CA3087944A1 - Copolymeres d'unites ester et ether, leurs procedes de fabrication et leurs utilisations - Google Patents

Copolymeres d'unites ester et ether, leurs procedes de fabrication et leurs utilisations Download PDF

Info

Publication number
CA3087944A1
CA3087944A1 CA3087944A CA3087944A CA3087944A1 CA 3087944 A1 CA3087944 A1 CA 3087944A1 CA 3087944 A CA3087944 A CA 3087944A CA 3087944 A CA3087944 A CA 3087944A CA 3087944 A1 CA3087944 A1 CA 3087944A1
Authority
CA
Canada
Prior art keywords
polymer
lithium
mol
electrolyte
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA3087944A
Other languages
English (en)
Inventor
Basile Commarieu
Jean-Christophe Daigle
Pierre-Michel JALBERT
Gilles Lajoie
Catherine Gagnon
Abdelbast Guerfi
Michel Armand
Karim Zaghib
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Publication of CA3087944A1 publication Critical patent/CA3087944A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • C08F299/0485Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters from polyesters with side or terminal unsaturations
    • C08F299/0492Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters from polyesters with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

La présente technologie concerne les polymères P1 : polycaprolactone-bloc-polytetrahydrofurane-bloc-polycaprolactone diacrylate et P2 : polycaprolactone-bloc-polytetrahydrofuranebloc-polycaprolactone di-2-(2-methoxyethoxy)ester pour utilisation dans une cellule électrochimique, notamment dans des accumulateurs électrochimiques tels que les batteries au lithium, les batteries au sodium, les batteries au potassium et les batteries lithium-ion. Plus précisément, l'utilisation de ces polymères comme électrolyte polymère solide (SPE), comme matrice pour former des électrolytes gels ou encore comme liant est aussi envisagée.

Description

COPOLYMERES D'UNITÉS ESTER ET ÉTHER, LEURS PROCÉDÉS DE
FABRICATION ET LEURS UTILISATIONS
La présente demande revendique la priorité, sous la loi applicable, de la demande de brevet canadienne N 2,994,005 déposée le 5 février 2018, le contenu de laquelle est incorporé ici par référence dans son intégralité et à toutes fins.
DOMAINE TECHNIQUE
La présente demande se rapporte au domaine des polymères et de leurs utilisations dans des applications électrochimiques, notamment dans les piles au lithium. Plus particulièrement, la technologie se rapporte au domaine des polymères pour utilisation en tant qu'électrolyte polymère solide (SPE), comme matrice pour former des électrolytes gels ou encore comme liant dans des matériaux d'électrodes.
ÉTAT DE LA TECHNIQUE
Les batteries conventionnelles utilisent communément des électrolytes liquides, tels que le carbonate d'éthylène, le carbonate de propylène et le carbonate de diéthyle, capables de solubiliser et d'ioniser efficacement des sels ioniques comme le LiPF6, le LiTFSI et le LiFSI. Cependant, ces électrolytes liquides présentent des problèmes importants de sécurité et de toxicité.
Bien qu'aujourd'hui la technologie lithium-ion domine le marché des batteries, l'utilisation de métaux alcalins, tel le lithium, comme anodes est de plus en plus courante. Ceci s'explique par la densité énergétique très élevée de ces matériaux.
En revanche, ces métaux peuvent réagir avec les électrolytes liquides, menant à
la dégradation de ces derniers et, de ce fait, à une diminution graduelle des performances de la batterie tout au long de son utilisation. De plus, un des problèmes majeurs liés à l'utilisation de ces métaux est la formation de structures dendritiques pouvant conduire à un violent court-circuit entre les électrodes lorsqu'elles parviennent à transpercer le séparateur. Cette réaction peut conduire à l'inflammation de l'électrolyte, allant même jusqu'à l'explosion de la batterie (voir Guo, Y. et al., Advanced Materials, 29.29 (2017) : 1-25). La dégradation de l'électrolyte peut également générer des sous-produits réactifs et toxiques pouvant, à long terme, exposer l'utilisateur à des dangers supplémentaires, et ce, en plus de diminuer fortement les capacités du système électrochimique.
Ces problèmes de sécurité et de stabilité peuvent être restreints significativement via l'utilisation d'électrolytes polymères solides (SPEs) non volatils, non inflammables et plus stable face aux métaux alcalins. L'élasticité résultante de tels systèmes permet de concevoir de nouvelles architectures pour les batteries et de viser de nouvelles applications telles que, par exemple, leurs utilisations dans des cellules photochimiques et des accumulateurs flexibles. L'élasticité
résultante permet aussi d'augmenter la résistance aux chocs des batteries. De plus, en variant les propriétés mécaniques des polymères, il est possible de prévenir la formation de structures dendritiques (voir Mindemark, J. et al., Polymer 63 (2015) : 91-98). La formation de telles structures dendritiques peut être significativement, voire complètement inhibée en utilisant des polymères possédants de hauts nombres de transport (voir Brissot, C. et al., Journal of Power source 81-82 (1999) : 925-929). L'utilisation de SPEs permet donc, en plus d'élargir les possibilités d'applications technologiques, de concevoir des systèmes électrochimiques à l'état tout solide beaucoup plus sécuritaires et performants que leurs homologues basés sur l'utilisation d'électrolytes liquides.
En 1975, V. Wright a démontré que le poly(oxyde d'éthylène) (PEO) est capable de solubiliser des sels. Par la suite, Armand, M.B. et al. ont été les premiers à
proposer son utilisation en tant que SPE dans les batteries (voir Armand, M.
B. et al., Fast Ion Transport in Solids (1979): 131). La conductivité ionique de ce polymère est très élevée (de l'ordre de 10-3 S.cm-1) lorsque le polymère est à
l'état fondu (voir Hallinan Jr, D.T. et al., Annual review of materials research 43 (2013) :
503-525). De plus, ce matériau est peu onéreux, non toxique et est facilement adaptable aux technologies existantes. Cependant, ce polymère semi-cristallin voit
2 sa conductivité ionique décroître drastiquement à des températures d'utilisation en dessous de son point de fusion (soit à environ 64 C). Cette propriété est attribuée à un transport ionique significativement plus difficile dans sa phase cristalline (voir Armand, M., Solid State lonics 9 (1983) : 745-754). Depuis, la majorité des études sont focalisées sur la modification de son architecture afin de diminuer sa cristallinité. Plus particulièrement, par la formation de polymères branchés et de copolymères à blocs. Cependant, il semble qu'aujourd'hui les limites de ce type de polymère sont proches d'être atteintes. En effet, d'autres facteurs restreignent l'utilisation de ce polymère en tant que SPE, incluant son faible nombre de transport (< 0.3) qui est dû à la forte complexation des ions lithium par le polymère, entraînant une importante séparation des charges dans la batterie, la formation de structures dendritiques et une stabilité électrochimique limitée à un potentiel d'environ 4 V, ce qui rend son utilisation difficile avec des matériaux à
hauts voltages, tels que l'oxyde de nickel-manganèse-cobalt (NMC) et le dioxyde de cobalt et de lithium (LiCo02) (voir He, W. et al., supra).
Il existe néanmoins d'autres structures de polymères capables de solvater efficacement les cations Li + et pouvant être utilisées en tant que SPE. Ces structures de polymères contiennent généralement des fonctions -0- et -C=0-, -0-(C=0)-0-. On retrouve parmi elles, les éthers (tels que le tétrahydrofurane (THF), l'oxétane, le 1,3-dioxolane, l'oxyde de propylène), les esters (par exemple, la caprolactone) et les carbonates (par exemple, le carbonate d'éthylène, le carbonate de triméthylène et le carbonate de propylène).
La polycaprolactone, par exemple, possède une bonne conductivité ionique (voir Lin, C-K. et al. Polymer 52.18 (2011): 4106-4113). Cependant, comme l'oxyde de polyéthylène, ce polymère est semi-cristallin et cristallise autour de 60 C, ainsi limitant son utilisation à des températures plus élevées. En modifiant son architecture et, principalement, en introduisant des unités autres que la caprolactone, il est possible de réduire la cristallinité de ce polymère (voir Mindemark, J. et al., Journal of Power Sources 298 (2015): 166-170). En plus de présenter des conductivités de plus de 4.1 x 10-5 S.cm-1, ces copolymères à
base
3 d'unités caprolactone possèdent des nombres de transport élevés (> 0.6).
L'utilisation d'électrolytes polymères solides basés sur la caprolactone est d'autant plus intéressante que cette molécule peut être biosourcée, biocompatible, biodégradable et que l'étape de polymérisation est plus simple et sécuritaire que celle de l'oxyde d'éthylène. Cependant les unités actuellement utilisées pour briser la cristallinité de la polycaprolactone sont onéreuses et augmentent la transition vitreuse (Tv) du copolymère, ce qui a généralement un effet négatif sur la conductivité ionique. Par conséquent, il existe donc un besoin de trouver une nouvelle stratégie pour améliorer les performances de ce type de polymère.
Les SPEs peuvent être sous forme thermoplastique ou thermodurcissable. De nombreuses études font part de l'utilisation des SPEs réticulés, notamment, pour prévenir la formation de dendrites grâce à leurs propriétés mécaniques supérieures, mais aussi, car ils peuvent jouer à la fois le rôle d'électrolyte et de séparateur physique entre l'électrode positive et l'électrode négative (voir Khurana, Rachna, et al., Journal of the American Chem ical Society 136.20 (2014):
7395-7402; et Lu, Q. et al., Advanced Materials 29.13 (2017)). De plus, lorsque la densité de réticulation est importante, ils voient généralement leur stabilité
à haut voltage augmentée. La très grande majorité des SPEs réticulés sont basés sur l'utilisation des unités d'oxyde d'éthylène et/ou d'oxyde de propylène (voir Lu, Q.
et al.; Porcarelli, L. et al., Scientific reports 6 (2016): 19892; et Lin, Z.
et al., Nano Energy 41 (2017): 646-653 et Kono, M. et al., Journal of The Electrochemical Society 136 (1998) : 1521-1527). Le brevet d'Hydro-Québec (W02003063287 A2) présente notamment un exemple de copolymère (oxyde d'éthylène/oxyde de propylène) réticulé. De nombreuses études font part de l'ajout d'agents plastifiants (tel que des solvants) dans le réseau tridimensionnel de ces SPEs réticulés afin d'augmenter leur conductivité ionique. Cependant, ces électrolytes polymères gels voient leurs propriétés mécaniques diminuer, ce qui nous ramènent aux problèmes de formation de dendrites et de faible stabilité des molécules organiques en contact avec le lithium. Des études proposent l'utilisation d'autres types de polymères tels que les polyéthers (autres que le poly(oxyde d'éthylène)), les polyesters et les polycarbonates comme base thermodurcissable. Par exemple,
4 des oligomères de caprolactone de basse masse molaire sont utilisés pour des électrolytes conducteurs ioniques hybrides à base de silicone pour des applications dans les systèmes électrochromes (voir Pereira, R. F. P. et al., Electrochimica Acta 211(2016): 804-813; Leones, R. et al., Solar Energy Materials and Solar Cells 169 (2017): 98-106; et Fernandes, M. et al., ACS applied materials & interfaces 3.8 (2011): 2953-2965). Cependant, en plus d'avoir une conductivité
ionique faible à température ambiante (moins de 10-6 S/cm), ce type d'électrolyte nécessite un vieillissement de plusieurs semaines. Ugur, M. H. et al.
proposent un SPE basé sur la réticulation de la polycaprolactone via des unités polyuréthane acrylate permettant d'atteindre des conductivités ioniques de 1x10-4 S/cm à
température ambiante, lorsqu'imprégnés d'un électrolyte liquide (voir Ugur, M.
H.
et al., Chemical Papers 68.11 (2014): 1561-1572). Étant donné la haute polarisation du système, le seul résultat de cyclage présenté n'était pas concluant.
Alloin, F. et al. proposent la réticulation d'oligomères de polytétrahydrofurane pour former des SPEs. Cependant ils montrent que les polymères thermodurcissables basés sur l'unité de répétition tétrahydrofurane sont de moins bons conducteurs ioniques que leurs homologues basés sur des unités d'oxyde d'éthylène (voir Alloin, F. et al., Electrochimica acta 43.10 (1998): 1199-1204).
SOMMAIRE
Selon un premier aspect, la présente description concerne un polymère comprenant au moins une unité de répétition ester et une unité de répétition éther, le polymère étant de Formule I:

