WO2018185070A2 - Turbinenschaufel für eine gasturbine - Google Patents

Turbinenschaufel für eine gasturbine Download PDF

Info

Publication number
WO2018185070A2
WO2018185070A2 PCT/EP2018/058426 EP2018058426W WO2018185070A2 WO 2018185070 A2 WO2018185070 A2 WO 2018185070A2 EP 2018058426 W EP2018058426 W EP 2018058426W WO 2018185070 A2 WO2018185070 A2 WO 2018185070A2
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
turbine blade
blade
max
hot gas
Prior art date
Application number
PCT/EP2018/058426
Other languages
English (en)
French (fr)
Other versions
WO2018185070A3 (de
Inventor
Robert Herfurth
Christian Felsmann
Michael Kluck
Nikolai Arjakine
Bernd Burbaum
Arturo Flores Renteria
Jacek Grodzki
Matthias Jungbluth
Eike Kohlhoff
Thomas Lorenz
Khaled Maiz
Tobias MEIS
Torsten Neddemeyer
Britta Stöhr
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2018185070A2 publication Critical patent/WO2018185070A2/de
Publication of WO2018185070A3 publication Critical patent/WO2018185070A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/125Fluid guiding means, e.g. vanes related to the tip of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/228Nitrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a turbine blade for a Gastur ⁇ bine, with a wall which can be exposed in the intended use of the turbine blade to a corrosive gas and the hot partially made of a cast material, in particular from a high temperature-resistant superalloy as
  • An airfoil is configured with an inflowable by the hot gas leading edge and a trailing edge, wherein at least a portion of the remaining wall comprises a material which belongs to the group of the MAX phases.
  • EP 3 138 829 A1 proposes that the turbine blades are not made of a cast material but of a ceramic matrix composite material in which so-called MAX phases are additionally embedded.
  • MAX phases have the potential to reduce frictional forces with a low coefficient of friction, which is why this material composition should only be used on the blade tip.
  • EP 2 405 029 A1 proposes to locally protect metallic turbine blades with a non-stick and scratch-resistant protective layer of MAX phases against erosion.
  • MAX phases are understood to mean hexagonal carbides or nitrides, which generally correspond to the formula M n + iAX n (MAX),
  • n 1 - 3
  • M is an early transition metal
  • X is either carbon or nitrogen.
  • Transition metals may be, for example, scandium, titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium and / or tantalum.
  • a group elements are: aluminum, silicon, phosphorus, sulfur, gallium, germanium, arsenic, cadmium, indium, tin, tellurium or lead.
  • the object of the invention is therefore to provide a turbine blade for a gas turbine whose service life is further improved or can withstand the higher operating temperatures permanently.
  • the turbine blade for a gas turbine ⁇ bine comprises a wall which can be exposed to a possibly corrosive hot gas when the turbine blade is used as intended, where ⁇ at least part of the wall has a material wel ⁇ Ches belongs to the group of MAX phases.
  • the present invention proposes therefore before, not to produce more ther ⁇ mixed stressed areas of a turbine blade of the existing material, usually a cast material or a high temperature-resistant superalloy, but to locally form some areas of the wall of a material belonging to the group of the MAX Heard phases. In other words, both areas together form the main body of the turbine blade, which can absorb component stresses and determines the strength of the turbine blade.
  • the special feature of the MAX-phase to have special surface ⁇ mix, physical, electrical, and mechanical properties egg ⁇ corresponding to both metallic and ceramic mix characteristics under different conditions.
  • the invention specifically uses against the üb ⁇ handy material of the turbine blade improved Materialei ⁇ properties exactly where they are needed.
  • portions of the leading edge of the aerodynamically curved blade, and preferably in addition, the paddle blade tip squealer with at least one of turbines ⁇ scoop at least partly formed from said MAX-phase material.
  • the MAX-phase T1 2 AIC be particularly suitable for use in turbine blades, in particular been found from gas turbines because this significantly increased thermal conductivity be ⁇ sitting compared to conventional materials of turbine blades and other MAX phases.
  • the combination of MAX-phase and the casting material in order to use the much higher thermal conductivity of the MAX phase for thermal and mechanical relief of the cast portion of the turbine blade.
