CH527247A - Bitumenhaltige Masse - Google Patents

Bitumenhaltige Masse

Info

Publication number
CH527247A
CH527247A CH1322169A CH1322169A CH527247A CH 527247 A CH527247 A CH 527247A CH 1322169 A CH1322169 A CH 1322169A CH 1322169 A CH1322169 A CH 1322169A CH 527247 A CH527247 A CH 527247A
Authority
CH
Switzerland
Prior art keywords
bitumen
weight
content
block copolymer
compositions according
Prior art date
Application number
CH1322169A
Other languages
English (en)
Inventor
Jan Van Beem Eric
Engel Knibbe David
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB671669A external-priority patent/GB1201135A/en
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of CH527247A publication Critical patent/CH527247A/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description


  
 



  Bitumenhaltige Masse
Die Erfindung betrifft bitumenhaltige Massen aus einer Bitumenkomponente und einer Polymerkomponeunte.



   Bitumen haben bei der Anwendung als Bindemittel beim Strassenbau und bei industriellen Anwendungen häufig den Nachteil, dass das Bindemittel die Anforderungen nicht vollständig erfüllt. Der Nachteil, der sich um so stärker bemerkbar macht, je härter die Anforderungen an das Bindemittel sind, wird häufig mit den rheologischen Eigenschaften des Bitumens in Verbindung gebracht, wenn sie schlecht sind. Dies soll anhand einiger Beispiele aus dem Strassenbau erläutert werden.



   In Gebieten mit extrem hohen Temperaturen im Sommer und extrem niedrigen Temperaturen im Winter ist es beim Strassenbau erwünscht, Bitumen mit einer angemessenen Festigkeit gegenüber einer plastischen Deformation bei sehr hohen Temperaturen und mit einer angemessenen Plastizität bei sehr niedrigen Temperaturen anzuwenden. Diese Kombination von Eigenschaften wird in üblichen Bindemitteln auf Bitumenbasis nicht angetroffen.



   Bei der Anwendung in Gebieten mit einem milderen Klima besteht ebenfalls ein starker Bedarf nach Bindemitteln mit höherer Festigkeit gegenüber einer plastischen Deformation, wie sie die Bindemittel auf Bitumenbasis besitzen, die gegenwärtig verfügbar sind.



   Weiterhin ist beim Strassenbau die Gleitfestigkeit des Pflasters von Wichtigkeit. Diese wird nachteilig u. a.



  durch Ausbluten des Bindemittels und bei einem Verschleissbelag mit offenere Textur durch die Knetwirkung des Verkehrs auf den Verschleissbelag nachteilig beeinflusst. Die letztgenannten beiden Phänomene sind ebenfalls auf die unbefriedigenden rheologischen Eigenschaften des angewendeten Bitumens zurückzuführen.



   Es war in der Vergangenheit nicht möglich, mit üblichen Herstellungsverfahren Bitumina herzustellen, die die genannten Probleme zufriedenstellend lösen.



   Eine bessere Festigkeit gegenüber plastischer Deformierung bei hohen Temperaturen kann tatsächlich durch Anwendung von härteren Qualitäten erzielt werden. Dies wird jedoch mit einem Abfall der Plastizität bei niedrigen Temperaturen und einem Anstieg der Viskosität bei Temperaturen, die im allgemeinen bei der Herstellung von Gemischen aus dem Bitumina mit Mineralstoffen angewendet werden, erkauft. Im Gegensatz hiezu wird die Plastizität bei niederen Temperaturen durch Anwendung weicherer Qualitäten verbessert, obwohl hierdurch auch eine ungenügende Stabilität bei höheren Strassentemperaturen auftritt, während ausserdem eine zu starke Verminderung der Mischtemperatur notwendig wird.



   Es wurde bereits vorgeschlagen, die rheologischen Eigenschaften der üblichen Bitumina durch Zusatz von Polymeren zu verbessern. Kautschuke, wie Naturkautschuk und Synthesekautschuk, haben sich zu diesem Zweck als sehr geeignet erwiesen. Die Zugabe derartiger Kautschuke zu Bitumina kann einen günstigen Einfluss sowohl auf das Verspröden bei niedriger Temperatur wie auf die Festigkeit gegen Fliessen bei hohen Strassentemperaturen ausüben. Der Nachteil der Anwendung dieser Elastomeren besteht darin, dass sie zwar sehr wirksam für den angestrebten Zweck sind, wenn sie vulkanisiert sind, jedoch nur in nicht-vulkanisiertem Zustand in einem Bitumen fein dispergiert werden können.



  Unglücklicherweise haben   nicht-vuikanisierte    Kautschuke nur einen kleinen günstigen Einfluss auf die genannten Eigenschaften der Bitumina. Daher sind für den gewünschten Zweck ziemlich hohe Konzentrationen von  unvulkanisiertem Kautschuk mit relativ hohem Molekulargewicht erforderlich, was im allgemeinen dazu führt, dass die Viskosität bei den Verarbeitungstemperaturen zu stark erhöht wird.



   Diese Nachteile können grösstenteils dadurch überwunden werden, dass man eine Gruppe von thermoplastischen Elastomeren anwendet, die seit kurzem verfügbar sind. Dies betrifft Blockcopolymerisate der allgemeinen Formel A-B-A, wobei die beiden A gleiche oder verschiedene thermoplastische nicht-elastomere Poly   merblooks    darstellen, die durch Polymerisation von einer oder mehreren monovinylaromatischen Verbindungen hergestellt worden sind und wobei B einen elastomeren Polymerblock darstellt, der entweder durch Polymerisation von ein oder mehreren konjugierten Dienen oder durch Copolymerisation von ein oder   mehrerenkonju-    gierten Dienen mit einer oder mehreren monovinylaromatischen Verbindungen hergestellt worden ist, wobei der Polymerblock B gegebenenfalls teilweise oder vollständig hydriert worden ist.

  Der Kürze halber sollen thermoplastische Kautschuke dieser Art im folgenden als  Blockcopolymere  bezeichnet werden. Bei Raumtemperatur haben diese Blockcopolymere die   Eigen-    schaften eines vulkanisierten Kautschuks. Bei Temperaturen oberhalb etwa 70   "C    verschwindet der   Vulkanisat-    charakter, wodurch diese Blockcopolymeren hervorragend zur Dispersion in geschmolzenen bitumenhaltigen Stoffen geeignet wird. Wenn diese Gemische abgekühlt werden, wird der Vulkanisatcharakter der Blockcopolymeren wieder hergestellt und es werden sehr elastische, kautschukartige Produkte erhalten.

  Auf diese Art können Gemische erhalten werden, die bei hohen Strassentemperaturen eine hervorragende Fliessfestigkeit besitzen, während sie wegen des thermoplastischen Charakters der Blockcopolymeren nur einen leichten Anstieg der Verarbeitungstemperatur erfordern. Wenn ausserdem von weichen Bitumina ausgegangen wird und diese Blockcopolymeren angewendet werden, können Gemische erhalten werden, die ausser den genannten günstigen Eigenschaften eine sehr niedrige Versprödungstemperatur besitzen. Die Anwendung der Blockcopolymeren eröffnet daher die Möglichkeit, den viskoelastischen Temperaturbereich von Bitumina erheblich zu erweitern.



   Die Menge, in der die genannten Blockcopolymeren angewendet werden, hängt zum grossen Teil von der Anwendungsart ab. Bei der Anwendung im Strassenbau sind im allgemeinen Mengen auszuwählen, die unterhalb 10   Gew.-O/o    liegen. Bei industriellen Anwendungen werden meistens Mengen gebraucht, die von mehr als 5 bis weniger als 15   Gew.-O/o    schwanken.



   Gemische, die aus mehr als 85   Gew.-O/o    einer Bitumenkomponente und weniger als   15 Gew.- /o    eines Blockcopolymeren bestehen, sind in jedem Fall ausreichend verarbeitbar, dass sie nach den gegenwärtigen Verfahren für übliche Bitumina angewendet werden können. Im allgemeinen liegen die Anwendungstemperaturen unterhalb der Temperatur, bei der eine Anderung der thermischen und/oder oxydativen Zersetzung der Bitumina oder der Polymeren auftritt. Es wurde jedoch gefunden, dass nicht alle Gemische ausreichend stabil bei längerem Lagern bei einer Temperatur von etwa 140   "C    sind. Der Kürze halber soll als Lagerungsstabilität die Stabilität während des Lagerns unter Stickstoff bei einer Temperatur von etwa 140   C    über 9 Tage verstanden werden.

  Gemische mit ungenügender Lagerungsstabilität trennen sich in eine bitumenreiche Phase, die kaum Polymerisat enthält, und eine polymerisatreiche Phase, in der nur eine kleine Bitumenmenge vorliegt, auf. Die ungenügende Lagerungsstabilität einiger dieser Gemische ist ein ernsthaftes Hindernis für ihre praktische Anwendung, um so mehr, als die lagerungsinstabilen Gemische häufig bei Raumtemperatur das   tPhä-    nomen des Ausblutens zeigen, wodurch eine schlechte Klebkraft des Bindemittels an die Mineralaggregate erlagerungsinstabilen Gemische beim Verdünnen mit flüchtagen organischen Lösungsmitteln   häufig    bei Raumtemperatur eine schnelle Phasentrennung zeigen.



   Die mikroskopische Prüfung einer grossen Zahl von Gemischen von Blockcopolymeren mit verschiedenen bituminösen Komponenten bei der 250-fachen Vergrösserung zeigte, dass diese Gemische in eine der drei folgenden Gruppen eingeteilt werden können:  (1) heterogene Gemische  (2) mikrodisperse Gemische und  (3) homogene Gemische.



   Nur diejenigen Gemische, die aufgrund der mikroskopischen Prüfung entweder in die Gruppe (2) oder die Gruppe (3) fallen, zeigen eine ausreichende Lagerungsstabilität. Ausserdem war es in den meisten Fällen möglich, aus den Gemischen der Gruppen (2) oder (3) durch Verdünnung mit flüchtigen organischen Lösungsmitteln Auszüge herzustellen, die keine Phasenauftrennung bei Raumtemperatur zeigten. Der Aromatengehalt der   n-Heptan > Mtalten-Phase    und der n-Heptan-Asphalten-Gehalt der Bitumenkomponente spielen in diesem Zusammenhang eine wichtige Rolle.



   Es wurde gefunden, dass Gemische aus mehr als 85   Gew.- /o    einer Bitumenkomponente und weniger als 15   Gew.-O/o    enes   Blockcopolymeren    nur dann eine ausreichende Lagerunstabilität haben, wenn der Aromatengehalt der Bitumenkomponente, ausgedrückt als Bruchteil aromatischer Kohlenstoff der Maltenphase von n Heptan   (fa),    mehr als 0,004 x P + 0,280 beträgt, wobei P den Gehalt von Asphaltenrückstand in n-Heptan der   Bitumenkomponente    bezeichnet. Diese Gemische sind entweder   mikrodispers    oder homogen. Gemische, in denen fa    < N    0,004 x P + 0,280 ist, sind heterogen und besitzen nicht ausreichende Lagerstabilität.



   Die Erfindung betrifft daher bitumenthaltige Massen mit einem Zusatz eines elastomeren Polymerisats, gekennzeichnet durch einen Gehalt von a) mehr als 85   Gew.-O/o    einer Bitumenkomponente, deren Aromatengehalt, ausgedrückt als Bruchteil aromatischer Kohlenstoff der Maltenphase von n-Heptan   (f ,),    mehr als   0,004 bp    + 0,280 beträgt, wobei P den Gehalt von Asphaltenrückstand in n-Heptan bezeichnet, sowie von b) weniger als 15   Gew.-O/o    eines Blockcopolymerisats der allgemeinen Formel   A-B-A,    in der beide A gleiche oder verschiedene, thermoplastische, nicht-elastomere Polymerisatblocks bedeuten, 

   die durch Polymerisation von einer oder mehreren monovinylaromatischen Verbindungen erhalten worden sind und B einen elastomeren   Polymerblook    darstellt, der entweder durch Polymerisation von einem oder mehreren konjugierten Dienen oder durch Copolymerisation von einem oder  mehreren konjugierten Dienen mit einer oder mehreren monovinylaromatischen Verbindungen erhalten worden ist und gegebenenfalls ganz oder teilweise hydriert ist.



   Die angegebene Formel zeigt somit an, welche Beziehung zwischen dem Aromatengehalt der n-Heptan Malten-Phase und dem Gehalt eines Bitumens an n Heptan-Asphaltenen besteht, damit sichergestellt ist, dass eine lagerungsstabile Mischung erhalten wird, wenn ein Blockcopolymeres als Elastomerkomponente für dieses Bitumen verwendet wird. Dies bedeutet ausserdem häufig, dass bei Verdünnung eines Gemisches mit einem flüchtigen organischen Lösungsmittel kein Entmischen bei Raumtemperatur auftritt.



   Ausser der Bedeutung des Aromatengehalts der Bitumina für die Lagerungsstabilität von Gemischen dieser Bitumina mit Blockcopolymeren zeigten Untersuchungen mit einer grossen Zahl solcher Gemische, dass der Aromatengehalt einen Haupteinfluss auf die rheologischen Eigenschaften der Gemische besitzt. Es wurde gefunden, dass der Anstieg des Erweichungspunktes nach der Ring- und Kugelmethode, wie er bei der Zugabe von Blockcopolymeren zu Bitumina auftritt, kleiner ist, wenn das Bitumen eine höhere Aromatizität besitzt. Die besten Ergebnisse hinsichtlich der Verbesserung der Fliesseigenschaften bei hohen Temperaturen werden erhalten, wenn Gemische hergestellt werden, die aufgrund der mikroskopischen Untersuchung in die   mikrodisperse    Gruppe eingeordnet werden können.

  Da bei mikrodispersen Gemischen die Fraktion von aromatischem   Koh    lenstoff der n-Heptan-Malten-Phase der Bitumenkomponente höher als 0,004 x P + 0,280, aber niedriger als   0,004 bp    + 0,310 liegt, wird bei der Herstellung der erfindungsgemässen   massen    aus Bitumen und Blockcopolymeren bevorzugt, Gemische herzustellen, bei denen die Aromatizität der Bitumenkomponente, ausgedrückt als Bruchteil aromatischer Kohlenstoff der n-Heptan Malten-Phase (fa) niedriger als 0,004 x P + 0,310 liegt.



   Die vorliegende Erfindung bietet die Möglichkeit, Bitumina zu modifizieren, die wegen ihres geringen Aromatengehalts zum Vermischen mit Blockcopolymeren zu   lagerungsstabiien    Gemischen ungeeignet sind, indem aromatische Bestandteile zugefügt werden, und zwar derart, dass sie zu diesem Zweck geeignet werden. Die Erfindung bietet ausserdem die Möglichkeit, den Aromatengehalt von hoch-aromatischen Bitumina, die als solche lagerungsstabile Gemische mit Blockcopolymeren ergeben, aber schlechtere Fliesseigenschaften als Gemische mit Bitumen mit geringerem Aromatengehalt haben, derart anzupassen, das Gemische hergestellt werden können, die eine gerade ausreichende Lagerungsstabilität und erheblich verbesserte Fliesseigenschaften besitzen.



   Die Bitumenkomponenten, die zur Herstellung der bitumenhaltigen Massen gemäss der Erfindung geeignet sind, kommen in erster Linie Bitumenkomponenten in Frage, die aus Mineralölen hergestellt worden sind. Beispiele für geeignete Bitumenkomponenten sind Destillationsbitumen,   Fäliungsbitumen,    geblasene Bitumen und Gemische von zwei oder mehr der genannten Bitumen in einem Verhältnis, dass die gemäss der Formel gewünschte Aromatizität erreicht wird. Bevorzugt wird ein Destillationsbitumen, ein Fällungsbitumen oder ein Gemisch aus einem Destillationsbitumen und einem Fällungsbitumen als Bitumenkomponente bei der Herstellung der bitumenhaltigen Massen gemäss der Erfindung.



   Als Bitumenkomponente sind Gemische von ein oder mehreren der genannten Bitumen mit aromatischen Erdölextrakten, aromatischen Erdöldestillaten oder paraffinisch-naphthenischen Erdöldestillaten in einem Verhältnis, dass die gemäss der genannten Formel gewünschte Aromatizität erreicht wird, sehr geeignet.



  Wenn eine Bitumenkomponente dieser Art angewendet wird, wird vorzugsweise ein Gemisch aus einem Fällungsbitumen und einem aromatischen Erdölextrakt ausgewählt, insbesondere ein Gemisch aus einem Propanbitumen und einem aromatischen Extrakt aus einem schweren Schmieröl.



   Erfindungsgemässe Massen werden vorzugsweise aus Bitumenkomponenten mit einer Penetration zwischen 10 und 2000 bei 25   "C    hergestellt.



   Die Blockcopolymeren, von denen weniger als   15 Gew.- /o    bei der Herstellung der bitumenhaltigen Massen verwendet werden, sollten mit mehr als 85   Gew.- /o    der Bitumenkomponente vermischt werden.



  Sie haben die allgemeine Formel   A IB A,    wobei A und B die genannte Bedeutung haben. Vorzugsweise besitzen die thermoplastischen Polymerblocks A ein Molekulargewicht zwischen 7 500 und 100 000, insbesondere zwischen 10 000 und 50 000. Vorzugsweise hat der elastomere Polymerblock B ein Molekulargewicht zwischen 25 000 und 1000 000, insbesondere zwischen 35 000 und 15 000. Vorzugsweise liegt die Menge der thermoplastischen Polymerblooks A in dem Blockcopolymeren bei 10 bis   70 Gew.- /o,    insbesondere von 20 bis 50   Gew.-O/o.    Monovinylaromatische Verbindungen, die als Monomere bei der Herstellung der thermoplastischen Polymerblocks A und der elastomeren Polymerblocks B bei den erfindungsgemäss verwendeten Blockcopolymeren geeignet sind, sind z. B. Styrol und   o;-Methylstyrol.   



  Konjugierte Diene, die als Monomere bei der Herstellung der elastomeren Polymerblocks B bei dem Blockcopolymeren geeignet sind, sind vorzugsweise Diene mit 4 bis 8 Kohlenstoffatomen je Molekül, insbesondere Butadien und Isopren.



   Beispiele geeigneter Blockcopolymere sind Polysty   rol - Polyisopren - Polystyrol, Polystyrol - Polybu-    tadien - Polystyrol,   Polystyrol - teilweise    hydriertes   Polyisopren - Polystyrol    und   Polystyrol - Styrol/Bu-      tadien-Copolymerisat - Polystyrol.    Bevorzugt wird ein Blockcopolymeres der Struktur   Polystyrol - Polybuta-      dien - Polystyrol    als Polymerkomponente bei den bitumenhaltigen Massen gemäss der Erfindung verwendet.



   Die Herstellung der Massen kann in einfacher Weise durch Rühren der Polymerkomponente in Form einer fein verteilten festen Substanz oder in Form einer Lösung, z. B. in Benzol oder Toluol, in die geschmolzene Bitumenkomponente erfolgen. Das Lösungsmittel kann anschliessend durch Verdampfen entfernt werden.

 

   Wenn die bitumenhaltigen Massen gemäss der Erfindung zum Strassenbau verwendet werden, werden vorzugsweise Massen mit weniger als 10   Gew.-O!o    an Blockcopolymeren verwendet. Ausserdem wird für Strassen   bauzwecke    eine Masse bevorzugt, deren Bitumenkomponente eine Penetration zwischen 50 und 500 bei 25   OC    besitzt. Bei der Anwendung zum Strassenbau wird die bitumenhaltige Masse üblicherweise mit Füllstoffen bestimmter Grösse, insbesondere mit   Mineralaggregaten    vermischt. Im allgemeinen werden zum Strassenbau Gemische vorgesehen, die 3 bis 15   Gew.- /o    der bitumenhaltigen Masse gemäss der Erfindung und 85 bis  97   Gew.-0/o    Füllstoff ausgewählter Grösse besitzen.

  Es ist ebenfalls möglich, die bitumenhaltigen Massen zu Strassenbauzwecken in Form von   Versclmittbitumen    zu verwenden. In diesem Fall werden Verschnitte aus 70 bis 90   Gew.-O/o    der bitumenhaltigen Masse und 10 bis 30   Gew.-e/o    eines flüchtigen organischen Lösungsmittels mit mehr als 30   Giew.-O/o    Aromatengehalt bevorzugt.



   Wenn die bitumenhaltigen Massen gemäss der Erfindung auf industriellen Anwendungsgebieten verwendet werden sollen, werden vorzugsweise Massen   ausgewählt,    die mehr als 5 und weniger als 15   Gew.- /o    der Blockcopolymeren enthalten. Ausserdem sind für diese Zwecke Massen bevorzugt, deren Bitumenkomponente eine Penetration zwischen 10 und 1000 bei 25    C    besitzt. Wenn die bitumenhaltigen Massen industriell in Form von Verschnitt verwendet werden sollen, werden vorzugsweise Verschnitte aus 40 bis 70   Gew.-0/o    der bitumenhaltigen Massen und 30 bis 60   Gew.-0/o    eines flüchtigen organischen Lösungsmittels mit mehr als 30   Gew.-O/o    Aromatengehalt ausgewählt.



   Unter den industriellen Anwendungsgebieten der er findungsgemässen Massen aus Bitumen und Blockcopolymeren bilden die Klebstoffe, insbesondere für synthetische Dachabdeckungen, einen wichtigen Teil.



   Synthetische Stoffe, wie Platten aus Butylkautschuk und Platten aus   Äthylen-Propylen-Copolymerisaten    wurden bereits für Dachabdeckungen seit einiger Zeit verwendet. Die hohe mechanische Festigkeit und Wetterfestigkeit dieser synthetischen Produkte gestatten die Verwendung nur jeweils einer einzigen Platte.



   Eine Schwierigkeit bei der Anwendung dieser syn   thetisohen    Dachabdeckungsstoffe besteht darin, dass geeignete Klebstoffe nicht verfügbar sind. Es wurde gefunden, dass sowohl übliche Klebstoffe wie auch in letzter Zeit entwickelte Klebstoffe, die von Herstellern   fül    synthetische Dachabdeckungen empfohlen werden, nicht ganz zufrieden stellen.



   Um für Dachabdeckungen geeignet zu sein, sollten Klebstoffe die folgenden Bedingungen erfüllen:
1. Sie sollen ausreichend kleben,
2. sie sollen bei niedrigen Temperaturen ausreichend biegsam sein,
3. sie sollen bei hohen Temperaturen eine ausreichnde Fliessfestigkeit besitzen,
4. sie sollen nach üblichen Verfahren für Dachabdeckungszwecke bearbeitbar sein,
5. sie sollen in der Hitze lagerungsstabil sein und
6. sie sollen ausreichend hart sein, damit sie   beim    Betreten des Dachs nicht deformieren.



   Eine ausgedehnte Untersuchung der Möglichkeit   dei    Verwendung der erfindunsgemässen bitumen haltigen Massen mit Blockcopolymeren als Klebstoff für synthetische Dachabdeckungsmaterialien hat gezeigt, dass diese Gemische die Anforderungen hinsichtlich der Klebstoffe erfüllen. Einige hatten jedoch schlechtere Eigenschaften hinsichtlich der Fliessfestigkeit, der Versprödung, der Härte oder der Bearbeitbarkeit.



   Es wurde jedoch gefunden, dass erfindungsgemäss Gemische aus Bitumen und Blockcopolymeren hervorragende Eigenschaften als Klebstoffe für synthetische Dachabdeckungsmaterialien besitzen, wenn der Gehalt des Gemisches lan Blockcopolymeren, der zwischen 6,5 und 14,5   Gew.s/o    schwanken kann, hinsichtlich der Penetraion des Bitumens, die zwischen 40 und 550 bei 25    C    schwanken kann, so ausgewählt wird, dass das Gemisch innerhalb der Fläche fällt, die durch die Seiten des Vierecks ABDC der beigefügten Zeichnung gegeben ist. Gemäss der Zeichnung stellt die Y-Achse die Penetration bei 25   CC    des Bitumens in   logarithmischer    Darstellung und die   X-Achse    den Blockcopolymergehalt des Gemisches dar.

  Die Spitzen des Vierecks   ABCD    entsprechen den Koordinaten A (7,6; 200), B (14,5; 550), C (11,6; 40) und D (6,5; 65). Die Seiten des Vierecks ABCD können durch die folgenden Formeln definiert werden: AB (y = 0,064 x   +    1,8135), BC (y = 0,393 x   -2,9574),    CD   l(y=0,041x +2,0786)    und DA (y = 0,444   x - 1,0733),    wobei y den Logarithmus der Penetration der Bitumenkomponente bei 25    C    und x den Blockcopolymergehalt des Gemisches darstellen.



   Unter entsprechender Berücksichtigung der Beschränkung hinsichtlich des Aromatengehalts   (falz    0,004 x P   +    0,280) und der Penetration (40 bis 550) der Bitumenkomponente und dem Blockcopolymergehalt des Gemisches (6,5 bis 14,5   Gew.-O/o),    zeigt die Darstellung die Möglichkeit, bei einer vorgegebenen Penetration der Bitumenkomponente, die entsprechenden Gehalte an Blockcopolymeren und anders ausgedrückt bei einem gegebenen gewünschten Blockcopolymergehalt die Penetrationen, die für die Bitumenkomponente noch erlaubt werden können, einzustellen.



   Wenn z. B. die Bitumenkomponente eine Penetration von 70 oder 200 bei 25   "C    hat, kann der Gehalt an Blockcopolymeren im Gemisch zwischen 6,6 und 12,2   Gew.-O/o,    bzw. zwischen 7,6 und 13,4   Gew.-O/o    liegen. Wenn dagegen z. B. ein Gehalt von Blockcopolymeren von 8,0 oder 10,0   Gew.- /o    in den Klebstoffen erwünscht ist, sollte die Bitumenkomponente eine Penetration zwischen 56 und 210 oder zwischen 47 und 280 bei 25   "C    haben.



   Als für die Herstellung von Klebstoffen für die genannten Zwecke geeignete Bitumenkomponente kommen im Prinzip dieselben Bitumenkomponenten infrage, die eingangs genannt wurden, wobei die zusätzliche Bedingung der Penetration in Betracht zu ziehen ist.



   Für die Klebstoffe geeignete Blockcopolymere sind die genannten, insbesondere hinsichtlich des   Moieku-    largewichts und der Zusammensetzung, ausgenommen der kleinere Konzentrationsbereich, in dem diese Polymeren für den genannten Zweck verwendet werden.



   Materialien zum Dachdecken, sowohl synthetischer wie üblicher Herkunft, werden in der Regel in Form von Platten auf das Dach gelegt; um den Transport und die Handhabbarkeit dieser Platten zu erleichtern, werden sie häufig in Rollenform geliefert. Üblicherweise werden die Platten mit Talkumpulver beschichtet, um dadurch das Abrollen zu erleichtern. Die Gegenwart dieser Talkumschicht hat in der Vergangenheit häufig Schwierigkeiten mit sich gebracht, weil dadurch die Adhäsion der Platten an das Substrat nachteilig beeinflusst wird. Versuche im Freien haben ergeben, dass bei Verwendung der erfindungsgemässen Massen als Klebstoff keine Bedenken gegen die Verwendung von talkum beschichteten Platten erhoben werden können, weil sich keine nachteiligen Einwirkungen bezüglich der Klebkraft ergeben.

 

   Eine attraktive Eigenschaft der-Klebstoffe gemäss der Erfindung besteht darin, dass bei der richtigen Wahl  der Verarbeitungstemperatur in einem Bereich unterhalb 180   OC    diese Massen nicht nur ausreichend flüssig sind, sondern auch in einer Schicht von ausreichender Dicke (etwa 1 mm) angewendet werden können. Dies ist von besonderer bedeutung für das Verkleben von synthetischen Materialien für Dachabdeckungen, die in Form einzelner Platten angewendet werden, wobei die Massen nicht nur als Klebstoff wirken; sondern bis zu einem gewissen Ausmass auch als Streichmasse, um Ungleichmässigkeiten auf der Unterschicht auszuglätten.



   Beispiele für synthetische Dachabdeckungsmaterialien, die zum Verkleben mit den erfindungsgemässen Massen geeignet sind, sind solche Stoffe, die auf synthetischen Elastomeren beruhen, wie Platten aus Butylkautschuk und aus Polyäthylen/Polypropylen-Kautschuk sowie Materialien, die auf anderen synthetischen Polymeren basieren, wie Platten aus Polyvinylchlorid. Das Substrat, auf das die Dachabdeckungsmaterialien aufgebracht werden, besteht häufig aus einem nicht-wasser dichten Material aus Baustoffen, wie Holz oder Beton.



