BE877840A - Procede de production de mouses de resines de polyolefines - Google Patents

Procede de production de mouses de resines de polyolefines

Info

Publication number
BE877840A
BE877840A BE0/196412A BE196412A BE877840A BE 877840 A BE877840 A BE 877840A BE 0/196412 A BE0/196412 A BE 0/196412A BE 196412 A BE196412 A BE 196412A BE 877840 A BE877840 A BE 877840A
Authority
BE
Belgium
Prior art keywords
parts
weight
blowing agent
foams
foam
Prior art date
Application number
BE0/196412A
Other languages
English (en)
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of BE877840A publication Critical patent/BE877840A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description


  "Procédé de production de mousses de résines de polyoléfines"

  
La présente invention est relative à un procédé de production de mousses de résines de polyoléf ines.

  
Dans un procédé connu d'obtention de mousses par chauffage

  
d'une préforme en résine thermoplastique contenant un agent de soufflage, à savoir de l'azodicarbonamide (désigné ci-après par "AC"),

  
la température interne de la préforme est élevée par décomposition

  
thermique de l'agent de soufflage durant la formation de mousse et, de ce fait, une telle température interne reste habituellement plus élevée que la température existant sur la surface extérieure. Par conséquent, bien que le AC à l'intérieur de la feuille de mousse soit parfaitement décomposé et blanchi, ce AC dans la couche superficielle subit une décomposition insuffisante et conserve sa couleur jaune. De la sorte, les mousses obtenues en utilisant du AC comme agent de soufflage ou agent moussant sont presque invariablement d'une couleur jaune.clair même lorsqu'aucune coloration particulière n'a été faite par un pigment ou autre matière, et il  est difficilement possible d'obtenir des produits parfaitement  blancs. Naturellement, des produits colorés (par exemple des produits jaunes) sont d'un faible intérêt commercial.

  
On a proposé plusieurs procédés pour empêcher le jaunissement des mousses obtenue s en utilisant du AC comme agent de soufflage. On connait par exemple les procédés suivant : une pellicule de résine thermoplastique est stratifiée sur la surface d'une préforme en résine de polyoléfine dilatable de sorte que la surface de la préforme sera traitée comme une couche interne lors de la formation de la mousse par chauffage, en augmentant ainsi le  degré de formation de mousse dans la couche superficielle et en permettant l'obtention de mousses parfaitement blanches ne comportant pas de AC non décomposé quelconque (demande de brevet japonais n[deg.] 36773/74 de KoXai) ; on applique des rayons ultraviolets

  
à la surface d'une mousse (demande de brevet japonais n[deg.] 7473/68 de Kokoku) ; on traite une mousse colorée par une solution d'hydrazine chauffée (demande de brevet japonais n[deg.] 18636/71 de Kokoku). Toutef is, aucun de ces procédés n'est capable de donner des résul-  tats tout à fait satisfaisants. 

  
Dans le brevet des Etats-Unis d'Amérique n[deg.] 3.278.466, on a présenté des techniques de formation de caoutchouc ou de résines thermoplastiques par utilisation d'une composition d'agent de soufflage comprenant du AC et un second ingrédient, tel que du benzène sulfonhydrazide, de la dinitrosopentaméthylènetétramine, etc. Toutefois, l'utilisation d'une telle composition d'agent de soufflage donne un état de mousse non stabilisé et il est très difficile d'obtenir des mousses fortement dilatées ayant un excellent aspect et une surface lisse.

  
Un but de la présente invention est de prévoir un procédé de production de mousses de résines de polyoléfines, utilisant une composition particulière d'agent de soufflage, afin de surmonter les problèmes rencontrés dans la technique antérieure.

  
On prévoit donc suivant l'invention un procédé de production de mousses de résines de polyoléfines, comprenant le mélange d'une composition d'agent de soufflage comportant (a) de l'azodicarbonamide, (b) de la dinitrosopentaméthylènetétramine, et (c) un antioxydant phénolique, ou (b') de l'hexaméthylènetétramine au lieu des composants (b) et (c), avec une résine de polyoléfine pour former une préforme de résine dilatable, et ensuite la dilatation ou expansion de cette préforme par chauffage sous une pression normale après introduction d'une structure de réticulation dans cette préforme ou au cours de l'introduction d'une telle structure de réticulation.