A
0 nr Formule I
5 dans laquelle :
x, y et z sont des nombres entiers naturels chacun indépendamment choisis de sorte que le poids moléculaire moyen du polymère soit compris entre 200 g/mol et 000 000 g/mol, où x 1 et y + z 1 ;
5 Ri et R2 sont des substituants linéaires ou ramifiés chacun indépendamment choisis parmi l'hydrogène, Ci_2ia1ky1e, C2_22a1cény1e, Ci_ioalcoxyallyle, Ci_ioalkyle-(acrylate) et Ci oalkyle-(méthacrylate) ;
n, m, o et p sont des nombres entiers naturels, où o est compris entre 1 et 10 et n, m et p sont compris entre 0 et 10; et A et B sont des groupements substitués ou non substitués, chacun indépendamment choisis parmi des alkyles, des alcényles, des alcynyles, des acétyles, des alcoxyles, des groupements comprenant des époxys, des groupements comprenant des furanes, des groupements comprenant des amines primaires, des groupements comprenant des maléimides, des groupements comprenant des acrylates et des groupements acides.
Selon un mode de réalisation, n est compris entre 0 et 3 et Ri est choisi parmi un hydrogène, un méthyle, et les groupements -CH2-0-CH2-CH=CH2 et -CH=CH2, o est compris entre 2 et 4, p entre 2 et 4, m est compris entre 0 et 4, et R2 est choisi parmi un hydrogène et un méthyle. Par exemple, Ri est l'hydrogène et n = 3, A
et B sont des acrylates, R2 est l'hydrogène, et m = 4.
Par exemple, le polymère tel qu'ici défini est un polymère thermoplastique ou un polymère thermodurcissable.
Selon un autre mode de réalisation, au moins l'un des groupements A, B, Ri et comprend des fonctionnalités permettant la réticulation dudit polymère.
Selon un exemple, la réticulation s'effectue par une réaction choisie parmi une réaction de type radicalaire, une réaction Diels-Alder, une chimie clic, une réaction
6 d'hydrothiolation d'alcène, une réaction d'ouverture de cycle, une vulcanisation, une cyclo addition, une estérification et une am idation.
Selon un exemple, la réticulation s'effectue par irradiation UV, par traitement thermique, par micro-ondes, sous un faisceau d'électrons, par irradiation gamma, ou par irradiation aux rayons X.
Selon un exemple, la réticulation s'effectue en présence d'un agent réticulant, d'un initiateur thermique, d'un catalyseur, d'un agent plastifiant, ou d'une combinaison d'au moins deux de ceux-ci.
Un autre aspect se réfère à une composition comprenant au moins un polymère tel qu'ici défini, et un ou plusieurs électrolytes liquides, sels ioniques, liquides ioniques, polymères, particules inorganiques, solvants polaires aprotiques, ou additifs.
Selon un autre aspect, la présente description se rapporte à un électrolyte comprenant un polymère tel qu'ici défini. Par exemple, l'électrolyte est un électrolyte polymère solide (SPE) ou un électrolyte gel.
Selon un mode de réalisation, l'électrolyte comprend en outre un sel ionique, un liquide ionique, un séparateur, un solvant polaire aprotique, un additif ou une combinaison d'au moins deux de ceux-ci.
Selon un exemple, le sel ionique est un sel de lithium choisi parmi l'hexafluorophosphate de lithium (LiPF6), le bis(trifluorométhanesulfonyl)imidure de lithium (LiTFSI), le bis(fluorosulfonyl)imidure de lithium (LiFSI), le 2-trifluorométhy1-4,5-dicyano-imidazolate de lithium (LiTDI), le 4,5-dicyano-1,2,3-triazolate de lithium (LiDCTA), le bis (pentafluoroéthylsulfonyl)imide de lithium (LiBETI), le tétrafluoroborate de lithium (LiBF4), le bis(oxalato)borate de lithium (LiBOB), le nitrate de lithium (LiNO3), le chlorure de lithium (LiC1), le bromure de lithium (LiBr), le fluorure de lithium (LiF), le perchlorate de lithium (LiC104), l'hexafluoroarsénate de lithium (LiA5F6), le trifluorométhanesulfonate de lithium (LiSO3CF3) (LiTf), le fluoroalkylphosphate de lithium Li[PF3(CF2CF3)3]
(LiFAP), le
7 tétrakis(trifluoroacétoxy)borate de lithium Li[B(OCOCF3)4] (LiTFAB), le bis(1,2-benzenediolato(2-)-0,0')borate de lithium Li[B(C602)2] (LBBB) et leurs combinaisons.
Selon un autre exemple, le solvant polaire aprotique est choisi parmi le carbonate d'éthylène (EC), le carbonate de diéthyle (DEC), le carbonate de propylène (PC), le carbonate de diméthyle (DMC), le carbonate de méthyle et d'éthyle (EMC), la y-butyrolactone (y-BL), le carbonate de vinylène (VC), le butyrate de méthyle (MB), la y-valérolactone (y-VL), le 1,2-diméthoxyéthane (DME), le 1,2-diéthoxyéthane (DEE), le 2-méthyltétrahydrofurane, le diméthylsulfoxyde, le formamide, l'acétamide, le diméthylformamide, le dioxolane, l'acétonitrile, le propylnitrile, le nitrométhane, l'éthylmonoglyme, le triméthoxyméthane, les dérivés de dioxolane, le sulfolane, le méthylsulfolane, les dérivés de carbonate de propylène, le tétrahydrofurane et leurs mélanges.
Selon un autre aspect, la présente description concerne un matériau d'électrode .. comprenant un matériau électrochimiquement actif et un polymère tel qu'ici défini.
Par exemple, le polymère est un liant.
Selon un aspect additionnel, la présente description concerne une cellule électrochimique comprenant une électrode négative, une électrode positive et un électrolyte, dans laquelle au moins un de l'électrode négative, de l'électrode positive et de l'électrolyte comprend un polymère tel qu'ici défini.
Selon un mode de réalisation, l'électrode positive comprend un matériau électrochimiquement actif d'électrode positive et un liant, éventuellement un matériau conducteur électronique, ou une combinaison de ceux-ci. Par exemple, le liant comprend un polymère tel qu'ici défini. Par exemple, le matériau conducteur est choisi parmi le noir de carbone, le carbone Ketjenmc, le noir d'acétylène, le graphite, le graphène, les nanotubes de carbone, et les fibres de carbone (telles que les nanofibres de carbone, ou VGCF formé en phase gazeuse), ou une combinaison d'au moins deux de ceux-ci.
8
9 En dernier lieu, la présente description se réfère à un accumulateur électrochimique comprenant au moins une cellule électrochimique telle qu'ici définie. Par exemple, l'accumulateur électrochimique est choisi parmi une batterie au lithium, une batterie au sodium, une batterie au potassium et une batterie lithium-ion.
BREVE DESCRIPTION DES FIGURES
La Figure 1 présente les résultats de cyclage en stabilité d'une batterie, selon un mode de réalisation, où la capacité en décharge et l'efficacité ont été
enregistrées :
(A) à une vitesse de charge/décharge de C/24 pour les 5 premiers cycles puis de C/2 à une température de 50 C; et (B) à une vitesse de charge/décharge de C/5 à
une température de 50 C, tels que décrits à l'Exemple 4(a).
La Figure 2 présente les résultats de capacité en décharge tels que décrits à
l'Exemple 4(a), et ce, à différentes vitesses de charge/décharge et à
différentes températures d'une batterie selon un mode de réalisation.
La Figure 3 présente les résultats de cyclage en stabilité tels que décrits à
l'Exemple 4(a) d'une batterie selon un mode de réalisation.
La Figure 4 présente les résultats de voltampérométrie cyclique tels que décrits à
l'Exemple 4(b) d'une pile symétrique selon un mode de réalisation.
DESCRIPTION DÉTAILLÉE
Tous les termes et expressions techniques et scientifiques utilisés ici ont les mêmes définitions que celles généralement comprises par la personne versée dans l'art de la technologie actuelle. La définition de certains termes et expressions utilisés est néanmoins fournie ci-dessous.
Le terme environ , tel qu'utilisé dans le présent document signifie approximativement, dans la région de, et autour de. Lorsque le terme environ est utilisé en lien avec une valeur numérique, il la modifie; par exemple, au-dessus et en dessous, par une variation de 10% par rapport à la valeur nominale. Ce terme peut aussi tenir compte, par exemple, de l'erreur expérimentale d'un appareil de mesure ou de l'arrondissement de la valeur.
Lorsqu'un intervalle de valeurs est mentionné dans la présente demande, les bornes inférieures et supérieures de l'intervalle sont, à moins d'indications contraires, toujours incluses dans la définition.
Les structures chimiques décrites ici sont dessinées suivant les conventions du domaine. Aussi, lorsqu'un atome, comme un atome de carbone, tel que dessiné, semble inclure une valence incomplète, alors on assume que la valence est satisfaite par un ou plusieurs atomes d'hydrogène même s'ils ne sont pas explicitement représentés.
Tel qu'ici utilisé, le terme alkyle réfère à des groupements hydrocarbures saturés ayant de 1 à 21 atomes de carbone, incluant les groupes alkyles linéaires ou ramifiés. Des exemples non limitatifs d'alkyles peuvent comprendre les groupes méthyle, éthyle, propyle, butyle, pentyle, hexyle, heptyle, octyle, nonyle, décyle, isopropyle, tert-butyle, sec-butyle, isobutyle et analogues. Le terme Ci -Cnalkyle se réfère à un groupe alkyle allant du nombre 1 au nombre n indiqué
d'atome(s) de carbone.
Tel qu'ici utilisé, le terme alcényle réfère à des hydrocarbures insaturés incluant au moins une double liaison entre deux atomes de carbone. Des exemples non limitatifs de groupements alcényles comprennent les groupes vinyle, allyle, 1-propén-2-yle, 1-butén-3-yle, 1-butén-4-yle, 2-butén-4-yle, 1-pentén-5-yle, 1,3-pentadién-5-yle, et autres groupements similaires. Le terme C2-Cnalcényle se réfère à un groupe alcényle ayant de 2 au nombre n indiqué d'atome(s) de carbone.
Tel qu'ici utilisé, le terme alcynyle réfère à des hydrocarbures insaturés incluant au moins une triple liaison entre deux atomes de carbone. Des exemples non limitatifs de groupements alcynyles comprennent les groupes éthynyle, 1-propyn-3-yle, 1-butyn-4-yle, 2-butyn-4-yle, 1-pentyn-5-yle, 1,3-pentadiyn-5-yle, et autres groupements similaires. Le terme C2-Cnalcynyle se réfère à un groupe alcynyle ayant de 2 au nombre n indiqué d'atome (s) de carbone.
Tel qu'ici utilisé, le terme alcoxy réfère à un groupe alkyle auquel est attaché
un atome d'oxygène, ce dernier étant compris entre deux atomes de carbone. Le terme alcoxy comprend à la fois des groupes alcoxy substitués et non substitués. Des groupes alcoxy représentatifs comprennent des groupes ayant de 1 à environ 10 atomes de carbone, par exemple, les groupements méthoxy, éthoxy, isopropyloxy, propoxy, butoxy, pentoxy, fluorométhoxy, difluorométhoxy, trifluorométhoxy, et autres groupements similaires.
Le terme substitué , lorsqu'inclus en association avec un groupement, se réfère à un groupement où au moins un atome d'hydrogène a été remplacé par un substituant approprié. Ces substituants peuvent aussi être substitués si permissible, par exemple, si le celui-ci contient un groupement alkyle, alcoxy, alcényle, alcynyle, etc.
La présente demande décrit des copolymères incluant à la fois des unités de répétition éthers et esters introduisant des défauts dans la structure de répétition du copolymère et conduisant ainsi à une diminution de la cristallinité par rapport aux homopolymères utilisés seuls. Ces copolymères permettent d'obtenir des SPEs fonctionnels à température ambiante, en combinant les bonnes propriétés électrochimiques et physico-chimiques des unités de répétition éthers et esters.
Ces propriétés sont aussi utiles lorsque les copolymères ici décrits entrent dans la composition de matrices d'électrolytes gels, de composites basés sur l'ajout de nanoparticules ou comme liants dans des électrodes. Sachant qu'une faible diffusion des ions lithium par rapport aux anions induit la formation d'un gradient de concentration responsable de la nucléation des dendrites, il est primordial d'utiliser des polymères avec des nombres de transport les plus élevés possibles afin de prévenir cette réaction indésirable. Les polymères de la présente demande possèdent de hauts nombres de transport en comparaison avec l'oxyde de polyéthylène généralement utilisé dans les applications visées.