   Für Konstruktionen aus Beton, insbesondere unter feuchten Wetterbedingungen, ist es üblich, zunächst das
Substrat mit einer Grundierung zu versehen, damit das Ausbreiten und die Klebkraft des Klebstoffs verbessert werden. Die üblichen Grundierungen bestehen häufig aus einer Lösung eines geblasenen   gBitumens    in einem flüchtigen Lösungsmittel, wie Toluol oder Xylol, zu denen in den meisten Fällen eine kleine Menge eines Benetzungsmittels zugesetzt worden ist. Es wurde gefunden, dass solche Grundierungen für das Verkleben von synthetischen Dachabdeckungsmaterialien mit Gemischen aus Bitumen und Blockcopolymeren gemäss der
Erfindung weniger geeignet sind. Es können jedoch sehr günstige Ergebnisse erhalten werden, wenn als Grundie rung ein Verschnitt aus den gleichen Gemischen aus Bi tumen und Blockcopolymer verwendet wird, die als
Klebstoff verwendet werden.

  Wie bereits erwähnt, haben
Gemische aus Bitumen und Blockcopolymeren der Be dingung   fa >     0,004 x P + 0,280 nicht nur eine ange messene Heisslagerungsfähigkeit, sondern sie zeigen häu fig auch eine zufriedenstellende Stabilität, wenn sie mit flüchtigem Lösungsmittel verdünnt werden, so dass die
Herstellung dieser Verschnitte im allgemeinen keine Schwierigkeiten aufwirft.



   In manchen Fällen ist es erwünscht, die syntheti schen Dachabdeckungsmaterialien nach dem Aufbringen mit einer Schicht eines fein verteilten Mineralaggregats, wie Schieferstücken, abzudecken. Als Klebstoff für diese Fertigüberzüge wurden Verschnitte als geeignet gefun den, die aus den bitumenhaltigen Massen gemäss der
Erfindung hergestellt worden sind.



   Ausser der Verwendung zum Verkleben von synthe tischen Dachabdeckungsmaterialien können die Klebstoffe aus bitumenhaltigen Massen gemäss der Erfindung auch zum Verkleben von Isolierstoffen, wie Glaswolle, Polyurethanschaumstoffen oder Holzfasern auf Dächern verwendet werden. Die Anwendung dieser Klebstoffe ist nicht auf Dachkonstruktionen beschränkt, weil sie auch als Klebstoffe für andere Zwecke sehr geeignet sind. In diesem Zusammenhang kann z. B. das Verkleben von Isoliermaterialien und Bodenbelägen auf einem Substrat, das z. B. aus Holz, Metall, Stein oder Beton besteht, erwähnt werden.



   Obwohl im Prinzip jedes Gemisch aus Bitumen und dem Blockcopolymeren, das die genannten Bedingungen erfüllt, als Klebstoff für synthetische Dachabdeckungsmaterialien geeignet ist, bedingen die grossen Unterschiede des Klimas und der Art der Dachkonstruktion, dass bestimmte Gruppen dieser Gemische bevorzugt sind.



   Zum Verkleben synthetischer Dachabdeckungsmaterialien auf Flächendächern in Bereichen mit einem mässigen Klima wird vorzugsweise ein Klebstoff mit 6,5 bis 8,0   Gew.-O/o    Blockcopolymerisat ausgewählt, dessen Bitumenkomponente eine Penetration zwischen 50 und 100 besitzt.



   Um synthetische Dachabdeckungsmaterialien auf stark abfallenden Dachkonstruktionen und/oder in Bereichen mit heissem Klima zu verkleben, wird vorzugsweise ein Klebstoff verwendet, der 10 bis 12,5   Gew.-O/o    Blockcopolymerisat enthält und dessen Bitumenkomponente eine Penetration zwischen 40 und 85 besitzt.



   Wenn die Klebstoffe gemäss der Erfindung zum Verkleben von synthetischen Dachabdeckungsmaterialien in Gebieten mit einem extrem kalten Klima verwendet werden, werden vorzugsweise Klebstoffe mit 10,5 bis 14,5   Gew.-O!o    Blockcopolymerisat und einer Bitumenkomponente mit einer Penetration zwischen 250 und 550   ausgewählt.   



   Die Klebstoffe aus den bitumenhaltigen Massen gemäss der Erfindung können entweder als solche oder in Form eines Verschnitts verwendet werden. Ausser der Bitumenkomponente, dem Blockcopolymeren und etwa flüchtigen Lösungsmitteln können die Klebstoffe auch andere Verbindungen enthalten, wie Mittel zur Verbes serung der Klebkraft, Mittel zur Verbesserung der   Benet-    zung der zu verklebenden Oberflächen, Antioxydations mittel und alle Stoffe, die im allgemeinen zu Klebstoffen zugesetzt werden.



   Die Erfindung wird durch die folgenden Beispiele näher erläutert.



   Es wurden eine Anzahl   bitumenhaltiger    Massen her gestellt, von denen die Bitumenkomponenten aus Bi tumen und Verdünnungsölen hergestellt waren, die die folgenden Eigenschaften hatten.



  Bitumen Penetration Erweichungs-   f, ider n-C7-    Gehalt der Nr. bei 25   OC    punkt, Ring- Maltenphase n-C7
0,1 mm und   Kugel    Asphaltene, methode   "C      Gew.-O/o    B1 3,5 69 0,42 2,9 B2 11 63 0,38 7,2 B3 9 68 0,32 9,4 B4 285 35 0,27 4,2  
Alle Bitumen wurden aus Rohölen aus dem Mittleren Osten hergestellt. Die Bitumen B1, B2 und B3 waren Propanbitumen, Bitumen B4 war ein direkt destilliertes Bitumen.



   Die in der Tabelle im übrigen genannten Mengen, insbesondere die Penetration bei   25  C,    der Erweichungspunkt nach der Ring- und Kugelmethode, der   fa-    Wert und der Gehalt von n-Heptan-asphaltenen wurden wie   folgt Ibestimmt:   
Penetration bei 25   "C    ASTM D 5
Erweichungspunkt, Ring- und ASTM D 36
Kugelmethode
Gehalt an   n-C7-Asphaltenen    IP 143.



   Der fa-Wert wurde aus der Dichte bei 20 bzw. 4  C berechnet und der Prozentsatz an Kohlenstoff und an Wasserstoff wurde gemäss R.B. Williams in Proceedings, 6th   World    Petroleum Congress, Abschnitt IV, Bericht 17 (1963) bestimmt.



   Verdünnungsöl Viskosität, cSt, bei fa
Nr. 25  C 60 C 100  C
F1 350 44 11,2 0,16
F2 15 000 514 59,2 0,23
F3   26000    730 70,8   0,25   
F4 3 600 133 16,7 0,45
Die Verdünnungsöle waren alle aus Rohölen hergestellt, die aus dem Mittleren Osten stammten. Das Verdünnungsöl F1 war ein schweres Destillat, die Verdünnungsöle F2, F3 und F4 waren aromatische Extrakte, die bei der Herstellung von Schmierölen anfielen.



   Es wurden 7 bitumenhaltige Massen durch Vermischen einer   Bitumenikomponente    mit einer Menge Blockcopolymerisat hergestellt. Als Blockcopolymerisat wurde in allen Fällen ein copolymeres   Polystyrol-Poly-      butadien-Polystyrol    mit einem Molekulargewicht von 14   000-65      000 - 14    000 verwendet.



   Eine bitumenthaltige Masse wurde als lagerstabil bezeichnet, wenn keine merklichen Differenzen beim Vergleich der Penetration bei 25  C und des Erweichungspunktes nach der Ring- und Kugelmethode der oberen Schicht und der Bodenschicht nach 9 Tagen Lagerung bei 140  C unter tickstoff gefunden wurden. Die Beurteilung, ob ein stabiler Verschnitt bei Raumtemperatur aus den bitumenhaltigen Massen hergestellt werden konnte, wurde auf der Basis des Befunds bewertet, ob eine Phasenauftrennung bei Raumtemperatur in einem Gemisch aus 70 g der bitumenhaltigen Masse und 30 g eines mittleren Destillats vom Siedebereich 170 bis 255  C in einem Aromatengehalt von 82   O/o    auftrat oder nicht. Die Zusammensetzung und die Stabilität von verschiedenen Massen sind in Tabelle I aufgeführt.



   In der Tabelle bedeuten: fa = Fraktion aromatischer Kohlenstoff der n-Hep    tan-Maltenphase,    aus experimentellen Wer ten   (d##%    C   und % H).   



  fa   *    = Fraktion aromatischer Kohlenstoff der   n > Hep-    tan- Maltenphase, berechnet mit der Formel fa * = 0,004 x P + 0,280.



   Die letzten beiden Spalten von Tabelle I geben die Stabilität der Massen nach dem Lagern bei hoher Temperatur und bei Raumtemperatur nach Verdünnung mit   einem flüchtigen Lösungsmittel wieder (+ = stabil; -    = instabil.



   Tabelle   I       Masse Gew.-e/0 fa P, fa * Gew.-O/o 9 Tage Lagern bei Stabilität
Nr. Bitumen- Gew.-% Block- 140 C unter N2 komponente copolymer
Penetration Erwichungs- Heiss- Ver-    bei 25   oC,    punkt, Ring lagern schnitt
0,1 mm und Kugel, 

    C
Ober- Bo- Ober- Bo fläche den fläche den A 100 B4 0,26 4,2 0,297 3 110 216 102 38,5    -   
B 97 B4 3F1 0,26 4,1 0,296 5 171   231    90,5 46,0    - -    I 66,5 B1 0,35 2,0 0,288 3 200 202 50,5- 50,5 + +
33,5 F2 II 60 B1   0'34    1,8 0,287 5 240 238 62,0 62,0 + +
40 F2 III   70    B2 0,33 5,0 0,300 5 101 100 70,0 70,0   +    +
30 F2 C 70 B3   0 29    6,5 0,306 5 72 64 90,0 63,5 - 
30 F3 IV 70 B3
21 F3 0,32 6,5 0,306 5 72 78 75,0 75,0 + +
9 F4  
Tabelle I zeigt, dass nur die Massen lagerstabil sind, bei denen fa  >  fa * ist. Ausserdem können aus diesen Massen stabile   Versclinitte    hergestellt werden.

  Dementsprechend entsprechen in Tabelle I nur die bitumenhaltigen Massen I, II, III und IV den erfindungsgemässen Massen.



   Es wurden zu 3 Bitumen 10   Gew.-O/o    des Blockcopolymerisats Polystyrol- Polybutadien-Polystyrol zugesetzt. Die Zusammensetzung der verschiedenen Massen und die Wirkung der Zugabe des Blockcopolymeren auf den Erweichungspunkt nach der Ring- und Kugelmethode sind in Tabelle II aufgeführt.



   Hierbei bedeuten: fa * = Fraktion aromatischer Kohlenstoff der   nHep-    tan-Malten-Phase, berechnet nach der For mel fa * = 0,004 x P + 0,280.



  fa ** = Fraktion aromatischer Kohlenstoff der n-Hep tan-Malten-Phase, berechnet nach der For mel fa ** = 0,004 x P   +    0,310.



   Tabelle 11 Masse   Gew.- /o      f,    P, fa * Stabilität fa **   Gew.- /o    Erweichungs-   Brweichungs-    Nr.   Bitumen      Gew.-O/o    Heiss- Block- punkt, Ring punktanstieg komponente lagerung copolymer und Kugel infolge Block    OC    copolymer zusatz D   80131   
20 F2 0,40 2,3       0,289   +    0,319 0 51    -      V 80 B1 80131   
20 F2 0,40 2,3 0,289   +    0,319 10 86 35   80132   
20 F3 0,35 5,8 0,303   +    0,333 0 48    -    VI 80   B2       20F3    0,35 5,8 0,303 + 0,333   iO    95 

   47 F   80 B3   
14 F3 0,32 7,5 0,310 + 0,340 0 50 
6F4 VII   80 B3   
14   Ei3    0,32 7,5 0,310   +    0,340 10 105 55    6F4   
Tabelle II zeigt, dass die Wirkung der Blockcopolymeren auf den Erweichungspunkt nach dem Mischen mit Bitumen von etwa dem gleichen Erweichungspunkt stark von dem Aromatengehalt des Bitumens abhängt.



  Der Anstieg des Erweichungspunktes ist am stärksten bei Massen im Bereich von Mirkodispersionen, d. h.



  Massen, bei denen der fa-Wert der Bitumenkomponente der Beziehung    fa **  >  fa  >  fa *    genügt. Gemäss Tabelle II sind nur die bitumenhaltigen Massen V, VI und VII Massen gemäss der Erfindung.



   Die Eigenschaften einer Reihe von erfindungsgemässen bitumenhaltigen Massen sind in Tabelle III zusammengestellt. Das   Biockcopolymerisat    in allen Massen gemäss Tabelle III war das bereits genannte Polystyrol  Polybutadien - Polystyrol-Blockcopolymer mit dem Molekulargewicht 14   000-65      000 - 14    000.



   Die äquiviskosen Temperaturen (EVT-Werte) für 20 000,   2000    und 200 cSt, d. h. die Temperaturen, bei denen eine Viskosität von 20 000, 2 000 bzw. 200 cSt erreicht werden, werden mit dem Dunkelöl-Viskometer gemäss ASTM D 2170 gemessen.



   Der Bruchpunkt gemäss Fraass wurde nach IP 80 bestimmt. Die Fraass-Temperatur ist die Temperatur, bei der eine dünne Schicht von Bitumenmaterial nach dem Biegen einen Bruch zeigt. Je niedriger diese Temperatur ist, desto kleiner ist die Möglichkeit eines Brechens durch Versprödung.



   Tabelle III zeigt, wie durch die besondere Kombination der Bitumenkomponente und des Gehalts an Blockcopolymerisat Massen hergestellt werden können, die den üblichen Bitumenqualitäten entsprechen. Hierbei stellt sich heraus, dass es im Prinzip möglich ist, Bindemittel mit einer erheblich höheren Fliessfestigkeit bei hoher Temperatur und gleichzeitig erheblich niedriger Ver   sprödungstemperatur    herzustellen (z. B. durch Vergleich der Masse XVII mit einer üblichen Qualität 80/100).



  Aus Tabelle III ist weiterhin ersichtlich, dass durch die richtige Wahl des Aromatengehalts im Gemisch aus Propanbitumen und Aromatenextrakt und durch den Gehalt an Blockcopolymerisat, Bindemittel hergestellt werden können, die extrem gute Fliesseigenschaften bei hohen Temperaturen besitzen (vgl. Masse XV) oder wobei andererseits Produkte mit extrem niedrigen Versprödungstemperaturen erhalten werden, die immer noch gute Fliesseigenschaften besitzen (vgl. Masse XVII).



   Obwohl die in Tabelle III angegebenen Massen höherer EVT-Werte als übliche Bitumen besitzen, können sie trotzdem mit Mineralstoffen ohne Schwierigkeit vermischt werden. Mischversuche mit Mineralstoffaggregaten zeigen, dass selbst Massen, die 10   Gew.-O/o    Blockcopolymeres enthalten, sehr gut bei einer Temperatur von 170   "C    angewendet werden können. Die hohen Erweichungstemperaturen, die bei einigen der Massen gemäss Tabelle III gefunden werden, machen diese Massen prinzipiell geeignet für verschiedene industrielle Anwendungszwecke.  



   Aus einer Reihe von Bindemitteln von Gemischen gemäss Tabelle III mit Mineralstoffen wurden Gemische hergestellt. Die Mineralaggregate bestanden aus 55 Gew.-% Porphyr, 35,5 Gew.-% Sand und 9,5 Gew.    /o    Füllstoff. Bei der Herstellung der Gemische wurden   93 Gew.-0/o    Mineralaggregat dieser Zusammensetzung bei Temperaturen von höchstens 170  C mit 7 Gew.-% der Bindemittel I, II, VIII, XII, XIII und XIV vermischt. Die Gemische wurden anschliessend verwalzt, bis der Gehalt an Hohlräumen   1,6    bis 2,4 Vol.-% betrug. Die   asphalthaltigen    Betongemische 1 bis 6, die erhalten wurden, wurden verschiedenen Versuchsbedingungen unterworfen.



   Tabelle III Masse   Gew.- /o      Gew./o    fa P, Pa   * Sta-    Penetra- Erwei- E.V.T. Bruch Nr.   Bitumen    Bloak-   Gew.- /o    bili- tion chungs- punkt komponente copolymer tät, bei punkt,   20 000 2 000    200 Fraass,
Heiss- 25  C, Ring und cSt cSt cSt lage- 0,1 mm Kugel,

   rung  C  C  C  C  C   1    66,5-B1
33,5 F2 3 0,35 2,0 0,288 + 190 54,5 75 100 145 -13 II   60 B1    40 F2 5 0,34 1,8 0,287 + 220 65,0 78 109 164   20    VIII 51,1 B1 10 0,33 1,5 0,286 + 188 73,0 94 136 218 --28
48,9 F2   IX      68,5    B1    31,5    F2 3 0,35 2,0   0,2 &       +    101 54,0 80 110 152 - 9    X 68,4B1 5 0,35 2,0 0,288 + 96 69,5 87 117 173 -11
31,'6F2    XI 67,8 B1    32,2    F2 9 0,35 2,0 0,288   +    86 79,0 98 143 230 -18 XII 77,3 B1 3 0,37 2,2 0,289 + 47 57,0 86 114 163    22,7F2    XIII 77 B1 23 F2 5 0,37 2,2 0,289   +    47 74,5 93 126 184 XIV   76,7131   
23,3 F2 10 0,37 2,2 

   0,289 + 52 85,5 108 154 237 -13 XV   90 B2 10 F2    10 0,36 6,5 0,306 + 23 106 125 168 275   - 5    XVI 80B220F2 10 0,35 5,8 0,303   +    46 99 122 161 245 -14 XVII 70 B2 30 F2 10 0,33 5,1 0,300 + 81 92 100 153 235  < -38 XVIII 65,0 B3
24,5 F3 6 0,32 5,2 0,301 + 104 75 88 118 184   -33   
10,5 F4 IV   70B321F3    9 0,32 6,5 0,306 + 73 90 110 146    225  < -38       9 F4    Übliche Bitumina aus Mittelost-Rohöl, 180/200 Pen. 39 70 97 139 -18 Qualität: 

   80/100 Pen. 47 79,5 109 153,3 -17
50/60 Pen. 53 87 117 163 -14
20/30 Pen. 64,5 102 153 180   - 8    Stabilität nach Marshall
Die Stabilität Marshal bezeichnet die Kraft, unter der zylindrische Proben von Strassenbaugemischen auf Bitumenbasis eine plastische Deformation zeigen. Je grösser diese Kraft ist, desto mehr Widerstand gegen eine plastsiche Deformation besitzt die Probe. Die Stabilität nach Marshall wird gemäss ASTM D 1559 bestimmt. Die Stabilitäten von asphaltischen   Betongemi    schen 1 bis 6 sind in Tabelle IV aufgeführt. Diese Tabelle zeigt, dass die Stabilität nach Marshall erheblich mit ansteigender Menge des Blockcopolymeren im Binde mittel ansteigt.  



