CH329742A - Method for forming a coating layer on a surface of a workpiece, and apparatus for carrying out this method - Google Patents
Method for forming a coating layer on a surface of a workpiece, and apparatus for carrying out this methodInfo
- Publication number
- CH329742A CH329742A CH329742DA CH329742A CH 329742 A CH329742 A CH 329742A CH 329742D A CH329742D A CH 329742DA CH 329742 A CH329742 A CH 329742A
- Authority
- CH
- Switzerland
- Prior art keywords
- particles
- barrel
- sub
- mixture
- valve
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 30
- 239000011247 coating layer Substances 0.000 title claims description 16
- 239000002245 particle Substances 0.000 claims description 45
- 239000007789 gas Substances 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 30
- 238000005474 detonation Methods 0.000 claims description 23
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 15
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 15
- 230000001590 oxidative effect Effects 0.000 claims description 15
- 239000000446 fuel Substances 0.000 claims description 14
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 239000011261 inert gas Substances 0.000 claims description 7
- 239000002360 explosive Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 239000007800 oxidant agent Substances 0.000 claims description 2
- 230000001902 propagating effect Effects 0.000 claims description 2
- 238000010926 purge Methods 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 29
- 229910052782 aluminium Inorganic materials 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 7
- 229910017052 cobalt Inorganic materials 0.000 description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 206010016754 Flashback Diseases 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- MEOSMFUUJVIIKB-UHFFFAOYSA-N [W].[C] Chemical compound [W].[C] MEOSMFUUJVIIKB-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- JPNWDVUTVSTKMV-UHFFFAOYSA-N cobalt tungsten Chemical compound [Co].[W] JPNWDVUTVSTKMV-UHFFFAOYSA-N 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/0006—Spraying by means of explosions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/06—Jet mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/18—Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/06—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves
- B21D26/08—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves generated by explosives, e.g. chemical explosives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/004—Filling molds with powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C5/00—Devices or accessories for generating abrasive blasts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B1/00—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
- B30B1/001—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by explosive charges
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/06—Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/126—Detonation spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/129—Flame spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K7/00—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
- F02K7/02—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A1/00—Missile propulsion characterised by the use of explosive or combustible propellant charges
- F41A1/04—Missile propulsion using the combustion of a liquid, loose powder or gaseous fuel, e.g. hypergolic fuel
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/25—Metals
- C03C2217/263—Metals other than noble metals, Cu or Hg
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/17—Deposition methods from a solid phase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/72—Processes of molding by spraying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/937—Sprayed metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
- Y10T428/12063—Nonparticulate metal component
- Y10T428/12139—Nonmetal particles in particulate component
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Metallurgy (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fluid Mechanics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Nozzles (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
Procédé pour former une couche de revêtement sur une surface d'une pièce, et appareil pour la mise en aeuvre de ce procédé Le présent breveta pour objet un procédé pour former une couche de revêtement sur une surface d'une pièce, qui est caractérisé en ce qu'on enflamme une charge explosive formée au moins pour sa plus grande partie, en vo lume, de gaz, et apte à détoner, dans un long canon dirigé vers la surface à revêtir de ladite pièce, de manière à produire une onde de dé tonation que l'on fait agir sur des particules introduites dans l'espace parcouru par l'onde de détonation se propageant vers ladite surface, de manière que lesdites particules soient pro jetées sur cette surface et y forment la couche de revêtement.
Le brevet a également pour objet un ap pareil pour la mise en aeuvre de ce procédé, qui est caractérisé en ce qu'il comporte un canon, des moyens pour faire arriver dans le canon un mélange d'un combustible fluide et d'un gaz oxydant ainsi que lesdites particules, et un dispositif d'allumage de ce mélange dans le canon. Le dessin représente, à titre d'exemple, une forme d'exécution et des variantes de l'appareil selon l'invention, pour la mise en oeuvre de formes d'exécution, également données à titre d'exemple, du procédé selon l'invention. La fig. 1 représente, en partie schématique ment, cette forme d'exécution.
La fig. 2 représente une première variante. La fig. 3 représente, également en partie schématiquement, une seconde variante. La fig. 4 est une élévation latérale, aussi en partie schématique, d'une troisième va riante ; et la fig. 5 est une microphotographie à un grossissement de 300 fois d'une couche de re vêtement, constituée en une matière contenant du carbure de tungstène et du cobalt, déposée sur une pièce en acier au moyen d'une forme d'exécution du procédé suivant l'invention. Les mêmes numéros de référence dési gnent des parties correspondantes sur les dif férentes figures.
Dans l'appareil représenté à la fi-.<B>1,</B> on fait arriver un gaz combustible, par exemple l'acétylène, par un tuyau 10, et un gaz oxy dant, par exemple de l'air ou de l'oxygène ou un mélange d'air et d'oxygène par un tuyau 11, dans une chambre de mélange 12 dans laquelle les deux gaz forment une charge gazeuse déto nante qui arrive par un court tuyau de com munication 13 dans une chambre d'allumage 14, comportant une bougie d'allumage par étincelles 15, que comprend un canon 16. L'étincelle de la bougie d'allumage 15 en- flamme la charge en formant une onde de dé tonation qui se propage dans le canon 16 et sort par son extrémité ouverte.
L'étincelle de la bougie d'allumage 15 est produite par une bobine d'allumage 17, une batterie 18 et un rupteur 19 à came. La fréquence des étincel les est réglable, un moteur à vitesse variable 20 faisant tourner la came du rupteur 19.
Des particules de matière solide sont entraî nées en suspension dans le gaz oxydant arri vant par le tuyau 11, ou bien dans le gaz com bustible. Les particules sont chauffées et accé lérées par les ondes de détonation et sont pro jetées à grande vitesse par l'extrémité ouverte du canon 16.
Dans la variante de la fig. 2, les particu les sont introduites dans le tuyau d'admission 11 du gaz oxydant, en provenance d'un réser voir 21 à débit réglé par un robinet 22. Un tuyau 23 d'égalisation de la pression part d'un point situé en amont de l'endroit 24 d'intro duction des particules de poudre et aboutit dans l'espace situé au-dessus de la poudre dans le réservoir 21. Pour réaliser un mélange in time du gaz combustible avec le gaz oxydant, on fait arriver le premier gaz dans la chambre de mélange 12 de deux côtés opposés par des tuyaux 10 et 10a. On favorise la formation des ondes de détonation en donnant à la petite chambre d'allumage 14a une forme conique.
Dans la variante de la fig. 3, l'introduction dans la chambre de mélange des gaz, par exemple l'oxygène et l'acétylène, est comman dée par des soupapes 25 commandées de la manière habituelle par un moteur 26 et une came 27 pour obtenir la fréquence qu'on dé sire de l'ouverture et de la fermeture des soupapes. Un raccord 28 en T entre la chambre d'allumage 14 et l'extrémité ouverte du canon 16 comporte un tuyau d'admission qui sert à introduire dés particules de la poudre. On a aussi appliqué des couches en introduisant la poudre entre l'extrémité ouverte du canon et la pièce.
La variante de la fig. 4 est semblable à celle de la fig. 3, sauf qu'on introduit dans le canon un gaz inerte tel que l'azote par un tuyau 29, par l'intermédiaire d'une soupape 31, de façon à purger la chambre de mélange et à protéger ainsi les, soupapes. La soupape 31 est commandée par une seconde came 32 montée sur un arbre à cames 33 entraîné par une minuterie automatique 26 et construite et disposée par rapport à la came 27 et par rap port à une came 34 de réglage de l'allumage de façon à réaliser la succession des opéra tions minutées suivantes 1. La came 27 ouvre simultanément les sou papes 35 et 37 de façon à admettre le gaz combustible et le gaz oxydant dans la cham bre de mélange (avec ou sans particules de poudre). 2.