La présente demande décrit donc des copolymères possédants de basses températures de cristallisation, de très basses transitions vitreuses (Tv) et de hauts nombres de transport, ce qui est désirable pour le fonctionnement efficace d'un SPEs à température ambiante. Les copolymères ici décrits peuvent être réticulés par différents stimuli pour former, par exemple, des polymères thermodurcissables, possédant de hautes propriétés mécaniques, étant résistants et prévenant la formation de dendrites. Cette tenue mécanique peut également être renforcée par l'ajout de nanoparticules telles que le SiO2, A1203, TiO2 ou toutes autres nanoparticules appropriées. Ces polymères réticulés peuvent également être utilisés comme base de gel polymère dur lorsque leur réseau tridimensionnel est imprégné par des électrolytes liquides et/ou par des liquides ioniques afin d'augmenter la conductivité ionique du polymère tout en conservant des propriétés mécaniques supérieures pouvant prévenir la formation de dendrites. La présente demande décrit donc ainsi qu'il est possible de remplacer les gels conventionnellement utilisés dans les batteries lithium-ion, dont les faibles propriétés mécaniques ne peuvent empêcher la formation de telles dendrites et dont la structure principale non conductrice ionique implique l'utilisation d'une grande quantité d'électrolyte liquide.
La présente description concerne un polymère comprenant au moins une unité de répétition ester et une unité de répétition éther. Par exemple le polymère est représenté par la Formule 1 :

= \
A

X R2 0 Y 0 0 z Formule 1 dans laquelle :

x, y et z sont des nombres entiers naturels chacun indépendamment choisis de sorte que le poids moléculaire moyen du polymère soit compris entre 200 g/mol et 000 000 g/mol; x 1; y + z 1;
Ri et R2 sont des substituants linéaires ou ramifiés chacun indépendamment 5 choisis parmi l'hydrogène, Ci -2i alkyle, C2_22a1cény1e, Ci-ioalkyle(acrylate) et Ci-ioalkyle(méthacrylate);
n, m, o et p sont des nombres entiers naturels représentant le nombre moyen d'unités dans le polymère; o est compris entre 1 et 10; n, m et p sont compris entre 0 et 10; et A et B sont des groupements substitués ou non substitués chacun indépendamment choisis parmi des alkyles, des alcényles, des alcynyles, des acétyles, des alcoxyles, des groupements comprenant des époxys, des groupements comprenant des furanes, des groupements comprenant des amines primaires, des groupements comprenant des maléimides, des groupements comprenant des acrylates et des groupements acides.
Selon un exemple, les monomères avant polymérisation utilisés pour former les unités éthers peuvent être, par exemple, l'oxyde d'éthylène, l'oxyde de propylène, le tétrahydrofurane, l'oxyméthylène, l'oxyde de triméthylène, le trioxyméthylène, l'éther d'allyle et de glycidyle, et le 3,4-époxy-1-butène. Alternativement, n est compris entre 0 et 3 et Ri est choisi parmi un hydrogène, un méthyle, et les groupements -CH2-0-CH2-CH=CH2 et -CH=CH2. Selon une variante d'intérêt, Ri est l'hydrogène, et n est 3.
Selon un autre exemple, les monomères avant polymérisation utilisés pour former les unités esters peuvent être, par exemple, l'adipate de 1,4-butylène, le succinate de 1,3-propylène, l'adipate d'éthylène, le glutarate de 1,3-propylène, et le succinate d'éthylène. Alternativement, les unités esters peuvent être obtenues via l'ouverture de lactones telles que le a-acétolactone, p-propiolactone, y-butyrolactone,15-valérolactone et c-caprolactone. Selon une autre alternative, elles peuvent être obtenues via l'ouverture d'un lactide ou d'un glycolide. Selon une autre alternative, o est compris entre 2 et 4 et p entre 2 et 4. Selon une autre alternative, m est compris entre 0 et 4, et R2 est choisi parmi un hydrogène et un méthyle. Selon une variante d'intérêt, R2 est l'hydrogène et m est 4.
Selon un exemple, A est un groupement acrylate. Selon un autre exemple, B est un groupement acrylate. Selon une variante d'intérêt, A et B sont des groupements acrylates.
Selon une variante d'intérêt, Ri est l'hydrogène, n est 3, R2 est l'hydrogène, m est 4, et A et B sont des groupements acrylates. Selon une autre variante d'intérêt, Ri est l'hydrogène, n est 3, R2 est l'hydrogène, m est 4, z est 0, et A et B sont des groupements acrylates. Par exemple, le polymère est représenté par la Formule Il :
xo -z Formule II
OU x, y et z sont tels que définis précédemment.
Selon un exemple, le polymère de Formule II peut être préparé par un procédé
de polymérisation tel qu'illustré au Schéma 1:

