are in particular in the possibility of resorting to a casting process with the possible creative degrees of freedom To produce heat shield elements that are particularly high Have tensile strength.
  • the material properties the reinforcing elements in particular to transfer the tensile strength to a heat shield element.
  • the shape of a heat shield element can be flexible being held.
  • Another advantage is that through the choice of different embodiments of reinforcing elements and the positioning of these in the heat shield element an individual adaptation to the on a heat shield element acting thermal and mechanical Loads is possible. Due to the increased strength The heat shield elements also extends the life a heat shield element, since the spread of Cracks reduced and the structural integrity of the component (passive safety) is increased.
  • the advantage of a casting process is the possibility of produce more complex forms of heat shield elements. So on the one hand, the outer basic shape comparatively easily and inexpensively varied. On the other hand, it is at one Casting possible, fixtures the heat shield elements on the combustion chamber wall with pour. For example, in cast heat shield elements Grooves, holes, threads or mounting devices be poured.
  • the gas turbine 1 has a compressor 2 for Combustion air, a combustion chamber 4 and a turbine 6 for Drive of the compressor 2 and a generator, not shown or a work machine. These are the turbine 6 and the compressor 2 on a common, as a turbine rotor designated turbine shaft 8 is arranged, with the also the generator or the work machine is connected, and which is rotatably mounted about its central axis 9.
  • a turbine rotor designated turbine shaft 8 is arranged, with the also the generator or the work machine is connected, and which is rotatably mounted about its central axis 9.
  • the type of an annular combustion chamber running combustion chamber 4 is with a number of burners 10 for burning a liquid or gaseous fuel.
  • the turbine 6 has a number of with the turbine shaft. 8 connected, rotatable blades 12.
  • the blades 12 are arranged in a ring on the turbine shaft 8 and thus form a number of blade rows.
  • the turbine 6 includes a number of stationary vanes 14, which is also coronal under the formation of Guide vane rows attached to an inner housing 16 of the turbine 6 are.
  • the blades 12 serve to drive the turbine shaft 8 by momentum transfer from the turbine. 6 flowing through the working medium M.
  • the guide vanes 14 serve however, to the flow of the working medium M between two seen in the flow direction of the working medium M. successive rows of blades or blade rings.
  • a successive pair of a wreath of Vanes 14 or a row of vanes and one Wreath of blades 12 or a blade row is also referred to as turbine stage.
  • Each vane 14 has a so-called blade root Platform 18 on, which fixes the respective vane 14 on the inner housing 16 of the turbine 6 as a wall element is arranged.
  • the platform 18 is a thermal comparatively heavily loaded component, which is the outer boundary a Schugaskanals for the turbine 6 flowing through Working medium M forms.
  • Each blade 12 is in analog Way about referred to as a blade root platform 20th attached to the turbine shaft 8.
  • each guide ring 21 on the inner housing 16 of Turbine 6 is arranged between the spaced apart platforms 18 of the vanes 14 of two adjacent rows of vanes.
  • the outer surface of each guide ring 21 is also the hot, the turbine 6 flowing through Working medium M exposed and in the radial direction from the outer end 22 of the blade opposite it 12 spaced by a gap.
  • the between adjacent Guide blade rows arranged guide rings 21st serve in particular as cover elements that the inner wall 16 or other housing-mounted components before a thermal Overuse by the turbine 6 flowing through hot Working medium M protects.
  • the combustion chamber 4 is in the embodiment, as shown in FIG represented, designed as a so-called annular combustion chamber, in the case of a plurality of circumferentially around the turbine shaft 8 around arranged burners 10 in a common Combustor chamber lead.
  • the combustion chamber 4 in her Entity as an annular structure designed around the Turbine shaft 8 is positioned around.
  • the combustion chamber 4 for a comparatively high temperature the working medium M of about 1200 ° C to 1500 ° C designed. Even with these unfavorable for the materials operating parameters to allow a comparatively long service life is the combustion chamber wall 24 on the working medium M facing side with a heat shield elements 26th provided inner lining. Due to the high temperatures inside the combustion chamber 4 is for the heat shield elements 26 provided a cooling system.
  • the heat shield elements 26 are especially for a long time Lifetime designed so as to minimize damage by the extreme influences, such as the high temperature and vibration the combustion chamber 4, occur. These exist from a formed of a cast ceramic material Base 28, integrated in the reinforcing elements 30 are. For a suitable temperature resistance of the reinforcing elements These consist of a ceramic material or composite material. The reinforcing elements 30 can do so for the influences acting on a heat shield element 26 influences be interpreted. In the figures 3 to 7 are different Embodiments of heat shield elements 26 with reinforcing elements 30 listed.
  • a heat shield element 26 is plate-shaped Reinforcement elements 30 shown, wherein in each case for the the working medium M and the cooled side facing Surface a reinforcing element 30 is provided.
  • the plate-shaped reinforcing elements 30 for a better bond with the surrounding ceramic can be provided with a grid-shaped structure or are designed as a grid, in particular as a cross grid (FIG 4a) or as a perforated grid (FIG 4b).
  • FIG. 6 shows that for a reinforcement of a heat shield element 26 along its circumference an annular Structure (FIG 6a) of the reinforcing elements 30 are used can, taking these in a particularly torsion-resistant Execution circular (FIG 6b) may be executed.
  • FIG. 7 shows a heat shield element 26 that stabilizes it acting tension of the corners of a heat shield element 26 a cross-shaped reinforcing element 30 is provided, that at its ends each thickenings for anchoring in the ceramic material 26 has.