La came 27 permet aux soupapes 35 et 37 de se fermer. 3. Aussitôt que les soupapes 35 et 37 sont fermées, la came 32 ouvre la soupape 31 qui fait arriver l'azote gazeux inerte dans la chambre de mélange. L'azote gazeux passe sur les soupapes 35 et 37 de façon à diluer les fuites éventuelles par ces sou papes susceptibles de provoquer un retour de flamme sous l'effet de la détonation du mélange.
4. Aussitôt que la soupape d'azote 31 s'ouvre, et pendant qu'elle reste ouverte, la came 34 ferme le circuit primaire de la bobine d'allumage 17 et, par suite, fait jaillir l'étincelle dans la bougie d'allumage 15.
5. Une fois la détonation produite, l'azote passant par la soupape 31 ouverte pénètre dans le canon pour en chasser les produits chauds de la combustion et forme une zone de protection entre eux et la charge sui vante du mélange combustible.
6. La came 32 permet alors à la soupape d'azote 31 de se fermer et le cycle est prêt à recommencer par la réouverture des soupapes 35 et 37 pour former le mélange combustible suivant. Le canon 16 doit avoir une longueur suf fisante. Si le canon est trop court, le mélange de gaz, une fois allumé, ne forme pas d'onde de détonation. On a obtenu des résultats sa tisfaisants avec un tube de 25 mm de dia mètre intérieur et une longueur comprise entre 38 cm et 3 m. Les meilleurs résultats ont été obtenus avec des canons d'un diamètre inté rieur de 25 mm et une longueur comprise entre 1 et 2 m. Avec un tube de 13 mm de dia mètre intérieur, la longueur peut être de 20 cm avec certains mélanges de gaz, mais une lon gueur de 3 m convient mieux d'une manière générale.
Le refroidissement par l'air du canon 16 est généralement satisfaisant. Si, dans certains cas particuliers d'utilisation du dispositif, par exemple lorsqu'on emploie d'une manière pres que continue des mélanges d'oxygène et d'acé tylène, on constate que le canon devient trop chaud, on peut le refroidir par circulation d'eau.
Les appareils des fig. 1 et 2 fonctionnent sans soupapes dans les tuyaux à gaz. Le gaz oxydant et le gaz combustible doivent arriver dans ces appareils à la même pression, pour atténuer le risque des retours de flamme. On peut introduire un pare-feu ordinaire dans le tuyau d'arrivée du combustible, pour augmen ter la sécurité.
On peut employer outre des combustibles gazeux des combustibles liquides tels que de l'essence ou des combustibles solides, tels que du charbon pulvérisé, mis en suspension sous forme de poussières dans un gaz comburant. Les combustibles gazeux qui conviennent le mieux sont l'acétylène, l'hydrogène, le pro pane, le butane, le pentane et l'éthylène.
La température de l'onde de détonation .ob tenue avec les appareils décrits est élevée et atteint 2800 C pour certains mélanges. Mais on peut opérer de façon qu'une grande partie de la chaleur se dissipe avant que les particules rencontrent la pièce et, par suite, l'application d'une couche sur la pièce ne donne lieu qu'à une faible élévation de température de cette pièce. Il n'y a donc pas, dans ce cas, de dé formation de la pièce par la chaleur. Il serait d'ailleurs facile de rendre inoffensif un chauf fage éventuel de la pièce en interrompant de temps en temps les opérations pour laisser la pièce se refroidir, ou en dirigeant sur elle un courant d'un fluide de refroidissement, par exemple un courant d'air.
On peut aussi re froidir la pièce extérieurement en l'arrosant avec un liquide sous forme de pluie ou de brouillard, de même qu'on peut la refroidir à l'intérieur avec de l'eau si elle est creuse. Dans une forme d'exécution particulière, on peut ap pliquer et fixer des particules et matières telles que du carbure de tungstène, sur la surface d'une pièce d'un coefficient de dilatation calo rifique sensiblement différent, tel que l'acier, en refroidissant la pièce de la manière décrite ci-dessus.
On peut régler le débit des gaz de façon à remplir exactement le canon par le mélange pendant le temps qui s'écoule entre les allu mages. Le débit peut cependant être moindre.
La fréquence des détonations est un fac teur dont dépend le fonctionnement efficace des appareils décrits. Lorsqu'il s'agit de for mer un dépôt mince sur une surface peu éten due, une seule détonation peut suffire. Ainsi, en opérant à l'aide de l'un quelconque des ap pareils représentés, on a formé, par une seule détonation, une couche de revêtement de 12,
5 microns d'épaisseur sur une surface d'acier d'un diamètre de 25 mm en employant un mé lange gazeux acétylène-air à 7-13 0/0 d'acé tylène et des particules d'une matière composée de carbure de tungstène et de 9 % de cobalt, les particules ayant moins de 50 microns. Plu sieurs détonations par seconde sont générale ment nécessaires pour appliquer des couches plus épaisses ou pour recouvrir rapidement des surfaces plus étendues.
Par exemple, pour for mer des couches de revêtement composées de carbure de tungstène et de cobalt sur divers outils et pièces, avec un canon d'un diamètre de 25 mm et d'une longueur d'environ 1,5 m au moyen d'un mélange détonant d'oxygène et d'acétylène, on a obtenu des résultats très sa tisfaisants avec une fréquence de détonation d'environ 4 par seconde, quoiqu'on ait aussi obtenu des résultats satisfaisants avec une fré- quence de 7,8. Pour obtenir une couche de revêtement d'aluminium au moyen d'un mé lange détonant d'air et d'acétylène, on peut utiliser une fréquence de 40 par seconde, quoi qu'on ait aussi obtenu des résultats satisfaisants avec une fréquence atteignant 70.
Lorsque la fréquence dépasse 7,8 avec un mélange d'oxy gène et d'acétylène, et 70 avec un mélange d'air et d'acétylène, le canon a tendance à se surchauffer et des retours de flamme et une combustion continue .ont tendance à se pro duire.
Le débit des particules de poudre intro duites dans les appareils décrits n'a pas une valeur particulièrement critique, sauf qu'il exerce une influence sur les conditions écono miques de l'opération, c'est-à-dire sur le prix de revient et la rapidité de la formation d'une couche donnée. Un débit de 4,5 kg de poudre par heure paraît être celui qui convient le mieux à la formation d'une couche de bonne qualité, de dureté maximum, avec. un débit de 5,1 ms/h d'acétylène, d'oxygène et d'azote (servant à entraîner la poudre et à protéger des soupapes) dans un appareil tel que celui de la fig. 4, pourvu d'un canon de 25 mm de diamètre inté rieur avec une fréquence de détonation de 4,3 par seconde.
Des débits ne dépassant pas 0,25 kg de poudre par heure ou atteignant 11 kg par heure ont, par exemple, donné des résultats satisfaisants avec des particules de carbure de tungstène d'une grosseur inférieure à 44 microns.
On peut employer pour la formation de couches de revêtement au moyen des appa reils décrits un grand nombre de métaux, allia ges, composés métalliques, matières plastiques, céramiques et minérales. Les pièces à pour voir d'un revêtement peuvent être en métal, verre, bois, tissu, papier, ou en matière plas tique, par exemple. La surface sur laquelle doit être appliquée la couche peut se trouver à une faible distance de l'extrémité du canon, comprise, par exemple, entre 13 mm et 25 cm. Par exemple, une pièce à recouvrir d'une cou che de revêtement de carbure de tungstène est disposée généralement à une distance d'environ 7,5 cm de l'extrémité du canon.