HOL00 0 .., }H
y xo acide p-toiuènesulfonique / hydroquinone / toluène acide acrylique 0 Y xo Schéma 1 Selon un exemple, le poids moléculaire moyen du polymère de Formule I est compris entre 200 g/mol et 5 000 000 g/mol, particulièrement compris entre 200 g/mol et 1 000 000 g/mol, plus particulièrement compris entre 200 g/mol et 500 000 g/mol, encore plus particulièrement compris entre 400 g/mol et 100 000 g/mol et idéalement compris entre 400 g/mol et 20 000 g/mol, bornes supérieures et inférieures incluses. Selon un autre exemple, le poids moléculaire moyen du polymère de Formule II est compris entre 200 g/mol et 5 000 000 g/mol, particulièrement compris entre 200 g/mol et 1 000 000 g/mol, plus particulièrement compris entre 200 g/mol et 500 000 g/mol, encore plus particulièrement compris entre 400 g/mol et 100 000 g/mol et idéalement compris entre 400 g/mol et 20 g/mol, bornes supérieures et inférieures incluses.
Les unités de répétition ester et éther peuvent s'enchaîner de façon alternée, aléatoire ou bloc. Selon un autre exemple, les unités de répétition ester et éther sont attachées chacune à un polymère dans une configuration choisie parmi les configurations linéaire, en étoile et ramifiée. Selon une variante, le polymère est un polymère ramifié ou hyperbranché incluant les polymères en peigne et les polymères dendritiques. Selon une autre variante, le polymère est un polymère en étoile et les chaînes linéaires dudit polymère en étoile sont de longueur et de structure homogènes, alternativement elles sont de longueur et de structure hétérogènes.
Selon un exemple, le polymère de la présente description peut à la fois posséder dans sa structure, un ou plusieurs segment(s) conducteur(s) ionique(s) et une ou plusieurs fonction(s) pouvant conduire à la réticulation contrôlée du polymère.
Selon un exemple, le polymère comprend en outre des fonctionnalités permettant sa réticulation contrôlée sous différents stimuli externes. Par exemple, au moins l'un des groupements A, B, Ri et R2 comprend des fonctionnalités permettant la réticulation dudit polymère. La réticulation permet, par exemple, d'obtenir une structure tridimensionnelle très résistante aux hauts voltages, permettant également de prévenir la formation de dendrites. Les unités de répétitions sélectionnées peuvent conférer au polymère un haut nombre de transport. La réticulation peut s'effectuer par une réaction choisie parmi une réaction de type radicalaire, une réaction Diels-Alder, une chimie clic, une réaction d'hydrothiolation d'alcène, une réaction d'ouverture de cycle, une vulcanisation, une cyclo addition, une estérification et une amidation. Par exemple, la réticulation s'effectue par irradiation UV, par traitement thermique, par micro-ondes, sous un faisceau d'électrons, par irradiation gamma, ou par irradiation aux rayons X. La réticulation peut aussi s'effectuer en présence, en outre, d'un agent réticulant, d'un initiateur thermique, d'un initiateur UV, d'un catalyseur, d'un agent plastifiant tel que le tétraéthylène glycol diméthyléther (ou tétraglyme), poly(éthylène glycol) éther diméthylique (PEGDME), et tel que des électrolytes liquides conventionnels, des électrolytes de sel fondu (liquide ionique) ou d'une combinaison d'au moins deux de ceux-ci. Par exemple, l'agent réticulant sous UV est le 2,2-diméthoxy-2-phénylacétophénone (lrgacure 651).
Selon un autre exemple, ledit polymère est un polymère thermoplastique ou un polymère thermodurcissable.
Selon une variante, ledit polymère peut être compris dans une composition comprenant au moins un polymère tel qu'ici défini, et un ou plusieurs électrolytes liquides, sels ioniques, liquides ioniques, polymères, particules inorganiques, solvants polaires aprotiques, ou additifs.
Selon une variante, ledit polymère peut être compris dans un électrolyte tel qu'un électrolyte solide ou gel. Lorsque le polymère ici décrit est utilisé dans un .. électrolyte solide ou gel, ce dernier peut comprendre en outre un électrolyte liquide, un sel ionique, un liquide ionique, un autre polymère, un séparateur, un polymère à ion simple, des particules inorganiques, un solvant polaire aprotique, un additif ou une combinaison d'au moins deux de ceux-ci. Par exemple, il est possible, en variant la densité de réticulation et les groupements insérés, d'obtenir un matériau imbibé hautement conducteur ionique tout en gardant des propriétés mécaniques supérieures prévenant la formation de dendrites. L'ajout d'un sel ionique peut aussi permettre d'augmenter le nombre de transport du polymère et sa conductivité ionique.
Selon une variante, l'électrolyte est un électrolyte polymère solide (SPE) pouvant être utilisé dans une cellule électrochimique ou un accumulateur électrochimique, par exemple, un accumulateur électrochimique de type tout solide . Selon une autre variante d'intérêt, l'électrolyte est un électrolyte gel.
Selon un exemple, le polymère de la présente description peut en outre posséder dans sa structure une ou plusieurs fonction(s) pouvant conduire à son greffage à
la surface d'un ou plusieurs élément(s) de l'électrode positive ou de l'électrode négative ou sur la surface d'éléments solides contenus dans le SPE.
Des exemples non limitatifs de séparateurs peuvent comprendre des membranes de polyéthylène (PE), de polypropylène (PP), de cellulose, de polytétrafluoroéthylène (PTFE), poly(fluorure de vinylidène) (PVdF) et de polypropylène-polyéthylène-polypropylène (PP/PE/PE).
Par exemple, le sel ionique peut être un sel de lithium. Des exemples non limitatifs de sels de lithium comprennent l'hexafluorophosphate de lithium (LiPF6), le bis(trifluorométhanesulfonyl)im idure de lithium (LiTFSI), le bis(fluorosulfonyl)imidure de lithium (LiFSI), le 2-trifluorométhy1-4,5-dicyano-imidazolate de lithium (LiTDI), le 4,5-dicyano-1,2,3-triazolate de lithium (LiDCTA), le bis(pentafluoroéthylsulfonyl)imide de lithium (LiBETI), le tétrafluoroborate de lithium (LiBF4), le bis(oxalato)borate de lithium (LiBOB), le nitrate de lithium (LiNO3), le chlorure de lithium (LiC1), le bromure de lithium (LiBr), le fluorure de lithium (LiF), le perchlorate de lithium (LiC104), l'hexafluoroarsénate de lithium (LiAsF6), le trifluorométhanesulfonate de lithium (LiSO3CF3) (LiTf), le fluoroalkylphosphate de lithium Li[PF3(CF2CF3)3] (LiFAP), le tétrakis(trifluoroacétoxy)borate de lithium Li[B(OCOCF3)4] (LiTFAB), le bis(1,2-benzenediolato(2-)-0,0')borate de lithium Li[B(C602)2] (LBBB) et leurs combinaisons ou les compositions les comprenant. Selon une variante d'intérêt, le sel de lithium est le bis(trifluorométhanesulfonyl)imidure de lithium (LiTFSI).
Des exemples non limitatifs de solvants polaires aprotiques comprennent le carbonate d'éthylène (EC), le carbonate de diéthyle (DEC), le carbonate de propylène (PC), le carbonate de diméthyle (DMC), le carbonate de méthyle et d'éthyle (EMC), le carbonate de vinylène (VC), le butyrate de méthyle (MB), la y-butyrolactone (y-BL), la y-valérolactone (y-VL), le 1,2-diméthoxyéthane (DME), le 1,2-diéthoxyéthane (DEE), le 2-méthyltétrahydrofurane, le diméthylsulfoxyde, le formamide, l'acétamide, le diméthylformamide, le dioxolane, l'acétonitrile, le propylnitrile, le nitrométhane, l'éthylmonoglyme, le triméthoxyméthane, les dérivés de dioxolane, le sulfolane, le méthylsulfolane, les dérivés de carbonate de propylène, le tétrahydrofurane et leurs mélanges. Par exemple, le solvant polaire aprotique est le carbonate de propylène (PC).
Selon un mode de réalisation, la concentration du polymère dans la composition d'électrolyte est comprise entre 5% et 100% en poids, entre 10% et 100% en poids, entre 20% et 100% en poids, entre 30% et 100 en poids, entre 40% et 100% en poids, entre 50% et 100% en poids, entre 60% et 100% en poids, entre 75% et 100% en poids, et entre 90 % et 100% en poids, bornes supérieures et inférieures incluses.

La présente demande propose également un matériau d'électrode comprenant un matériau électrochimiquement actif et un polymère tel qu'ici défini. Selon une variante d'intérêt, le liant comprend un polymère tel qu'ici décrit. Dans l'alternative, le polymère tel qu'ici décrit est présent dans le matériau d'électrode sous forme d'enrobage de particules de matériau électrochimiquement actif.
La présente demande propose également une cellule électrochimique comprenant une électrode négative, une électrode positive et un électrolyte, dans laquelle au moins un de l'électrode négative, de l'électrode positive et de l'électrolyte comprend un polymère de la présente demande. Par exemple, le polymère est présent dans l'électrolyte, ou dans l'une des électrodes positive et négative, ou encore dans l'une des électrodes et dans l'électrolyte. Selon un exemple, la cellule électrochimique comprend l'électrolyte de la présente demande. Selon une variante d'intérêt, l'électrode négative est du lithium.
Par exemple, le polymère de la présente description peut être combiné avec différents matériaux inorganiques pour former des composites. Par exemple, les particules inorganiques peuvent être inactives telles que le dioxyde de titane (TiO2), le dioxyde de silicium (SiO2) et l'oxyde d'aluminium (A1203).
Alternativement, les particules inorganiques peuvent être actives tel que par exemple le titanate de lithium et de lanthane Li0.33La0.557TiO3 (LLTO), le zirconate de lithium et de lanthane Li7La3Zr2012 (LLZO), et le Li6.75La3Zr1.75Tao.25012 (LLZTO). Selon un exemple, les fonctionnalités du polymère de la présente description permettent de le greffer sur des micro ou nanoparticules électrochimiquement actives ou inactives pour augmenter la conductivité
ionique/nombre de transport du polymère et/ou pour augmenter les propriétés mécaniques du composite final.
Selon un autre aspect, l'électrode positive comprend un matériau d'électrode positive, lequel comprend un matériau électrochimiquement actif, par exemple, sous forme de particule. Des exemples de matériaux électrochimiquement actifs d'électrode positive comprennent des phosphates de lithium et de métal, des oxydes complexes, tels que LiM'PO4 où M' est Fe, Ni, Mn, Co, ou une combinaison de ceux-ci, LiV308, V205, LiMn204, LiM"02, où M" est Mn, Co, Ni, ou une combinaison de ceux-ci, Li(NiMm)02, où M" est Mn, Co, Al, Fe, Cr, Ti, ou Zr, et leurs combinaisons. Le matériau d'électrode positive peut aussi comprendre en outre un matériau conducteur électronique, un liant, ou une combinaison des deux.
Selon une variante d'intérêt, le liant comprend un polymère tel qu'ici décrit.
Dans l'alternative, le polymère tel qu'ici décrit est présent dans le matériau d'électrode sous forme d'enrobage de particules de matériau électrochimiquement actif.
Selon un mode de réalisation, le matériau conducteur électronique est choisi parmi le noir de carbone, le carbone Ketjenmc, le noir d'acétylène, le graphite, le graphène, les nanotubes de carbone, et les fibres de carbone (telles les nanofibres de carbone ou le VGCF formé en phase gazeuse), ou une combinaison d'au moins deux de ceux-ci. Selon une variante d'intérêt, le matériau conducteur est une combinaison de noir d'acétylène (tel le carbone Denka HS100) et de VGCF.
Selon un exemple, le matériau d'électrode positive peut être appliqué à un collecteur de courant (par exemple, aluminium ou cuivre) pour former l'électrode positive. Selon une autre variante, l'électrode positive peut être autosupportée.
Selon une variante d'intérêt, le collecteur de courant est en aluminium recouvert de carbone.
Selon un autre exemple, les membranes SPEs et/ou les électrodes comprenant le polymère de la présente description peuvent être formées en continu sur des systèmes de traitement de rouleau à rouleau roll-to-roll pour une production à
grande échelle.
Selon un autre aspect, une cellule électrochimique de la présente demande est comprise dans un accumulateur électrochimique. Par exemple, l'accumulateur électrochimique est choisi parmi une batterie au lithium, une batterie au sodium, une batterie au potassium et une batterie lithium-ion. Selon une variante d'intérêt, l'accumulateur électrochimique est une batterie lithium-ion.

Selon un autre aspect, les accumulateurs électrochimiques de la présente demande sont utilisés dans des appareils nomades, par exemple les téléphones portables, les appareils photo, les tablettes ou les ordinateurs portables, dans des véhicules électriques ou hybrides, ou dans le stockage d'énergie renouvelable.
EXEMPLES
Les exemples qui suivent sont à titre illustratif et ne doivent pas être interprétés comme limitant davantage la portée de l'invention telle que décrite.
Exemple 1 ¨ Synthèse des polymères (a) Synthèse d'un film de polymère réticulé: polycaprolactone-bloc-polytétrahydrofurane-bloc-polycaprolactone diacrylate (Polymère P1) La synthèse du polymère a été effectuée dans un ballon de 500 mL muni d'un barreau magnétique en solubilisant 72 g de polycaprolactone-bloc-polytétrahydrofurane-bloc-polycaprolactone commercial de masse moléculaire 2 000 g/mol dans 160 g de toluène. De l'acide acrylique (12,8 g), de l'hydroquinone (0,4 g) et de l'acide paratoluènesulfonique (1,6 g) ont ensuite été ajoutés.
Par la suite, la solution a été agitée à une température de 80 C sous vide partiel pendant 24 heures afin d'extraire l'eau par distillation azéotropique. Le solvant a ensuite été évaporé à l'aide d'un évaporateur rotatif sous vide à une température de pendant 2 heures. Ensuite, 200 g d'une solution aqueuse saturée de bicarbonate de sodium et 100 mL d'eau ont ensuite été ajoutés au ballon contenant le polymère.
La solution a ensuite été agitée jusqu'à ce que le polymère soit neutralisé.
Une fois l'agitation arrêtée, le polymère s'est déposé au fond du ballon et le surnageant a été décanté. Par la suite, le polymère a été lavé six fois avec de l'eau nanopure sous vive agitation et séparé par centrifugation. Le polymère a ensuite été
séché
à l'aide d'un évaporateur rotatif et puis analysé par spectroscopie infrarouge à

transformée de Fourier (FTIR), calorimétrie différentielle à balayage (DSC) et spectroscopie résonance magnétique nucléaire (RMN).
Le Polymère P1 ainsi obtenu possédait les propriétés suivantes : une température de transition vitreuse (Tv) = -78,13 C et une température de fusion (Tf) = 18 -34,5 C. Après réticulation par irradiation UV, la Tv était de -72 C et le polymère était amorphe.
(b) Synthèse d'un polymère gel : polycaprolactone-bloc-polytétrahydrofurane-bloc-polycaprolactone di-2-(2-méthoxyéthoxy)ester (Polymère P2) La synthèse de ce polymère a été effectuée dans un ballon de 500 mL muni d'un barreau magnétique en solubilisant 72 g de polycaprolactone-bloc-polytétrahydrofurane-bloc-polycaprolactone commercial de masse moléculaire 2 000 g/mol dans 160 g de toluène. Par la suite, 11,9 g d'acide 2-(2-méthoxyéthoxy)acétique, 0,4 g d'hydroquinone et 1,6 g d'acide paratoluènesulfonique ont été ajoutés. La solution a été agitée à une température de 80 C sous vide partiel pendant 24 heures afin d'extraire l'eau par distillation azéotropique. Le solvant a ensuite été évaporé à l'évaporateur rotatif sous vide à
une température de 60 C pendant 2 heures. Par la suite, 200 g d'une solution aqueuse saturée de bicarbonate de sodium et 100 mL d'eau ont été ajoutés au ballon contenant le polymère.
La solution a ensuite été vigoureusement agitée jusqu'à ce que le polymère soit neutralisé. Une fois l'agitation arrêtée, le polymère s'est déposé au fond du ballon et le surnageant a été décanté. Par la suite, le polymère a été lavé six fois avec de l'eau nanopure sous vive agitation et a été séparé par centrifugation. Le polymère isolé a été séché à l'aide d'un évaporateur rotatif puis analysé par FTIR, DSC et RMN.
Le Polymère P2 ainsi obtenu possédait les propriétés suivantes : Tv = -76,22 C et Tf = 16,5 ¨ 26,5 C.

Exemple 2¨ Préparation de piles symétriques La préparation des cellules symétriques des Exemples 2(a) à 2(c) a été
entièrement réalisée en chambre anhydre.
(a) Préparation de piles symétriques comprenant le Polymère P1 seul Le Polymère P1 (3 g) a été solubilisé à l'aide d'un vortex dans un flacon (vial) avec 3 g d'éthanol, 0,53 g de bis(trifluorométhanesulfonyl)imide de lithium (LiTFSI) et 0,015 g d'Irgacuremc 651 (2,2-diméthoxy-2-phénylacétophénone, un agent de photo-réticulation). La solution a ensuite été épandue par la méthode Doctor blade sur un collecteur de courant en acier inoxydable puis séchée au four à
une température de 75 C pour une durée de 5 minutes avant d'être insérée dans un four à UV sous atmosphère inerte d'azote à flux continu. Une intensité de 300 WPI
a été appliquée pendant 5 minutes pour induire la réticulation du polymère.
Par la suite, le revêtement a été laissé au four à une température de 75 C toute la nuit avant utilisation.
La conductivité ionique du polymère ainsi obtenu a été mesurée entre deux électrodes d'acier inoxydable. Une valeur de 4,41x10-6 S/cm a été obtenue à
une température de 30 C.
(b) Préparation de piles symétriques comprenant les Polymères P1 et P2 Le Polymère P1 (3 g) et le Polymère P2 (3 g) ont été solubilisés dans un flacon avec 6g d'éthanol, 1,06 g de LiTFSI et 0,015 g d'Irgacuremc 651 à l'aide d'un vortex. Par la suite, la solution a été épandue par la méthode Doctor blade sur un collecteur en acier inoxydable puis séchée au four à une température de 75 C pour une durée de 5 minutes avant d'être insérée dans un four à UV sous atmosphère inerte d'azote à flux continu. Une intensité de 300 WPI a été
appliquée pendant 5 minutes, et ce, afin d'induire la réticulation du polymère. Par la suite, le revêtement a été laissé au four à une température de 75 C toute la nuit avant utilisation.