Abstract

Ein Hitzeschildelement (26) für die Innenauskleidung der Brennkammer (4) einer Gasturbine (1) soll bei einer hohen Festigkeit eine möglichst lange Lebensdauer aufweisen. Dazu weist das Hitzeschildelement (26) erfindungsgemäß einen aus einem verfestigten gegossenen keramischen Werkstoff gebildeten Grundkörper (28) auf, in den eine Anzahl von Verstärkungselementen (30) eingebracht ist. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Hitzeschildelement, insbesondere für die Innenauskleidung einer Brennkammer oder eines Ofens. Die Erfindung betrifft weiterhin eine Brennkammer mit einer aus Hitzeschildelementen gebildeten Innenauskleidung sowie eine Gasturbine mit einer Brennkammer.
Ein thermisch und/oder thermomechanisch hoch belasteter Brennraum, wie beispielsweise ein Brennofen, ein Heißgaskanal oder eine Brennkammer in einer Gasturbine, in dem ein heißes Medium erzeugt und/oder geführt wird, ist zum Schutz vor zu hoher thermischer Beanspruchung mit einer entsprechenden Auskleidung versehen. Die Auskleidung besteht üblicherweise aus hitzeresistentem Material und schützt eine Wandung des Brennraums vor dem direkten Kontakt mit dem heißen Medium und der damit verbundenen starken thermischen Belastung.
Die US-Patentschrift 4,840,131 betrifft eine Befestigung von keramischen Auskleidungselementen an einer Wand eines Ofens. Hierbei ist ein Schienensystem, welches an der Wand befestigt ist. Die Auskleidungselemente weisen eine rechteckige Form mit planarer Oberfläche auf und bestehen aus einem Wärme isolierenden, feuerfesten, keramischen Fasermaterial.
Die US-Patentschrift 4,835,831 behandelt ebenfalls das Aufbringen einer feuerfesten Auskleidung aus einer Wand eines Ofens, insbesondere einer vertikal angeordneten Wand. Auf die metallische Wand des Ofens wird eine aus Glas-, Keramik-, oder Mineralfasern bestehende Schicht aufgebracht. Diese Schicht wird durch metallische Klammern oder durch Kleber an der Wand befestigt. Auf dieser Schicht wird ein Drahtnetz mit wabenförmigen Maschen aufgebracht. Das Maschennetz dient ebenfalls der Sicherung der Schicht aus Keramikfasern gegen ein Herabfallen. Zusätzlich befestigt wird mittels eines Bolzens eine gleichmäßige geschlossene Oberfläche aus feuerfestem Material aufgebracht. Mit dem beschriebenen Verfahren wird weitgehend vermieden, dass während des Aufsprühens auftreffende feuerfeste Partikel zurückgeworfen werden, wie dies bei einem direkten Aufsprühen der feuerfesten Partikel auf die metallische Wand der Fall wäre.
Eine keramische Auskleidung der Wandungen von thermisch hoch beanspruchten Brennräumen, beispielsweise von Gasturbinenbrennkammern, ist in der EP 0 724 116 A2 beschrieben. Die Auskleidung besteht aus Wandelementen aus hochtemperaturbeständiger Strukturkeramik, wie z. B. Siliziumcarbid (SiC) oder Siliziumnitrit (Si3N4). Die Wandelemente sind mechanisch mittels eines zentralen Befestigungsbolzens federelastisch an einer metallischen Tragstruktur (Wandung) der Brennkammer befestigt. Zwischen dem Wandelement und der Wandung des Brennraums ist eine dicke thermische Isolationsschicht vorgesehen, so dass das Wandelement von der Wandung der Brennkammer entsprechend beabstandet ist. Die im Verhältnis zum Wandelement etwa drei mal so dicke Isolationsschicht besteht aus keramischem Fasermaterial, das in Blöcken vorgefertigt ist. Die Abmessungen und die äußere Form der Wandelemente sind an der Geometrie des auszukleidenden Raumes anpassbar.
Eine andere Art der Auskleidung eines thermisch hoch belasteten Brennraums ist in der EP 0 419 787 B1 angegeben. Die Auskleidung besteht aus Hitzeschildelementen, die mechanisch an einer metallischen Wandung des Brennraumes gehaltert sind. Die Hitzeschildelemente berühren die metallische Wandung direkt. Um eine zu starke Erwärmung der Wand zu vermeiden, z. B. in Folge eines direkten Wärmeübergangs vom Hitzeschildelement oder durch Eindringen von heißem Medium in die durch die voneinander angrenzenden Hitzeschildelementen gebildeten Spalte, wird der von der Wandung des Brennraums und dem Hitzeschildelement gebildete Raum mit Kühl- bzw. Sperrluft beaufschlagt. Die Sperrluft verhindert das Vordringen von heißen Medium bis zur Wandung und kühlt gleichzeitig die Wandung und das Hitzeschildelement.
Die WO 99/47874 betrifft ein Wandsegment für einen Brennraum sowie einen Brennraum einer Gasturbine. Hierbei wird ein Wandsegment für einen Brennraum, welcher mit einem heißen Fluid, z. B. ein Heißgas, beaufschlagbar ist, mit einer metallischen Tragstruktur und einem auf der metallischen Tragstruktur befestigten Hitzeschildelements angegeben. Zwischen die metallische Tragstruktur und das Hitzeschildelement wird eine verformbare Trennlage eingefügt, die mögliche Relativbewegungen des Hitzeschildelements und der Tragstruktur aufnehmen und ausgleichen soll. Solche Relativbewegungen können beispielsweise in der Brennkammer einer Gasturbine, insbesondere einer Ringbrennkammer, durch unterschiedliches Wärmedehnverhalten der verwendeten Materialien und durch Pulsationen im Brennraum, die bei einer unregelmäßigen Verbrennung zur Erzeugung des heißen Arbeitsmediums entstehen können, hervorgerufen werden. Zugleich bewirkt die Trennschicht, dass das relativ unelastische Hitzeschildelement insgesamt flächiger auf der Trennschicht und der metallischen Tragstruktur aufliegt, da das Hitzeschildelement teilweise in die Trennschicht eindringt. Die Trennschicht kann so fertigungsbedingte Unebenheiten an der Tragstruktur und/oder dem Hitzeschildelement, die lokal zu einem ungünstigen punktuellen Krafteintrag führen können, ausgleichen.
Insbesondere bei Wänden von Hochtemperaturgasreaktoren, wie z. B. von unter Druck betriebenen Gasturbinenbrennkammern, müssen mit geeigneten Brennkammerauskleidungen ihre tragenden Strukturen gegen einen Heißgasangriff geschützt werden. Keramische Materialien bieten sich hierfür im Vergleich zu metallischen Werkstoffen aufgrund ihrer hohen Temperaturbeständigkeit, Korrosionsbeständigkeit und niedrigen Wärmeleitfähigkeit idealerweise an.
Wegen materialtypischer Wärmedehnungseigenschaften unter im Rahmen des Betriebs typischerweise auftretenden Temperaturunterschieden (Umgebungstemperatur bei Stillstand, maximale Temperatur bei Volllast) muss die Wärmebeweglichkeit keramischer Hitzeschilde in Folge temperaturabhängiger Dehnung gewährleistet sein, damit keine bauteilzerstörenden Wärmespannungen durch Dehnungsbehinderung auftreten. Dies kann erreicht werden, indem die vor Heißgasangriff zu schützende Wand durch eine Vielzahl von in ihrer Größe begrenzten, einzelnen keramischen Hitzeschildern, z. B. Hitzeschildelemente aus einer technischen Keramik, ausgekleidet wird. Wie bereits oben im Zusammenhang mit der EP 0 419 487 B1 diskutiert, müssen zwischen den einzelnen keramischen Hitzeschildelementen entsprechende Dehnspalten vorgesehen werden, die aus Sicherheitsgründen auch im Heißzustand auslegungsgemäß nie völlig geschlossen sein dürfen. Es muss dabei sichergestellt werden, dass das Heißgas nicht über die Dehnspalte die tragende Wandstruktur übermäßig erwärmt. Der einfachste und sicherste Weg, um dies in einer Gasturbinenbrennkammer zu vermeiden, ist dabei die Spülung der Dehnspalte mit Luft, so genannte Sperrluftkühlung. Hierzu kann die Luft verwendet werden, die ohnehin zur Kühlung von Halterungselementen für die keramischen Hitzeschilde erforderlich ist.
Der Erfindung liegt die Aufgabe zugrunde, ein Hitzeschildelement anzugeben, das bei einer hohen Festigkeit eine besonders lange Lebensdauer aufweisen. Des Weiteren sollen eine besonders wartungsarme Brennkammer sowie eine Gasturbine mit einer derartigen Brennkammer angegeben werden.
Bezüglich des Hitzeschildelements wird diese Aufgabe erfindungsgemäß gelöst mit einem aus einem verfestigten gegossen keramischen Werkstoff gebildeten Grundkörper, in den eine Anzahl von Verstärkungselementen eingebracht ist.