  
Le dessin annexé est un graphique montrant la relation entre le temps de chauffage (dans de l'air chaud à 230[deg.]C) et le poids spécifique de la mousse.

  
L'azodicarbonamide (AC),qui est un composant essentiel

  
 <EMI ID=1.1> 

  
suivant l'invention, est largement employé pour le production d'articles fortement expansés en résines de polyoléfines, en raison de nombreuses propriétés avantageuses, telles qu'une température élevée de décomposition (150-200[deg.]C), un faible danger d'explosion ou d'incendie au cours du traitement, la libération d'une quantité im-portante de gaz décomposé qui n'est pas toxique, et la facilité 

  
de production de cellules uniformes. 

  
D'autre part, la dinitrosopentaméthylènetétramine 

  
[le com p osant (b), que l'on désigne ci-après par "DPT"], que l'on  mélange avec le AC, a le même niveau de température de décomposi-  tion que celui-ci mais donne une plus grande valeur de chaleur de  décomposition et, de ce fait, est sujette à provoquer des "marques 

  
de brûlure" ou "des taches de brQlure" dans les produits en mous-  se. Le DPT est couramment utilisé pour la préparation des mousses  générales de caoutchouc, des mousses de résines de chlorure de vi-  nyle, etc., mais on l'utilise rarement pour la production d'articles fortement expansés, en particulier pour la préparation de ceux pré-  sentant un degré d'expansion ou de dilatation supérieur à 5 fois.  Ceci est considéré comme étant attribuable à la formation très volumineuse de chaleur interne du DPT, lors de la formation d'une mousse, avec pour résultat un changement net (chute) de viscosité de

  
la résine de polyoléfine au point de retarder la formation d'une  mousse stable. Une telle chute nette de viscosité rend très difficile la production d'articles fortement expansés.

  
La demanderesse a trouvé que le mélange d'une petite quantité de DPT avec le AC peut éliminer le jaunissement qui constitue le défaut le plus important des mousses obtenues lorsqu'on utilise le AC seul. Toutefois, la composition d'agent de soufflage formée uniquement au départ de AC et de DPT manque encore de stabilité durant la formation d'une mousse, et les mousses obtenues ne sont pas d'un aspect satisfaisant. Suivant la présente invention,

  
un troisième composant particulier, c'est-à-dire un antioxydant

  
 <EMI ID=2.1> 

  
avec le mélange de AC et de DPT, de sorte qu'il est possible d'obtenir de manière très stable une mousse de résine de polyoléfine fortement expansée, qui est formée de cellules incolores (blanches),  uniformes et fines et qui est d'un toucher amélioré.

  
La proportion de mélange du DPT par rapport au AC est de préférence dans la gamme de 3 à 30 parties en poids, plus particulièrement de 5 à 15 parties en poids pour 100 parties en poids de

  
AC. Une teneur de DPT inférieure à la gamme spécifiée ci-dessus

  
ne donne pas un effet de blanchissement suffisant, tandis qu'une teneur de DPT dépassant cette gamme peut non seulement ne pas produire d'amélioration supplémentaire de l'effet de blanchissement

  
mais peut par contre provoquer une émission d'une odeur désagréable de formaline à la suite de la décomposition du DPT, ce qui 

  
crée une pollution pour l'environnement.

  
Suivant la présente invention, l'addition du troisième  composant (c), à savoir un antioxydant phénolique, aux composants 
(a) et (b) est très importante et ce troisième composant (c) cons-  titue un composant essentiel dans le cadre de l'invention. Dans  la production de mousses de résines du type polyoléfines par un  procédé traditionnel de formation de mousse avec réticulation

  
sous pression normale, on n'a jamais utilisé effectivement d'antioxydant. Parmi les nombreuses raisons de ne pas utiliser d'antioxydant, on peut citer le fait que les mousses ne sont pas utilisées sous des conditions sévères au point de soulever un problème de dégradation oxydante du produit durant l'utilisation, et l'antioxydant n'aura pas de bonne influence sur la réaction de réticulation

  
(le degré de réticulation sera abaissé) . De plus, une autre raison de ne pas utiliser d'antioxydant de manière effective dans le procédé de réticulation sous pression normale est que l'importance

  
de l'addition d'un antioxydant n'était pas connue ou, en d'autres termes, on ne connaissait pas les effets provoqués par l'addition d'un antioxydant à une résine de base ou à un produit en mousse, à part l'effet d'empêcher la dégradation.

