CA2880876C - Production of a spinel material - Google Patents

Production of a spinel material Download PDF

Info

Publication number
CA2880876C
CA2880876C CA2880876A CA2880876A CA2880876C CA 2880876 C CA2880876 C CA 2880876C CA 2880876 A CA2880876 A CA 2880876A CA 2880876 A CA2880876 A CA 2880876A CA 2880876 C CA2880876 C CA 2880876C
Authority
CA
Canada
Prior art keywords
powder
process according
lithium
compound
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2880876A
Other languages
English (en)
French (fr)
Other versions
CA2880876A1 (en
Inventor
Kenneth Ikechukwu Ozoemena
Charl Jeremy Jafta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council for Scientific and Industrial Research CSIR
Original Assignee
Council for Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council for Scientific and Industrial Research CSIR filed Critical Council for Scientific and Industrial Research CSIR
Publication of CA2880876A1 publication Critical patent/CA2880876A1/en
Application granted granted Critical
Publication of CA2880876C publication Critical patent/CA2880876C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (Mn2O4)-, e.g. Li(NixMn2-x)O4 or Li(MyNixMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/02Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using electric fields, e.g. electrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
CA2880876A 2012-08-10 2013-07-25 Production of a spinel material Active CA2880876C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA201206016 2012-08-10
ZA2012/06016 2012-08-10
PCT/IB2013/056103 WO2014024075A1 (en) 2012-08-10 2013-07-25 Production of a spinel material

Publications (2)

Publication Number Publication Date
CA2880876A1 CA2880876A1 (en) 2014-02-13
CA2880876C true CA2880876C (en) 2020-07-07

Family

ID=49304034

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2880876A Active CA2880876C (en) 2012-08-10 2013-07-25 Production of a spinel material

Country Status (10)

Country Link
US (1) US9834854B2 (enExample)
EP (1) EP2882690B1 (enExample)
JP (1) JP6316812B2 (enExample)
KR (1) KR102085903B1 (enExample)
CN (1) CN104703920A (enExample)
AR (1) AR092069A1 (enExample)
BR (1) BR112015002884B1 (enExample)
CA (1) CA2880876C (enExample)
WO (1) WO2014024075A1 (enExample)
ZA (1) ZA201501121B (enExample)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017000017A2 (pt) 2014-07-03 2018-11-06 Csir produção de material óxido de lítio, manganês, níquel e cobalto, em camadas
US9979011B2 (en) * 2014-09-26 2018-05-22 The United States Of America As Represented By The Secretary Of The Army LixMn2O4-y(C1z) spinal cathode material, method of preparing the same, and rechargeable lithium and li-ion electrochemical systems containing the same
EP3212578A2 (en) * 2014-10-31 2017-09-06 Csir Production of a spinel material
US10505188B2 (en) * 2015-03-03 2019-12-10 The Government Of The United States As Represented By The Secretary Of The Army “B” and “O” site doped AB2O4 spinel cathode material, method of preparing the same, and rechargeable lithium and Li-ion electrochemical systems containing the same
WO2017109646A1 (en) * 2015-12-22 2017-06-29 Csir Spinel material
CN105576231A (zh) * 2016-02-25 2016-05-11 江南大学 一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法
EP3435157B1 (en) 2016-03-24 2021-01-06 FUJIFILM Corporation Active light sensitive or radiation sensitive composition, method for producing active light sensitive or radiation sensitive composition, pattern forming method, and electronic device producing method
EP3435159A4 (en) 2016-03-24 2019-04-10 Fujifilm Corporation ACTIVE RADIATION SENSITIVE OR RADIATION-SENSITIVE COMPOSITION, METHODS FOR CLEANING OF ACTIVE RADIATION SENSITIVE OR RADIATION-SENSITIVE COMPOSITION, PROCESS FOR PRODUCING THE ACTIVE RADIATION SENSITIVE OR RADIATION-SENSITIVE COMPOSITION, PATTERN FORMATION METHOD AND METHOD FOR PRODUCING AN ELECTRONIC DEVICE
JP6796635B2 (ja) 2016-03-24 2020-12-09 富士フイルム株式会社 感活性光線性又は感放射線性組成物、感活性光線性又は感放射線性組成物の精製方法、パターン形成方法、及び電子デバイスの製造方法
US10516156B2 (en) * 2016-05-25 2019-12-24 The Government Of The United States As Represented By The Secretary Of The Army Chlorinated lithium manganese oxide spinel cathode material with charge transfer catalyst coating, method of preparing the same, and Li electrochemical cell containing the same
KR101963251B1 (ko) * 2017-10-17 2019-03-29 한국과학기술연구원 양극 활물질 제조방법 및 이를 이용한 이차전지
CN114369863B (zh) * 2021-12-08 2023-02-14 中国科学院地球化学研究所 一种高温高压下制备锰铝榴石单晶的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2221213B (en) * 1988-07-12 1991-09-04 Csir Synthesizing lithium manganese oxide
CN1042377C (zh) * 1996-05-10 1999-03-03 中国科学院物理研究所 一种合成锂离子电池中正极材料的方法
JP2973299B2 (ja) * 1996-06-27 1999-11-08 本荘ケミカル株式会社 スピネル型構造を有するリチウム−マンガン複合酸化物の製造方法
US6348182B1 (en) * 1996-06-27 2002-02-19 The Honjo Chemical Corporation Process for producing lithium manganese oxide with spinel structure
JP3411488B2 (ja) * 1997-12-01 2003-06-03 本荘ケミカル株式会社 リチウムイオン二次電池用正極活物質の製造方法
JP2000281355A (ja) * 1999-03-29 2000-10-10 Nippon Chem Ind Co Ltd リチウム複合酸化物の製造方法
US8728666B2 (en) * 2005-04-28 2014-05-20 Nissan Motor Co., Ltd. Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
US8496855B2 (en) * 2009-07-27 2013-07-30 Samsung Electronics Co., Ltd. Cathode active material, cathode including cathode active material, and lithium battery including cathode
JP2011210463A (ja) * 2010-03-29 2011-10-20 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質の製造方法