Die Erfindung geht dabei von der Überlegung aus, dass ein für eine besonders hohe Lebensdauer ausgelegtes Hitzeschildelement in besonderem Maße an die extremen Einsatzbedingungen angepasst sein sollte. Um dies zu ermöglichen und eine besonders hohe Zahl an Freiheitsgraden für individuelle Anpassungsmaßnahmen bereitzustellen, ist unter Abkehr von der bisher üblichen Herstellung der Hitzeschildelemente durch Pressen nunmehr eine Herstellung durch Gießen vorgesehen. Allerdings könnte bei einem gegossenen Keramikhitzeschild aufgrund einer vergleichsweise nur geringen Zugfestigkeit insbesondere in Längs- und Querrichtung des Hitzeschildelementes die Lebensdauer des Hitzeschildelementes begrenzt sein. Um daher ein auf einem gegossenen Grundkörper basierendes Hitzeschildelement zur Nutzung der damit erreichbaren gestalterischen Freiheitsgrade zum Einsatz in einer Brennkammer nutzbar zu machen, sollten für eine lange Lebensdauer und eine erhöhte passive Sicherheit besondere Maßnahmen zur strukturellen Verstärkung des Grundkörpers vorgenommen werden, die insbesondere auch den Zusammenhalt des Grundkörpers im Falle einer möglichen Rissbildung verbessern.
Insbesondere für eine erhöhte Zugfestigkeit und zur Reduzierung von Risslängen, die durch thermische und thermomechanische Belastungen auftreten könnten, sind daher Verstärkungselemente vorgesehen, die in den Grundkörper des Hitzeschildelements integriert sind. Dabei sollten diese Verstärkungselemente fest mit dem Hitzeschildelement verbunden sein, um die Materialeigenschaft der Zugfestigkeit der Verstärkungselemente auf das Hitzeschildelement zu übertragen. Diese Funktion wird von den innerhalb der Hitzeschildelementen positionierten Verstärkungselementen erfüllt, die durch den keramischen Gießwerkstoff in den Grundkörper eingegossen und dadurch fest mit diesem bzw. mit der Keramik verbunden sind.
Vorteilhafterweise werden die mit der Verwendung einer Gießtechnik einhergehenden konstruktiven Freiheitsgrade bei der Gestaltung der Hitzeschildelemente insbesondere dafür genutzt, durch geeignete Geometrien oder lokale Variationen von charakteristischen Materialparametern eine besonders hohe Belastbarkeit auch bei wechselnden thermischen Belastungen des Hitzeschildelements sicherzustellen.
Damit ein Verstärkungselement an die hohen Temperaturen angepasst ist, dem ein Hitzeschildelement ausgesetzt ist, und sich außerdem beim Gießprozess fest mit dem keramischen Gießwerkstoff verbindet, ist das jeweilige Verstärkungselement vorteilhafterweise aus einem keramischen Werkstoff gebildet, vorzugsweise aus einem oxidkeramischen Werkstoff mit einem Al2O3-Anteil von mindestens 60 Gew.-% und mit einem SiO2-Anteil von höchstens 20 Gew.-%. Dieses weist eine vergleichsweise hohe Zugfestigkeit auf und verbindet sich aufgrund der ähnlichen keramischen Materialien bei der Verfestigung fest mit dem keramischen Gießwerkstoff. Außerdem ist die thermische Dehnung des Verstärkungsmaterials ähnlich dem restlichen keramischen Material des Hitzeschildelementes, so dass bei Temperaturveränderungen keine ungünstigen Spannungen im Hitzeschildelement auftreten. Weiterhin kann das Verstärkungselement zweckmäßigerweise aus keramischen Fasern wie beispielsweise CMC-Werkstoffen oder aus strukturkeramischem Werkstoff mit einem Porenanteil von höchstens 10 % gefertigt sein.
Das jeweilige Verstärkungselement ist vorzugsweise in der Art eines lang ausgedehnten, Rund-Keramik-Stabs in der Art einer Bewehrung ausgeführt. Um ein Verstärkungselement besonders fest in ein Hitzeschildelement zu integrieren und um das Verstärkungselement möglichst steif auszulegen, weist dieses zweckmäßigerweise eine Anzahl von Sicken und Aufdickungen auf. Über diese ist das Verstärkungselement in dem umgebenden Keramikmaterial verankert, wodurch sich die Zugfestigkeit der Verstärkungselementes auf das gesamte Hitzeschildelement überträgt. Bei stangenförmiger Ausgestaltung kann das Verstärkungselement dabei insbesondere an seinen Endbereichen Verdickungen aufweisen, so dass sich eine Knochenform ergibt. Durch derartige aufgedickte Enden oder auch durch rippenartige Verdickungen wird eine formschlüssige Verbindung zwischen Verstärkungselement und Grundkörper sichergestellt. Alternativ oder zusätzlich kann diese Verbindung auch kraftschlüssig, beispielsweise über einen Sintervorgang oder eine Körnung, ausgeführt sein.
Um ein Hitzeschildelement über die gesamte Fläche zu verstärken, kann ein Verstärkungselement zweckmäßigerweise auch plattenförmig ausgestaltet sein, wobei insbesondere eine parallel und zur Oberfläche des Hitzeschildelementes beabstandet angeordnete ebene Platte vorgesehen sein kann. Dabei kann jeweils eine Platte an der dem Arbeitsmedium zugewandten Seite positioniert sein, während der kühleren Seite des Hitzeschildelementes ebenfalls eine Platte zur Verstärkung zugeordnet ist.
Um einen möglichst festen Materialverbund zwischen einem als Platte ausgebildeten Verstärkungselement und dem umgebenden Keramikmaterial zu erreichen, weist eine derartige Platte vorteilhafterweise eine Anzahl von Aussparungen auf. Dadurch kann beim Gießprozess des Hitzeschildelementes die keramische Gießmasse in die Aussparungen gelangen und sich auch dort verfestigen. Die Platte kann dabei insbesondere als Lochplatte ausgeführt sein, wobei Anzahl, Größe und Positionierung der Löcher zweckmäßigerweise in Abhängigkeit von Eingangszweck und Materialparametern geeignet gewählt sind.
In alternativer oder zusätzlicher vorteilhafter Ausgestaltung weist ein Verstärkungselement eines Hitzeschildelementes vorzugsweise eine Gitterstruktur auf. Dabei können die Gitterelemente ein mit rautenförmigen oder quadratischen Aussparungen strukturiertes Gitter ausbilden. Ein Verstärkungselement kann auch durch eine Platte gebildet sein, die kreisrunde Aussparungen aufweist, die in gleichmäßigen Abständen voneinander positioniert sind, so dass eine gitterförmige Struktur entsteht.
Um ein Hitzeschildelement besonders an den Seiten zu verfestigen oder zu verstärken, ist ein Verstärkungselement zweckmäßigerweise stabförmig ausgebildet und längs einer Umfangskante des Hitzeschildelementes positioniert.
Um die strukturelle Integrität des Hitzeschildelements selbst bei einsetzender Rissbildung über seinen gesamten Umfang hinweg sicherzustellen, hat ein Verstärkungselement vorzugsweise eine ringförmig geschlossene Form und verläuft längs des Umfangs des Hitzeschildelementes.
Um die Festigkeit eines derartig ringförmigen Verstärkungselementes und damit auch die des Hitzeschildelementes noch zu erhöhen oder möglichst verwindungssteif zu gestalten, ist ein Verstärkungselement zweckmäßigerweise als kreisrunder Ring ausgeführt.
Für eine Stabilisierung und Verfestigung der Ecken eines Hitzeschildelementes hat ein Verstärkungselement vorteilhafterweise eine kreuzförmige Form, wobei die Enden im Bereich der Ecken des Hitzeschildelementes positioniert sind. Für eine geeignete Verspannung des kreuzförmigen Verstärkungselementes im Hitzeschildelemente, die die Zugfestigkeit erhöht, können die Enden des kreuzförmigen Verstärkungselementes verdickt sein, so dass das Verstärkungselement im Hitzeschildelement verankert ist.
Zweckmäßigerweise sind Hitzeschildelemente der oben beschriebenen Art Bestandteile der Innenauskleidung einer Brennkammer. Diese Brennkammer ist vorteilhafterweise Bestandteil einer Gasturbine. Die Brennkammer könnte dabei als siloförmige Brennkammer oder als aus mehreren kleineren Verbrennungssystemen zusammengesetzte Brennkammer ausgeführt sein, ist aber vorzugsweise als Ringbrennkammer ausgebildet.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere in der Möglichkeit, unter Rückgriff auf ein Gießverfahren mit den dadurch möglichen gestalterischen Freiheitsgraden Hitzeschildelemente herzustellen, die eine besonders hohe Zugfestigkeit aufweisen. Durch die Integration von Verstärkungselementen in Hitzeschildelemente, die aus einem gegossenen keramischen Werkstoff bestehen, ist es möglich, die Materialeigenschaften der Verstärkungselemente wie insbesondere die Zugfestigkeit auf ein Hitzeschildelement zu übertragen. Dabei kann die Formgestaltung eines Hitzeschildelementes flexibel gehalten werden. Ein weiterer Vorteil besteht darin, dass durch die Wahlmöglichkeit verschiedener Ausführungsformen von Verstärkungselementen und die Positionierung dieser im Hitzeschildelement eine individuelle Anpassung an die auf ein Hitzeschildelement einwirkenden thermischen und mechanischen Belastungen ermöglicht wird. Aufgrund der erhöhten Festigkeit der Hitzeschildelemente verlängert sich auch die Lebensdauer eines Hitzeschildelementes, da die Ausbreitung von Rissen reduziert und die strukturelle Integrität des Bauteils (passive Sicherheit) erhöht wird.
Der Vorteil eines Gießvorgangs besteht in der Möglichkeit, komplexere Formen von Hitzeschildelemente herzustellen. So kann einerseits die äußere Grundform vergleichsweise leicht und preisgünstig variiert werden. Andererseits ist es bei einem Gießvorgang möglich, Vorrichtungen für die Befestigung der Hitzeschildelemente an der Brennkammerwand mit einzugießen. So können in gegossenen Hitzeschildelementen beispielsweise Nuten, Bohrungen, Gewinde oder auch Halterungsvorrichtungen eingegossen werden.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
FIG 1
einen Halbschnitt durch eine Gasturbine,
FIG 2
die Brennkammer der Gasturbine nach FIG 1,
FIG 3
ein Hitzeschildelement mit plattenförmigen Verstärkungselementen,
FIG 4
ein Hitzeschildelement mit einem gitterförmigen Verstärkungselement,
FIG 5
ein Hitzeschildelement mit stabförmigen Verstärkungselementen,
FIG 6
ein Hitzeschildelement mit einem ringförmigen Verstärkungselement, und
FIG 7
ein Hitzeschildelement mit einem kreuzförmigen Verstärkungselement.
Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
Die Gasturbine 1 gemäß FIG 1 weist einen Verdichter 2 für Verbrennungsluft, eine Brennkammer 4 sowie eine Turbine 6 zum Antrieb des Verdichters 2 und eines nicht dargestellten Generators oder einer Arbeitsmaschine auf. Dazu sind die Turbine 6 und der Verdichter 2 auf einer gemeinsamen, auch als Turbinenläufer bezeichneten Turbinenwelle 8 angeordnet, mit der auch der Generator bzw. die Arbeitsmaschine verbunden ist, und die um ihre Mittelachse 9 drehbar gelagert ist. Die in der Art einer Ringbrennkammer ausgeführte Brennkammer 4 ist mit einer Anzahl von Brennern 10 zur Verbrennung eines flüssigen oder gasförmigen Brennstoffs bestückt.
Die Turbine 6 weist eine Anzahl von mit der Turbinenwelle 8 verbundenen, rotierbaren Laufschaufeln 12 auf. Die Laufschaufeln 12 sind kranzförmig an der Turbinenwelle 8 angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst die Turbine 6 eine Anzahl von feststehenden Leitschaufeln 14, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an einem Innengehäuse 16 der Turbine 6 befestigt sind. Die Laufschaufeln 12 dienen dabei zum Antrieb der Turbinenwelle 8 durch Impulsübertrag vom die Turbine 6 durchströmenden Arbeitsmedium M. Die Leitschaufeln 14 dienen hingegen zur Strömungsführung des Arbeitsmediums M zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums M gesehen aufeinanderfolgenden Laufschaufelreihen oder Laufschaufelkränzen. Ein aufeinanderfolgendes Paar aus einem Kranz von Leitschaufeln 14 oder einer Leitschaufelreihe und aus einem Kranz von Laufschaufeln 12 oder einer Laufschaufelreihe wird dabei auch als Turbinenstufe bezeichnet.
Jede Leitschaufel 14 weist eine auch als Schaufelfuß bezeichnete Plattform 18 auf, die zur Fixierung der jeweiligen Leitschaufel 14 am Innengehäuse 16 der Turbine 6 als Wandelement angeordnet ist. Die Plattform 18 ist dabei ein thermisch vergleichsweise stark belastetes Bauteil, das die äußere Begrenzung eines Heizgaskanals für das die Turbine 6 durchströmende Arbeitsmedium M bildet. Jede Laufschaufel 12 ist in analoger Weise über eine auch als Schaufelfuß bezeichnete Plattform 20 an der Turbinenwelle 8 befestigt.
Zwischen den beabstandet voneinander angeordneten Plattformen 18 der Leitschaufeln 14 zweier benachbarter Leitschaufelreihen ist jeweils ein Führungsring 21 am Innengehäuse 16 der Turbine 6 angeordnet. Die äußere Oberfläche jedes Führungsrings 21 ist dabei ebenfalls dem heißen, die Turbine 6 durchströmenden Arbeitsmedium M ausgesetzt und in radialer Richtung vom äußeren Ende 22 der ihm gegenüber liegenden Laufschaufel 12 durch einen Spalt beabstandet. Die zwischen benachbarten Leitschaufelreihen angeordneten Führungsringe 21 dienen dabei insbesondere als Abdeckelemente, die die Innenwand 16 oder andere Gehäuse-Einbauteile vor einer thermischen Überbeanspruchung durch das die Turbine 6 durchströmende heiße Arbeitsmedium M schützt.
Die Brennkammer 4 ist im Ausführungsbeispiel, wie in FIG 2 dargestellt, als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 8 herum angeordneten Brennern 10 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 4 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 8 herum positioniert ist.
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 4 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1200 °C bis 1500 °C ausgelegt. Um auch bei diesen für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 24 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 26 gebildeten Innenauskleidung versehen. Aufgrund der hohen Temperaturen im Inneren der Brennkammer 4 ist für die Hitzeschildelemente 26 ein Kühlsystem vorgesehen.
Die Hitzeschildelemente 26 sind insbesondere für eine lange Lebensdauer ausgelegt, so dass möglichst wenig Beschädigungen durch die extremen Einflüsse, wie die hohe Temperatur und Vibrationen der Brennkammer 4, auftreten. Dazu bestehen diese aus einem aus einem gegossenen keramischen Werkstoff gebildeten Grundkörper 28, in den Verstärkungselemente 30 integriert sind. Für eine geeignete Temperaturbeständigkeit der Verstärkungselemente bestehen diese aus einem keramischen Werkstoff oder Verbundmaterial. Die Verstärkungselemente 30 können dazu für die auf ein Hitzeschildelement 26 einwirkenden Einflüsse ausgelegt werden. In den Figuren 3 bis 7 sind verschiedene Ausführungsformen von Hitzeschildelementen 26 mit Verstärkungselementen 30 aufgeführt.
In FIG 3 ist ein Hitzeschildelement 26 mit plattenförmigen Verstärkungselementen 30 dargestellt, wobei jeweils für die dem Arbeitsmedium M und die der gekühlten Seite zugewandte Oberfläche ein Verstärkungselement 30 vorgesehen ist. In FIG 4 ist ersichtlich, dass die plattenförmige Verstärkungselemente 30 für einen besseren Verbund mit der umgebenden Keramik mit einer gitterförmigen Struktur versehen werden können bzw. als Gitter ausgeführt sind, insbesondere als Kreuzgitter (FIG 4a) oder als Lochgitter (FIG 4b).
Für eine besonders hohe Verstärkung der Randbereiche eines Hitzeschildelementes 26 können, wie in FIG 5 dargestellt, stabförmige Verstärkungselemente 30 eingesetzt werden, die entlang den Seitenkanten eines Hitzeschildelementes 26 verlaufen und mit Sicken oder Aufdickungen (FIG 5a) oder verdichteten Enden (FIG 5b) versehen sind, um eine feste Verankerung in der umgebenden Keramik 28 sicherzustellen. Aus FIG 6 ist ersichtlich, dass für eine Verstärkung eines Hitzeschildelementes 26 entlang seines Umfanges eine ringförmige Struktur (FIG 6a) der Verstärkungselemente 30 eingesetzt werden kann, wobei diese in einer besonders verwindungssteifen Ausführung kreisrund (FIG 6b) ausgeführt sein kann. In dem in FIG 7 dargestellten Hitzeschildelement 26 ist für eine stabilisierend wirkende Verspannung der Ecken eines Hitzeschildelementes 26 ein kreuzförmiges Verstärkungselement 30 vorgesehen, dass an seinen Enden jeweils Verdickungen zur Verankerung im keramischen Werkstoff 26 aufweist.

Claims (11)

  1. Hitzeschildelement (26), insbesondere für die Innenauskleidung der Brennkammer (4) einer Gasturbine (1), mit einem aus einem verfestigten gegossenen keramischen Werkstoff gebildeten Grundkörper (28), in den eine Anzahl von Verstärkungselementen (30) eingebracht ist.
  2. Hitzeschildelement (26) nach Anspruch 1, bei dem das oder jedes Verstärkungselement (30) aus einem keramischen Verbundmaterial gebildet ist.
  3. Hitzeschildelement (26) nach Anspruch 1 oder 2, bei dem das oder jedes Verstärkungselement (30) eine Anzahl von Sicken und oder Aufdickungen aufweist.
  4. Hitzeschildelement (26) nach einem der Ansprüche 1 bis 3, bei dem das oder jedes Verstärkungselement (30) eine parallel und zur Oberfläche des Grundkörpers (28) beabstandet angeordnete ebene Platte umfasst.
  5. Hitzeschildelement (26) nach Anspruch 4, dessen plattenförmig ausgebildetes Verstärkungselement (30) eine Anzahl von Aussparungen aufweist.
  6. Hitzeschildelement (26) nach einem der Ansprüche 1 bis 5, bei dem das oder jedes Verstärkungselement (30) eine Gitterstruktur aufweist.
  7. Hitzeschildelement (26) nach einem der Ansprüche 1 bis 3, dessen Verstärkungselement (30) eine stabförmige Form aufweist und längs einer Umfangskante des Grundkörpers (28) verläuft.
  8. Hitzeschildelement (26) nach einem der Ansprüche 1 bis 3, dessen Verstärkungselement (30) eine kreuzförmige Form aufweist, wobei die Enden im Bereich der Ecken des Grundkörpers (28) positioniert sind.
  9. Hitzeschildelement (26) nach einem der Ansprüche 1 bis 3, dessen Verstärkungselement (30) eine ringförmige geschlossene Form aufweist und längs des Umfangs des Grundkörpers (28) verläuft.
  10. Brennkammer (4) mit einer Innenwandauskleidung aus Hitzeschildelementen (26) nach einem der Ansprüche 1 bis 9.
  11. Gasturbine (1) mit einer Brennkammer (4) nach Anspruch 10.
EP03024560A 2003-10-27 2003-10-27 Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand Withdrawn EP1528343A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP03024560A EP1528343A1 (de) 2003-10-27 2003-10-27 Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand
EP04790917A EP1678454A2 (de) 2003-10-27 2004-10-27 Keramischer hitzeschildstein mit eingebetteten verstärkungselementen zur auskleidung einer gasturbinenbrennkammerwand
JP2006536072A JP4499737B2 (ja) 2003-10-27 2004-10-27 熱シールド要素
PCT/EP2004/012142 WO2005043058A2 (de) 2003-10-27 2004-10-27 Keramischer hitzeschildstein mit eingebetteten verstärkungselementen zur auskleidung einer gasturbinenbrennkammerwand
US10/577,383 US7805945B2 (en) 2003-10-27 2004-10-27 Thermal shield, especially for lining the wall of a combustion chamber
CN 200480031021 CN1871488A (zh) 2003-10-27 2004-10-27 尤其用于砌衬燃气轮机燃烧室壁的带有埋置在内的加强元件的陶瓷热屏砖
US11/215,392 US7540710B2 (en) 2003-10-27 2005-08-30 Turbine blade for use in a gas turbine
US12/751,194 US8857190B2 (en) 2003-10-27 2010-03-31 Heat shield element, in particular for lining a combustion chamber wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03024560A EP1528343A1 (de) 2003-10-27 2003-10-27 Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand

Publications (1)

Publication Number Publication Date
EP1528343A1 true EP1528343A1 (de) 2005-05-04

Family

ID=34400464

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03024560A Withdrawn EP1528343A1 (de) 2003-10-27 2003-10-27 Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand
EP04790917A Withdrawn EP1678454A2 (de) 2003-10-27 2004-10-27 Keramischer hitzeschildstein mit eingebetteten verstärkungselementen zur auskleidung einer gasturbinenbrennkammerwand

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04790917A Withdrawn EP1678454A2 (de) 2003-10-27 2004-10-27 Keramischer hitzeschildstein mit eingebetteten verstärkungselementen zur auskleidung einer gasturbinenbrennkammerwand

Country Status (5)

Country Link
US (3) US7805945B2 (de)
EP (2) EP1528343A1 (de)
JP (1) JP4499737B2 (de)
CN (1) CN1871488A (de)
WO (1) WO2005043058A2 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025842A1 (en) * 2005-08-30 2007-03-08 Siemens Aktiengesellschaft The invention relates to a turbine or vane, in particular for use in a combustion turbine
EP2012061A1 (de) * 2007-07-05 2009-01-07 Snecma Deflektor für rückwärtigen Teil der Brennkammer, damit ausgestattete Brennkammer und mit dieser ausgestatteter Gasturbinenmotor
US7540710B2 (en) 2003-10-27 2009-06-02 Siemens Aktiengesellschaft Turbine blade for use in a gas turbine
US8262345B2 (en) 2009-02-06 2012-09-11 General Electric Company Ceramic matrix composite turbine engine
US8347636B2 (en) 2010-09-24 2013-01-08 General Electric Company Turbomachine including a ceramic matrix composite (CMC) bridge
US8382436B2 (en) 2009-01-06 2013-02-26 General Electric Company Non-integral turbine blade platforms and systems
LU92472B1 (en) * 2014-06-06 2015-12-07 Wurth Paul Sa Heat protection assembly for a charging installation of a metallurgical reactor
US20170146295A1 (en) * 2014-06-06 2017-05-25 Paul Wurth S.A. Charging installation of a metallurgial reactor
DE102019204544A1 (de) * 2019-04-01 2020-10-01 Siemens Aktiengesellschaft Rohrbrennkammersystem und Gasturbinenanlage mit einem solchen Rohrbrennkammersystem
AT523403B1 (de) * 2021-01-21 2021-08-15 Andritz Fbb Gmbh Abschirmschuh fuer hubbalkenoefen

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645805A1 (de) * 2004-10-11 2006-04-12 Siemens Aktiengesellschaft Brenner für fluidische Brennstoffe und Verfahren zum Betreiben eines derartigen Brenners
US7785076B2 (en) * 2005-08-30 2010-08-31 Siemens Energy, Inc. Refractory component with ceramic matrix composite skeleton
GB2453946B (en) * 2007-10-23 2010-07-14 Rolls Royce Plc A Wall Element for use in Combustion Apparatus
US8899470B2 (en) 2007-11-29 2014-12-02 Corning Incorporated Method for bonding refractory ceramic and metal
GB0800294D0 (en) * 2008-01-09 2008-02-20 Rolls Royce Plc Gas heater
GB0801839D0 (en) * 2008-02-01 2008-03-05 Rolls Royce Plc combustion apparatus
GB2457281B (en) * 2008-02-11 2010-09-08 Rolls Royce Plc A Combustor Wall Arrangement with Parts Joined by Mechanical Fasteners
GB2460634B (en) * 2008-06-02 2010-07-07 Rolls Royce Plc Combustion apparatus
FR2935764B1 (fr) * 2008-09-05 2014-06-13 Snecma Carter de compresseur resistant au feu de titane, compresseur haute pression comprenant un tel carter et moteur d'aeronef equipe d'un tel compresseur
US20100095679A1 (en) * 2008-10-22 2010-04-22 Honeywell International Inc. Dual wall structure for use in a combustor of a gas turbine engine
US20100095680A1 (en) * 2008-10-22 2010-04-22 Honeywell International Inc. Dual wall structure for use in a combustor of a gas turbine engine
WO2013014369A1 (fr) * 2011-07-22 2013-01-31 Snecma Procede d'assemblage d'une coque titane et d'une coque alliage resistant au feu titane
US9689265B2 (en) * 2012-04-09 2017-06-27 General Electric Company Thin-walled reinforcement lattice structure for hollow CMC buckets
US20140123679A1 (en) * 2012-11-07 2014-05-08 United Technologies Corporation Flexible heat shield for a gas turbine engine
US10036258B2 (en) 2012-12-28 2018-07-31 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10018052B2 (en) 2012-12-28 2018-07-10 United Technologies Corporation Gas turbine engine component having engineered vascular structure
JP6059042B2 (ja) * 2013-02-28 2017-01-11 東京窯業株式会社 マンホール
US9651258B2 (en) 2013-03-15 2017-05-16 Rolls-Royce Corporation Shell and tiled liner arrangement for a combustor
EP3042060B1 (de) 2013-09-04 2018-08-15 United Technologies Corporation Gasturbinenmotor mit einer hitzeschild enthaltenden verbrennungsskammer
WO2015036430A1 (de) * 2013-09-11 2015-03-19 Siemens Aktiengesellschaft Keilförmiges keramisches hitzeschild einer gasturbinenbrennkammer
WO2015070413A1 (zh) * 2013-11-14 2015-05-21 深圳智慧能源技术有限公司 陶瓷热屏蔽片及耐热结构
US9664389B2 (en) 2013-12-12 2017-05-30 United Technologies Corporation Attachment assembly for protective panel
US10094287B2 (en) 2015-02-10 2018-10-09 United Technologies Corporation Gas turbine engine component with vascular cooling scheme
CN106247399B (zh) * 2015-06-08 2020-01-31 A.S.En.安萨尔多开发能源有限责任公司 用于燃气轮机的燃烧室的具有较薄的厚度的绝热陶瓷砖瓦
DE102015220321A1 (de) * 2015-10-19 2017-04-20 Robert Bosch Gmbh Pumpengehäuse mit Bewehrung
US10077664B2 (en) 2015-12-07 2018-09-18 United Technologies Corporation Gas turbine engine component having engineered vascular structure
US10557464B2 (en) 2015-12-23 2020-02-11 Emerson Climate Technologies, Inc. Lattice-cored additive manufactured compressor components with fluid delivery features
US10634143B2 (en) * 2015-12-23 2020-04-28 Emerson Climate Technologies, Inc. Thermal and sound optimized lattice-cored additive manufactured compressor components
US10982672B2 (en) 2015-12-23 2021-04-20 Emerson Climate Technologies, Inc. High-strength light-weight lattice-cored additive manufactured compressor components
US10221694B2 (en) 2016-02-17 2019-03-05 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10801730B2 (en) * 2017-04-12 2020-10-13 Raytheon Technologies Corporation Combustor panel mounting systems and methods
FR3081370B1 (fr) * 2018-05-22 2020-06-05 Safran Aircraft Engines Corps d'aube et aube en materiau composite ayant un renfort fibreux compose d'un tissage tridimensionnel et de fibres courtes et leur procede de fabrication
US10774653B2 (en) 2018-12-11 2020-09-15 Raytheon Technologies Corporation Composite gas turbine engine component with lattice structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867112A (en) * 1953-11-20 1959-01-06 Gen Electric Wire mesh supported refractory
US4189301A (en) * 1977-05-06 1980-02-19 Urquhart Engineering Company, Limited Reinforced insulating members
GB2080928A (en) * 1980-07-29 1982-02-10 Detrick M H Co Improvements relating to refractory components for furnaces
EP0180553A1 (de) * 1984-10-22 1986-05-07 COSTACURTA S.p.A. VICO Hexagonales Gitter zur Verstärkung monolithischer feuerfester Auskleidungen für petrochemische Anlagen, Schornsteine, Cyclone und ähnliche Einrichtungen
EP0350647A1 (de) * 1988-06-22 1990-01-17 Kanthal GmbH Selbsttragendes Wand- oder Deckenelement und damit ausgerüsteter Hochtemperatur-Industrieofen

