CA1232979A - Method for fabricating semiconductor devices - Google Patents
Method for fabricating semiconductor devicesInfo
- Publication number
- CA1232979A CA1232979A CA000495573A CA495573A CA1232979A CA 1232979 A CA1232979 A CA 1232979A CA 000495573 A CA000495573 A CA 000495573A CA 495573 A CA495573 A CA 495573A CA 1232979 A CA1232979 A CA 1232979A
- Authority
- CA
- Canada
- Prior art keywords
- trench
- substrate
- region
- dopant
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000004065 semiconductor Substances 0.000 title claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 76
- 239000002019 doping agent Substances 0.000 claims abstract description 70
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 35
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000000945 filler Substances 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- 230000001154 acute effect Effects 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 102
- 235000012239 silicon dioxide Nutrition 0.000 description 51
- 239000000377 silicon dioxide Substances 0.000 description 51
- 229910052581 Si3N4 Inorganic materials 0.000 description 19
- 230000007704 transition Effects 0.000 description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 17
- 229910052681 coesite Inorganic materials 0.000 description 17
- 229910052906 cristobalite Inorganic materials 0.000 description 17
- 238000005755 formation reaction Methods 0.000 description 17
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 17
- 229910052682 stishovite Inorganic materials 0.000 description 17
- 229910052905 tridymite Inorganic materials 0.000 description 17
- 238000005530 etching Methods 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 230000000873 masking effect Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- -1 phosphorus ions Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- ODPOAESBSUKMHD-UHFFFAOYSA-L 6,7-dihydrodipyrido[1,2-b:1',2'-e]pyrazine-5,8-diium;dibromide Chemical compound [Br-].[Br-].C1=CC=[N+]2CC[N+]3=CC=CC=C3C2=C1 ODPOAESBSUKMHD-UHFFFAOYSA-L 0.000 description 1
- 208000033999 Device damage Diseases 0.000 description 1
- 239000005630 Diquat Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
- H01L21/76232—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2252—Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
- H01L21/2253—Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76202—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/763—Polycrystalline semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823892—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0921—Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/938—Lattice strain control or utilization
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Element Separation (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US674,274 | 1984-11-23 | ||
US06/674,274 US4656730A (en) | 1984-11-23 | 1984-11-23 | Method for fabricating CMOS devices |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1232979A true CA1232979A (en) | 1988-02-16 |
Family
ID=24705990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000495573A Expired CA1232979A (en) | 1984-11-23 | 1985-11-18 | Method for fabricating semiconductor devices |
Country Status (7)
Country | Link |
---|---|
US (1) | US4656730A (de) |
EP (1) | EP0202252B1 (de) |
JP (1) | JPH0685412B2 (de) |
KR (1) | KR940001392B1 (de) |
CA (1) | CA1232979A (de) |
DE (1) | DE3578266D1 (de) |
WO (1) | WO1986003339A1 (de) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5350941A (en) * | 1992-09-23 | 1994-09-27 | Texas Instruments Incorporated | Trench isolation structure having a trench formed in a LOCOS structure and a channel stop region on the sidewalls of the trench |
US5770504A (en) * | 1997-03-17 | 1998-06-23 | International Business Machines Corporation | Method for increasing latch-up immunity in CMOS devices |
CN1199926A (zh) * | 1997-05-21 | 1998-11-25 | 日本电气株式会社 | 一种半导体器件的制造方法 |
KR100464383B1 (ko) * | 1997-05-26 | 2005-02-28 | 삼성전자주식회사 | 트렌치소자분리를이용한반도체장치 |
US5956583A (en) * | 1997-06-30 | 1999-09-21 | Fuller; Robert T. | Method for forming complementary wells and self-aligned trench with a single mask |
US6133610A (en) | 1998-01-20 | 2000-10-17 | International Business Machines Corporation | Silicon-on-insulator chip having an isolation barrier for reliability and process of manufacture |
US6492684B2 (en) | 1998-01-20 | 2002-12-10 | International Business Machines Corporation | Silicon-on-insulator chip having an isolation barrier for reliability |
JPH11274418A (ja) * | 1998-03-25 | 1999-10-08 | Nec Corp | 半導体装置 |
US6747294B1 (en) | 2002-09-25 | 2004-06-08 | Polarfab Llc | Guard ring structure for reducing crosstalk and latch-up in integrated circuits |
DE10345345A1 (de) * | 2003-09-19 | 2005-04-14 | Atmel Germany Gmbh | Verfahren zur Herstellung von Halbleiterbauelementen in einem Halbleitersubstrat |
US7122416B2 (en) * | 2003-10-31 | 2006-10-17 | Analog Devices, Inc. | Method for forming a filled trench in a semiconductor layer of a semiconductor substrate, and a semiconductor substrate with a semiconductor layer having a filled trench therein |
US20050215059A1 (en) * | 2004-03-24 | 2005-09-29 | Davis Ian M | Process for producing semi-conductor coated substrate |