  
Le but de l'addition du composant (c) à la composition d'agent de soufflage suivant La présente invention n'est pas simplement d'impartir un effet de protection contre la dégradation à

  
la résine mais bien d'assurer aussi d'autres effets que l'on mentionnera plus en détails par la suite. On ne pouvait pas concevoir de tels effets en considérant le concept traditionnel de l'antioxydant et de tels effets ne peuvent être obtenus que lorsqu'on mélange un type spécial d'antioxydant avec un type spécial de composition d'agent de soufflage.

  
L'effet de ce troisième composant n'est pas simplement limité à empêcher une détérioration de la résine mais s'étend à une sphère se situant au-delà de la conception traditionnelle de l'activité des antioxydants. De façon plus précise, comme on le mettra particulièrement en évidence dans les Exemples présentés par la  suite, le premier effet de ce composant (c) est de stabiliser de  façon étonnante le phénomène de formation de mousse. Bien que le  mécanisme fonctionnel de ce composant ne soit pas encore bien connu, on considère qu'il agit pour mitiger la décomposition nette de

  
la composition résultant d'une formation de chaleur excessive par décomposition de DPT, et pour stabiliser ainsi le comportement de l'opération de formation de mousse. Si on se reporte au dessin annexé (graphique montrant la relation entre le temps de chauffage

  
et le poids spécifique), on verra que la formation de mousse se développe plus modérément (c'est-à-dire d'une manière plus stabili-  sée) dans le cas de l'utilisation d'une composition d'agent de  soufflage (II) suivant la présente invention, contenant le compo-  sant (c), que dans le cas de l'utilisation d'une composition (I) 

  
ne contenant pas de composant (c). Le second effet du composant 
(c) est de permettre d'obtenir un produit en mousse présentant des  cellules homogènes et fines et une dilatation ou expansion élevée 
(faible poids spécifique). Le troisième effet, comme on l'appré-  ciera également en considérant le dessin, est de permettre l'entre-  tien d'un état fortement expansé (faible poids spécifique), même après l'achèvement de l'opération de formation de mousse, et de permettre d'obtenir des produits présentant une qualité très stabilisée. Ces effets conduisent à des améliorations très avantageuses dans la production de mousses de résines de polyoléfines. De la sorte, le composant (c) utilisé suivant l'invention doit être considéré comme un additif intéressant pour stabiliser le procédé de formation de mousse et améliorer la qualité de la mousse, et

  
son effet est surprenant.

  
On peut utiliser, comme composant (c), divers types d'antioxydants phénoliques mais on préfère tout particulièrement pour l'utilisation dans le cadre de l'invention, les antioxydants présentant une haute résistance thermique et peu d'influence de retardement sur l'activité de réticulation des résines de polyoléfines. Des exemples d'antioxydants de ce genre sont : octadécyl-3-(3,5di-t-butyl-4-hydroxyphényl)propionate, 2,2'-thiodiéthylbis-[(3,5-

  
 <EMI ID=3.1> 

  
quinone, 2,5-di-t-amylhydroquinone, et 2,6-di-t-butyl-4-méthylphénol.

  
Le composant (c) est de préférence ajouté en une quantité de 0,5 à 10 parties en poids, plus particulièrement de 0,5 à 5 parties en poids, pour 100 parties en poids du mélange de (a) AC et de (b) DPT. Le rapport de mélange de la composition d'agent de soufflage à la résine de polyoléfine dans le procédé de l'invention suivant des techniques de formation de mousse avec réticulation sous pression normale se situe de préférence dans l'intervalle de 2 à 30 parties en poids de la composition d'agent de soufflage pour 100 parties en poids de la résine polyoléf inique. Toute quantité plus élevée du composant (c) peut influencer de manière 

  
 <EMI ID=4.1> 

  
Dans la composition d'agent de soufflage utilisée dans la présente invention, on peut employer de l'hexaméthylènetétramine (b') à titre de produit de remplacement des composants (b) et <EMI ID=5.1>  primordial pour empêcher la coloration de ce AC. Des rapports

  
sont disponibles quant à l'utilisation de matières aminées analo-

  
i gues, comme par exemple l'éthanolamine, à titre d'agent aidant à  l'abaissement de la température de décomposition du AC, mais dans

  
de tels cas, ces matières aminées sont utilisées dans le but d'augmenter le degré de décomposition du AC et l'emploi de ces matières aminées ne peut pas donner un blanchissement des mousses comme on

  
y arrive suivant la présente invention. En outre, comme mentionné dans les Exemples présentés par la suite, on considère que l'hexaméthylènetétramine n'exerce pas d'influence directe sur le degré

  
ou la vitesse de décomposition du AC, car une modification de la

  
 <EMI ID=6.1> 

  
qui concerne la durée de formation de mousse. De ce fait, l'addition d'hexaméthylènetétramine apporte une action tout à fait spécifique.

  
 <EMI ID=7.1> 

  
en une quantité de 0,5 à 50 parties en poids pour 100 parties en poids de AC. Toute charge plus faible d'hexaméthylènetétramine donne un effet de blanchissement non satisfaisant, tandis que toute charge plus élevée n'apporte pas d'amélioration supplémentaire de cet effet de blanchiment. On considère que l'hexaméthylènetétramine est parfaitement décomposée à la température de décomposition (150-200[deg.]C) du AC, mais comme la réaction de décomposition est endothermique, elle ne provoque pas d'élévation nette de la vitesse  de formation de mousse, ni d'instabilisation des mousses, mais 

  
agit plutôt pour mitiger la réaction de formation de mousse afin 

  
de permettre d'obtenir un excellent produit en mousse. L'hexamé-  thylènetétramine, lorsqu'on l'utilise, devrait être pulvérisée en 

  
des morceaux aussi petits que possible pour augmenter l'aptitude

  
au pétrissage avec la résine et pour permettre d'obtenir une mous- 

  
se blanchie de manière uniforme. On obtient un bon résultat lorsque cette matière est,par exemple, réduite en une poudre de dimen-  sions de particules de moins de 10 microns. 

  
Dans le cas de l'utilisation d'une composition d'agent

  
de soufflage comprenant le composant (a) (AC) et le composant (b')
(hexaméthylènetétramine) , une telle composition s'utilise habituellement en une quantité de 2 à 30 parties en poids pour 100 parties

  
en poids de la, résine polyoléfinique, bien qu'une telle quantité puisse varier d'après le degré d'expansion de la mousse que l'on

  
veut obtenir.

  
Des exemples de résines de polyoléfines utilisables suivant la présente invention sont les polyéthylènes de haute, moyen- 

  
ne et basse densité, les polypropylènes, le polybutène-1, les co-  polymères d'éthylène et de propylène, les copolymères d'éthylène

  
et d'acétate de vinyle, les copolymères d'éthylène-acrylate et les copolymères de chlorure de vinyle-éthylène, ces résines pouvant

  
être utilisées seules ou en combinaisons diverses. De telles résines de polyoléfines peuvent contenir, à titre d'agents modificateurs, des matières telles que du polyéthylène chloré, du polyéthylène chlorosulfoné, du SBR, du polybutadiène, etc., ainsi qu'un ou plusieurs autres additifs, tels que des matières colorantes, des absorbeurs de rayons ultraviolets, des agents d'ignifugeage, des adjuvants de réticulation, etc. Il est à noter que, comme les mousses obtenues suivant la présente invention sont tout à fait incolores, un mélange d'un pigment coloré permet l'obtention d'un fini d'un ton plus net et plus vivant que dans le cas des produits traditionnels.

  
La préforme de résine de polyoléfine, contenant une telle composition d'agent de soufflage, peut être dilatée ou soumise

  
à expansion par chauffage sous pression normale après introduction d'une structure de réticulation ou au cours de l'introduction d'une telle structure dans la préforme, pour obtenir ainsi un article blanchi, fortement dilaté ou expansé (degré d'expansion de préférence supérieur à 5 fois). Une méthode recommandable pour l'introduction d'une structure de réticulation consiste à mélanger un agent de réticulation capable de produire des radicaux par chauffage

  
avec la résine polyoléfinique.

  
Des exemples d'agents de réticulation utilisables à cet effet sont le peroxyde de di-t-butyle, le peroxyde de dicumyle, le 2,2'-bis(t-butylperoxy)-p-di-isopropylbenzène, le 2,5-diméthyl2,5-di(t-butylperoxy)hexane et le 2,5-di-méthyl-2,5-di(t-butylperoxy)hexane-3. On peut les utiliser seuls ou en mélange.