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2135118A (en) * 1936-04-18 1938-11-01 Andrew H Stewart Tile-mounting structure
US2412615A (en) * 1943-04-16 1946-12-17 Gen Electric Bladed machine element
BE535497A (de) * 1954-02-26
GB856680A (en) 1958-01-14 1960-12-21 Daimler Benz Ag Improvements relating to blades for gas turbines and like rotary machines
SU521428A1 (ru) 1972-02-10 1976-07-15 Теплоизол ционна панель футеровки теплового агрегата
US3918255A (en) * 1973-07-06 1975-11-11 Westinghouse Electric Corp Ceramic-lined combustion chamber and means for support of a liner with combustion air penetrations
US4118147A (en) * 1976-12-22 1978-10-03 General Electric Company Composite reinforcement of metallic airfoils
FR2433164A1 (fr) 1978-08-08 1980-03-07 Produits Refractaires Blocs a base d'oxydes refractaires electrofondus armes d'un element en un materiau d'une conductivite thermique elevee
US4273824A (en) * 1979-05-11 1981-06-16 United Technologies Corporation Ceramic faced structures and methods for manufacture thereof
JPS5857658B2 (ja) 1980-04-02 1983-12-21 工業技術院長 セラミツクスによる高熱曝露壁面の熱遮断構造
US4787208A (en) * 1982-03-08 1988-11-29 Westinghouse Electric Corp. Low-nox, rich-lean combustor
US4652476A (en) * 1985-02-05 1987-03-24 United Technologies Corporation Reinforced ablative thermal barriers
US4840131A (en) 1986-09-13 1989-06-20 Foseco International Limited Insulating linings for furnaces and kilns
JPH03504999A (ja) 1988-06-13 1991-10-31 シーメンス、アクチエンゲゼルシヤフト 高温流体を導く構造物のための熱遮蔽装置
US4835831A (en) 1988-07-15 1989-06-06 Melton Sidney H Method of providing a refractory covering to a furnace wall
US5140807A (en) * 1988-12-12 1992-08-25 Sundstrand Corporation Air blast tube impingement fuel injector for a gas turbine engine
US5237817A (en) * 1992-02-19 1993-08-24 Sundstrand Corporation Gas turbine engine having low cost speed reduction drive
CN1102632A (zh) 1993-06-25 1995-05-17 株式会社日立制作所 纤维增强复合材料及其制造方法以及用它制成的部件
AU1875595A (en) * 1994-02-16 1995-09-04 Sohl, Charles E. Coating scheme to contain molten material during gas turbine engine fires
DE19502730A1 (de) * 1995-01-28 1996-08-01 Abb Management Ag Keramische Auskleidung
EP0943069B1 (de) * 1996-12-03 2003-10-08 Elliott Energy Systems, Inc. Stromgenerator mit ringförmiger brennkammer
EP0895028B1 (de) * 1997-07-28 2002-03-06 Alstom Keramische Auskleidung
JP3567065B2 (ja) * 1997-07-31 2004-09-15 株式会社東芝 ガスタービン
RU2141322C1 (ru) * 1997-08-12 1999-11-20 Голощапов Николай Михайлович Иммуномодулятор с антимикобактериальной активностью "изофон", способ его получения и применения
EP1064510B1 (de) 1998-03-19 2002-11-13 Siemens Aktiengesellschaft Wandsegment für einen brennraum sowie brennraum
EP1006315B1 (de) * 1998-11-30 2004-01-21 ALSTOM (Switzerland) Ltd Keramische Auskleidung für einen Brennraum
US6296945B1 (en) * 1999-09-10 2001-10-02 Siemens Westinghouse Power Corporation In-situ formation of multiphase electron beam physical vapor deposited barrier coatings for turbine components
US6451416B1 (en) 1999-11-19 2002-09-17 United Technologies Corporation Hybrid monolithic ceramic and ceramic matrix composite airfoil and method for making the same
DE10046094C2 (de) * 2000-09-18 2002-09-19 Siemens Ag Hitzeschildstein zur Auskleidung einer Brennkammerwand
EP1191285A1 (de) * 2000-09-22 2002-03-27 Siemens Aktiengesellschaft Hitzeschildstein, Brennkammer mit einer inneren Brennkammerauskleidung sowie Gasturbine
US6465110B1 (en) * 2000-10-10 2002-10-15 Material Sciences Corporation Metal felt laminate structures
US6435824B1 (en) 2000-11-08 2002-08-20 General Electric Co. Gas turbine stationary shroud made of a ceramic foam material, and its preparation
EP1219787B1 (de) 2000-12-27 2005-12-21 Siemens Aktiengesellschaft Gasturbinenschaufel und Gasturbine
US6607358B2 (en) 2002-01-08 2003-08-19 General Electric Company Multi-component hybrid turbine blade
US6648597B1 (en) 2002-05-31 2003-11-18 Siemens Westinghouse Power Corporation Ceramic matrix composite turbine vane
US6709230B2 (en) 2002-05-31 2004-03-23 Siemens Westinghouse Power Corporation Ceramic matrix composite gas turbine vane
US7093359B2 (en) 2002-09-17 2006-08-22 Siemens Westinghouse Power Corporation Composite structure formed by CMC-on-insulation process
EP1528343A1 (de) 2003-10-27 2005-05-04 Siemens Aktiengesellschaft Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand
US20050158171A1 (en) 2004-01-15 2005-07-21 General Electric Company Hybrid ceramic matrix composite turbine blades for improved processibility and performance
US7223465B2 (en) 2004-12-29 2007-05-29 General Electric Company SiC/SiC composites incorporating uncoated fibers to improve interlaminar strength