  • the higher Were ⁇ meleit alloy the MAX phase provides for a more efficient removal of heat, for example at the blade leading edge ⁇ .
  • the temperature on the outer surface of the airfoil decreases. This leads to lower temperature gradients across the blade wall from outside to inside and thereby ge ⁇ ringeren stresses in the material in question. Consequently, the blade is thermally and mechanically relieved, so that they can either be operated at higher temperatures or at the same operating temperature can achieve a longer life.
  • FIG. 1 shows a perspective view of a turbine guide vane with elements of MAX phases provided in the leading edge, ⁇
  • Figure 2 shows a cross section through the front edge of a
  • FIG. 3 is a perspective view of the blade tip of an airfoil of a turbine runner
  • FIG. 4 is a schematic representation of the blade tip of FIG. 3.
  • FIG. 1 shows as a first embodiment of a turbine blade or vane 10 for a gas turbine, a turbine vane 12.
  • this includes an aero ⁇ dynamically curved airfoil adjacent to a foot part 14 16 and a head portion 18.
  • the turbine blade can be subjected in operation a hot gas HG 12
  • the airfoil 16 includes a anströmbare of hot gas HG leading edge 20 and a trailing edge 22. In operation, the blade 16 of hot gas HG is to ⁇ flows.
  • portions of the front edge are locally formed of a material now in the present invention, which belongs to the Grup ⁇ pe of MAX-phases.
  • the regions 24 are elliptical and distributed along the front edge 20 starting from the foot part 14 in the direction of the head part 18.
  • the leading edge 20 consists of MAX phases.
  • the use of larger sections than shown is also possible.
  • FIG. 2 shows a cross section through the front edge of the turbine blade 12 according to FIG. 1.
  • the blade 16 has been produced substantially by a casting process, so that a significant portion of the blade 16 consists of a casting material 26.
  • a portion of the molding material 26 has been removed or omitted in the casting process and replaced by a material, wel ⁇ ches among said group. Together, these two areas then form a body of the turbine blade that absorbs the forces, and which also has one or more
  • the turbine blade according to the invention has an improved service life in the region of the front edge 20 compared to a conventional turbine blade.
  • the compound of the base material with the MAX-PHASE may e.g.
  • the MAX phase consists of Ti 2 AlC. This
  • Material is characterized in particular by the fact that it has ei ⁇ ne further improved wear resistance. It benefits in particular ⁇ its characteristic is that it has a Schütting ⁇ collapsing Al2 ⁇ 0 3 oxide layer (Fig. 3, 38) is formed that is particularly corrosion-resistant.
  • FIG. 3 shows the blade tip 28 of a free-standing turbine blade 30, on the outward facing surface 32 of which a circumferential squealer edge 34 is formed.
  • the turbine blade 30 is thus another example of a
  • Fele more Turbinenschau- may be a combustor, for example ring segments, which are the blade ⁇ peaks of blades opposite each other and fixed to the casing and / or liners.
  • some elements 36 of the sealing tip or even the entire sealing tip may have MAX phases.
  • the MAX-phase areas ei ⁇ ner such a composite blade tip may be present either as inserts in the casting process so that the structure with melt is infiltrated or afterwards by means of a joining method ⁇ (eg soldering or diffusion soldering) is applied.
  • MAX phase powder or granules may be incorporated in laser powder buildup welding.
  • the invention thus relates to a turbine blade 10 for a gas turbine, with a wall which can be exposed to a possibly corrosive hot gas when the turbine blade is used as intended.
  • a turbine blade 10 for a gas turbine with a wall which can be exposed to a possibly corrosive hot gas when the turbine blade is used as intended.
  • at least part of the wall be made of a material belonging to the group of MAX phases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Turbinenschaufel (12, 30) für eine Gasturbine, mit einer Wand, die bei bestimmungsgemäßen Einsatz der Turbinenschaufel einem korrosiven Heißgas aussetzbar und die teilweise aus einem Gussmaterial hergestellt und als Schaufelblatt (16) mit einer von dem Heißgas (HG) anströmbaren Vorderkante (20) und einer Hinterkante (22) ausgestaltet ist, wobei zumindest ein Teil der restlichen Wand ein Material aufweist, welches zu der Gruppe der MAX-Phasen gehört. Um eine Turbinenschaufel mit erhöhter Temperaturbeständigkeit oder mit verbesserter Lebensdauer bereitzustellen, wird vorgeschlagen, dass zumindest Teile der Vorderkante (20) und/oder der daran angrenzende Bereiche aus MAX-Phasen gebildet sind.