La conductivité ionique du mélange de polymères comprenant le Polymère P1 et le Polymère P2 ainsi obtenu a été mesurée entre deux électrodes d'acier inoxydable. Une valeur de 1,08 x 10-5 S/cm a été obtenue à une température de 30 C.
(c) Préparation de piles symétriques comprenant le Polymère P1 et un électrolyte liquide Le Polymère P1 (3 g) et 0,53g de LiTFSI ont été solubilisés dans une quantité
déterminée (voir Tableau 1) d'une solution 1M de LiTFSI dans le PC
préalablement préparée et 0,015 g d'Irgacuremc 651 à l'aide d'un vortex. Par la suite, la solution a été épandue par la méthode Doctor blade sur un collecteur en acier inoxydable puis insérée dans un four à UV sous atmosphère inerte d'azote à
flux continu. Une intensité de 300 WPI a été appliquée pendant 5 minutes, et ce, afin d'induire la réticulation. Le revêtement a ensuite été utilisé tel quel sans chauffage préalable au four afin d'éviter l'évaporation du PC.
Tableau 1. Conductivité ionique en fonction du % massique de carbonate de propylène PC vs. Conductivité Conductivité
PC masse Échantillon PC + copolymère ionique à ionique à
(`)/0 massique) (g) 30 C (S/cm) 80 C (S/cm) E 1 50 3 7,82 x 10-4 1,54 x 10-3 E2 40 2 6,11 x 10-4 1,22 x 10-3 E3 25 1.24 2,61 x 10-4 6,67 x 10-4 E4 10 0.415 4,27 x 10-5 2,83 x 10-4 E5 0 0 4,41 x 10-6 7,99 x 10-5 d) Préparation de piles symétriques (lithium / SPE / lithium) comprenant le Polymère P1 seul Le SPE a été préparé tel que décrit à l'Exemple 2(a) en remplaçant le collecteur de courant en acier inoxydable par un film de polypropylène. Le SPE de 80 pm d'épaisseur a ensuite été détaché du film de polypropylène à l'aide d'hexane, transféré sur une feuille de PTFE et recouvert d'une autre feuille de PTFE. Le SPE

en sandwich entre deux feuilles de PTFE a ensuite été poinçonné afin d'obtenir un séparateur SPE et d'assembler une pile lithium / SPE / lithium. L'assemblage a été
effectué en boîte à gants.
Le nombre de transport du polymère P1 a été mesuré entre deux électrodes de lithium. Une valeur moyenne de 0.71 sur 4 piles a été obtenue à une température de 50 C.
Exemple 3¨ Préparation de batteries LiFePO4 / SPE / Lithium a) Préparation de batteries LiFePO4 / SPE / Lithium comprenant le Polymère P1 seul La préparation est entièrement réalisée en chambre anhydre. 6 g du Polymère P1 ont été solubilisés avec 7,53 g d'éthanol, 1,5 g de LiTFSI et 0,03 g d'Irgacuremc 651 dans un flacon à l'aide d'un vortex. 7,53 g de cette solution ont ensuite été
transférés dans un contenant pour mélangeur centrifuge planétaire (de type TH INKYmc). 8,8 g de phosphate de fer lithié enrobé de carbone (LFP/C), 0,475 g de noir d'acétylène (carbone Denkamc HS100), 0,475 g de fibre de carbone (de type VGCF), 0,015 g d'azobisisobutyronitrile (AIBN) comme initiateur thermique et 16 g d'éthanol ont ensuite été introduits dans le contenant. Le tout a été
mélangé
à 5 reprises pour une période de 5 minutes, chacune à l'aide d'un mélangeur centrifuge planétaire (de type THINKYmc MIXER) afin de bien disperser les poudres et d'obtenir une solution homogène. Cette solution d'électrode positive a ensuite été épandue par la méthode Doctor blade sur un collecteur d'aluminium/carbone puis séchée et réticulée au four à une température de 120 C
pendant 2 heures.
Par la suite, la solution mère contenant le polymère, le sel de lithium et l'initiateur UV a été épandue par la méthode Doctor blade sur l'électrode positive.
L'électrode positive avec le revêtement de SPE ainsi obtenue a été séchée au four à une température de 75 C durant 5 minutes avant d'être insérée dans un four à

UV sous atmosphère inerte d'azote en flux continu. Une intensité de 300 WPI a ensuite été appliquée pendant 5 minutes pour induire la réticulation. Le revêtement a ensuite été laissé au four à une température de 75 C toute la nuit avant son utilisation.
Les batteries ont été assemblées avec une anode de lithium métallique d'une épaisseur de 45 pm. Deux formats différents de batteries ont été utilisés : le format pile bouton et le format pile sachet.
(b) Préparation de batterie LiFePO4/ SPE / Lithium comprenant les Polymères P1 et P2 La préparation est entièrement réalisée en chambre anhydre. 3 g du Polymère P1 et 3 g du polymère P2 ont été solubilisés avec 6 g d'éthanol, 1,06 g de LiTFSI
et 0,015 g d'Irgacuremc 651 dans un flacon à l'aide d'un vortex. 6,54 g de cette solution ont ensuite été transférés dans un contenant pour mélangeur centrifuge planétaire (de type THINKYmc). 8,24 g de phosphate de fer lithié enrobé de carbone (LFP/C), 0,445 g de noir d'acétylène (carbone Denkamc HS100), 0,445 g de fibre de carbone (de type VGCF), 0,0075 g d'AIBN comme initiateur thermique et 16 g d'éthanol ont ensuite été introduits dans le contenant. Le tout a été
mélangé, épandu, séché et réticulé tels que décrits à l'Exemple 3(a).
Par la suite, la solution mère contenant le polymère, le sel de lithium et l'initiateur UV a été épandue par la méthode Doctor blade sur l'électrode positive.
L'électrode positive ainsi obtenue avec le revêtement de SPE a été séchée au four à une température de 75 C pour 5 minutes avant d'être insérée dans un four à
UV
sous atmosphère inerte d'azote en flux continu. Une intensité de 300 WPI a ensuite été appliquée pendant 10 minutes pour induire la réticulation. Le revêtement a ensuite été laissé au four à une température de 75 C toute la nuit avant son utilisation. Les batteries ont été assemblées tel que décrit à l'Exemple 3(a).
Exemple 4¨ Propriétés électrochimiques (a) Cyclage de formation et de stabilité

Des tests de cyclage de formation et de stabilité de la batterie préparée à
l'Exemple 3(a) ont été effectués à différentes vitesses de charge et de décharge ainsi qu'à différentes températures. Les résultats sont présentés pour une batterie comprenant une charge totale de 4,39 mg/cm2, une SPE d'une épaisseur de 20 pm et une électrode positive d'une épaisseur de 25 pm.
La Figure 1A présente le cyclage d'une batterie obtenue à l'Exemple 3(a). Lors de la formation (5 premiers cycles de charge/décharge) à C/24 et à 50 C, une capacité stable de 149 mAh/g a été obtenue avec une efficacité proche de 100 %.
La batterie a ensuite été lancée en stabilité à C/2 (charge/décharge) toujours à
50 C. Une diminution rapide de la capacité lors des 40 premiers cycles a été
constatée pour ensuite se stabiliser à environ 100 mAh/g. Après plus de 880 cycles, la capacité était d'environ 80 mAh/g tout en gardant une efficacité
élevée d'environ 100%.
La Figure 1B présente le cyclage d'une batterie obtenue à l'Exemple 3(a), à
une vitesse de C/5 (charge/décharge) et à 50 C. A cette vitesse et cette température de cyclage, une stabilité très importante avec une capacité initiale de 137 mAh/g au premier cycle, une capacité de 123 mAh/g après le 257e cycle et une efficacité
de 99,9% ont été observées.
La Figure 2 présente le cyclage à différentes vitesses de charge/décharge et à
.. différentes températures d'une batterie obtenue à l'Exemple 3(a). L'encadré
de gauche et de droite présentent respectivement les résultats de cyclages à une température de 50 C et 25 C. A une température de 50 C, il a été observé que la batterie peut être cyclée jusqu'à C/5 tout en conservant une capacité élevée d'environ 150 mAh/g. Il a été observé qu'à des vitesses de C/2 et 1C, la capacité
chute plus fortement et devient respectivement inférieure à 120 mAh/g et 40 mAh/g après 5 cycles. Pour une utilisation à 25 C, il a été observé que la batterie présente une bonne capacité d'environ 145 mAh/g à C/24, mais chute en dessous de 40 mAh/g à une vitesse de C/5. La batterie a ensuite été testée en stabilité à
une vitesse de C/10 et il a été possible d'observer qu'après plus de 90 cycles la batterie détenait encore une capacité d'environ 100 mAh/g et tendait à se stabiliser.
Des tests de cyclage de formation et de stabilité de la batterie préparée à
l'Exemple 3(b) ont été effectués à différentes vitesses de charge et de décharge ainsi qu'à différentes températures. Les résultats sont présentés pour une batterie comprenant une charge totale de 5.72 mg/cm2, une SPE d'une épaisseur de 20 pm et une électrode positive d'une épaisseur de 32 pm.
La Figure 3 présente le cyclage d'une batterie obtenue à l'Exemple 3(b). Lors de la formation (4 premiers cycles de charges/décharge) à C/24 et à 50 C, une capacité stable d'environ 141 mAh/g a été obtenue avec une efficacité proche de 100 %. La batterie a ensuite été lancée en stabilité à C/5 (charge/décharge) toujours à 50 C. A ces vitesse et température de cyclage, une stabilité très importante avec une capacité initiale de 125.9 mAh/g au premier cycle, une capacité de 124.2 mAh/g après le 33e cycle et une efficacité de 99.9% ont été
observées.
(b) Voltampérométrie cyclique La stabilité de la pile symétrique comprenant le Polymère P1 seul obtenue à
l'Exemple 2(a) a été évaluée par voltampérométrie cyclique. La Figure 4 montre que le polymère est stable jusqu'à environ 4,5 V permettant son utilisation avec des matériaux à haut voltage. Les résultats sont présentés pour une vitesse de 0,1 mV/s et une température de 50 C.
Plusieurs modifications pourraient être effectuées à l'un ou l'autre des modes de réalisations décrits ci-dessus sans sortir du cadre de la présente invention telle qu'envisagée. Les références, brevets ou documents de littérature scientifique référés dans la présente demande sont incorporés ici par référence dans leur intégralité et à toutes fins.