Les appareils décrits ont permis, par exem ple, d'appliquer sur une surface de verre lisse des couches de qualité satisfaisante d'alumi nium, cuivre, laiton, étain, plomb, zinc et ma gnésium. Au moyen des procédés décrits, on a appliqué avec succès des couches de cuivre et de zinc sur l'aluminium, des couches d'alu minium et de nickel sur le carbone, d'alumi nium sur une toile métallique en acier inoxy dable à ouverture de mailles de 0,25 mm, d'aluminium sur du papier, d'aluminium, cui vre, magnésium, nickel et étain sur du bois, d'aluminium sur un métacrylate, d'étain, alu minium, molybdène, cuivre, tungstène, car bure de tungstène, acier inoxydable austéni- que, chrome, alliage de cobalt, chrome et tungstène,
alliage de nickel et de molybdène, carbure de bore, et porcelaine frittée sur l'acier, et de carbure de tungstène sur des bri ques réfractaires. Les appareils décrits permet tent aussi d'opérer avec des particules de di verses matières. Par exemple, on peut fabri quer une plaque de friction en utilisant un mé lange de particules d'un métal tel que l'alumi nium et de particules d'une substance dure telle que l'alumine, et en formant avec ce mélange une couche de revêtement sur un support d'acier, cette couche comprenant des particu les d'alumine dans une masse d'aluminium. On peut former sur l'acier une couche de revête ment en utilisant un mélange de particules de fer, de chrome et de nickel pour le rendre ré sistant à la corrosion et à l'usure.
II peut être avantageux parfois d'ajouter aux particules destinées à former la couche de revêtement des particules d'un fondant non métallique pour améliorer l'adhérence de la couche.
En général, les particules de substances à bas point de fusion, au-dessous de 700 C, tel les que l'étain, le plomb, le zinc, l'aluminium et le magnésium, peuvent être plus grosses, par exemple atteindre 150 microns, et celles des substances à point de fusion plus élevé, au-dessus de 1000 C, telles que le chrome, le tungstène et le carbure de tungstène, donnent les meilleurs résultats lorsque leur grosseur est inférieure à 50 microns environ, en formant des couches adhérentes, dentes. Mais ces limi- tes de grosseurs n'ont pas une valeur critique, par exemple on a obtenu d'excellents résultats avec une poudre de cuivre en particules de 12 à 32 microns, pour recouvrir l'aluminium,
de même qu'on a appliqué avec succès sur une pièce métallique une couche de revêtement en utilisant des particules d'une matière compo sée de carbure de tungstène et de cobalt d'une grosseur atteignant 74 microns.
En employant des particules d'aluminium de dimensions inférieures à 44 microns, on a formé en une minute et demie, sur une surface d'acier décapée, à une distance d'environ 5 cm de l'extrémité ouverte d'un canon de 25 mm de diamètre et à une fréquence de détonations d'un mélange d'air et de 101% d'acétylène d'environ 30 cycles par seconde, une couche de 0,43 mm d'épaisseur et d'un diamètre de 3,5 cm. Cette couche est sensiblement imper méable.
Au moyen des procédés décrits, on peut former une couche de cuivre ou autre métal se soudant facilement sur des substances telles que le verre, la porcelaine, le bois, les matiè res plastiques, ou l'aluminium, qui ne se sou dent pas ou ne se soudent que difficilement, et il est facile de souder ensuite les substances ainsi recouvertes pour former un joint.
On a recouvert un ruban en papier d'une couche d'aluminium, en faisant avancer lente ment le ruban devant la bouche du canon pour l'empêcher de se carboniser. Dans les deux cas, la charge explosive était un mélange d'air et d'acétylène.
Dans une forme d'exécution du procédé, on peut utiliser des particules d'un produit con tenant du carbure de tungstène, de dimensions inférieures à 50 microns, comprises générale ment entre 10 et 40 microns, le produit con- tenant, outre le tungstène,
environ 9 % de co- balt et 4 % de carbone. On fait arriver ces particules avec un débit d'environ 4,5 à 6,75 kg/h dans un appareil tel que celui de la fig. 4, ayant un canon d'environ 1,5 m de lon gueur et 0,25 mm de diamètre intérieur.
On fait arriver l'acétylène et l'oxygène en propor tions d'environ 1 volume du premier pour 1 à 2 volumes du second, avec un débit moyen d'environ 10,2 m3/h du mélange. Le débit moyen d'azote est d'environ 5,1 m3/h. La fré quence d'allumage est d'environ 4/sec. On dis pose une surface décapée de fer ou d'acier doux ou dur, par exemple d'acier à outils, de préférence granitée, par exemple, au jet de sable, ou recouverte d'une couche mince d'un métal tel que le cuivre, le nickel ou le cobalt, sur une épaisseur de 6 à 12 microns, par exem ple, à une distance d'environ 7,5 cm de l'ex trémité ouverte du canon.
De cette façon, on peut obtenir une couche dense, adhérente, d'un produit contenant du carbure de tungstène, d'une épaisseur de 0,5 mm à une vitesse d'en viron 6,5 cm2/min. On peut appliquer des cou ches plus minces ou beaucoup plus épaisses en faisant varier la durée de l'application.
La fig. 5 représente, à titre d'exemple, avec un grossissement de 300 fois, l'aspect d'une couche<I>WC</I> d'une matière composée de car- bure de tungstène et de 9 1% de cobalt, déposée par le procédé décrit sur un support en acier S. On a poli l'échantillon représenté, puis on lui a fait subir une attaque anodique par l'acide chromique, suivie d'une attaque par le permanganate de potassium.
La couche obtenue a une structure à grains fins, denses, en lamelles, se composant de cou ches mixtes de carbure de tungstène<I>WC,</I> de carbure complexe de cobalt et de tungstène et d'une faible quantité de carbure de tungstène secondaire W2C. La couche est formée de la melles minces se recouvrant, d'un diamètre beaucoup plus grand que leur épaisseur.
Le poids spécifique apparent de la couche de carbure de tungstène de l'exemple repré senté est à peu près identique à celui du pro duit solide coulé, c'est-à-dire de 14,5 g/cm#3. La porosité est inférieure à 1 %. L'adhérence de la couche sur le support est excellente, ainsi que le démontre le fait qu'il est possible d'en lever à la meule la substance de la couche jusque et à travers l'interface sans que la cou che s'écaille aux bords. Si la surface de base consiste en une tôle mince, on peut la plier sans que la couche s'écaille, quoiqu'elle se cri que probablement.
La dureté à l'échelle Vickers est au moins égale à 1100. La surface de la couche est lisse et mate et peut recevoir un beau poli par des opérations normales de rectification et de polissage.
Les propriétés de cette couche la rendent susceptible de former les surfaces de pièces telles que les tiges de noyau d'emboutissage et de frappe des monnaies, les broches de brunis sage, les calibres de tolérance, les mâchoires de concasseurs, les rondelles et plaques de gar niture des arbres, les contacts électriques, les alésoirs, les dents de scies, les lames de cou teaux, les guide-fil des textiles, les sièges et têtes de soupapes et les surfaces de portée. Pour fabriquer certains contacts électriques au moyen des procédés décrits, il peut être avan tageux d'utiliser des particules d'un métal de forte conductibilité tel que l'argent.
Method for forming a coating layer on a surface of a part, and apparatus for carrying out this method The present patent relates to a method for forming a coating layer on a surface of a part, which is characterized by that one ignites an explosive charge formed at least for its major part, in volume, of gas, and capable of detonating, in a long barrel directed towards the surface to be coated of said part, so as to produce a wave of detonation which is made to act on particles introduced into the space traversed by the detonation wave propagating towards said surface, so that said particles are projected onto this surface and form the coating layer there.
The patent also relates to an apparatus for carrying out this process, which is characterized in that it comprises a barrel, means for bringing into the barrel a mixture of a fluid fuel and a gas. oxidizer as well as said particles, and a device for igniting this mixture in the barrel. The drawing shows, by way of example, an embodiment and variants of the apparatus according to the invention, for the implementation of embodiments, also given by way of example, of the method according to 'invention. Fig. 1 shows, in part schematically, this embodiment.
Fig. 2 represents a first variant. Fig. 3 shows, also partially schematically, a second variant. Fig. 4 is a side elevation, also partly schematic, of a third variant; and fig. 5 is a photomicrograph at 300 times magnification of a coating layer, made of a material containing tungsten carbide and cobalt, deposited on a steel part by means of one embodiment of the method according to 1. 'invention. Like reference numbers denote corresponding parts in the various figures.