Description

Beschreibung
Turbinenschaufel für eine Gasturbine
Die Erfindung betrifft eine Turbinenschaufel für eine Gastur¬ bine, mit einer Wand, die bei bestimmungsgemäßen Einsatz der Turbinenschaufel einem korrosiven Heißgas aussetzbar und die teilweise aus einem Gussmaterial, insbesondere aus einer hochtemperaturfesten Superlegierung hergestellt und als
Schaufelblatt mit einer von dem Heißgas anströmbaren Vorderkante und einer Hinterkante ausgestaltet ist, wobei zumindest ein Teil der restlichen Wand ein Material aufweist, welches zu der Gruppe der MAX-Phasen gehört.
Bekanntermaßen kann es sich bei den Turbinenschaufeln um Turbinenschaufeln von Kraftwerks-, Industrie- und Fluggasturbi¬ nen handeln, die höchsten thermischen und mechanischen Bean- spruchungen im Betrieb unterliegen. Damit diese Schaufeln eine möglichst lange Lebensdauer aufweisen und zugleich einen sicheren Betrieb der Gasturbine gewährleisten, sind die Turbinenschaufeln moderner Gasturbinen innengekühlt. Üblicherweise werden derartige Turbinenschaufeln im Gießverfahren aus einem Material hergestellt, welches den auftreten¬ den Temperaturen weitestgehend Stand halten kann. Zur Erhöhung der Betriebstemperatur derartiger Turbinenschaufeln sind diese ggf. noch mit ein oder mehreren keramischen oder metal- lischen Schutzschichten versehen. Dennoch existieren Bereiche an Turbinenschaufeln, die besonders hohen Temperaturgradienten, welche zwischen Schaufelaußenseite und Schaufelinnensei¬ te auftreten, ausgesetzt sind. Diese rufen besonders hohe me¬ chanische Spannungen im Schaufelwerkstoff hervor, welche die Schaufellebensdauer und/oder den Temperatureinsatzbereich limitieren . Um diesen Problemen zu begegnen, schlägt beispielsweise die EP 3 138 829 AI vor, die Turbinenschaufeln nicht aus einem Gussmaterial, sondern aus einem keramischen Matrix- Verbundmaterial herzustellen, in dem zusätzlich sogenannte MAX-Phasen eingebettet sind. Es hat sich jedoch gezeigt, dass solche keramischen Matrix-Verbundmaterialien oft spröde und somit keine hinreichende Dauerfestigkeit aufweisen. Weiter ist aus der US 2016/0024955 AI bekannt, als abreibendes Mate¬ rial auf einer Schaufelspitze MAX-Phasen zu verwenden. MAX- Phasen haben das Potential zur Reduzierung von Reibkräften bei geringem Reibkoeffizienten, weswegen diese Materialkomposition lediglich an der Schaufelspitze verwendet werden soll. Darüber hinaus schlägt die EP 2 405 029 AI vor, metallische Turbinenschaufeln mit einer haft- und kratzfesten Schutz- schicht aus MAX-Phasen gegen Erosion lokal zu schützen.
Unter MAX-Phasen versteht man hexagonale Karbide bzw. Nitride, die generell der Formel Mn+iAXn (MAX) entsprechen,
wobei gilt:
n = 1 - 3,
M ein frühes Übergangsmetall ist,
A ein A-Gruppe-Element ist, meistens der CAS-Gruppe IIIA oder IVA (= Gruppe 13 und 14) zugehörig und
X entweder Kohlenstoff oder Stickstoff ist.
Frühe Übergangsmetalle können beispielsweise Scandium, Titan, Vanadium, Chrom, Zirkon, Niob, Molybdän, Hafnium und/oder Tantal sein. Beispiele für A-Gruppe-Elemente sind: Aluminium, Silizium, Phosphor, Schwefel, Gallium, Germanium, Arsen, Kadmium, Indium, Zinn, Tellur oder Blei.
Aufgabe der Erfindung ist daher die Bereitstellung einer Turbinenschaufel für eine Gasturbine, deren Lebensdauer weiter verbessert ist bzw. die höheren Einsatztemperaturen dauerhaft Stand halten kann.
Die der Erfindung zu Grunde liegende Aufgabe wird mit einer Turbinenschaufel gemäß den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen der erfindungsgemäßen Vorrichtung sind jeweils Gegenstand abhängiger Unteransprüche sowie der nachfolgenden Beschreibung. Erfindungsgemäß umfasst das Turbinenschaufel für eine Gastur¬ bine eine Wand, die bei bestimmungsgemäßen Einsatz der Turbinenschaufel einem ggf. korrosiven Heißgas aussetzbar ist, wo¬ bei zumindest ein Teil der Wand ein Material aufweist, wel¬ ches zu der Gruppe der MAX-Phasen gehört.