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867112A (en) * 1953-11-20 1959-01-06 Gen Electric Wire mesh supported refractory
US4189301A (en) * 1977-05-06 1980-02-19 Urquhart Engineering Company, Limited Reinforced insulating members
GB2080928A (en) * 1980-07-29 1982-02-10 Detrick M H Co Improvements relating to refractory components for furnaces
EP0180553A1 (de) * 1984-10-22 1986-05-07 COSTACURTA S.p.A. VICO Hexagonales Gitter zur Verstärkung monolithischer feuerfester Auskleidungen für petrochemische Anlagen, Schornsteine, Cyclone und ähnliche Einrichtungen
EP0350647A1 (de) * 1988-06-22 1990-01-17 Kanthal GmbH Selbsttragendes Wand- oder Deckenelement und damit ausgerüsteter Hochtemperatur-Industrieofen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197711, Derwent World Patents Index; Class J09, AN 1977-19569Y, XP002275667, "Furnace lining heat insulating panel" *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7540710B2 (en) 2003-10-27 2009-06-02 Siemens Aktiengesellschaft Turbine blade for use in a gas turbine
WO2007025842A1 (en) * 2005-08-30 2007-03-08 Siemens Aktiengesellschaft The invention relates to a turbine or vane, in particular for use in a combustion turbine
EP2012061A1 (de) * 2007-07-05 2009-01-07 Snecma Deflektor für rückwärtigen Teil der Brennkammer, damit ausgestattete Brennkammer und mit dieser ausgestatteter Gasturbinenmotor
US8382436B2 (en) 2009-01-06 2013-02-26 General Electric Company Non-integral turbine blade platforms and systems
US8262345B2 (en) 2009-02-06 2012-09-11 General Electric Company Ceramic matrix composite turbine engine
US8347636B2 (en) 2010-09-24 2013-01-08 General Electric Company Turbomachine including a ceramic matrix composite (CMC) bridge
US20170146295A1 (en) * 2014-06-06 2017-05-25 Paul Wurth S.A. Charging installation of a metallurgial reactor
WO2015185695A1 (en) * 2014-06-06 2015-12-10 Paul Wurth S.A. Heat protection assembly for a charging installation of a metallurgical reactor
LU92472B1 (en) * 2014-06-06 2015-12-07 Wurth Paul Sa Heat protection assembly for a charging installation of a metallurgical reactor
EA033753B1 (ru) * 2014-06-06 2019-11-21 Wurth Paul Sa Теплозащитный узел для загрузочной установки металлургического реактора
US10648737B2 (en) 2014-06-06 2020-05-12 Paul Wurth S.A. Heat protection assembly for a charging installation of a metallurgical reactor
US10767930B2 (en) * 2014-06-06 2020-09-08 Paul Wurth S.A. Charging installation of a metallurgical reactor
DE102019204544A1 (de) * 2019-04-01 2020-10-01 Siemens Aktiengesellschaft Rohrbrennkammersystem und Gasturbinenanlage mit einem solchen Rohrbrennkammersystem
US11852344B2 (en) 2019-04-01 2023-12-26 Siemens Aktiengesellschaft Tubular combustion chamber system and gas turbine unit having a tubular combustion chamber system of this type
AT523403B1 (de) * 2021-01-21 2021-08-15 Andritz Fbb Gmbh Abschirmschuh fuer hubbalkenoefen
AT523403A4 (de) * 2021-01-21 2021-08-15 Andritz Fbb Gmbh Abschirmschuh fuer hubbalkenoefen

Also Published As

Publication number Publication date
WO2005043058A2 (de) 2005-05-12
US7540710B2 (en) 2009-06-02
EP1678454A2 (de) 2006-07-12
US7805945B2 (en) 2010-10-05
US8857190B2 (en) 2014-10-14
US20060039793A1 (en) 2006-02-23
CN1871488A (zh) 2006-11-29
JP4499737B2 (ja) 2010-07-07
WO2005043058A3 (de) 2005-08-11
JP2007510121A (ja) 2007-04-19
US20100186365A1 (en) 2010-07-29
US20070028592A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
EP1528343A1 (de) Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand
EP1064510B1 (de) Wandsegment für einen brennraum sowie brennraum
EP1708846B1 (de) Verfahren zur reparatur eines bauteils einer strömungsmaschine
DE2925395C2 (de) Ofendecke für einen elektrothermischen Reduktionsofen
DE3019920C2 (de) Einrichtung zur äußeren Ummantelung der Laufschaufeln von Axialturbinen für Gasturbinentriebwerke
WO2014187659A1 (de) Hitzeschildkachel für einen hitzeschild einer brennkammer
US6832484B2 (en) Heat-shield brick, combustion chamber comprising an internal, combustion chamber lining and a gas turbine
EP1325276B1 (de) Hitzeschildstein zur auskleidung einer brennkammerwand, brennkammer sowie gasturbine
EP1872075B1 (de) Hitzeschildelement zur auskleidung einer brennkammerwand, brennkammer sowie gasturbine
EP1288601B1 (de) Hitzeschildstein sowie Verwendung eines Hitzeschildsteins in einer Brennkammer
EP1126221A1 (de) Gepolsterter Hitzeschildstein zur Auskleidung einer Gasturbinenbrennkammerwand
EP1327108B1 (de) Hitzeschildstein zur auskleidung einer brennkammerwand, brennkammer sowie gasturbine
EP2762782A1 (de) Halteelement zum Halten eines Hitzeschildsteines an einer Tragstruktur
EP1508761A1 (de) Hitzeschildstein zur Auskleidung einer Brennkammerwand, Brennkammer sowie Gasturbine
EP1481747A2 (de) Verfahren zur Herstellung eines wärmebelasteten Bauteils sowie wärmebelastetes Bauteil
DE19857416A1 (de) Hochtemperaturbeständiger Roststab
EP1507117A1 (de) Brennkammer, insbesondere Gasturbinenbrennkammer
WO2004109187A1 (de) Hitzeschildelement
EP1715250A1 (de) Hitzeschildelement zur Auskleidung einer Brennkammerwand, Brennkammer sowie Gasturbine
WO2007025842A1 (en) The invention relates to a turbine or vane, in particular for use in a combustion turbine
DE102017205788A1 (de) Heißgas-Bauteil für eine Gasturbine
DE102004034687A1 (de) Verfahren zur Herstellung eines Bauteils aus Keramik-Verbund-Werkstoff für thermisch und mechanisch hoch beanspruchbare Turbinen, und Turbine aus Keramik-Verbund-Werkstoff, insbesondere Mikrogasturbine in Axialbauweise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051111

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566