  
Un autre procédé d'introduction d'une structure de réticulation consiste à appliquer une irradiation ionisante, par exernple des rayons X, des rayons gamma, des rayons bêta, des rayons à neutrons, etc., à la résine polyoléfinique contenant la composition d'agent de souf flage.

  
Il est aussi possible de réaliser la réticulation par une polymérisation de greffage d'un composé de vinyl silane, tel que

  
du vinyl triméthoxysilane, sur une résine polyoléfinique et d'introduire ensuite des liaisons de siloxane. Dans le cas de l'utilisation d'un agent de réticulation du type produisant des radicaux, la formation de la structure de réticulation et la formation de mousse peuvent se réaliser en une seule étape. Dans d'autres procédés, la phase de réticulation précède habituellement la phase de formation de mousse. 

  
La préforme de résine polyoléfinique expansible est transformée en un article fortement expansé par chauffage de cette préforme grâce à des moyens appropriés, tels qu'un chauffage à infrarouge, un chauffage à air chaud, un chauffage par platine chaude, ou un chauffage dans ou sur un liquide, de tels moyens de chauffage étant utilisables seuls ou en combinaison.

  
Le procédé de l'invention sera plus complètement illustré encore grâce aux Exemples suivants, dans lesquels toutes les parties sont données en'poids à moins.d'indications contraires. Exemples 1-4 et Exemples comparatifs 1-2

  
A 100 parties de polyéthylène de faible densité (indice de masse fondue de 1,6, poids spécifique de 0,921), on ajoute 15 parties d'un mélange obtenu en mélangeant 100 parties de AC et 10 parties de DPT, et 0,8 partie de peroxyde de dicumyle, en même temps que des quantités spécifiées (suivant le Tableau 1) du composant (c), à savoir la 1,3,5-tris-(3,5-di-t-butyl-4-hydroxybenzyl)-S-triazine-2,4,6 (1H, 3H, 5H)trione. Le mélange résultant est pétri par des cylindres de malaxage d'environ 20 cm, maintenus à 120[deg.]C, et ensuite conformé en une feuille d'une épaisseur de 1,5 mm à 120[deg.]C. Les feuilles formées de la sorte sont ensuite soumises à un traitement de moussage dans de l'air chaud à 230[deg.]C pour donner les mousses du Tableau 1. 

  

 <EMI ID=8.1> 


  

 <EMI ID=9.1> 
 

  
y Des mesures du comportement de formation de mousse
(relation entre le temps de chauffage et le poids spécifique lors d'un chauffage dans de l'air chaud à 230[deg.]C) pour l'Exemple comparatif 1 et l'Exemple 2 ont montré que, dans le cas de l'Exemple comparatif 1 (courbe I sur le dessin) , la formation de mousse se produit rapidement, le degré de formation de mousse est très instable et ne converge pas vers une valeur fixe, et le poids spécifique au point le plus élevé d'expansion est important. Par contre, dans le cas de la présente invention (Exemple 2, courbe II sur le dessin), le degré de formation de mousse est amélioré et entretenu à une valeur constante, une formation de mousse stable se réalisant.

  
Exemple 5 et Exemple comparatif 3

  
On mélange 100 parties de polyéthylène de basse densité
(indice de masse fondue de 3,5, poids spécifique de 0,922), 8 parties d'un mélange obtenu en mélangeant 100 parties de AC et 15 parties de DPT, et 0,3 partie du composant (c), à savoir le pentaérythrityl-tetrakis-[3-(3,5-di-t-butylhydroxyphényl)propionate],

  
et on pétrit grace à des cylindres de mélange de 20 cm environ à
120[deg.]C pour transformer ensuite ce mélange en une feuille d'une épaisseur de 0,5 mm à 140[deg.]C. Cette feuille est soumise à irradiation par des rayons électroniques de 5 Mrad en utilisant un accélérateur de rayons électroniques de Cockcroft pour introduire une structure de réticulation, et elle est transformée en mousse dans de l'air chaud à 230[deg.]C pour donner ainsi une mousse blanche d'un poids spécifique de 0,048, ayant une très belle surface et un bon toucher.

  
Le même mélange que ci-dessus, sauf qu'il ne contient pas de composant (c), a été transformé de façon similaire en une feuille et soumis à expansion pour donner une mousse d'un poids spécifique de 0,059. Toutefois, la formation de mousse est rapide , et instable, la surface n'est pas uniforme et est rugueuse, l'aspect est mauvais, et des craquelures se développent parfois

  
à la périphérie de la feuille au cours de la formation de mousse.