Die vorliegende Erfindung schlägt mithin vor, besonders ther¬ misch beanspruchte Bereiche einer Turbinenschaufel nicht aus dem bisherigen Material, zumeist einen Gussmaterial oder eine hochtemperaturfeste Superlegierung, herzustellen, sondern lokal einige Bereiche der Wand aus einem Material zu bilden, welches zu der Gruppe der MAX-Phasen gehört. Mit anderen Worten: Beide Bereiche zusammen bilden den Grundkörper der Turbinenschaufel, der Bauteilspannungen aufnehmen kann und die Festigkeit der Turbinenschaufel bestimmt.
Das besondere an den MAX-Phasen ist, dass sie besondere che¬ mische, physikalische, elektrische und auch mechanische Ei¬ genschaften aufweisen, die sowohl metallischen als auch kera- mischen Charakteristiken bei unterschiedlichen Bedingungen entsprechen. Von besonderem Vorteil sind ihre hohe thermische Leitfähigkeit, ihre hohe thermische Schock- Widerstandsfähigkeit und ihre Toleranz gegen Beschädigungen. Mithin nutzt die Erfindung insbesondere die gegenüber dem üb¬ lichen Material der Turbinenschaufel verbesserten Materialei¬ genschaften genau dort, wo sie erforderlich sind. Dabei werden Bereiche der Vorderkante des aerodynamisch gekrümmten Schaufelblatts und vorzugsweise zusätzlich die Schaufel- blattspitze mit zumindest einer Anstreifkante von Turbinen¬ schaufeln zumindest teilweise aus dem besagten MAX-Phasen- Material gebildet. Es hat sich insbesondere die MAX-Phase T12AIC als besonders geeignet für den Einsatz in Turbinenschaufeln, insbesondere von Gasturbinen herausgestellt, da dieses im Vergleich zu konventionellen Materialien von Turbinenschaufeln und anderen MAX-Phasen eine signifikant erhöhte Wärmeleitfähigkeit be¬ sitzt.
Besonders ist der Verbund von MAX-Phase und dem Gussmaterial, um die wesentlich höhere Wärmeleitfähigkeit der MAX-Phase zur thermischen und mechanischen Entlastung des gegossenen Anteils der Turbinenschaufel nutzen zu können. Die höhere Wär¬ meleitfähigkeit der MAX-Phase sorgt für einen effizienteren Abtransport der Wärme, beispielsweise an der Schaufelvorder¬ kante. Dadurch erhöht sich zwar die Temperatur der Kühlluft im Inneren des Schaufelblatts aber gleichzeitig verringert sich die Temperatur an der äußeren Oberfläche des Schaufelblatts. Dies führt zu einem geringeren Temperaturgradienten über die Schaufelwand von außen nach innen und somit zu ge¬ ringeren Spannungen im betreffenden Material. Folglich wird die Schaufel thermisch und mechanisch entlastet, so dass sie entweder bei höheren Temperaturen betrieben werden oder bei gleicher Einsatztemperatur eine längere Lebensdauer erreichen kann . Die oben beschriebenen Eigenschaften, Merkmale und Vorteile der Erfindung sowie die Art und Weise, wie diese erreicht werden, werden verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele anhand der nachfolgenden Figuren näher erläutert.
Hierbei sind die Figuren lediglich schematisch dargestellt, wodurch insbesondere keine Einschränkung der Ausführbarkeit der Erfindung die Folge ist. Es zeigen: Figur 1 in perspektivischer Ansicht eine Turbinenleit- schaufel mit in der Anströmkante vorgesehenen Elementen aus MAX-Phasen, π
5
Figur 2 einen Querschnitt durch die Vorderkante eines
Schaufelblatts der Turbinenschaufel aus Figur 1,
Figur 3 in perspektivischer Darstellung die Schaufelspitze eines Schaufelblatts einer Turbinenlaufschau- fei und
Figur 4 eine schematische Darstellung der Schaufelspitze aus Figur 3.
Die Figur 1 zeigt als ein erstes Beispiels einer Turbinen- schaufei 10 für eine Gasturbine eine Turbinenleitschaufel 12. Üblicherweise umfasst diese neben einem Fußteil 14 ein aero¬ dynamisch gekrümmtes Schaufelblatt 16 sowie ein Kopfteil 18. Bekanntermaßen ist die Turbinenschaufel 12 in Betrieb einem Heißgas HG aussetzbar. Das Schaufelblatt 16 umfasst eine von Heißgas HG anströmbare Vorderkante 20 sowie eine Hinterkante 22. Im Betrieb wird das Schaufelblatt 16 von Heißgas HG um¬ strömt. Da insbesondere das auf der Vorderkante 20 auftref¬ fende Heißgas HG zu einer besonders hohen thermischen Belas¬ tung dort führt, sind