Also Published As

Publication number Publication date
BR112015002884B1 (pt) 2021-06-08
JP2015525734A (ja) 2015-09-07
CA2880876A1 (en) 2014-02-13
JP6316812B2 (ja) 2018-04-25
ZA201501121B (en) 2016-01-27
US20150197872A1 (en) 2015-07-16
CN104703920A (zh) 2015-06-10
WO2014024075A1 (en) 2014-02-13
EP2882690A1 (en) 2015-06-17
EP2882690B1 (en) 2016-10-12
AR092069A1 (es) 2015-03-18
US9834854B2 (en) 2017-12-05
BR112015002884A2 (pt) 2019-10-08
KR20150056542A (ko) 2015-05-26
KR102085903B1 (ko) 2020-03-06

Similar Documents

Publication Publication Date Title
CA2880876C (en) Production of a spinel material
US11183692B2 (en) Production of a layered lithium-manganese-nickel-cobalt oxide material
Zheng et al. Improved electrochemical performance of Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathode material by fluorine incorporation
Wei et al. Effect of Mg2+/F− co-doping on electrochemical performance of LiNi0. 5Mn1. 5O4 for 5 V lithium-ion batteries
Bao et al. An appropriate amount of new spinel phase induced by control synthesis for the improvement of electrochemical performance of Li-rich layered oxide cathode material
Zong et al. Influence of Ti doping on microstructure and electrochemical performance of LiNi0. 5Mn1. 5O4 cathode material for lithium-ion batteries
US9070489B2 (en) Mixed phase lithium metal oxide compositions with desirable battery performance
Saroha et al. Synergetic effects of cation (K+) and anion (S2−)-doping on the structural integrity of Li/Mn-rich layered cathode material with considerable cyclability and high-rate capability for Li-ion batteries
CN105024067B (zh) 锂离子电池及其复合掺杂改性正极活性材料及制备方法
JP2012505520A (ja) 高い比放電容量を有するリチウムイオン電池用正極材料およびこれらの材料を合成するためのプロセス
Du et al. Improving the electrochemical properties of high-energy cathode material LiNi0. 5Co0. 2Mn0. 3O2 by Zr doping and sintering in oxygen
CN107108260B (zh) 尖晶石材料的制备
Ma et al. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials
Zhu et al. A layered/spinel heterostructured cathode for Li-ion batteries prepared by ultrafast Joule heating
Ghosh et al. Sonochemical synthesis of nanostructured spinel Li4Ti5O12 negative insertion material for Li-ion and Na-ion batteries
Tang et al. Effects of precursor treatment on the structure and electrochemical properties of spinel LiMn2O4 cathode
Li et al. Nickel-modified and zirconium-modified Li2MnO3 and applications in lithium-ion battery
Kim et al. Electrochemical properties of yolk-shell structured layered-layered composite cathode powders prepared by spray pyrolysis
Mohan et al. Structure and Electrochemical Performances of Co-Substituted LiCo x Li x− y Mn2− x O4 Cathode Materials for the Rechargeable Lithium Ion Batteries
EP4545482A1 (en) Boron modified spinel lnmo cathode material
Rodrigues et al. Post-synthetic treatments on NixMnxCo1− 2x (OH) 2 for the preparation of lithium metal oxides
Tang et al. Structure and electrochemical properties of Li1+ yNi0. 5AlxMn0. 5− xO2 synthesized by a new sol–gel method
Jo 4V and 5V-based Cathode Materials for Li-Ion Batteries
Selladurai et al. Structure and Electrochemistry of 4-V Positive Electrodes Prepared by Succinic Acid-Assisted Wet Chemistry

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20180608