In the apparatus shown in fig. <B> 1, </B> a combustible gas, for example acetylene, is fed through a pipe 10, and an oxidizing gas, for example air or oxygen or a mixture of air and oxygen through a pipe 11, in a mixing chamber 12 in which the two gases form a detonating gas charge which arrives through a short communication pipe 13 in a chamber of ignition 14, comprising a spark igniter 15, which is included in a barrel 16. The spark from the spark plug 15 ignites the charge forming a de-toning wave which propagates in the barrel 16 and comes out through its open end.
The spark from the spark plug 15 is produced by an ignition coil 17, a battery 18 and a cam breaker 19. The frequency of the sparks is adjustable, a variable speed motor 20 rotating the cam of the breaker 19.
Particles of solid matter are entrained in suspension in the oxidizing gas arriving through the pipe 11, or else in the fuel gas. The particles are heated and accelerated by the detonation waves and are projected at high speed through the open end of the barrel 16.
In the variant of FIG. 2, the particles are introduced into the inlet pipe 11 of the oxidizing gas, coming from a tank see 21 at a flow rate regulated by a valve 22. A pressure equalization pipe 23 starts from a point located in upstream of the place 24 for the introduction of the powder particles and ends in the space located above the powder in the tank 21. To achieve an in-time mixture of the fuel gas with the oxidizing gas, the first gas in the mixing chamber 12 from two opposite sides through pipes 10 and 10a. The formation of the detonation waves is promoted by giving the small ignition chamber 14a a conical shape.
In the variant of FIG. 3, the introduction into the mixing chamber of gases, for example oxygen and acetylene, is controlled by valves 25 controlled in the usual way by a motor 26 and a cam 27 to obtain the frequency which is required. desire to open and close the valves. A T-fitting 28 between the ignition chamber 14 and the open end of the barrel 16 has an inlet pipe which serves to introduce particles of the powder. Coats were also applied by introducing the powder between the open end of the barrel and the part.
The variant of FIG. 4 is similar to that of FIG. 3, except that an inert gas such as nitrogen is introduced into the barrel through a pipe 29, via a valve 31, so as to purge the mixing chamber and thus protect the valves. The valve 31 is controlled by a second cam 32 mounted on a camshaft 33 driven by an automatic timer 26 and constructed and disposed with respect to the cam 27 and with respect to a cam 34 for adjusting the ignition so as to carry out the succession of the following timed operations 1. Cam 27 simultaneously opens valves 35 and 37 so as to admit the combustible gas and the oxidizing gas into the mixing chamber (with or without powder particles). 2.
Cam 27 allows valves 35 and 37 to close. 3. As soon as the valves 35 and 37 are closed, the cam 32 opens the valve 31 which supplies the inert nitrogen gas to the mixing chamber. The gaseous nitrogen passes over the valves 35 and 37 so as to dilute any leaks through these valves liable to cause a flashback under the effect of the detonation of the mixture.
4. As soon as the nitrogen valve 31 opens, and while it remains open, the cam 34 closes the primary circuit of the ignition coil 17 and, as a result, ignites the spark in the spark plug d. ignition 15.
5. Once the detonation has been produced, the nitrogen passing through the open valve 31 enters the barrel to expel the hot products of combustion therefrom and forms a protective zone between them and the next charge of the combustible mixture.
6. The cam 32 then allows the nitrogen valve 31 to close and the cycle is ready to begin again by reopening the valves 35 and 37 to form the next fuel mixture. The barrel 16 must have a sufficient length. If the barrel is too short, the gas mixture, when ignited, does not form a detonation wave. Satisfactory results have been obtained with a tube of 25 mm internal diameter and a length of between 38 cm and 3 m. The best results have been obtained with guns with an internal diameter of 25 mm and a length between 1 and 2 m. With a 13 mm inner diameter tube, the length may be 20 cm with some gas mixtures, but a length of 3 m is generally better.
The air cooling of the barrel 16 is generally satisfactory. If, in certain particular cases of use of the device, for example when using almost continuously mixtures of oxygen and acetylene, it is found that the barrel becomes too hot, it can be cooled by water circulation.
The devices of fig. 1 and 2 operate without valves in the gas pipes. Oxidizing gas and combustible gas must enter these devices at the same pressure to reduce the risk of backfire. An ordinary fire screen can be inserted in the fuel inlet pipe, to increase safety.
In addition to gaseous fuels, liquid fuels such as gasoline or solid fuels, such as pulverized coal, suspended in the form of dust in an oxidizing gas can be used. The most suitable gaseous fuels are acetylene, hydrogen, propane, butane, pentane and ethylene.
The temperature of the .ob detonation wave held with the devices described is high and reaches 2800 ° C. for certain mixtures. But one can operate so that a large part of the heat is dissipated before the particles meet the part and, consequently, the application of a layer on the part only gives a small rise in temperature of. this piece. In this case, therefore, there is no deformation of the part by heat. It would, moreover, be easy to render harmless any heating of the part by interrupting operations from time to time to allow the part to cool, or by directing on it a current of a cooling fluid, for example a current of 'air.
You can also cool the room on the outside by spraying it with a liquid in the form of rain or fog, just as you can cool it inside with water if it is hollow. In a particular embodiment, it is possible to apply and fix particles and materials such as tungsten carbide, on the surface of a part with a substantially different coefficient of thermal expansion, such as steel, in cooling the room as described above.
The gas flow can be adjusted so as to fill the barrel exactly with the mixture during the time that elapses between ignitions. The flow may however be less.
The frequency of detonations is a factor on which the efficient operation of the devices described depends. When it comes to forming a thin deposit over a small area, a single detonation may suffice. Thus, by operating with the aid of any one of the apparatuses shown, a single detonation has formed a coating layer of 12,
5 microns thick on a steel surface with a diameter of 25 mm using an acetylene-air gas mixture of 7-13% acetylene and particles of a material composed of tungsten carbide and 9% cobalt, the particles having less than 50 microns. Several detonations per second are usually required to apply thicker coats or to cover larger areas quickly.
For example, to form coating layers consisting of tungsten carbide and cobalt on various tools and parts, with a barrel with a diameter of 25 mm and a length of about 1.5 m by means of A detonating mixture of oxygen and acetylene, very satisfactory results have been obtained with a detonation frequency of about 4 per second, although satisfactory results have also been obtained with a frequency of 7.8. To obtain an aluminum coating layer by means of an explosive mixture of air and acetylene, a frequency of 40 per second can be used, although satisfactory results have also been obtained with a frequency of up to 70 .
When the frequency exceeds 7.8 with a mixture of oxygen and acetylene, and 70 with a mixture of air and acetylene, the gun tends to overheat and flashbacks and continuous combustion occur. tendency to occur.
The flow rate of the powder particles introduced in the devices described is not of a particularly critical value, except that it exerts an influence on the economic conditions of the operation, that is to say on the cost price. and the speed of the formation of a given layer. A flow rate of 4.5 kg of powder per hour appears to be the most suitable for the formation of a layer of good quality, of maximum hardness, with. a flow rate of 5.1 ms / h of acetylene, oxygen and nitrogen (used to drive the powder and to protect the valves) in an apparatus such as that of FIG. 4, fitted with a 25 mm internal diameter barrel with a detonation frequency of 4.3 per second.
Flow rates not exceeding 0.25 kg of powder per hour or up to 11 kg per hour have, for example, given satisfactory results with tungsten carbide particles smaller than 44 microns.
A large number of metals, alloys, metal compounds, plastics, ceramics and minerals can be employed for the formation of coating layers by means of the apparatus described. The visible parts of a covering can be made of metal, glass, wood, fabric, paper, or plastic, for example. The surface to which the layer is to be applied may be at a small distance from the end of the barrel, for example between 13 mm and 25 cm. For example, a part to be covered with a layer of tungsten carbide coating is generally disposed at a distance of about 7.5 cm from the end of the barrel.