  
 <EMI ID=10.1> 

  
qualité.

  
Exemples 6-11

  
On produit des mousses sous les mêmes conditions que dans le cas de l'Exemple 1, sauf en ce qui concerne le changement du composant (c) comme illustré par le Tableau 2. Les résultats sont donnés par ce même Tableau . 

  

 <EMI ID=11.1> 


  

 <EMI ID=12.1> 
 

V

  
Comme décrit précédemment, la présente invention peut  éliminer de façon parfaite la coloration (jaunissement) des mousses, coloration qui provient de l'agent de soufflage de AC, et elle permet de produire de manière stable des produits en mousse blancs et beaux, composés de mousses homogènes et fines, avec

  
une haute expansion et un toucher amélioré.

  
exemples 12-17 et Exemples comparatifs 4-5

  
On mélange 100 parties de polyéthylène de basse densité
(indice de masse fondue de 1,6, poids spécifique de 0,92].) avec

  
15 parties d'une composition d'agent de soufflage obtenue en mélangeant du AC avec de l'hexaméthylènetétramine en des quantités telles qu'énumérées par le Tableau 3. A ce mélange résultant, on ajoute 0,7 partie de peroxyde de dicumyle et on pétrit grâce à des cylindres de mélange d'environ 20 cm à 120[deg.]C, puis on transforme en une feuille d'une épaisseur de 3 mm à 120[deg.]C. Les feuilles formées de la sorte sont soumises à expansion dans de l'air chaud à 230[deg.]C pour donner les mousses du Tableau 3. 

  

 <EMI ID=13.1> 


  

 <EMI ID=14.1> 


  

 <EMI ID=15.1> 


Claims (1)

  1. Exemple 18 et Exemple comparatif 6
    A 100 parties de polyéthylène de basse densité (indice
    de masse fondue de 3,5, poids spécifique de 0,922), on ajoute 20 parties d'une composition d'agent de soufflage préparée en mélan- geant 100 parties de AC et 5 parties d'hexaméthylènetétramine, et
    on pétrit grâce à des cylindres de mélange de 20 cm environ à 120[deg.]C, pour former une feuille d'une épaisseur de 0,5 mm à 120[deg.]C. Cette feuille est soumise à irradiation par des rayons électroniques de
    4 Mrad en utilisant un accélérateur de rayons électroniques de Ccckcroft pour introduire une structure de réticulation, et on provoque l'expansion dans de l'air chaud à 230[deg.]C pour obtenir une mousse d'un poids spécifique de 0,028, présentant une surface
    blanche et belle, avec un bon toucher.
    On produit une mousse sous les mêmes conditions que cidessus sauf que l'on utilise 20 parties de AC et pas d'hexaméthylènetétramine. Cette mousse a un poids spécifique de 0,030 et est de couleur jaune.
    Comme on l'a signalé précédemment, la présente invention peut éliminer le jaunissement des mousses, provenant de l'agent de soufflage AC et permet de produire de manière stable des produits fortement expansés présentant une belle surface blanche et composés
    de fines cellules homogènes, avec un toucher amélioré.
    REVENDICATIONS
    1. Procédé de production d'une mousse de résine de polyoléfine, qui comprend le mélange d'une composition d'agent de soufflage comprenant (a) de l'azodicarbonamide, (b) de la dinitrosopentaméthylènetétramine, et (c) un antioxydant phénolique, ou (b') de l'hexaméthylènetétramine au lieu des composants (b) et (c), avec une résine de polyoléfine pour former une préforme de résine expan- sible, et l'expansion de cette préforme par chauffage sous pression normale après introduction de la structure de réticulation dans la préforme ou au cours de l'introduction de cette structure de réti- culaticn dans cette préforme.
    2. Procédé suivant la revendication 1, dans laquelle la composition d'agent de soufflage comprend (a) 100 parties en poids d'azodicarbonamide, (b) de 3 à 30 parties en poids de dinitrosopentaméthylènetétramine, et (c) 0,5 à 10 parties en poids d'un anti- <EMI ID=16.1>
    (4-éthyl-6-t-butylphényl) , 2,5-di-t-butylhydroquinone, 2,5-di-tamylhydroquinone, et 2,6-di-t-butyl-4-méthylphénol, pour 100 parties en poids des composants (a) et (b).
    3. Procédé suivant la revendication 1, dans lequel la composition d'agent de soufflage comprend (a) 100 parties en poids d'azodicarbonamide, et (b') de 0,5 à 50 parties en poids d'hexaméthylènetétramine.
    4. Procédé suivant l'une quelconque des revendications précédentes, dans lequel la résine de polyoléfine est un polyéthylène de basse, moyenne ou haute densité, du polypropylène, du polybutène-1, un copolymère d'éthylène-propylène, un copolymère d'éthylène-acétate de vinyle, un copolymère d'éthylène-acide acrylique ou un copolymère de chlorure de vinyle-éthylène.
    5. Procédé suivant la revendication 4, dans lequel la résine de polyoléfine est du polyéthylène de basse densité.
    6. Procédé de production de mousses de résines de polyoléfines, tel que décrit ci-dessus, notamment dans les Exemples donnés, et mousses de résines obtenues grâce à un tel procédé ou telles que décrites ci-dessus.
BE0/196412A 1978-07-24 1979-07-23 Procede de production de mouses de resines de polyolefines BE877840A (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9016578A JPS5516067A (en) 1978-07-24 1978-07-24 Blowing agent