   Tabelle IV
Asphalt- Bindemittel Block copoly- Marshall-Stabilität beton für den merge- kg, bei
Nr. Asphaltbeton halt im
Bindemit- 45  C 60  C tel, Gew.-%
1 I 3 1150 800
2 II 5 1270 920    3    VIII 10 1470 1070
4 XII 3 2010 940
5 XIII 5 2370 1150
6 XIV 10 3000 1530 Gesenkversuche
Mit den Asphaltbetongemischen 1, 2, 3, 4 und 6 wurden Gesenkversuche durchgeführt. Zu diesem Zweck wurden Probeblöcke von 23 x 23 x 6 cm bei einer Temperatur von 20  C mit einem Gesenk eines Durchmessers von 3 cm unter einer Gesamtbelastung von 8 kg/cm2 belastet. Nach 5 Stunden wurde der Eindruck des Gesenks in die Probe gemessen, wonach die Belastung vom Gesenk entfernt und die elastische Erholungsfähigkeit gemessen wurde, bis ein konstanter Wert erhalten wurde. Die Ergebnisse der Gesenkversuche sind in Tabelle V aufgeführt.

  Die Werte in der Tabelle zeigen, dass besonders bei hohen Blockcopolymergehalten sehr erhebliche elastische Erholungswerte erhalten werden.



   Tabelle V Asphalt-   Bi4demit-    Blockco- Penetration Elastische beton tel für den polymer- Erholung Nr. Asphaltbeton gehalt, mm   O/o       Gew.- /o    1 I 3 8,7 11 2 II 5 5,0 33 3 VIII 10 3,3 67 4 XII 3 6,5 17 6 XIV 10 2,9 83
Die Asphaltbetongemische 2, 3, 5 und 6 wurden Biegeversuchen unterworfen. Hierzu wurden Probestükke von 23 x 3 x 2 cm bei verschiedenen Temperaturen in einer  Instron -Maschine mit einer konstanten Deformationsgeschwindigkeit einem Biegeversuch über 3 Punkte unterworfen. Die Asphaltbetongemische 1, 2, 3, 5 und 6 wurden Druckversuchen unterworfen. Hierzu wurden Probestücke von 10 x 3 x 3 cm in der  Instron  Maschine bei verschiedenen Temperaturen mit einer konstanten Deformationsgeschwindigkeit geprüft. Die Ergebnisse der Biege- und Druckversuche sind in den Tabellen VI und VII aufgeführt.



   Tabelle VI
Biegeversuch Asphalt- Blockcopoly- Zugfestigkeit kg/cm2 Bruchdehnung, O/o, beton mergehalt im bei bei Nr. Bindemittel,    Gew.o 00C      20       C      40     C   0 C      -20     C -40  C
2 5 49 126 108 2,5 0,090 0,063
3 10 70 150 144 12   0,38    0,102
5 5 120 120 126 0,118 0,061 0,062
6 10 150 169   1 > 61    0,470 0,109 0,088
Forts.:

  :
Steife, kg/cm2 bei Zugfestigkeit x Bruchdehnung, kg/cm2 bei    O "C -20 "C -40 OC O OC 20 C -40 0C   
2 000 125 000 200 000 1,23 0,113 0,067
100 17000   142000    8,4 1,32 0,147
102 000 198 000 210 000 0,14 0,073 0,078
32000   155000      185000    0,705 0,184 0,142  
Tabelle VII
Druckversuche Asphalt- Blockoopoly- Zugfestigkeit, Bruchdehnung, O/o, beton mergehalt bei kg/cm2 bei
Nr.

   im Bindemittel    Gew./o    60   "C    20   OC      OOC    60    C    20   OC      0      OC   
1 3 1,4 9,8 115 11,1 11,4 4,6
2 5 2,1 9,4 82 11,3 14,0 7,5
3 10 3,4 11,4 48   b0,9      13,5    14,9
5 5 2,6 37 260 10,9 10,7 1,72
16 10 4,1 39 169 10,0 12,9 3,5
Forts.:

  :
Steife, kg/cm2 Zugfestigkeit x Bruchdehnung, bei kg/cm2 bei
60   "C    20   "C      0      "C      60      "C    20   "C      0      "C   
13,5 86 2 500 0,15 1,12 5,3
19,5 56 1 120   0ss4    1,32 6,2
34,0 88 330 0,37 1,54 7,2
25 350 15 200 0,28 3,96 4,5
41 310 4 900 0,41 5,03 5,9
Die Ergebnisse aus dem Biegeversuch und dem Druckversuch zeigen, dass bei erhöhter Temperatur (60   "C)    die Zugfestigkeit mit ansteigendem Gehalt von Blockcopolymerisaten im Bindemittel ansteigt, während die Bruchdehnung praktisch unverändert bleibt. Bei niedrigen Temperaturen (-20 und   40  C)      steigen so-.   



  wohl Zugfestigkeit wie Bruchdehnung mit ansteigendem Gehalt von Blockcopolymerisaten im Bindemittel an. In allen Fällen steigt die Bruchenergie, für die das Produkt aus Zugfestigkeit und Bruchdehnung ein Mass ist, mit steigendem Blockcopolymerisat im Bindemittel an.



   Es ist ferner ersichtlich, dass mit steigendem Gehalt an Blockcopolymerisaten im Bindemittel die Steife der   Asphaltbetongemische    bei 60   "C    ansteigt und bei -20 und -40   OC    abfällt, d.   h.,    dass man von diesen As   phaltbetongemischen erwarten    kann, dass mit ansteigendem Gehalt von Blockcopolymerisat im Bindemittel nicht nur eine geringere Versprödung bei niedriger Temperatur auftritt, sondern auch eine erheblich höhere Festigkeit gegenüber einer plastischen Deformation bei hohen Strassentemperaturen zu erwarten ist.



   Ein anderer bemerkenswerter Punkt ist die Tatsache, dass bei den verwendeten geringen Temperaturen von -40   OC    erhebliche Bruchdehnungswerte erhalten werden.



     iSchliesslich    wurden einige Auffettungsversuche durchgeführt. Hiezu wurden die   Bitumenmassen    I und II und eine Bitumenkomponente aus 65,5   Gew.-O/o    B1 und 34,5   Gew.-O/o    F2 verwendet, die etwa die gleiche Penetration bei 25   OC    wie die Massen I und II hatte, wobei jedoch kein Blockcopolymeres vorhanden war.



  Aus diesen drei Bindemitteln wurden Oberflächenschichten auf kleine Flächen eines bestehenden Pflasters in einer Menge von   1,2 kg    Bindemittel je m2 aufgebracht und diese anschliessend mit Split   abgedeckt.    Ein Versuchsrad drehte sich kontinuierlich über diese Versuchsflächen über eine Dauer von 76 Stunden bei etwa 25   OC.    Anschliessend wurde die Auffettung in der Radspur abgeschätzt. Bei den Bindemitteln mit 0,3 und 5   Gew.-0/o    Blockcopolymerisat wurden die Auffettungs Indizes von 65,15 und 0 gefunden (0   =    keine Auffettung, 100 = 100   O/o    Auffettung).



  Klebstoff für synthetische Dachabdeckungsmateria   lien   
Es wurden 12 Gemische aus Bitumen und Blockcopolymerisaten gemäss der Erfindung (Masse VI und   Massen - XIX-XXIX)    durch Vermischen verschiedener Mengen des anfangs verwendeten Blockcopolymerisats mit Bitumenkomponenten aus den Propanbitumen B1, B2 und B3 und aromatischen Extrakten F3   und F4    hergestellt. Die 12 Massen wurden als Klebstoffe für synthetische Dachabdeckungsmaterialien geprüft. Zu vergleichszwecken wurden   6    andere Massen, die nicht der Erfindung entsprachen, ebenfalls als Klebstoffe für synthetische Dachabdeckungsmaterialien (Massen A' bis   F')    geprüft.



   Die Massen A' und B' sind Klebstoffe für übliche   Dachabdeckungsstoffe,    die Masse C' ist ein Produkt, das als Klebstoff von einem Hersteller für synthetische Dach   afbdeckungsstoffe    empfohlen wird und die Massen D', E' und F' sind handelsübliche Klebstoffe für synthetische   Dachabdeckungsstoffe.   