The devices described have made it possible, for example, to apply to a smooth glass surface layers of satisfactory quality of aluminum, copper, brass, tin, lead, zinc and magnesium. By means of the methods described, copper and zinc layers have been successfully applied to aluminum, aluminum and nickel layers to carbon, aluminum to an aperture stainless steel wire mesh. 0.25 mm mesh, aluminum on paper, aluminum, copper, magnesium, nickel and tin on wood, aluminum on methacrylate, tin, aluminum, molybdenum, copper, tungsten , because tungsten bide, austenic stainless steel, chromium, cobalt alloy, chromium and tungsten,
alloy of nickel and molybdenum, boron carbide, and porcelain sintered on steel, and tungsten carbide on refractory bricks. The apparatus described also makes it possible to operate with particles of various materials. For example, a friction plate can be made by using a mixture of particles of a metal such as aluminum and particles of a hard substance such as alumina, and forming therewith a layer coating on a steel support, this layer comprising particles of alumina in a mass of aluminum. A coating layer can be formed on the steel by using a mixture of particles of iron, chromium and nickel to make it resistant to corrosion and wear.
It may sometimes be advantageous to add to the particles intended to form the coating layer particles of a non-metallic flux to improve the adhesion of the layer.
In general, particles of low melting point substances, below 700 C, such as tin, lead, zinc, aluminum and magnesium, can be larger, for example up to 150 microns , and those of substances with a higher melting point, above 1000 C, such as chromium, tungsten and tungsten carbide, give the best results when their size is less than about 50 microns, forming layers adherent, teeth. But these size limits are not critical, for example excellent results have been obtained with a copper powder in particles of 12 to 32 microns, to coat the aluminum,
similarly, a coating layer has been successfully applied to a metal part using particles of a material consisting of tungsten carbide and cobalt up to 74 microns in size.
Using aluminum particles smaller than 44 microns in size, a minute and a half was formed on a pickled steel surface at a distance of about 5 cm from the open end of a 25 mm barrel. mm in diameter and at a detonation frequency of a mixture of air and 101% acetylene of about 30 cycles per second, a layer 0.43 mm thick and a diameter of 3.5 cm. This layer is appreciably waterproof.
By means of the methods described, a layer of copper or other metal can be formed which readily welds to substances such as glass, porcelain, wood, plastics, or aluminum, which does not weld or weld only with difficulty, and it is easy to then weld the substances thus covered to form a joint.
A foil tape was covered with a layer of aluminum, slowly advancing the tape in front of the muzzle to prevent it from charring. In both cases, the explosive charge was a mixture of air and acetylene.
In one embodiment of the process, it is possible to use particles of a product containing tungsten carbide, of dimensions less than 50 microns, generally between 10 and 40 microns, the product containing, in addition to the tungsten. ,
about 9% cobalt and 4% carbon. These particles are made to arrive at a flow rate of approximately 4.5 to 6.75 kg / h in an apparatus such as that of FIG. 4, having a barrel of approximately 1.5 m in length and 0.25 mm in internal diameter.
Acetylene and oxygen are introduced in proportions of about 1 volume of the first to 1 to 2 volumes of the second, with an average flow rate of about 10.2 m 3 / h of the mixture. The average nitrogen flow rate is approximately 5.1 m3 / h. The ignition frequency is about 4 / sec. A stripped surface of iron or of mild or hard steel, for example tool steel, preferably granite, for example, with a sandblast, or covered with a thin layer of a metal such as copper, nickel or cobalt, to a thickness of 6 to 12 microns, for example, at a distance of about 7.5 cm from the open end of the barrel.
In this way, a dense, adherent layer of a product containing tungsten carbide with a thickness of 0.5 mm can be obtained at a speed of about 6.5 cm 2 / min. Thinner or much thicker layers can be applied by varying the duration of application.
Fig. 5 shows, by way of example, with a magnification of 300 times, the appearance of a <I> WC </I> layer of a material composed of tungsten carbon and 91% cobalt, deposited by the method described on a steel support S. The sample shown was polished, then it was subjected to an anodic attack with chromic acid, followed by an attack with potassium permanganate.
The resulting layer has a fine-grained, dense, lamellar structure, consisting of mixed layers of tungsten carbide <I> WC, </I> cobalt-tungsten complex carbide and a small amount of carbide. of secondary tungsten W2C. The layer is formed of the thin overlapping threads, with a diameter much greater than their thickness.
The apparent specific gravity of the tungsten carbide layer of the example shown is about the same as that of the cast solid product, i.e. 14.5 g / cm 3. The porosity is less than 1%. The adhesion of the layer to the substrate is excellent, as evidenced by the fact that it is possible to grind the substance of the layer to and through the interface without the layer flaking off. at the edges. If the base surface consists of a thin sheet, it can be bent without the layer flaking off, although it probably creaks.
The hardness on the Vickers scale is at least 1100. The surface of the layer is smooth and matt and can be given a good polish by normal grinding and polishing operations.
The properties of this layer make it likely to form the surfaces of parts such as stamping and minting core rods, burnishing pins, tolerance gauges, crushing jaws, washers and plates. lining shafts, electrical contacts, reamers, saw teeth, knife blades, textile thread guides, valve seats and heads and bearing surfaces. To manufacture certain electrical contacts by means of the methods described, it may be advantageous to use particles of a metal of high conductivity such as silver.
Claims (1)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US349856XA | 1955-03-28 | 1955-03-28 | |
| CH329742T | 1956-06-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CH329742A true CH329742A (en) | 1958-05-15 |
Family
ID=25736582
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CH329742D CH329742A (en) | 1955-03-28 | 1952-07-01 | Method for forming a coating layer on a surface of a workpiece, and apparatus for carrying out this method |
| CH349856D CH349856A (en) | 1955-03-28 | 1956-03-17 | Apparatus for forming a coating layer on a surface of a workpiece |
| CH3396256A CH363540A (en) | 1955-03-28 | 1956-06-05 | Part having a surface provided with a coating layer |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CH349856D CH349856A (en) | 1955-03-28 | 1956-03-17 | Apparatus for forming a coating layer on a surface of a workpiece |
| CH3396256A CH363540A (en) | 1955-03-28 | 1956-06-05 | Part having a surface provided with a coating layer |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US2714563A (en) |
| BE (2) | BE546121A (en) |
| CH (3) | CH329742A (en) |
| DE (1) | DE1184176B (en) |
| FR (1) | FR1058357A (en) |
| GB (3) | GB742458A (en) |
| LU (3) | LU34279A1 (en) |
| NL (1) | NL91125C (en) |
Families Citing this family (133)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2972247A (en) * | 1952-07-24 | 1961-02-21 | Charles J Zablocki | Device for testing flash explosives |
| US2963782A (en) * | 1954-04-20 | 1960-12-13 | Union Carbide Corp | Flexible compsoite article |
| US2950867A (en) * | 1954-10-21 | 1960-08-30 | Union Carbide Corp | Pulse powder feed for detonation waves |
| US2832640A (en) * | 1954-12-09 | 1958-04-29 | Metallizing Engineering Co Inc | Heat fusible material spray gun |
| US2964420A (en) * | 1955-06-14 | 1960-12-13 | Union Carbide Corp | Refractory coated body |
| US2869924A (en) * | 1955-03-28 | 1959-01-20 | Union Carbide Corp | Apparatus for utilizing detonation waves |
| US2872338A (en) * | 1955-04-18 | 1959-02-03 | Haloid Xerox Inc | Electrophotographic developing process |
| NL206772A (en) * | 1955-05-02 | 1900-01-01 | ||
| US2920001A (en) * | 1955-07-11 | 1960-01-05 | Union Carbide Corp | Jet flame spraying method and apparatus |
| US2990293A (en) * | 1956-01-13 | 1961-06-27 | Ohio Commw Eng Co | Method of impregnating and rustproofing metal articles |
| US2943951A (en) * | 1956-03-23 | 1960-07-05 | Kanthal Ab | Flame spraying method and composition |
| US2976941A (en) * | 1956-05-25 | 1961-03-28 | Fletcher Co H E | Method for thermal mineral piercing |
| US2901826A (en) * | 1957-01-31 | 1959-09-01 | Edgar A Kline | Dental cutting tool |
| US3048060A (en) * | 1957-03-25 | 1962-08-07 | Union Carbide Corp | Method of making articles having internal surface of desired contour and articles produced thereby |
| US3851426A (en) * | 1957-06-27 | 1974-12-03 | J Lemelson | Method for finishing articles |
| US3004822A (en) * | 1958-01-31 | 1961-10-17 | Union Carbide Corp | Method for utilizing detonation waves to effect chemical reactions |
| US2990653A (en) * | 1958-04-21 | 1961-07-04 | G H Temant Company | Method and apparatus for impacting a stream at high velocity against a surface to be treated |
| US3071489A (en) * | 1958-05-28 | 1963-01-01 | Union Carbide Corp | Process of flame spraying a tungsten carbide-chromium carbide-nickel coating, and article produced thereby |
| US2972550A (en) * | 1958-05-28 | 1961-02-21 | Union Carbide Corp | Flame plating using detonation reactants |
| GB886560A (en) * | 1958-05-28 | 1962-01-10 | Union Carbide Corp | Improvements in and relating to coating alloys and the coating of materials |
| US3100724A (en) * | 1958-09-22 | 1963-08-13 | Microseal Products Inc | Device for treating the surface of a workpiece |
| US3016311A (en) * | 1958-12-17 | 1962-01-09 | Union Carbide Corp | High temperature coatings and bodies |
| US3056693A (en) * | 1959-04-07 | 1962-10-02 | Herbert J Woock | Method of hard facing metallic articles |
| US3084064A (en) * | 1959-08-06 | 1963-04-02 | Union Carbide Corp | Abradable metal coatings and process therefor |
| US3030678A (en) * | 1959-09-08 | 1962-04-24 | Sr William J Huston | Method of disintegrating a sand mold while in association with a flask and a casting |
| US3105150A (en) * | 1959-11-18 | 1963-09-24 | Honeywell Regulator Co | Coated radiant energy sight guide for temperature measurement |
| US3149409A (en) * | 1959-12-01 | 1964-09-22 | Daimler Benz Ag | Method of producing an engine piston with a heat insulating layer |
| US3254970A (en) * | 1960-11-22 | 1966-06-07 | Metco Inc | Flame spray clad powder composed of a refractory material and nickel or cobalt |
| GB926238A (en) * | 1961-03-07 | 1963-05-15 | Veedip Ltd | Manufacture of flexible articles or materials of polymeric organic materials containing heavy metals such as lead |
| US3212914A (en) * | 1961-05-23 | 1965-10-19 | Union Carbide Corp | Electric pulse coating process and apparatus |
| US3231417A (en) * | 1961-06-09 | 1966-01-25 | Union Carbide Corp | Zircon-boron ablation coating |
| US3231416A (en) * | 1961-06-09 | 1966-01-25 | Union Carbide Corp | Zirconia-boron ablation coating |
| US3089409A (en) * | 1961-06-12 | 1963-05-14 | Kimberly Clark Co | Papermaking machines |
| US3150828A (en) * | 1961-10-04 | 1964-09-29 | Union Carbide Corp | Apparatus for utilizing detonation waves |
| US3252312A (en) * | 1962-04-25 | 1966-05-24 | Continental Can Co | Method and apparatus for explosive reshaping of hollow ductile objects |
| US3228222A (en) * | 1962-04-25 | 1966-01-11 | Continental Can Co | Method and apparatus for the explosion forming of hollow objects, including such container elements as cups, cans, can ends |
| US3165570A (en) * | 1962-08-22 | 1965-01-12 | Alexander T Deutsch | Refractory powder injection, process and apparatus |
| US3335025A (en) * | 1963-03-22 | 1967-08-08 | Standard Oil Co | Formation of catalytic oxide surface on an electrode |
| GB1049022A (en) * | 1963-04-10 | 1966-11-23 | Asahi Chemical Ind | Method for coating surfaces of material |
| US3353994A (en) * | 1964-05-07 | 1967-11-21 | Scott Paper Co | Novel reticulated products |
| US3389977A (en) * | 1964-08-05 | 1968-06-25 | Texas Instruments Inc | Tungsten carbide coated article of manufacture |
| US3372297A (en) * | 1964-09-28 | 1968-03-05 | Varian Associates | High frequency electron discharge devices and thermionic cathodes having improved (cvd) refractory insulation coated heater wires |
| US3505101A (en) * | 1964-10-27 | 1970-04-07 | Union Carbide Corp | High temperature wear resistant coating and article having such coating |
| US3279283A (en) * | 1965-03-22 | 1966-10-18 | Burnie J Craig | Method of making razor blades |
| US3399253A (en) * | 1966-03-28 | 1968-08-27 | Union Carbide Corp | Method of making refractory shapes |
| US3663788A (en) * | 1966-06-11 | 1972-05-16 | Inoue K | Kinetic deposition of particles |
| US3944683A (en) * | 1967-12-28 | 1976-03-16 | Kaman Sciences Corporation | Methods of producing chemically hardening coatings |
| US3552653A (en) * | 1968-01-10 | 1971-01-05 | Inoue K | Impact deposition of particulate materials |
| BE757252A (en) * | 1969-10-09 | 1971-03-16 | British Steel Corp | A process for producing a coated ferrous substrate. |
| US3854997A (en) * | 1970-12-14 | 1974-12-17 | Peck Co C | Jet flame cleaning |
| US3915381A (en) * | 1971-11-15 | 1975-10-28 | Southwest Res Inst | Method and apparatus for applying particulate coating material to a work piece |
| US3810637A (en) * | 1972-01-14 | 1974-05-14 | Mecanique Ind Int | Shaft packing |
| US3941903A (en) * | 1972-11-17 | 1976-03-02 | Union Carbide Corporation | Wear-resistant bearing material and a process for making it |
| US3910734A (en) * | 1973-08-20 | 1975-10-07 | Ford Motor Co | Composite apex seal |
| US3910494A (en) * | 1974-02-21 | 1975-10-07 | Southwest Res Inst | Valveless combustion apparatus |
| US4067291A (en) * | 1974-04-08 | 1978-01-10 | H. B. Zachry Company | Coating system using tape encapsulated particulate coating material |
| SE431835B (en) * | 1977-12-21 | 1984-03-05 | Inst Materialovedenia Akademii | DEVICE FOR PREPARING COATINGS ON PRODUCTS BY DETONING |
| US4279383A (en) * | 1979-03-12 | 1981-07-21 | Zverev Anatoly I | Apparatus for coating by detonation waves |
| FR2499874A1 (en) * | 1981-02-13 | 1982-08-20 | Voroshilovgrad Mashinostr | Explosion powder coating vessel - has variable cross section and incorporates ignition devices, and gas discharge and explosive material feed openings |