Claims (48)

REVENDICATIONS MODIFIÉES
reçues par le Bureau international le 06 juin 2019 (06.06.2019) REVENDICATIONS
1. Polymère comprenant au moins une unité de répétition ester et une unité
de répétition éther, le polymère étant de Formule l:

_ s B

X R2 0 Y 0 0 z Formule l dans laquelle :
x, y et z sont des nombres entiers naturels chacun indépendamment choisis de sorte que le poids moléculaire moyen du polymère soit compris entre 200 g/mol et 000 000 g/mol, où x 1 et y + z 1;
Ri et R2 sont des substituants linéaires ou ramifiés chacun indépendamment choisis parmi de l'hydrogène, Ci-21a1ky1e, 02-22a1cény1e, Ci-ioalcoxyallyle, Ci-ioalkyle-(acrylate) et Ci_ioalkyle-(méthacrylate);
n, m, o et p sont des nombres entiers naturels, où o est compris entre 1 et 10, et n, m et p sont compris entre 0 et 10; et A et B sont des groupements substitués ou non substitués chacun indépendamment choisis parmi des alkyles, des alcényles, des alcynyles, des acétyles, des alcoxyles, des groupements comprenant des époxys, des groupements comprenant des furanes, des groupements comprenant des amines primaires, des groupements comprenant des maléimides, des groupements comprenant des acrylates et des groupements acides.
2. Polymère selon la revendication 1, dans lequel n est compris entre 0 et 3, et Ri est choisi parmi un hydrogène, un méthyle, et les groupements -CH2-0-CH2-CH=CH2 et -CH=CH2.
FEUILLE MODIFIEE (ARTICLE 19)
3. Polymère selon la revendication 2, dans lequel Ri est l'hydrogène et n =
3.
4. Polymère selon l'une quelconque des revendications 1 à 3, dans lequel o et p sont chacun compris entre 2 et 4.
5. Polymère selon l'une quelconque des revendications 1 à 4, dans lequel m est compris entre 0 et 4, et R2 est choisi parmi un hydrogène et un méthyle.
6. Polymère selon la revendication 5, dans lequel R2 est l'hydrogène et m=4.
7. Polymère selon l'une quelconque des revendications 1 à 6, dans lequel A
est un acrylate.
8. Polymère selon l'une quelconque des revendications 1 à 7, dans lequel B
est un acrylate.
9. Polymère selon l'une quelconque des revendications 1 à 8, dans lequel le poids moléculaire moyen du polymère est compris entre 200 g/mol et 1 000 000 g/mol.
10. Polymère selon la revendication 9, dans lequel le poids moléculaire moyen du polymère est compris entre 200 g/mol et 500 000 g/mol.
11. Polymère selon la revendication 10, dans lequel le poids moléculaire moyen du polymère est compris entre 400 g/mol et 100 000 g/mol.
12. Polymère selon la revendication 11, dans lequel le poids moléculaire moyen du polymère est compris entre 400 g/mol et 20 000 g/mol.
13. Polymère selon l'une quelconque des revendications 1 à 12, dans lequel le polymère est de configuration choisie parmi linéaire, en étoile et ramifiée.
14. Polymère selon l'une quelconque des revendications 1 à 13, dans lequel les unités de répétition ester et éther s'enchaînent de façon alternée, aléatoire ou bloc.

FEUILLE MODIFIEE (ARTICLE 19)
15. Polymère selon l'une quelconque des revendications 1 à 14, dans lequel au moins l'un des groupements A, B, Ri et R2 comprend des fonctionnalités permettant la réticulation dudit polymère.
16. Polymère selon la revendication 15, ledit polymère étant réticulé et dans lequel la réticulation dudit polymère s'effectue par une réaction choisie parmi une réaction de type radicalaire, une réaction Diels-Alder, une chimie clic, une réaction d'hydrothiolation d'alcène, une réaction d'ouverture de cycle, une vulcanisation, une cyclo addition, une estérification et une amidation.
17. Polymère selon la revendication 15 ou 16, ledit polymère étant réticulé
et dans lequel la réticulation dudit polymère s'effectue par irradiation UV, par traitement thermique, par micro-ondes, sous un faisceau d'électrons, par irradiation gamma, ou par irradiation aux rayons X.
18. Polymère selon l'une quelconque des revendications 15 à 17, ledit polymère étant réticulé et dans lequel la réticulation dudit polymère s'effectue en présence d'un agent réticulant, d'un initiateur thermique, d'un initiateur UV, d'un catalyseur, d'un agent plastifiant, ou d'une combinaison d'au moins deux de ceux-ci.
19. Polymère selon la revendication 18, dans lequel l'agent réticulant est le 2,2-diméthoxy-2-phénylacétophénone (lrgacure 651).
20. Polymère selon l'une quelconque des revendications 1 à 19, ledit polymère étant un polymère thermoplastique ou un polymère thermodurcissable.
21. Polymère comprenant au moins une unité de répétition ester et une unité

de répétition éther, le polymère étant de Formule II :
o 0 Y xo -z Formule II
dans laquelle :

FEUILLE MODIFIEE (ARTICLE 19) x, y et z sont des nombres entiers naturels chacun indépendamment choisis de sorte que le poids moléculaire moyen du polymère soit compris entre 200 g/mol et 000 000 g/mol, où x 1 et y + z 1.
22. Polymère selon la revendication 21, dans lequel le poids moléculaire moyen du polymère est compris entre 200 g/mol et 1 000 000 g/mol.
23. Polymère selon la revendication 22, dans lequel le poids moléculaire moyen du polymère est compris entre 200 g/mol et 500 000 g/mol.
24. Polymère selon la revendication 23, dans lequel le poids moléculaire moyen du polymère est compris entre 400 g/mol et 100 000 g/mol.
25. Polymère selon la revendication 24, dans lequel le poids moléculaire moyen du polymère est compris entre 400 g/mol et 20 000 g/mol.
26. Polymère selon l'une quelconque des revendications 21 à 25, dans lequel les unités de répétition ester et éther s'enchaînent de façon alternée, aléatoire ou bloc.
27. Polymère selon l'une quelconque des revendications 21 à 25, lequel est le diacrylate de polycaprolactone-bloc-polytétrahydrofurane-bloc-polycaprolactone.
28. Polymère di-2-(2-méthoxyéthoxy)ester de polycaprolactone-bloc-polytétrahydrofurane-bloc-polycaprolactone.
29. Polymère selon l'une quelconque revendications 21 à 28, ledit polymère étant réticulé et dans lequel la réticulation dudit polymère s'effectue par irradiation UV, par traitement thermique, par micro-ondes, sous un faisceau d'électrons, par irradiation gamma, ou par irradiation aux rayons X.
30. Polymère selon la revendication 29, ledit polymère étant réticulé et dans lequel la réticulation dudit polymère s'effectue en présence d'un agent réticulant, d'un initiateur thermique, d'un initiateur UV, d'un catalyseur, d'un agent plastifiant, ou d'une combinaison d'au moins deux de ceux-ci.

FEUILLE MODIFIEE (ARTICLE 19)
31. Polymère selon la revendication 30, dans lequel l'agent réticulant est le 2,2-diméthoxy-2-phénylacétophénone (lrgacure 651).
32. Polymère selon l'une quelconque des revendications 21 à 31, ledit polymère étant un polymère thermoplastique ou un polymère thermodurcissable.
33. Composition comprenant au moins un polymère selon l'une quelconque des revendications 1 à 32, et au moins un élément choisi parmi un électrolyte liquide, sel ionique, liquide ionique, polymère, particule inorganique, solvant polaire aprotique, ou additif.
34. Électrolyte comprenant un polymère tel que défini dans l'une quelconque des revendications 1 à 32.
35. Électrolyte selon la revendication 34, ledit électrolyte étant un électrolyte polymère solide (SPE).
36. Électrolyte selon la revendication 34, ledit électrolyte étant un électrolyte gel.
37. Électrolyte selon l'une quelconque des revendications 34 à 36, ledit électrolyte comprenant en outre un sel ionique, un liquide ionique, un séparateur, un solvant polaire aprotique, un additif ou une combinaison d'au moins deux de ceux-ci .
38. Électrolyte selon la revendication 37, dans lequel le sel ionique est un sel de lithium choisi parmi l'hexafluorophosphate de lithium (LiPF6), le bis(trifluorométhanesulfonyl)imidure de lithium (LiTFS1), le bis(fluorosulfonyl)imidure de lithium (LiFS1), le 2-trifluorométhy1-4,5-dicyano-imidazolate de lithium (LiTD1), le 4,5-dicyano-1,2,3-triazolate de lithium (LiDCTA), le bis(pentafluoroéthylsulfonyl)imide de lithium (LiBETI), le tétrafluoroborate de lithium (LiBF4), le bis(oxalato)borate de lithium (LiBOB), le nitrate de lithium (LiNO3), le chlorure de lithium (LiC1), le bromure de lithium (LiBr), le fluorure de lithium (LiF), le perchlorate de lithium (LiC104), l'hexafluoroarsénate de lithium FEUILLE MODIFIEE (ARTICLE 19) (L1AsF6), le trifluorométhanesulfonate de lithium (LiSO3CF3) (LiTf), le fluoroalkylphosphate de lithium Li[PF3(CF2CF3)3] (LiFAP), le tétrakis(trifluoroacétoxy)borate de lithium Li[B(OCOCF3)4] (LiTFAB), le bis(1,2-benzènediolato(2-)-0,0')borate de lithium Li[B(C602)2] (LBBB) et leurs combinaisons.
39. Électrolyte selon la revendication 37 ou 38, dans lequel le solvant polaire aprotique est choisi parmi le carbonate d'éthylène (EC), le carbonate de diéthyle (DEC), le carbonate de propylène (PC), le carbonate de diméthyle (DMC), le carbonate de méthyle et d'éthyle (EMC), le carbonate de vinylène (VC), le butyrate de méthyle (MB), la y-butyrolactone (y-BL), la y-valérolactone (y-VL), le 1,2-diméthoxyéthane (DME), le 1,2-diéthoxyéthane (DEE), le 2-méthyltétrahydrofurane, le diméthylsulfoxyde, le formamide, l'acétamide, le diméthylformamide, le dioxolane, l'acétonitrile, le propylnitrile, le nitrométhane, l'éthylmonoglyme, le triméthoxyméthane, les dérivés de dioxolane, le sulfolane, le méthylsulfolane, les dérivés de carbonate de propylène, le tétrahydrofurane et leurs mélanges.
40. Matériau d'électrode comprenant un matériau électrochimiquement actif et un polymère tel que défini à l'une quelconque des revendications 1 à 32.
41. Matériau d'électrode selon la revendication 40, dans lequel le polymère est un liant.
42. Cellule électrochimique comprenant une électrode négative, une électrode positive et un électrolyte, dans laquelle au moins l'un de l'électrode négative, de l'électrode positive et de l'électrolyte comprend un polymère tel que défini dans l'une quelconque des revendications 1 à 32 ou une composition telle que définie à
la revendication 33.
43. Cellule électrochimique selon la revendication 42, dans laquelle l'électrode positive comprend un matériau électrochimiquement actif d'électrode positive et FEUILLE MODIFIEE (ARTICLE 19) un liant, éventuellement un matériau conducteur électronique, ou une combinaison de ceux-ci.
44. Cellule électrochimique selon la revendication 43, dans laquelle le liant comprend un polymère tel que défini à l'une quelconque des revendications 1 à
20.
45. Cellule électrochimique selon la revendication 43 ou 44, dans laquelle le matériau conducteur électronique est choisi parmi le noir de carbone, le carbone Ketjenlvic, le noir d'acétylène, le graphite, le graphène, les nanotubes de carbone, et les fibres de carbone (telles que les nanofibres de carbone ou des VGCF
formées en phase gazeuse) ou une combinaison d'au moins deux de ceux-ci.
46. Cellule électrochimique selon l'une quelconque des revendications 42 à
45, comprenant un électrolyte tel que défini dans l'une quelconque des revendications 34 à 39.
47. Accumulateur électrochimique comprenant au moins une cellule électrochimique telle que définie à l'une quelconque des revendications 42 à
46.
48. Accumulateur électrochimique selon la revendication 47, ledit accumulateur électrochimique étant choisi parmi une batterie au lithium, une batterie au sodium, une batterie au potassium et une batterie lithium-ion.

FEUILLE MODIFIEE (ARTICLE 19)
CA3087944A 2018-02-05 2019-02-05 Copolymeres d'unites ester et ether, leurs procedes de fabrication et leurs utilisations Pending CA3087944A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2,994,005 2018-02-05
CA2994005A CA2994005A1 (fr) 2018-02-05 2018-02-05 Copolymeres d'unites ester et ether, leurs procedes de fabrication et leurs utilisations
PCT/CA2019/050145 WO2019148299A1 (fr) 2018-02-05 2019-02-05 Copolymères d'unités ester et éther, leurs procédés de fabrication et leurs utilisations

Publications (1)

Publication Number Publication Date
CA3087944A1 true CA3087944A1 (fr) 2019-08-08

Family

ID=67479141

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2994005A Abandoned CA2994005A1 (fr) 2018-02-05 2018-02-05 Copolymeres d'unites ester et ether, leurs procedes de fabrication et leurs utilisations
CA3087944A Pending CA3087944A1 (fr) 2018-02-05 2019-02-05 Copolymeres d'unites ester et ether, leurs procedes de fabrication et leurs utilisations

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA2994005A Abandoned CA2994005A1 (fr) 2018-02-05 2018-02-05 Copolymeres d'unites ester et ether, leurs procedes de fabrication et leurs utilisations

Country Status (7)

Country Link
US (1) US11999811B2 (fr)
EP (1) EP3749705A4 (fr)
JP (2) JP7366034B2 (fr)
KR (1) KR102640042B1 (fr)
CN (2) CN115838472A (fr)
CA (2) CA2994005A1 (fr)
WO (1) WO2019148299A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11749805B2 (en) * 2020-01-28 2023-09-05 Ricoh Company, Ltd. Liquid composition for forming electrochemical device, method of manufacturing electrodes, method of manufacturing electrochemical device and electrodes
KR20230018349A (ko) * 2021-07-29 2023-02-07 주식회사 엘지에너지솔루션 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
JP7556070B2 (ja) 2022-01-25 2024-09-25 星歐光學股▲ふん▼有限公司 ポリマー、電解質及び電池
CN114853621B (zh) * 2022-05-05 2023-08-01 华中科技大学 一种催化伯胺-丙烯酸酯双加成反应的方法及其应用
CN115572467B (zh) * 2022-09-28 2024-01-12 江苏金发科技新材料有限公司 一种聚酯组合物及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188889A (ja) * 1995-08-23 2007-07-26 Mitsui Chemicals Inc 高分子固体電解質
CA2367290A1 (fr) 2002-01-16 2003-07-16 Hydro Quebec Electrolyte polymere a haute stabilite > 4 volts comme electrolyte pour supercondensateur hybride et generateur electrochimique
US7517441B2 (en) * 2002-03-15 2009-04-14 Japan Science And Technology Agency Electrophoretic buffer
JP5749881B2 (ja) * 2005-04-22 2015-07-15 ユニヴェルシテ デ ジュネーブ ポリラクチド組成物およびその使用
CN101207204A (zh) 2006-12-22 2008-06-25 比亚迪股份有限公司 锂离子电池正极材料和含有该材料的正极和锂离子电池
JP2009070605A (ja) * 2007-09-11 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd リチウムポリマー電池
JP5524218B2 (ja) 2008-10-01 2014-06-18 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト ホログラフィック媒体製造用のプレポリマー系ポリウレタン配合物
DE102010001470A1 (de) * 2010-02-02 2011-08-04 Henkel AG & Co. KGaA, 40589 Polyetherblockcopolymere und daraus erhältliche Zusammensetzungen
KR101537768B1 (ko) * 2012-05-31 2015-07-17 주식회사 엘지화학 비수 전해액 및 이를 이용한 리튬 이차전지

Also Published As

Publication number Publication date
JP2023133421A (ja) 2023-09-22
US11999811B2 (en) 2024-06-04
US20210380745A1 (en) 2021-12-09
JP7366034B2 (ja) 2023-10-20
EP3749705A1 (fr) 2020-12-16
JP2021512200A (ja) 2021-05-13
CN111683990A (zh) 2020-09-18
EP3749705A4 (fr) 2022-03-23
WO2019148299A1 (fr) 2019-08-08
KR20200118470A (ko) 2020-10-15
CN115838472A (zh) 2023-03-24
CA2994005A1 (fr) 2019-08-05
CN111683990B (zh) 2022-11-04
KR102640042B1 (ko) 2024-02-27

Similar Documents

Publication Publication Date Title
CA3087944A1 (fr) Copolymeres d&#39;unites ester et ether, leurs procedes de fabrication et leurs utilisations
FR3069959B1 (fr) Melange de sels de lithium et ses utilisations comme electrolyte de batterie
EP3794661B1 (fr) Films autoportants à base de cellulose pour utilisation dans des batteries li-ion
JP4577482B2 (ja) リチウム二次電池用電解液およびそれを用いたリチウム二次電池
EP3607601B1 (fr) Mélange de sels de lithium et ses utilisations comme electrolyte de batterie
CA3112163A1 (fr) Materiaux d&#39;electrode comprenant un oxyde lamellaire de sodium et de metal, electrodes les comprenant et leur utilisation en electrochimie
FR2976736A1 (fr) Electrolyte liquide pour batterie au lithium, comprenant un melange quaternaire de solvants organiques non aqueux.
WO2022126253A1 (fr) Matériaux d&#39;électrode comprenant un oxyde lamellaire de métaux enrobé d&#39;un oxyde de métaux de type tunnel, électrodes les comprenant et leur utilisation en électrochimie
US20130327249A1 (en) Electrodes for lithium batteries
EP3977542A1 (fr) Matériaux d&#39;électrode comprenant un oxyde lamellaire de potassium et de métal, électrodes les comprenant et leur utilisation en électrochimie
CN110326153B (zh) 二次电池和二次电池的使用方法
EP3549192B1 (fr) Amelioration de la conductivite ionique d&#39;electrolyte a base de sels de lithium d&#39;imidazolate
WO2023070216A1 (fr) Composés inorganiques possédant une structure de type argyrodite, leurs procédés de préparation et leurs utilisations dans des applications électrochimiques
EP4348733A1 (fr) Matériaux d&#39;enrobage à base d&#39;hydrocarbures aliphatiques insaturés et leurs utilisations dans des applications électrochimiques
JP2009054286A (ja) 電解液および電池
WO2021195778A1 (fr) Matériaux d&#39;électrode comprenant un oxyde de sodium et de métal de type tunnel, électrodes les comprenant et leur utilisation en électrochimie
WO2022251969A1 (fr) Liants d&#39;électrode comprenant un mélange d&#39;un polymère basé sur le polybutadiène et d&#39;un polymère basé sur le polynorbornène, électrodes les comprenant et leur utilisation en électrochimie
WO2023193111A1 (fr) Matériaux d&#39;électrode comprenant un oxyde de sodium, de lithium, de manganèse et de métal de type tunnel dopé au fe, électrodes les comprenant et leur utilisation en électrochimie
US20220278309A1 (en) Lithium-sulfur battery with improved performances
FR3032560A1 (fr) Electrolyte pour batterie lithium-ion comprenant un liquide ionique particulier
WO2021168558A1 (fr) Materiaux d &#39; electrode comprenant un oxyde lamellaire de lithium et de metal enrobe d&#39;un phosphate de metal de type olivine, electrodes les comprenant et leur utilisation en electrochimie
WO2024100209A1 (fr) Nouveaux électrolytes tout solide à base de réseaux organiques covalents organoborés
WO2023133640A1 (fr) Matériau d&#39;électrode avec couche organique, procédés de préparation, et utilisations électrochimiques

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20220909

EEER Examination request

Effective date: 20220909

EEER Examination request

Effective date: 20220909

EEER Examination request

Effective date: 20220909

EEER Examination request

Effective date: 20220909

EEER Examination request

Effective date: 20220909