 

   Die geprüften Massen waren wie folgt zusammengesetzt: Masse A': geblasenes R 85/25-Bitumen aus einem -Mittelost-Rohöl Masse B': geblasenes R   110/30-Bitumen    aus einem   Mittelost-Rohöl    Masse C': Gummilösung aus etwa   35 ew.-0/o   
Kautschuk in einer Benzinfraktion,
Kp.   58=121     C   Masse D': -    Gemisch aus geblasenem Bitumen und Kautschuk   Masse E':    Gemisch aus 75   Gew.-teilen    Masse
A' und 25 Gew.-teilen Masse D' Masse F':

  Bitumen/Polymergemisch   Masse XIX 95   Gew.-O/o    Bitumen-Komponente    (77      Gew.- /o    B1 und 23   Gew.-O/o   
F3) und 5   Gew.-O/o    Blockcopoly mer Masse XX 90   Gew.-O/o    Bitumen-Komponente  (55   Gew.-O/o    B2   +    45   Gew.-O/o    F3) und 10   Gew.- /o    Blockcopolymer   Masse    XXI- 86   Gew.-O/o    Bitumen-Komponente  (80   Gew.-O/o    B2 + 20   Gew.-o/o    F3) und 14   Gew.-O/o    Blockcopolymer Masse XXII:

   90   Gew.-O/o    Bitumen-Komponente  (85   Gew.-O/o    B2 + 15   Gew.-O/o    F3) und 10   Gew.-O/o    Blockcopolymer Masse XXIII: 93,5   Gew.-O/o      BitumenwKomponen-    te   (66      Gew.-'0/o    B2 und 34   Gew.-O/o   
F3) und 6,5   Gew.-O/o    Blockcopoly mer Masse XXIV: 86   Gew.-O/o    Bitumen-Komponente  (52,5 Gew.-%B2 und 47,5 Gew.    O/o    F3) und 14 Gew.-%   Blookcopo-    lymer Masse XXV:

   88,5   Gew.-O/o    Bitumen-Komponen te (83,5   Gew.-O/o    B2 und 16,5    Gew.-0/o    F3) und 11,5   Gew.- /o   
Blockcopolymer Masse XXVI: 92   Gew.-O/o    Bitumen-Komponente  (64   Gew.-O/o    B2 und 36   Gew.-O/o   
F3) und 8 Gew.-% Blockcopoly mer Masse VI: 90   Gew.- /o    Bitumen-Komponente    (80 Gew.-0/o    B2 und 20   Gew.- /o   
Blockcopolymer
Masse XXVII: 93   Gew.-O/o    Bitumen-Komponente  (75   Gew.-O/o    B3 und 17,5   Gew.-O/o   
F3 und 7,5 Gew.-% F4) und 10    Gew.-"/o    Blockcopolymer
Masse XXVIII:

   93   Gew.-O/o    Bitumen-Komponente    (80    Gew.-% B3 und 14 Gew.-%
F3 und 6   Gew.- /o    F4) und 7   Gew.-       O/o    Blockcopolymer
Masse XXIX: 93 Gew.-% Bitumen-Komponente  (78   Gew.- /o    B2 und 22 Gew.-%
F3) und 7   Gew.- /o    Blockcopoly mer
Die Eigenschaften der Massen sind in den Tabellen
VIII und IX zusammengestellt. Ausser für die zulässige
Abweichung der Penetration der Bitumen-Komponente bei 25  C hinsichtlich eines gegebenen Blockcopolymer gehalts gemäss der Zeichnung (pen*) und der Adhäsion wurden die angegebenen Eingeschaften wie vorher be stimmt.

  Die Adhäsion wurde aufgrund der Abschälfe   Festigkeit    bei 25  C in kg/cm mit einem Zugfestigkeitsver such senkrecht zur Oberfläche von Proben aus synthetischen Dachabdeckungsmaterialien bestimmt, die entweder in Schichten oder auf Holz oder auf Beton geklebt waren. Hierdurch war es möglich, die geprüften Massen in vier Klebgruppen einzustufen, nämlich: Massen mit sehr schlechter Adhäsion   (       -):    Abschälfestigkeit  < 1/2 Massen mit schlechter   Adhäsion (-):      1/2      6    Abschälfestigkeit  <  1 Massen mit guter Adhästion   ( s):    1    <     Abschälfestigkeit  <  2 Massen mit sehr guter Adhäsion (+ +):

  : Abschälfestigkeit    >     2
Hinsichtlich der Heisslagerungsfähigkeit wurde beobachtet, dass die Massen XIX bis XXIX alle eine ausreichende Stabilität besassen.



   Wenn angenommen wird, dass die Massen wenigstens zum Verkleben von synthetischen Dachabdekkungsmaterialien auf flachen Dachkonstruktionen in einem mässigen Klima geeignet sein müssen,   können    die Anforderungen an solche Klebmassen wie folgt zusammengestellt werden: 1. Die Abschälfestigkeit muss grösser oder gleich
1 kg/cm2 hinsichtlich der Adhäsion sein.



  2. Der Bruchpunkt nach Fraass muss kleiner oder gleich -10  C sein in Zusammenhang mit der Flexi bilität bei niedriger Temperatur.



  3. Der Erweichungspunkt nach der Ring- und   Kugelme-    thode muss grösser oder gleich 85  C sein in Zusam menhang mit der Fliessfähigkeit bei hohen Tempera turen.



  4. Die Viskosität soll 2000 cSt bei einer Temperatur kleiner oder gleich   180 0C    sein in Zusammenhang mit der Verarbeitbarkeit.



  5. Es muss eine ausreichende Stabilität während der
Heisslagerung gewährleistet sein in Zusammenhang mit der Tatsache, dass die Produkte häufig ziemlich lange Zeit bei hohen Temperaturen gelagert wer den.



   6. Die Penetration bei 25  C muss grösser oder gleich
100 sein, bezüglich der Härte.



   Die in den folgenden Tabellen VIII und IX zusammengestellten Werte zeigen, dass alle Massen A' bis F' diese Mindestanforderungen in einem oder mehreren Punkten nicht erfüllen. Insbesondere sind sie bezüglich der Klebeeigenschaften nicht geeignet. Die Massen VI und XIX bis XXIX haben eine angemessene Heisslagerungsstabilität und zeigen eine zufriedenstellende Adhäsion. Von diesen Massen sind jedoch nur die Massen VI und XXIV' bis XXIX überlegen, weil sie allen anderen Anforderungen ebenfalls entsprechen.  



   Tabelle VIII
Masse Block- Eigenschaften der Bitumen- Eigenschaften der Massen
Nr.   oopoly-    komponente im   Bitumen/Blook-    merge- copolymer-Gemisch halt, P, fa fa * Penetra-   Pentra-    Penetra- Erwei- Bruch- Visko- Adhäsion
Gew.-% Gew.- tion tion tion bei chungs- punkt sität Athen-Propen  % bei 0,1 mm   25  C,    punkt Fraass, von Kautschuk
25  C, 0,1 mm (R & )  C 2000 auf   Athen-   
0,1 mm bei  C cSt Propen    bei 0C Kautschuk   
A' 21 86,5 -22 150 -    abt.    30   abt.

   110      abt.-28      abt.180    -
C'
D' 100 91    --   
E' 31 86,5 -
F' 47 73,5 - XIX 5 2,6   Oy38    0,290 50 43 76 -6 125 + + XX 10 4,0 0,32 0,296 400 47-280 200 86    < -38    140   +    XXI 14 5,8 0,35 0,303 65 350-510 40 108  < -30 200   +    XXII 10 6,1 0,36 0,304 40 47-280 40 100 -5 165 + XXIII 6,5   4,8    0,33 0,299 150 65 98 75   -20    130 + XXIV 14 3,8 0,32 0,295 500 350-510 95 95    < -38    178 + XXV 11,5 6,0 0,36 0,304 45 41-350 35 105 -15 175   +    XXVI 8 4,6 0,33 0,298 200 56-210 95 86 -20 135 + VI 10 5,8 0,35 0,303 65 47-280 46 95 -15 161 + + XXVII 10 7,1 0,32 0,308 90 47-280 54 98 -20 155   +    

    XXVIII 7 7,5 0,32 0,310 65 62-110 52 92   -10    150   +    XXIX 7 5,6 0,35 0,302 65 62-110 54 88   10    135   +   
Tabelle   IX   
Adhäsion
Masse Butylkautschuk Polyvinyl- Athen-Propen- Athen-Propen- Polyvinyl
Nr. auf Butylkautschuk chlorid auf Kautschuk Kautschuk auf chlorid auf
Polyvinyl- auf Holz Beton * auf Holz chlorid
XIX +    ++ ++ + ++   
VI   ++    ++ ++ +
XXVII + +   +    + +
XXVIII   +      +      +      +    +
XXIX + + +   +    +
Grundierung des Betons mit 50 %iger Lösung derMasse in Toluol 

Claims (1)