| DE3467775D1 (en) * | 1983-02-22 | 1988-01-07 | Tateho Kagaku Kogyo Kk | Spraying materials containing ceramic needle fiber and composite materials spray-coated with such spraying materials |
| DD254848A3 (en) * | 1983-10-03 | 1988-03-16 | Inst Sverkhtverdykh Mat | DETONATION APPARATUS FOR COMBUSTIBLE SUPPLEMENT |
| US4526618A (en) * | 1983-10-18 | 1985-07-02 | Union Carbide Corporation | Abrasion resistant coating composition |
| US4588606A (en) * | 1983-10-18 | 1986-05-13 | Union Carbide Corporation | Abrasion resistant coating and method for producing the same |
| US4519840A (en) * | 1983-10-28 | 1985-05-28 | Union Carbide Corporation | High strength, wear and corrosion resistant coatings |
| US4626477A (en) * | 1983-10-28 | 1986-12-02 | Union Carbide Corporation | Wear and corrosion resistant coatings and method for producing the same |
| US4626476A (en) * | 1983-10-28 | 1986-12-02 | Union Carbide Corporation | Wear and corrosion resistant coatings applied at high deposition rates |
| EP0151490B1 (en) * | 1984-02-09 | 1991-01-16 | Toyota Jidosha Kabushiki Kaisha | Process for producing ultra-fine ceramic particles |
| US4637947A (en) * | 1984-08-14 | 1987-01-20 | Anmin Manufacturing Co., Ltd. | Heat insulation material |
| US4761346A (en) * | 1984-11-19 | 1988-08-02 | Avco Corporation | Erosion-resistant coating system |
| US4741975A (en) * | 1984-11-19 | 1988-05-03 | Avco Corporation | Erosion-resistant coating system |
| SU1413779A1 (en) * | 1985-07-26 | 1989-10-23 | Научно-исследовательский институт технологии автомобильной промышленности | Installation for detonation deposition by spraying |
| GB2190858B (en) * | 1986-04-25 | 1989-11-29 | Smith Meters Ltd | Coating surfaces |
| US4787837A (en) * | 1986-08-07 | 1988-11-29 | Union Carbide Corporation | Wear-resistant ceramic, cermet or metallic embossing surfaces, methods for producing same, methods of embossing articles by same and novel embossed articles |
| US4788077A (en) * | 1987-06-22 | 1988-11-29 | Union Carbide Corporation | Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same |
| US4902539A (en) * | 1987-10-21 | 1990-02-20 | Union Carbide Corporation | Fuel-oxidant mixture for detonation gun flame-plating |
| US4826734A (en) * | 1988-03-03 | 1989-05-02 | Union Carbide Corporation | Tungsten carbide-cobalt coatings for various articles |
| US4865252A (en) * | 1988-05-11 | 1989-09-12 | The Perkin-Elmer Corporation | High velocity powder thermal spray gun and method |
| US5082502A (en) * | 1988-09-08 | 1992-01-21 | Cabot Corporation | Cleaning apparatus and process |
| CA2002497A1 (en) * | 1988-12-28 | 1990-06-28 | Anthony J. Rotolico | High velocity powder thermal spray method for spraying non-meltable materials |
| US4999225A (en) * | 1989-01-05 | 1991-03-12 | The Perkin-Elmer Corporation | High velocity powder thermal spray method for spraying non-meltable materials |
| US4999255A (en) * | 1989-11-27 | 1991-03-12 | Union Carbide Coatings Service Technology Corporation | Tungsten chromium carbide-nickel coatings for various articles |
| US5075129A (en) * | 1989-11-27 | 1991-12-24 | Union Carbide Coatings Service Technology Corporation | Method of producing tungsten chromium carbide-nickel coatings having particles containing three times by weight more chromium than tungsten |
| US5223332A (en) * | 1990-05-31 | 1993-06-29 | Praxair S.T. Technology, Inc. | Duplex coatings for various substrates |
| SE467565B (en) * | 1990-12-14 | 1992-08-10 | Sjoedin Sven Eric | DEVICE FOR DETONATION SPRAYING OF A SOUNDED PART MATERIAL TO THE SURFACE OF A TARGET |
| US5328763A (en) * | 1993-02-03 | 1994-07-12 | Kennametal Inc. | Spray powder for hardfacing and part with hardfacing |
| JP3115512B2 (en) * | 1994-06-24 | 2000-12-11 | プラクスエア・エス・ティー・テクノロジー・インコーポレイテッド | Method for dispersing carbide particles in MCrAlY based coating |
| CN1068387C (en) * | 1994-06-24 | 2001-07-11 | 普拉塞尔·S·T·技术有限公司 | A process for producing an oxide dispersed mcraly-based coating |
| DE4437911A1 (en) * | 1994-10-22 | 1996-04-25 | Zwilling J A Henckels Ag | Knife and method of making a knife |
| US5607342A (en) * | 1995-03-27 | 1997-03-04 | Demeton Usa, Inc. | High velocity flame jet apparatus for thermoabrasive cutting or cleaning or for the application of protective coatings |
| US5531590A (en) * | 1995-03-30 | 1996-07-02 | Draco | Shock-stabilized supersonic flame-jet method and apparatus |
| DE19541228C2 (en) * | 1995-11-06 | 1997-08-21 | Schlick Heinrich Gmbh Co Kg | Device for dosing granular, free-flowing materials, in particular blasting media |
| AU1424997A (en) * | 1995-12-26 | 1997-07-17 | Aerostar Coatings, S.L. | Energy bleed apparatus and method for a detonation gun |
| US6146693A (en) * | 1995-12-26 | 2000-11-14 | Aerostar Coatings, S.L. | Energy bleed apparatus and method for a detonation gun |
| US5716422A (en) * | 1996-03-25 | 1998-02-10 | Wilson Greatbatch Ltd. | Thermal spray deposited electrode component and method of manufacture |
| US6175485B1 (en) | 1996-07-19 | 2001-01-16 | Applied Materials, Inc. | Electrostatic chuck and method for fabricating the same |
| EP0935265A3 (en) | 1998-02-09 | 2002-06-12 | Wilson Greatbatch Ltd. | Thermal spray coated substrate for use in an electrical energy storage device and method |
| US6004372A (en) * | 1999-01-28 | 1999-12-21 | Praxair S.T. Technology, Inc. | Thermal spray coating for gates and seats |
| US6503442B1 (en) | 2001-03-19 | 2003-01-07 | Praxair S.T. Technology, Inc. | Metal-zirconia composite coating with resistance to molten metals and high temperature corrosive gases |
| US6915964B2 (en) * | 2001-04-24 | 2005-07-12 | Innovative Technology, Inc. | System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation |
| US6630207B1 (en) | 2001-07-17 | 2003-10-07 | Science Applications International Corporation | Method and apparatus for low-pressure pulsed coating |
| GB0207375D0 (en) * | 2002-03-28 | 2002-05-08 | Hardide Ltd | Cutting tool with hard coating |
| US6787194B2 (en) * | 2002-04-17 | 2004-09-07 | Science Applications International Corporation | Method and apparatus for pulsed detonation coating of internal surfaces of small diameter tubes and the like |
| US6736902B2 (en) * | 2002-06-20 | 2004-05-18 | General Electric Company | High-temperature powder deposition apparatus and method utilizing feedback control |
| KR100454371B1 (en) * | 2003-04-21 | 2004-10-27 | 나노파우더(주) | a muller |
| US7104223B2 (en) * | 2003-11-20 | 2006-09-12 | United Technologies Corporation | Detonative cleaning apparatus |
| US20060251821A1 (en) * | 2004-10-22 | 2006-11-09 | Science Applications International Corporation | Multi-sectioned pulsed detonation coating apparatus and method of using same |
| CZ303411B6 (en) * | 2005-04-29 | 2012-09-05 | Ústav fyziky plazmatu AV CR, v.v.i. | Tungsten-based protective coating and process for preparing thereof |
| KR101361729B1 (en) * | 2005-05-09 | 2014-02-12 | 유니버시티 오브 오타와 | Methods and apparatuses for material deposition |
| US8603930B2 (en) | 2005-10-07 | 2013-12-10 | Sulzer Metco (Us), Inc. | High-purity fused and crushed zirconia alloy powder and method of producing same |
| US8507105B2 (en) * | 2005-10-13 | 2013-08-13 | Praxair S.T. Technology, Inc. | Thermal spray coated rolls for molten metal baths |