nun erfindungsgemäß Teile der Vorder- kante lokal aus einem Material gebildet, welches zu der Grup¬ pe der MAX-Phasen gehört. Im gezeigten Ausführungsbeispiel sind die Bereiche 24 elliptisch ausgebildet und längs der Vorderkante 20 vom Fußteil 14 ausgehend in Richtung Kopfteil 18 verteilt. Selbstverständlich ist es auch denkbar, dass über die gesamte Kanalhöhe des Heißgas-Strömungspfads die Vorderkante 20 aus MAX-Phasen besteht. Auch die Verwendung von größeren Abschnitten als dargestellt ist ebenso möglich. Nach Einbettung der Elemente 24 aus MAX-Phasen in die Heißgas-Wand der Turbinenschaufel 12 können zumindest Teile der Heißgas-Außenfläche ein oder mehrere Schutzschichten aufwei¬ sen. Ob diese Schutzschichten selber Bestandteile aus MAX- Phasen aufweisen, ist unerheblich.
Figur 2 zeigt einen Querschnitt durch die Vorderkante der Turbinenschaufel 12 nach Figur 1. Das Schaufelblatt 16 ist im Wesentlichen durch einen Gießprozess hergestellt worden, so dass ein signifikanter Anteil des Schaufelblatts 16 aus einem Gussmaterial 26 besteht. Im Bereich der Vorderkante 20 jedoch wurde ein Abschnitt des Gussmaterials 26 entfernt oder im Gussprozess ausgelassen und durch ein Material ersetzt, wel¬ ches zu der besagten Gruppe gehört. Beide Bereiche zusammen bilden sodann einen die Kräfte aufnehmenden Grundkörper der Turbinenschaufel, welcher zudem mit einer oder mehreren
Schutzschichten überzogen sein kann. Aufgrund der angegebenen Eigenschaften weist die erfindungsgemäße Turbinenschaufel im Bereich der Vorderkante 20 eine verbesserte Lebensdauer auf, verglichen mit einer konventionellen Turbinenschaufel. Die Verbindung vom Grundmaterial mit der MAX-PHASE kann z.B.
durch Löten oder Schweißen kraft- und/oder formschlüssig erfolgen .
Bevorzugter Maßen besteht die MAX-Phase aus Ti2AlC. Dieser
Werkstoff zeichnet sich insbesondere dadurch aus, dass er ei¬ ne weiter verbesserte Verschleißbeständigkeit besitzt. Beson¬ ders vorteilhaft ist seine Eigenschaft, dass er eine schüt¬ zende Al2<03-Oxidschicht (Fig. 3, 38) ausbildet, die besonders korrosionsfest ist.
Figur 3 zeigt die Schaufelspitze 28 einer freistehenden Turbinenlaufschaufel 30, an deren nach außen weisende Oberfläche 32 eine umlaufende Anstreifkante 34 ausgebildet ist. Die Tur- binenschaufel 30 ist somit ein weiteres Beispiel für eine
Turbinenschaufel 10 einer Gasturbine. Weitere Turbinenschau- fele können beispielsweise Ringsegmente, welche den Schaufel¬ spitzen von Laufschaufeln gegenüberliegen und am Gehäuse befestigt sind und/oder Auskleidungen einer Brennkammer sein. Gemäß dem in Figur 3 dargestellten Ausführungsbeispiel können einige Elemente 36 der Dichtspitze oder auch die gesamte Dichtspitze MAX-Phasen aufweisen. Die MAX-Phasen-Bereiche ei¬ ner solchen Composite-Schaufelspitze können entweder als Einlegeteile im Gussprozess vorliegen, so dass die Struktur mit Schmelze infiltriert wird oder hinterher mittels eines Füge¬ verfahrens (z.B. Löten bzw. Diffusionslöten) aufgebracht wird. Alternativ kann MAX-Phasen-Pulver oder Granulat beim Laserpulver-Auftragsschweißen beigemengt werden. Unabhängig vom Herstellungsprozess bilden sich an den Grenzflächen von MAX-Phasen und dem gegossenen Grundwerkstoff 40 der Wand, zu meist eine Superlegierung, Karbidsäume 42 (Figur 4) ab, die bei Kohlenstoff in die Schmelze eindiffundieren wird. Dies führt dazu, dass auch die Superlegierung selbst lokal eine erhöhte Beständigkeit gegenüber Verschleiß aufweist. Damit kann eine geringfügige Notlaufeigenschaft erreicht werden.
Insgesamt betrifft somit die Erfindung eine Turbinenschaufel 10 für eine Gasturbine, mit einer Wand, die bei bestimmungs¬ gemäßen Einsatz der Turbinenschaufel einem ggf. korrosiven Heißgas aussetzbar ist. Um ein Turbinenschaufel mit erhöhter Temperaturbeständigkeit oder mit verbesserter Lebensdauer be reitzustellen, wird vorgeschlagen, dass zumindest ein Teil der Wand aus einem Material besteht, welches zu der Gruppe der MAX-Phasen gehört.

Claims

Turbinenschaufel (12, 30) für eine Gasturbine,
mit einer Wand, die bei bestimmungsgemäßen Einsatz der Turbinenschaufel einem korrosiven Heißgas aussetzbar und die teilweise aus einem Gussmaterial, insbesondere aus einer hochtemperaturfesten Superlegierung hergestellt und als Schaufelblatt (16) mit einer von dem Heißgas
(HG) anströmbaren Vorderkante (20) und einer Hinterkante
(22) ausgestaltet ist,
wobei zumindest ein Teil der restlichen Wand ein Material aufweist, welches zu der Gruppe der MAX-Phasen ge¬ hört,
dadurch gekennzeichnet, dass
zumindest Teile der Vorderkante (20) und/oder der daran angrenzende Bereiche aus MAX-Phasen gebildet sind.
Turbinenschaufel (12, 30) nach Anspruch 1,
bei dem das Schaufelblatt (16) eine Schaufelspitze (28) mit zumindest einer Anstreifkante (34) umfasst,
bei der Teile zumindest einer der Anstreifkanten (34) aus MAX-Phasen gebildet sind.
Turbinenschaufel (12, 30) nach einem der vorangehenden Ansprüche,
bei dem auf der dem Heißgas (HG) zugewandten Oberfläche der Wand ein oder mehrere Schutzschichten aufgebracht sind, die vorzugsweise MAX-Phasen-frei sind.
Turbinenschaufel (12, 30) nach einem der vorangehenden Ansprüche,
bei dem die MAX-Phase aus T12AIC gebildet ist.
PCT/EP2018/058426 2017-04-05 2018-04-03 Turbinenschaufel für eine gasturbine WO2018185070A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017205788.2 2017-04-05
DE102017205788.2A DE102017205788A1 (de) 2017-04-05 2017-04-05 Heißgas-Bauteil für eine Gasturbine

Publications (2)

Publication Number Publication Date
WO2018185070A2 true WO2018185070A2 (de) 2018-10-11
WO2018185070A3 WO2018185070A3 (de) 2018-12-13

Family

ID=61972097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/058426 WO2018185070A2 (de) 2017-04-05 2018-04-03 Turbinenschaufel für eine gasturbine

Country Status (2)