Publications (1)

Publication Number Publication Date
BE877840A true BE877840A (fr) 1979-11-16

Family

ID=13990861

Family Applications (1)

Application Number Title Priority Date Filing Date
BE0/196412A BE877840A (fr) 1978-07-24 1979-07-23 Procede de production de mouses de resines de polyolefines

Country Status (2)

Country Link
JP (1) JPS5516067A (fr)
BE (1) BE877840A (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172935A (en) * 1981-04-17 1982-10-25 Japan Synthetic Rubber Co Ltd Preparation of cured 1,2-polybutadiene foam

Also Published As

Publication number Publication date
JPS5516067A (en) 1980-02-04

Similar Documents

Publication Publication Date Title
DE69720761T2 (de) Silangepfropfte materialien für feststoffe und schäume
EP0926171B1 (fr) Procédé de traitement de granules d&#39;une polyoléfine greffée
JPH08176332A (ja) 線状ポリオレフィンの架橋フォーム構造及びその製造方法
FR2671804A1 (fr) Mousse de polyolefine reticulee a cellules ouvertes non inflammable et procede pour sa fabrication.
GB1599326A (en) Thermoplastic polyolefin film compositions
BE877840A (fr) Procede de production de mouses de resines de polyolefines
EP2771401A1 (fr) Melange-maitre pour la fabrication d&#39;une couche isolante de cable electrique
WO2016188961A1 (fr) Compositions polymères à tenue améliorée au feu
US4264469A (en) Cellular thermoplastic resins with mixed blowing agents
BE887441A (fr) Procede de production d&#39;articles en mousse, a cellules ouvertes en polyolefine reticulee et produits obtenus
FR2467226A1 (fr) Latex de copolymere de chlorure de vinylidene
KR830000100B1 (ko) 폴리올레핀 수지 발포체의 제조방법
FR2783830A1 (fr) Procede de fabrication d&#39;une mousse de polyolefine reticulee
JPS5825370B2 (ja) ポリオレフイン系樹脂発泡体の製法
RU2230078C2 (ru) Способ изготовления формованных наполненных вспененных изделий из химически сшитого сополимера этилена с винилацетатом
BE1010171A6 (fr) Film a base d&#39;eva pour l&#39;utilisation comme cuir synthetique.
JPS5849566B2 (ja) ポリオレフィン系樹脂発泡体の製造法
EP1449876A1 (fr) Mousse de polyoléfines ultra-flexible contenant du CPE
JPH0524931B2 (fr)
JPS5831099B2 (ja) ポリオレフイン系樹脂発泡体の製法
CA1336347C (fr) Procede de preparation d&#39;un plastisol vinylique expansible
JPS62288641A (ja) 発泡剤組成物
JPH0324495B2 (fr)
JPH0524930B2 (fr)
JPS5855978B2 (ja) ハツポウタイノセイゾウホウホウ

Legal Events

Date Code Title Description
RE20 Patent expired

Owner name: HITACHI CHEMICAL CY LTD

Effective date: 19990723