| US20100211180A1 (en) * | 2006-03-21 | 2010-08-19 | Jet Engineering, Inc. | Tetrahedral Amorphous Carbon Coated Medical Devices |
| US8524375B2 (en) * | 2006-05-12 | 2013-09-03 | Praxair S.T. Technology, Inc. | Thermal spray coated work rolls for use in metal and metal alloy sheet manufacture |
| US20080160172A1 (en) | 2006-05-26 | 2008-07-03 | Thomas Alan Taylor | Thermal spray coating processes |
| US20100034979A1 (en) | 2006-06-28 | 2010-02-11 | Fundacion Inasmet | Thermal spraying method and device |
| RU2329104C2 (en) * | 2006-08-30 | 2008-07-20 | ИНСТИТУТ ГИДРОДИНАМИКИ им. М.А. Лаврентьева СО РАН (ИГиЛ СО РАН) | Method for detonating application of coatings and apparatus for implementing thereof |
| US8572946B2 (en) | 2006-12-04 | 2013-11-05 | Firestar Engineering, Llc | Microfluidic flame barrier |
| US8465602B2 (en) | 2006-12-15 | 2013-06-18 | Praxair S. T. Technology, Inc. | Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof |
| US8530050B2 (en) * | 2007-05-22 | 2013-09-10 | United Technologies Corporation | Wear resistant coating |
| US20090133788A1 (en) * | 2007-11-09 | 2009-05-28 | Firestar Engineering, Llc | Nitrous oxide fuel blend monopropellants |
| RU2404860C2 (en) * | 2008-12-23 | 2010-11-27 | Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН) | Detonation deposition unit barrel |
| US8906130B2 (en) | 2010-04-19 | 2014-12-09 | Praxair S.T. Technology, Inc. | Coatings and powders, methods of making same, and uses thereof |
| US20110287189A1 (en) * | 2010-05-12 | 2011-11-24 | Enerize Corporation | Method of the electrode production |
| CN101962697B (en) * | 2010-11-01 | 2012-02-08 | 中冶京诚工程技术有限公司 | Oxygen coal spray gun tuyere composite set |
| TWI458985B (en) * | 2011-02-23 | 2014-11-01 | King Yuan Electronics Co Ltd | A hard and wear-resisting probe and manufacturing method thereof |
| CN102560320A (en) * | 2012-01-05 | 2012-07-11 | 哈尔滨飞机工业集团有限责任公司 | Detonation gun spraying method of tungsten carbide |
| US10099322B2 (en) | 2012-10-29 | 2018-10-16 | South Dakota Board Of Regents | Methods for cold spray repair |
| US10441962B2 (en) | 2012-10-29 | 2019-10-15 | South Dakota Board Of Regents | Cold spray device and system |
| US8697250B1 (en) | 2013-02-14 | 2014-04-15 | Praxair S.T. Technology, Inc. | Selective oxidation of a modified MCrAlY composition loaded with high levels of ceramic acting as a barrier to specific oxide formations |
| ES2899142T3 (en) | 2014-04-25 | 2022-03-10 | South Dakota Board Of Regents | High capacity electrodes |
| US10801097B2 (en) | 2015-12-23 | 2020-10-13 | Praxair S.T. Technology, Inc. | Thermal spray coatings onto non-smooth surfaces |
| CN106238557B (en) * | 2016-07-29 | 2017-12-26 | 重庆新钰立金属科技有限公司 | Reciprocating hole punched device |
| US10468674B2 (en) | 2018-01-09 | 2019-11-05 | South Dakota Board Of Regents | Layered high capacity electrodes |
| KR102843958B1 (en) | 2019-12-31 | 2025-08-08 | 콜드 제트 엘엘씨 | Method and device for enhanced blast stream |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1375653A (en) * | 1917-06-01 | 1921-04-19 | Quick Mclain Machine Gun Compa | Machine-gun |
| US1620994A (en) * | 1926-01-22 | 1927-03-15 | Bustamante Eduardo | Device for firing cannons |
| CH226698A (en) * | 1940-09-29 | 1943-04-30 | Gfeller Fritz | Method and device for spraying thermoplastic materials. |
| GB553099A (en) * | 1940-09-29 | 1943-05-07 | Fritz Gfeller | Improvements in processes and apparatus for spraying fusible and thermoplastic material |
| US2374816A (en) * | 1942-05-18 | 1945-05-01 | Sern L Hansen | Rapid-fire gun |
| DE813360C (en) * | 1949-11-04 | 1951-09-13 | Willi Lehmann | Process for the production of coatings |
-
0
- BE BE512449D patent/BE512449A/xx unknown
- BE BE546121D patent/BE546121A/xx unknown
- NL NL91125D patent/NL91125C/xx active
- LU LU31550D patent/LU31550A1/xx unknown
- LU LU33526D patent/LU33526A1/xx unknown
- LU LU34279D patent/LU34279A1/xx unknown
-
1952
- 1952-03-07 US US275332A patent/US2714563A/en not_active Expired - Lifetime
- 1952-06-11 GB GB17034/54A patent/GB742458A/en not_active Expired
- 1952-06-11 GB GB14663/52A patent/GB742387A/en not_active Expired
- 1952-06-14 FR FR1058357D patent/FR1058357A/en not_active Expired
- 1952-06-26 DE DEU1705A patent/DE1184176B/en active Pending
- 1952-07-01 CH CH329742D patent/CH329742A/en unknown
-
1956
- 1956-03-02 GB GB6533/56A patent/GB787222A/en not_active Expired
- 1956-03-17 CH CH349856D patent/CH349856A/en unknown
- 1956-06-05 CH CH3396256A patent/CH363540A/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| BE512449A (en) | 1900-01-01 |
| LU33526A1 (en) | |
| GB742458A (en) | 1955-12-30 |
| GB742387A (en) | 1955-12-30 |
| GB787222A (en) | 1957-12-04 |
| LU34279A1 (en) | |
| LU31550A1 (en) | |
| DE1184176B (en) | 1964-12-23 |
| CH363540A (en) | 1962-07-31 |
| CH349856A (en) | 1960-10-31 |
| NL91125C (en) | 1900-01-01 |
| BE546121A (en) | 1900-01-01 |
| US2714563A (en) | 1955-08-02 |
| FR1058357A (en) | 1954-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CH329742A (en) | Method for forming a coating layer on a surface of a workpiece, and apparatus for carrying out this method | |
| US20050100756A1 (en) | Reactive materials and thermal spray methods of making same | |
| CH366712A (en) | Object and manufacturing process thereof | |
| EP1972699A1 (en) | Method of coating a substrate under vacuum | |
| FR2587920A1 (en) | METHOD AND DEVICE FOR FORMING REFRACTORY MASS ON A SURFACE | |
| FR2478677A1 (en) | POWDER FOR THE FORMATION OF PROTECTIVE LAYERS ON MACHINE PARTS | |
| FR2463752A1 (en) | POWDER FOR FORMING A THERMAL PROPERTY COATING | |
| CH631091A5 (en) | PROCESS FOR APPLYING A COATING CONSISTING OF A POLYMER CONTAINING A LOAD ON THE INSIDE OF A CYLINDRICAL BODY. | |
| EP0015813A1 (en) | Process for boronizing articles made of metal or cermet, and articles provided with a boronized surface | |
| WO2009092937A2 (en) | Device for feeding gas to a wave brazing or tinning machine | |
| CA2522932C (en) | Flame covering method and corresponding device | |
| FR2765892A1 (en) | PROCESS FOR COATING BY GAS PHASE DIFFUSION OF PARTS MADE OF HEAT-RESISTANT MATERIAL WITH A COATING MATERIAL | |
| BE510038A (en) | ||
| FR2575185A1 (en) | Process and device for the production of deposits and refills of metallic, metalloceramic and ceramic materials on a substrate | |
| FR2479968A1 (en) | PROCEDURE FOR PROTECTION AGAINST EROSION OF THE PARTS OF A FIREARMS EXPOSED TO FLAMES | |
| FR2757879A1 (en) | SPRAYING PROCESS USING THE ELECTRIC ARC FOR THE APPLICATION OF A METAL COATING INCREASING THE TRANSFER OF HEAT AND PART THUS OBTAINED | |
| US2235965A (en) | Welding and brazing | |
| Tan | Optimisation of the HVOF thermal spray process for coating, forming and repair of components | |
| BE575189A (en) | ||
| WO1995007768A1 (en) | Method for the production of composite materials or coatings and system for implementing it | |
| EP0757114A1 (en) | Quasicrystallic coating and process for coating | |
| KR890005128B1 (en) | Wear and corrosion resistant coatings and articles and method for producing the same | |
| Maksud Helali | Spray forming of thin walled net-shaped components of hard materials by high velocity oxy-fuel thermal spraying process | |
| SU1755940A1 (en) | Method of applying coating by detonation | |
| BE661846A (en) |