Country Link
DE (1) DE102017205788A1 (de)
WO (1) WO2018185070A2 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405029A1 (de) 2010-07-02 2012-01-11 Brandenburgische Technische Universität Cottbus Verfahren zur Herstellung einer haft- und kratzfesten Schutzschicht auf einem metallischen Werkstück
US20160024955A1 (en) 2013-03-15 2016-01-28 United Technologies Corporation Maxmet Composites for Turbine Engine Component Tips
EP3138829A1 (de) 2015-08-28 2017-03-08 Rolls-Royce High Temperature Composites Inc Verbundwerkstoff mit keramischer matrix mit siliciumcarbidfasern in einer keramischen matrix mit einer max-phase-verbindung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690473A (en) * 1992-08-25 1997-11-25 General Electric Company Turbine blade having transpiration strip cooling and method of manufacture
US20140044951A1 (en) * 2012-08-09 2014-02-13 United Technologies Corporation High strength-to-density nanocellular foam
EP4353701A2 (de) * 2013-11-26 2024-04-17 RTX Corporation Gasturbinenmotorkomponentenbeschichtung mit selbstheilender barriereschicht
US20150345302A1 (en) * 2014-05-29 2015-12-03 United Technologies Corporation Transpiration-cooled article having nanocellular foam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405029A1 (de) 2010-07-02 2012-01-11 Brandenburgische Technische Universität Cottbus Verfahren zur Herstellung einer haft- und kratzfesten Schutzschicht auf einem metallischen Werkstück
US20160024955A1 (en) 2013-03-15 2016-01-28 United Technologies Corporation Maxmet Composites for Turbine Engine Component Tips
EP3138829A1 (de) 2015-08-28 2017-03-08 Rolls-Royce High Temperature Composites Inc Verbundwerkstoff mit keramischer matrix mit siliciumcarbidfasern in einer keramischen matrix mit einer max-phase-verbindung

Also Published As

Publication number Publication date
WO2018185070A3 (de) 2018-12-13
DE102017205788A1 (de) 2018-10-11

Similar Documents

Publication Publication Date Title
EP3191244B1 (de) Verfahren zur herstellung einer laufschaufel und so erhaltene schaufel
EP0285778B1 (de) Verfahren zur Herstellung einer zusammengesetzten Gasturbinenschaufel bestehend aus Fussstück, Schaufelblatt und Deckplatte oder Deckband, wobei das Schaufelblatt aus einer dispersionsgehärteten Nickelbasis-Superlegierung besteht, und nach diesem Verfahren hergestellte zusammengesetzte Gasturbinenschaufel
DE69724018T2 (de) Mehrkomponentengasturbinenschaufel
EP1895102B1 (de) Beschichtete Turbinenschaufel
EP2719484B1 (de) Bauteil für eine strömungsmachine
WO2005049312A1 (de) Hochtemperatur-schichtsystem zur wärmeableitung und verfahren zu dessen herstellung
DE3345263A1 (de) Keramische turbinenschaufel
DE102008014680A1 (de) Leitgitteranordnung eines Abgasturboladers, Abgasturbolader und Verfahren zur Herstellung einer Leitgitteranordnung
DE102007005755A1 (de) Vorrichtung zum Schutz von Bauteilen mit brennbarer Titanlegierung vor Titanfeuer und Verfahren zu deren Herstellung
EP1833896A2 (de) Kunststoff enthaltend nanopartikel und daraus hergestellte beschichtungen
EP2173972B1 (de) Rotor für eine axial durchströmbare strömungsmaschine
EP2282014A1 (de) Rinförmiger Strömungskanalabschnitt für eine Turbomaschine
EP2260181B1 (de) Leitschaufel mit hakenförmigem befestigungselement für eine gasturbine
EP1462617A2 (de) Schaufelanordnung für eine axiale Turbomaschine
EP3029269A1 (de) Turbinenlaufschaufel, zugehöriger rotor und strömungsmaschine
EP2805023A1 (de) Turbinenschaufel sowie zugehöriges verfahren zum herstellen einer turbinenschaufel
WO2018185070A2 (de) Turbinenschaufel für eine gasturbine
DE102017204243A1 (de) Dichtfin mit zumindest einer gewölbten Seitenflanke
DE102009043184A1 (de) Verfahren zur Reparatur eines integralen Rotors und integraler Rotor
DE102009023840A1 (de) Rotor einer Strömungsmaschine mit separatem Deckband
WO2009115390A1 (de) Leitschaufel für eine gasturbine
DE102014224865A1 (de) Verfahren zur Beschichtung einer Turbinenschaufel
EP2661541B1 (de) Verfahren zur herstellung einer schutzschicht für eine laufschaufel
WO2018024759A1 (de) Verfahren zur herstellung einer kanalstruktur und komponente
DE102020201448A1 (de) Additiv hergestellte Turbinenschaufel mit Verdrehsicherung und Justageverfahren

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18717543

Country of ref document: EP

Kind code of ref document: A2