  1. PATENTANSPRUCH Bitumenhaltige Massen mit einem Zusatz eines elastomeren Polymerisats, gekennzeichnet durch einen Gehalt von a) mehr als 85 Gew.-% einer Bitumenkomponente, deren Aromatengehalt, ausgedrückt als Bruchteil aroma- tischer Kohlenstoff der Maltenphase von n-Heptan (fa), mehr als 0,004 x P + 0,280 beträgt, wobei P den Gehalt von Asphaltenrückstand in n-Heptan bezeichnet, sowie von b) weniger als 15 Gew.-% eines Blockcopolymerisats der allgemeinen Formel A-B-A, in der beide A gleiche oder verschiedene, thermoplastische, nicht-elastomere Polymerisatblooks bedeuten, die durch Polymerisation von einer oder mehreren monovinylaromatischen Verbindungen erhalten worden sind und B einen elastomeren Polymerblock darstellt,
    der entweder durch Polymerisation von einem oder mehreren konjugierten Dienen oder durch Copolymerisation von einem oder mehreren konjugierten Dienen mit einer oder mehreren monovinylaromatischen Verbindungen erhalten worden ist und gegebenenfalls ganz oder teilweise hydriert ist.
    UNTERANSPRÜCHE 1. Bitumenhaltige Masse nach Patentanspruch, gekennzeichnet durch einen Aromatengehalt der Bitumenkomponente, ausgedrückt als Bruchteil aromatischer Kohlenstoff der n-Heptan-Maltenphase fa) von weniger als 0,004 x P + 0,310, wobei P dentGehalt von Asphaltenrückstand in n-Heptan bezeichnet.
    2. Bitumenhaltige Massen nach Patentanspruch, dadurch gekennzeichnet, dass die Bitumenkomponente ein Gemisch aus einem Propanbitumen und einem aromatischen Extrakt eines schweren Schmieröls ist.
    3. Bitumenhaltige Massen nach Patentanspruch, dadurch gekennzeichnet, dass das Blockcopolymerisat A B-A ein Molekulargewicht des thermoplastischen Polymerblocks A von 7 500 bis 100 000, insbesondere von 10 000 bis 50 000 hat.
    4. Bitumenhaltige Massen nach Patentanspruch, dadurch gekennzeichnet, dass das Blockcopolymerisat A B-A ein Molekulargewicht des elastomeren Polymerblocks B von 25 000 bis 1 000 000, insbesondere von 35 000 bis 150 000 hat.
    5. Bitumenhaltige Massen nach Patentanspruch, dadurch gekennzeichnet, dass in den Blockcopolymerisaten die Menge der thermoplastischen Polymerblocks A 10 bis 70 Gew.-0/o, insbesondere 20 bis 50 Gew.-O/o beträgt 6. Bitumenhaltige Massen nach Patentanspruch, dadurch gekennzeichnet, dass das Blockcopolymerisat den Aufbau Polystyrol - Polybutadien - -Polystyrol hat.
    7. Bitumenhaltige Massen nach Patentanspruch, insbesondere für Strassenbauzwecke, dadurch gekennzeichnet, dass der Gehalt an Blockcopolymerisat unter 10 Gew./o ibeträgt und die Penetration der Bitumentkom- ponente bei 25 OC zwischen 50 und 500 liegt.
    8. Bitumenhaltige Massen nach Unteranspruch 7, gekennzeichnet durch einen zusätzlichen Gehalt von 10 bis 30 Gew.O/o der Gesamtmischung eines flüchtigen organischen Lösungsmittels mit einem Aromatengehalt über 30 Gew.- /o.
    9. Bitumenhaltige Massen nach Patentanspruch, für die Verwendung als Klebstoffe für synthetische Dachabdeckungsmaterialien, dadurch gekennzeichnet, dass der Blockcopolymerisatgehalt zwischen 6,5 und 14,5 Gew. "lo und die Penetration der Bitumenkomponente bei 25 OC zwischen 40 und 550 schwankt, wobei die Massen in den Bereich fallen, der durch ein Viereck ABCD begrenzt ist, das die folgenden Koordinate besitzt: A (7,6; 200), B 14,5; 550), C (11,6 40) und D (6,5; 65), wobei die Y-Achse die Penetration der Bitumenkomponente in logarithmischem Massstab bei 25 "C und die X-Achse den Blockcopolymerisatgehalt der Masse darstellen.
    10. Bitumenhaltige Massen nach Unteranspruch 9, dadurch gekennzeichnet, dass der Gehalt an Blockcopolymerisat 10,0 bis 12,5 Gew.-O/o beträgt und die Bitumenkomponente eine Penetration bei 25 OC zwischen 40 und 85 hat.
    11. Bitumenhaltige Massen nach Unteranspruch 9, dadurch gekennzeichnet, dass der Gehalt an Blockcopolymerisat 10,5 bis 14,5 Gew.-O/o beträgt und die Bitumenkomponente eine Penetration von 25 0C zwischen 250 und 550 hat.
    12. Bitumenhaltige Massen nach Unteransprüchen 9-11, gekennzeichnet durch einen zusätzlichen Gehalt von 30 bis 60 Gew.-O/o der Gesamtmischung eines flüchtigen organischen Lösungsmittels mit einem Aromatengehalt über 30 O/o.
CH1322169A 1968-09-03 1969-09-01 Bitumenhaltige Masse CH527247A (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB4176468 1968-09-03
GB671669A GB1201135A (en) 1968-09-03 1969-02-07 Bitumen-polymer compositions

Publications (1)

Publication Number Publication Date
CH527247A true CH527247A (de) 1972-08-31

Family

ID=26240907

Family Applications (1)

Application Number Title Priority Date Filing Date
CH1322169A CH527247A (de) 1968-09-03 1969-09-01 Bitumenhaltige Masse

Country Status (11)

Country Link
JP (1) JPS515005B1 (de)
AT (1) AT298325B (de)
BE (1) BE738281A (de)
CH (1) CH527247A (de)
DE (1) DE1944337C3 (de)
DK (1) DK149959C (de)
FI (1) FI49728C (de)
FR (1) FR2017264A1 (de)
NL (1) NL160313C (de)
NO (1) NO126135B (de)
SE (1) SE362257B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074348A1 (de) * 2007-12-12 2009-06-18 Taieb Marzouki Verfahren zum transport von destillationsbitumen und eine bitumenmischung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL182969C (nl) * 1974-08-27 1988-06-16 Shell Int Research Werkwijze ter bereiding van bitumineuze composities.
JPS5311608U (de) * 1976-07-12 1978-01-31
FR2376188A1 (fr) * 1976-12-28 1978-07-28 Elf Union Procede de preparation de compositions de bitumes polymeres
LU79192A1 (fr) * 1977-04-04 1978-06-28 Polytec Sprl Compositions a base de bitume
US4172061A (en) * 1977-09-30 1979-10-23 Phillips Petroleum Company Asphaltic concrete compositions comprising hydrogenated diene/vinyl aromatic copolymers
NL190562C (nl) * 1978-07-04 1994-04-18 Shell Int Research Vezelachtige vloerbedekking.
JPS597287U (ja) * 1982-07-06 1984-01-18 日立工機株式会社 圧縮機
JPS597288U (ja) * 1982-07-06 1984-01-18 日立工機株式会社 圧縮機
FR2592411B1 (fr) * 1985-12-26 1988-02-12 Rhone Poulenc Fibres Perfectionnement au procede et moyen pour la protection des revetements des chaussees contre l'amorcage des fissurations
FR2630451B1 (fr) * 1988-04-25 1992-02-21 Colas Sa Procede d'obtention de bitumes renfermant au moins un elastomere et produits obtenus
US5256712A (en) * 1988-04-25 1993-10-26 Colas, Societe Ainonyme Process for obtaining bitumens containing at least one elastomer and products obtained
FR2643643B1 (fr) * 1989-02-27 1992-10-30 Mobil Oil France Compositions utilisables pour la preparation de membranes d'etancheite et membranes obtenues
IT1276891B1 (it) * 1994-12-01 1997-11-03 Euron Spa Procedimento per la preparazione di miscele stabili di bitume e di polimero

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT277042B (de) * 1967-02-15 1969-12-10 Shell Int Research Modifizierte asphaltische Bitumenmasse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074348A1 (de) * 2007-12-12 2009-06-18 Taieb Marzouki Verfahren zum transport von destillationsbitumen und eine bitumenmischung
US8841365B2 (en) 2007-12-12 2014-09-23 Bertram Haupt Method for transporting straight run bitumen, and bitumen mixture

Also Published As

Publication number Publication date
FI49728C (fi) 1975-09-10
DK149959B (da) 1986-11-03
AT298325B (de) 1972-05-10
DE1944337B2 (de) 1973-06-28
DK149959C (da) 1987-07-06
NL160313B (nl) 1979-05-15
NO126135B (de) 1972-12-27
FI49728B (de) 1975-06-02
NL160313C (nl) 1979-10-15
BE738281A (de) 1970-03-02
NL6913299A (de) 1970-03-05
SE362257B (de) 1973-12-03
FR2017264A1 (en) 1970-05-22
DE1944337A1 (de) 1970-04-23
DE1944337C3 (de) 1974-04-04
JPS515005B1 (de) 1976-02-17

Similar Documents

Publication Publication Date Title
DE602005002550T2 (de) Polymermodifizierte bitumenzusammensetzung zur verwendung in asphaltbindern oder dachabdeckungsmassen
DE2537811C2 (de)
DE3700100C1 (de) Fluessige,Ioesungsmittelfreie oder Ioesungsmittelarme,haertbare Polyurethan-Bitumen-Weichmacher-Einkomponenten-Zusammensetzung,Verfahren zu deren Herstellung und deren Verwendung
US4196115A (en) Blends of different conjugated diene/monovinyl aromatic copolymers in bituminous based roofing and waterproofing membranes
US5336705A (en) Polymer-modified, oxidized asphalt compositions and methods of preparation
CH527247A (de) Bitumenhaltige Masse
EP1696002A1 (de) Bitumenmassen umfassend Öle und/oder Fette sowie Wachse
DE1594796A1 (de) Dachbelagmasse auf der Grundlage von asphaltartigem Bitumen
DE2206931C2 (de) Verfahren zur Herstellung einer wässrigen bitumenhaltigen Emulsion
DE602005006022T2 (de) Gefüllter bitumenmastix auf basis von thermoplastischem harz
DE2157810C2 (de) Bituminöse Massen zur Verwendung als bei leichter Druckeinwirkung selbstklebende Schicht
EP0205769B1 (de) Verfahren zur Herstellung einer bituminösen Masse und ihre Verwendung
DE2245962C3 (de) Verfahren zur Herstellung elastifizierter bituminöser Mischungen
DE10393941B4 (de) Bituminöse Zusammensetzungen
DE1948105B2 (de) Dichtungsmasse
DE602004005568T2 (de) Gefärbte Filzprodukte als Dachabdeckung
DE3521597A1 (de) Bituminoese masse und ihre verwendung
CA1321276C (en) Asphalt composition
DE2503782C3 (de) Thermoplastische bituminöse Masse
DE10330820B4 (de) Polymermodifiziertes Bitumen mit verbesserter Rückverformung und Asphaltstrassendecken dieses umfassend
DE2043864C3 (de) Verwendung einer thermoplastischen Masse als Bindemittel für den Bau von Verkehrsflächen
DE69921072T2 (de) Modifizierte Bitumenbindemittel mit hoher Kohäsion und ihre Verwendung
EP0872334B1 (de) Bitumenschweissbahn zur Abdichtung von Brückenbauwerken, Parkdecks od.dgl.
DE112004000706T5 (de) Färbbare Zusammensetzung
DE10013465A1 (de) Polyolefinabbauwachs aus Recyclingkunststoffen zur verbesserung der Eigenschaften von Bitumen und Asphalt im Straßenbau

Legal Events

Date Code Title Description
PL Patent ceased