US6956266B1 (en) | 2004-09-09 | 2005-10-18 | International Business Machines Corporation | Structure and method for latchup suppression utilizing trench and masked sub-collector implantation |
US20070152279A1 (en) * | 2005-12-30 | 2007-07-05 | Dae Kyeun Kim | Sram device |
US10249529B2 (en) * | 2015-12-15 | 2019-04-02 | International Business Machines Corporation | Channel silicon germanium formation method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55148466A (en) * | 1979-05-10 | 1980-11-19 | Nec Corp | Cmos semiconductor device and its manufacture |
US4493740A (en) * | 1981-06-01 | 1985-01-15 | Matsushita Electric Industrial Company, Limited | Method for formation of isolation oxide regions in semiconductor substrates |
DE3133841A1 (de) * | 1981-08-27 | 1983-03-17 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zum herstellen von hochintegrierten komplementaeren mos-feldeffekttransistorschaltungen |
CA1186808A (en) * | 1981-11-06 | 1985-05-07 | Sidney I. Soclof | Method of fabrication of dielectrically isolated cmos device with an isolated slot |
US4435896A (en) * | 1981-12-07 | 1984-03-13 | Bell Telephone Laboratories, Incorporated | Method for fabricating complementary field effect transistor devices |
JPS58165341A (ja) * | 1982-03-26 | 1983-09-30 | Toshiba Corp | 半導体装置の製造方法 |
JPS5940563A (ja) * | 1982-08-31 | 1984-03-06 | Toshiba Corp | 半導体装置の製造方法 |
US4477310A (en) * | 1983-08-12 | 1984-10-16 | Tektronix, Inc. | Process for manufacturing MOS integrated circuit with improved method of forming refractory metal silicide areas |
EP0158670A1 (de) * | 1983-10-11 | 1985-10-23 | AT&T Corp. | Integrierte halbleiterschaltungen mit komplementären metalloxid-halbleiteranordnungen |
US4536945A (en) * | 1983-11-02 | 1985-08-27 | National Semiconductor Corporation | Process for producing CMOS structures with Schottky bipolar transistors |
US4534824A (en) * | 1984-04-16 | 1985-08-13 | Advanced Micro Devices, Inc. | Process for forming isolation slots having immunity to surface inversion |
-
1984
- 1984-11-23 US US06/674,274 patent/US4656730A/en not_active Expired - Lifetime
-
1985
- 1985-10-18 JP JP60504758A patent/JPH0685412B2/ja not_active Expired - Lifetime
- 1985-10-18 EP EP85905369A patent/EP0202252B1/de not_active Expired - Lifetime
- 1985-10-18 WO PCT/US1985/002062 patent/WO1986003339A1/en active IP Right Grant
- 1985-10-18 KR KR1019860700493A patent/KR940001392B1/ko not_active IP Right Cessation
- 1985-10-18 DE DE8585905369T patent/DE3578266D1/de not_active Expired - Lifetime
- 1985-11-18 CA CA000495573A patent/CA1232979A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
US4656730A (en) | 1987-04-14 |
DE3578266D1 (de) | 1990-07-19 |
EP0202252A1 (de) | 1986-11-26 |
JPS62500969A (ja) | 1987-04-16 |
WO1986003339A1 (en) | 1986-06-05 |
EP0202252B1 (de) | 1990-06-13 |
JPH0685412B2 (ja) | 1994-10-26 |
KR940001392B1 (ko) | 1994-02-21 |
KR860700372A (ko) | 1986-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6001706A (en) | Method for making improved shallow trench isolation for semiconductor integrated circuits | |
US6611023B1 (en) | Field effect transistor with self alligned double gate and method of forming same | |
US6093621A (en) | Method of forming shallow trench isolation | |
US4385947A (en) | Method for fabricating CMOS in P substrate with single guard ring using local oxidation | |
CA1232979A (en) | Method for fabricating semiconductor devices | |
US6174754B1 (en) | Methods for formation of silicon-on-insulator (SOI) and source/drain-on-insulator(SDOI) transistors | |
EP0575278A2 (de) | Vertikaler Gate-Transistor mit niedertempaturepitaktischem Kanal | |
CA1287692C (en) | Method for manufacturing wells for cmos transistor circuits separated by insulating trenches | |
US5854509A (en) | Method of fabricating semiconductor device and semiconductor device | |
US5422301A (en) | Method of manufacturing semiconductor device with MOSFET | |
EP0421507B1 (de) | Verfahren zur Herstellung eines bipolaren Transistors | |
US5525535A (en) | Method for making doped well and field regions on semiconductor substrates for field effect transistors using liquid phase deposition of oxides | |
US5208181A (en) | Locos isolation scheme for small geometry or high voltage circuit | |
EP0756319A2 (de) | Isolationsstruktur mit reduzierter Spannung für SOI-Anordnungen und Verfahren zur Herstellung | |
US6391733B1 (en) | Method of doping semiconductor devices through a layer of dielectric material | |
KR100523648B1 (ko) | 반도체소자의 소자 분리 방법 | |
US6054368A (en) | Method of making an improved field oxide isolation structure for semiconductor integrated circuits having higher field oxide threshold voltages | |
EP0239384B1 (de) | Verfahren zur Isolierung von Halbleiteranordnungen in einem Substrat | |
US5994190A (en) | Semiconductor device with impurity layer as channel stopper immediately under silicon oxide film | |
GB2038088A (en) | Semiconductor structures | |
JPH0974189A (ja) | 半導体装置の製造方法 | |
KR100333374B1 (ko) | 더블 게이트를 갖는 에스오아이 소자의 제조방법 | |
US4679307A (en) | Method of manufacturing a recessed gate of a semiconductor device | |
EP0111097B1 (de) | Verfahren zum Herstellen von Halbleiteranordnungen mit einem dicken Felddielektrikum und einem selbstausrichtenden Kanalbegrenzer | |
KR930010096B1 (ko) | 반도체 장치의 소자격리방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |