BE650979A - - Google Patents

Info

Publication number
BE650979A
BE650979A BE650979DA BE650979A BE 650979 A BE650979 A BE 650979A BE 650979D A BE650979D A BE 650979DA BE 650979 A BE650979 A BE 650979A
Authority
BE
Belgium
Prior art keywords
solution
polyamide
polymer
groups
viscosity
Prior art date
Application number
Other languages
English (en)
Publication of BE650979A publication Critical patent/BE650979A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description


   <Desc/Clms Page number 1> 
 



  Hauts polymères et procédés pour les obtenir. 



     La,   présente invention concerne des polymères. de poids moléculaire élevé préparés à partir d'un halogénure   diacide     dérive   de l'anhydride trimellitique et de diamines organiques. Ces nouveaux polymères sont intéressants pour la formation de pellicules, de revêtements et d'objets moulés isolants et résistant à la chaleur. 



   Les polymères'suivant l'invention sont des polyamides obtenus par copolymérisation d'un halogénure d'acide dérivé de l'anhydride trimellitique (anhydride   1.,2,4-benzène   tricarboxylique) et d'une diamine aromatique primaire. Ces "polyamides" comprennent! deux types de polymères intéressants :

   (1) les   composes qui   con- tiennent des unités. 

 <Desc/Clms Page number 2> 

 
 EMI2.1 
   où   R est le noyau aromatique de la diamine H2NRNH2 de départ, les ponts sont probablement d'une manière prédominante du type amido bien que certains d'entre eux peuvent être du type   imido,,   et le polymère comporte des groupes acide carboxylique libres   susoepti-   bles de réagir   encore;.et   (2) les produits qui ont été soumis à une nouvelle réaction pour former des polymères du type 
 EMI2.2 
 où les groupes carboxyliques libres présents initialement dans le polymère sont   transformés   dans une grande mesure en groupes   imido   par condensation avec les groupes amides disponibles.

   Il convient de noter que les structures et les mécanismes théoriques ci-dessus ne sont que des approximations rarement sinon jamais   réelles.   



   Les polyamides de la première catégorie peuvent être considérés comme des produits partiellement   polymérisés   qui ont des poids moléculaires relativement élevée qui sont   sulubles   dans les solvants organiques polaires et qui sont susceptibles d'une nouvelle réaction ultérieure., ou durcissement par traitement thermique. 



  Ils peuvent être utilisés en solution, en suspension à teneur élevée en solides, ou sous forme de poudres pour obtenir des revêtements, 

 <Desc/Clms Page number 3> 

 des stratifiés, des pellicules, des fibres, des objets   moules,   et comme vernis d'imprégnation. Les polymères de la seconde catégorie    sont insolubles dans les solvants organiques ploaires et deivent être considérés comme des composés finals "durcis" à l'état de revêtements, de stratifiés, de pellicules, d'émaux de fils de nage, etc. Ces polymères 'sont caractérisés pari leur résistance aux   solvants, par leur   stabilité   thermique élevée et par leurs bonnes propriétés électriques. 



    Les analyses par spectrographie infrarouge des polyamides solubles montrent que la densité optique à 6,02 microns (car-   
 EMI3.1 
 bonyle d'amide) peut ptteindre environ 10 à 11 fois la densité opti f que à 5,61 microns (carbonyle d'imide) ce qui indique que la tensur 
 EMI3.2 
 en amide de ces polyamides est plus élevée que leur teneur en 11111--,    de.

   Les spectres infrarouges indiquent également la p@sence de 1     groupes   carboxyliques bien que la détermination de leur Quantité soit   gênée   par la   proximité   de la bande   d'absorption   des groupes      carbonyle d'imide. ; 
 EMI3.3 
 L'&1alys8 infrarouge dp quelques polymères insolubles ;

        
 EMI3.4 
 montre un rapport aaà4elimide voisin de 1, ce qui indique que la teneur en groupe   amide   du   polyamide   soluble a été réduite à environ ! 50% et que la teneur en imide a été augmentée à environ 50%. 
 EMI3.5 
 Les valeurs numériques indiquent é1al*,nent la présence d'uae quan- tité tout au plus très faible de groupes carboxyliques.
On a découvert avec surprise qua des polyamides analogues 
 EMI3.6 
 préparés à partir d'anhydride trimellitique et d'une diamine n'ont pas de propriétés tilmogènes intéressantes.

   En outre, on a trouvé que les solutions des polyamides suivant   l'invention     dans des   sol- 
 EMI3.7 
 vants comme le N,1Í-dimétl".ylacéta 1de ont des viscosités inhérentes beaucoup plus élevées que les solutions de polyamides analogues dérivant d'xnhy,ir3de trimellitique, ce qui indique un po1d8,moléculaire plus élevé pour les nouveaux polyamides. 



  En bref, les nouveaux polyamides sont préparés à parti? d'un haogénure d'acide dérivant de l'anhydride tr1m111t1que . 



  (anhydride 1,2,±-benzéne tricarboxylique),. ooap9anQn% au "'ml \i!\ 

 <Desc/Clms Page number 4> 

 groupe   halogénure     4'acyle,   à savoir le chlorure d'acide en position 4, le   dichlor@re   de diacide en positions 1,4 et 2,4 (pontant un groupe ester dans la positionrestante', et le   trichlorure '   du 1,2,4triacide. Le'promure et   d'putres   halogénures réactifs conviennent également. L'malogénure d'acide est traité par une diamine aromati- que ayant un ou plusieurs cycles aromatiques et deux groupes amino primaires.

   Le caractère aromatique de la diamine confère ses pro-   prières   thermiques au polymère, tandis que les groupes   amino   : primaires permettent la formation des cycles imide désirés dans le polymère   final.   D'une manière   générale,   la diamine aromatique possède de 1 à environ 4, avantageusement 1 à 2 et de préférence 2 cycles aromatiques. Les diamines -aromatiques   à   plusieurs cycles sont,, entre   autres.,   des composés portant deux groupes amino primai-res sur un système aromatique ploycyclique.

   Les cycles aromatiques peuvent être condensés, comme dans le naphtalène ou dans le 
 EMI4.1 
 PJéntVlthX'\n" ou peuvent être pontes directement, 1 comme dans les d ph4nyl 4iies, ou ïndîrectement par exemple, par lr1n,.rmdia ra de groupes de liaison stables réactifs, oslratce des coupes oxy  i carbyle ,,4tC carbone lié à 2 ou à moins le 2 atomes d'r4:\:ooè) carbonyle, sulf le ou d 'autres groupes relativement 1nartir, otJ1JPe ml . Jrop 1 tt1tfe. fa groupe capyle peut être un groupe Zéylène', Îh3"i.è,, jeu un g4l4pe ,Y.ène si4botitud 'oD1lUe lil- 1 1 W' il. l 1 <im4thyl4thyln. etc. ees s*êmes arontatiquep appripri pont 1 m;thYléYl'i' a,ci' naphène, arom,at1que, app1P riis fJpnt ' .

   C. ; les sys t, mesd.pépyléle,"teX-ph6nylène, 11hÓny.lnJhène, taterphylen Z. et les systèmes cyol4es aroa:a tiques a4p4s par des grop 16 o?cy, li!.s sr:tmes cyOl':}ls aro,.t1qes SÍPa.s pr ifS gr1YP ?, çaï;Yl1 carbontle, SfY1J rt i. 



  /11, ne:nent lec'grouje or ou i1=hYtène, et les groupes 11O sont- #vantageu reziene4 position cteta ou para du noya,4 aro atique. Les 1 < iamines préfre sont la ppl-,m6thylènebis(anilie et îa p,p'T   oxybis (aniline), particulièrement pour la préparation d'émaux pour fils.   

 <Desc/Clms Page number 5> 

 En- général, la réaction est effectuée en   présence   d'un ' 
 EMI5.1 
 solvant polaire organique comme le N,N"diméthylc4tamide, la N- méthylpyrrolidone, la N,N-.dimétl'ylformamide, le diméthylsulfoxyde, etc., parmi lesquels on préfère la N-méthylpyrrolidon et surtout le N,N-diméthylacêtamide.

   La réaction doit être effectuée dans des conditions sensiblement anhydres et à une température inférieure à 
 EMI5.2 
 environ 70"C et avantageusement à environ 50 C, bien que des tempe- ' ratures n'atteignant qu'environ 2p, puissent également être utile-'± sées. La durée de réaction dépend de la teipératlyre et varie entre environ 1 à 24 heures.et est   Avantageusement   de 2 à 4 heures à 50- 70 C. 



   Les   réactifs   sont présents de préférence en quantités sensiblement   équimoléculaires.   Une variation dans les limites de plus ou moins 3 moles de   l'un   ou l'autre des réactifs n'affecte que peu les propriétés du produit. Des variations pouvant atteindre 10 moles   %   par excès ou par   défaut   peuvent convenir lorsque la résistance à la flexion a moins d'importance que dans le cas des émaux pour   fils...   



   La réaction, Initiale entre l'halogénure d'acide dérivé   de'   
 EMI5.3 
 l'anhydride trimellitique et la diamine forme un polyamide' de poids moléculaire élevé ayant une teneur en unités amide supérieure >, iin- viron 50,'0. Ces polyamides sont facilement solubles dans-ses solvants organiques polaires comme le N,N-diméthylacètamide, la N-:néthyl- pyrrolidone., le N,N-di@ethyiforaamide, le àiaéthyldulfoxyàe, etc. 



   L'invention a donc pour objet un procédé de préparation de polymères solides de poids moléculaire élevé, ayant des propriétés filmogènes et solubles dans un solvant polaire organique, sui- 
 EMI5.4 
 vant lequel on fait réagir des quantités sensiblement équimoléculai-t res d'une diamine aromatique primaire avec un'halogénure d'acide dérivé de l'anhydride trimellitique qui contient au moins un groupe halogénure d'acide, notamment en position   4,,-dans   un solvant      
 EMI5.5 
 organique polaire dans des conditions sensiblement auhydr4s,

  # et pendant un temps et à une   température  donnant  un   polymèrs  partant   

 <Desc/Clms Page number 6> 

 des groupes carboxyliques et des groupes   amido   libres susceptibles de réagir encore entre eux le polymère formé étant soluble dans le solvant organique polaire utilisé. 



   Les polymères en solution dans un solvant comme le N,N- diméthylacétamide ont une viscosité d'au moins environ 0,2 (comme défini page 34 de Preoarative Methods of Polymer Chemistry   (1961)   par W.R. Sorenson and T.W. Campbell), en utilisant comme référence un polyamide préparé à partir de p,p'-méthylènebis (aniline). La viscosité inhérente minimum varie dans une certaine mesure avec la nature de la diamine particulière utilisée pour la réaction. Ceci peut être illustré par la'viscosité inhérente   minimum   d'environ 0,3 pour le polyamide obtenu à partir de la p,p'-oxybis (aniline).

   Les polyamides particulièrement intéressants obtenus à partir de p,p'-   méthylènebis(aniline)   et de   p,p'-oxybis(aniline)   ont, respective- ment, des viscosités inhérentes de   l'ordre   de 0,3 et de 0,5. Ces viscosités.indiquent que les polyamides ont des   pois   moléculaires d'environ 2500-5000 et plus. 



   Le polyamide de la première réaction est soluble,   gêné.     ralement   en quantités appréciables, dans les solvants organiques ,fortement polaires. Par exemple, on peut préparer des solutions à environ 15%-50% en poids de solides dans le N,N-diméthylacétamide. 



  Pour des applications utilisant des solutions, par exemple des émaux pour fils et vernis d'imprégnation, etc., les tolutions contenant environ 25 à 40% en poids et de préférence environ 35% en poids sont intéressantes. De telles concentrations correspondent à des solutions ayant une teneur en solides et   une'viscosité   intéres-   santes   qui permettent une manipulation facile dans la plupart des applications pratiques. Les viscosités de ces solutions vont de 10 à 400 poises. Par exemple, la viscosité desolutions à environ 30% de solides dans le N,N-diméthylacétamide est d'environ 50 poises. 



   A titre d'exemple particulier, le chlorure de   lanhydri-   de   4-carboxyphtalique,   sensiblement exempt d'anhydride trimellitique libre, est utilisé sous forme de granules. Le chlorure d'acide et la p,p'-méthylènebis (aniline ou la p,p'-oxybis (aniline) sont 

 <Desc/Clms Page number 7> 

 mélangés en quantités équimoléculaires (¯ 0,1 mole %) et le mélange' est ajouté à du N,N-diméthylacétamide ayant une teneur en eau inférieure à environ 0,3% en poids* Le N,N-diméthylacétamide a été préalablement refroidi à   5-10 C,   avec barbotage d'azote sec. Pen- dant l'addition des réactifs, un bain réfrigérant est utilisé pour maintenir la température de la solution à environ 50 C.

   Environ      15-30 minutes après la fin de l'addition, le mélange de réaction est chauffé dans un bain-marie car à ce stade la réaction ne      s'entretient pas spontanément à une température de 50 C. Après quelques heures (environ 2), la viscosité atteint une valeur maxi- mum.

   La polymérisation est pratiquement achevée et le mélange de réaction est refroidi à la température ordinaire et peut être con- serve jusqu'au lendemain sans dégradation du produit formée mais il : est préférable de conserver le mélange   à   une température d'environ   5 Ci   à laquelle il peut être maintenu longtemps sans que la viscosi-      té diminue.   sensiblement.. !   
A ce stade, la solution de polyamide (mélange de réac- tion) convient directement pour de nombreuses applications.. Toute- fois lorsqu'on prépare un émail pour fil, on préfère que   la so@@   tion de polyamide soit traitée de manière à séparer les hydracides halogénés qui sont formés à partir de l'halogénure d'acide.

   En général, cela se fait en précipitant le polyamide par de l'eau, en lavant le précipité, et, si on le désire,, en redissolvant le poly- ;      amide dans le solvant;- ou bien en traitant la solution de polyamide ; par un oxyde d'alkylène, comme l'oxyde d'éthylène ou l'oxyde de propylène, qui réagit avec l'hydracide halogéné pour former un com- posé qui peut être volatilisé au cours de la seconde réaction. 



  Pour le premier traitement, la solution de polyamide contenant de l'acide chlorhydrique gazeux entraîné est avantageusement ajustée à une viscosité d'environ 150 poises, puis versée dans un grand excès d'eau agitée doucement. La solution de polyamide est ensuite versée d'une hauteur d'environ 61 cm au-dessus-du niveau de l'eau, de manière à ce que le précipité forme un fil continu sur la tige de l'agitateur. Quand l'écheveau formé remplit le récipient, le liquide est séparé et le polymère est trempé pendant environ      

 <Desc/Clms Page number 8> 

   1 heure   dans-de   l'eau   fraîche où il continue à perdre son solvant et l'acide chlorhydrique.   L'opération   de lavage et de trempage du -polymère dans l'eau fraîche est répétée généralement 2 ou 3 fois ou davantage.

   Enfin, les fils de polymère sont trempés jusqu'au lende- main et lavés une fois encore à l'eau. Un trempage supplémentaire suivi de lavage et de séchage à environ 49 C peut être effectué si le polymère doit être conservé longtemps. Sous cette forme, le polyamide peut être aisément transformé en solution dans un solvant puisque sa grande surface spécifique permet une solubilisation aisée. 



  Le précipité peut être préparé également sous la forme de petites particules plutôt que sous celle de fils, en versant.la solution de polyamide dans' de l'eau agitée violemment par un dis- positif déchiqueteur comme un appareil   Cowles.   Le dispositif .coupe le précipité en petites particules qui peuvent généralement être pesées et transportées plus facilement que le fil. 



   Le polyamide peut également être traité directement en solution pour séparer les hydracides halogénés entraînés. Par exem- ple, un réactif d'épuration comme un oxyde d'alkylène peut être ajouté à la solution pour transformer l'hydracide halogène entraîné 'en un composé qui ne dégrade pas le polyamide et qui peut être '. volatilisé au   cours   de la seconde réaction. Un traitement'de cetype est décrit dans la demande de brevet américain n  292.163 du ler juillet 1963. Par'exemple, l'addition d'oxyde d'éthylène ou d'oxyde de propylène à une solution de polyamide à raison d'environ 1 à 8 moles par mole d'hydracide halogéné (sur la base de l'halogénure d'acide consommé) donne des résultats satisfaisants, la durée du traitement étant de 1 heure'ou moins à 50 C ou, de préférence 2 à 3 jours à la température ordinaire. 



     Comme   indiqué plus haut, les polyamides solubles, suivant un aspect plus particulier de la présente invention, peuvent être transformés en résines polyamide-imide insolubles et   infusibles   et tenaces par une imidation interne induite par la chaleur. Cela se fait avantageusement au cours du façonnage de pellicules, de revêtements, de fibres ou d'objets moulés ou imprégnés.

   Par 

 <Desc/Clms Page number 9> 

 exemple, une solution du produit de la première réaction, après traitement pour chasser les hydracides   halogènes,   est appliquée sur un fil, ou sur une autre surface, et chauffée à une température d'environ 200 à 420 C, généralement d'environ 300-400 C (dans le cas de   l'émaillage   du   .fil),   pendant un temps déterminé pour former le polyamide insoluble.. A 400 C, 1 minute suffit généralement, tandis qu'à   300 C,   environ 2 minutes sont nécessaires. 



   La transformation du polyamide soluble en force insoluble fait partie du procédé de la présente invention et est   effec-   tuée par chauffage du polymère soluble pendant une durée suffisante et à une température suffisamment élevée pour transformer efficacement et sensiblement tous les groupes carboxyliques et amide en groupes imido, formant ainsi un second polymère qui est   insolu-   ble dans les solvants.organiques polaires. 



   Suivant un mode de réalisation différent de la   présente   invention, ,les polyamides non durcis partiellement polymérisés peuvent être déimidisés pour donner des produits plus solubles qui peuvent être utilisés 'sous la forme de solutions à teneur élevée en solides et à viscosité relativement faible.

   Par exemple, quand une solution de polyamide   à   teneur élevée en solides et à viscose ,faible est requise pour l'imprégnstion, le polyamide soluble est d'abord traité pour augmenter sa solubilité, compte tenu de la viscosité de la solution -résultante., à l'aide d'une solution açueuse   d'un   alcali dilué comme l'hydroxyde de sodium, l'hydroxyde de potassium, les bicarbonates alcalins, etc., (généralement du KOH ou du NaOH de O,lN à   O,5N).   Le produit obtenu après ce traitement es additionné ensuite d'une solution aqueuse d'un acide dilué, comme de l'acide sulfurique, l'acide chlorhydrique, l'acide nitrique ou un autre acide minéral, en général l'acide chlorhydrique O,lN à 0,5N pour former un polymère plus soluble dans les solvants organiques polaires. 



   . Le polymère est avantageusement en   aolution   au moment où on le traite par la solution alcaline et forme un précipita de polyamide qui est ensuite traité par la solution acide. Le précipité traité par l'acide est ensuite remis en solution dans le   même   sol- 

 <Desc/Clms Page number 10> 

 vint ou dans un autre solvant organique polaire approprié pour donner une solution qui, pour une viscosité donnée, a une teneur plus utile en solides. Par exemple, le traitement décrit transforme 
 EMI10.1 
 un polyamide formant dans le N,N-dimémyiacétemide une solution à' 20 de polyamide pour une viscosité de 100 ..i¯-,;; cn un polyamide donnant dans le   N,N-diméthylacétamide   une solution d'une teneur de 35% en polyamide pour la même viscosité.

   En variante., si on rechcrche des viscosités plus faibles, une solution de polyamide d 
 EMI10.2 
 le ?,1-diméthyiacét4mide ou N,N-di:néthylfoI'l:1am1de ayant une teneu' de 15% en solides pour une viscosité de 30 poises peut être transe-   formée,   par exemple, par le traitement décrit en une solution de ployamide dans le même solvant ayant pour la même teneur en solides une viscosité d'environ 0,6 poise. 



   Le traitement décrit donne donc des polyamides qui for- 
 EMI10.3 
 ment dans les solvants indiqués de préférence le N,N.diméthyla6éta- aide et le N;N-diméthylform4=idee des solutions contenant 15 à 70% de solides et ayant des viscosités qui dépendent de la teneur en 
 EMI10.4 
 zo:. (les mais comprises entre environ 1 et 50 poises. 



  Les exemples suivants 1l1utrentl sans limiter.. la pré- paration et l'utilisstion des compositions suivant l'invention.. 



  EY.IZ.E11:U:.:..- Un mélange de 1,05 g (0,005 mole) du chlorure d'anhydride 4-urboyphtal.que (préparé à partir d'anhydride trimeliitique et de chlorure de sulfonyle), de 1,00 g (0,005 mole) de p,p'-oxybis , (aniline), de 6 g de N,11-ùiméthyiacétamide (comme solvant), et de 6 g de toluène (comme solvant) dans un ballon à trois cols est purgé par un courant d'azote. Une réaction exothermique a lieu et porte la température du mélange à un maximum de 40 C en quelques minutes. La température retombe à la température ordinaire après   30   minutes d'agitation, Le barbotage d'azote est poursuivi. La 
 EMI10.5 
 viscosité de la solution augmente et se stabilise 4n environ 2 heu- res. La solution est laissée au repos à l'abri de l'air à la température ordinaire pendant 16 heures pour achever la réaction. Un polyamide est obtenu. 



   Une partie du polyamide ést versée dans un grand volu- 

 <Desc/Clms Page number 11> 

 me d'acétone pour la faire préripiter. Le précipité est   trituré   à plusieurs reprises avec de nouvelles portions d'acétone puis séché dans un   dessiccateur. L'analyse   par spectrographie infrarouge du   polymère   montre la présence de groupes amide, imide, et carboxyli- que. 



   Une autre portion du polyamide est étendue sous forme d'une pellicule et chauffée pendant 2 heures à   150 C   dans un four. ' L'analyse par spectrographie infrarouge du polymère jaune montre la; présence de groupes amide et imide dans le rapport 1:1. 



   Ces résultats montrent que le produit de la première réaction entre le chlorure d'anhydride 4-carboxyphtalique et la p,p'-oxybis(aniline) contient des groupes amide, imide et   carboxyli-   que. Les résultats montrent également que le produit obtenu après la seconde réaction (formation de la pellicule) comprend des groupes amide et imide dans le rapport de   1:le   ce qui indique   qu'   une partie'des groupes amide a été   transformée   en groupes imide au cours de la réaction. 



  EXEMPLE 2. -     
On agite 2200 cm3 de N,N-diméthylacétamide anhydre dans un ballon à la température ordinaire et on y fait barboter de   l'azo-   te. Ensuite des portions de 20 g de chlorure d'anhydride 4-carboxy- phtalique et de p,p'-oxybis(aniline) sont ajoutées   alternativement !   dans le ballon. Au total,   421,24   g de chlorure d'acide et   400,48   g d'amine sont ajoutés de manière que la température du mélange de réaction reste entre 20 et 40 C. L'agitation et le barbotage   d'azote/   sont entretenus pendant 16 heures encore. 



   La solution visqueuse obtenue finalement est versée dans un grand excès d'eau agitée et un précipité   se   forme. Le polymère précipité est ensuite lavé à plusieurs reprises avec de l'eau pour séparer l'acide chlorhydrique résiduel et le solvant. Il est en- suite lavé   à     l'acétone,   lavé à nouveau à l'eau puis séché dans une ; étuve à vide à environ 35 C. 



   Le polymère exempt d'acide chlorhydrique est ensuite re-      

 <Desc/Clms Page number 12> 

 
 EMI12.1 
 mis en solution à raison de 500 g dans 1000 cn3 de N.,N-dimr-thylac6- tamide. Cette solution est ensuite diluée avec 690 g de toluène pour avoir la mené teneur en solides qu'une solution disponible   d'un;   
 EMI12.2 
 polymère de diznhydride pyromellitique et de p,p'-oxybis(,niline) dans le N,N-diméthylacétamide et le toluène. Une portion de la solution du polyamide dans le N,N- 
 EMI12.3 
 diméthylacétamide et le toluène est étendue sous forme d'une pellin cule sur une plaque de cuivre n  24 qui est ensuite chauffée à environ   204 C   pendant 10 minutes.

   La pellicule sèche à une épaisseur de 12,7 microns et est jaune et transparente.   EXEMPLE 3.-   
La pellicule de polyamide de l'exemple 2 est comparée 
 EMI12.4 
 avec une pellicule d'un polyamide, utilisé dans l'industrie comme émail pour fils, qui est préparé à partir de dianhydride pyro- mellitique et de p,p'-oxybis(aniline). La pellicule de polyimide est préparée comme la pellicule de polyamide à la même température !   (204 C)   et pendant la même durée (10 minutes). 



   La résistance à l'impact des deux pellicules est supérieu- 
 EMI12.5 
 re à 184e5 lgcm, ce-qui est très satisfaisant. Une mesuré de la      résistance à la chaleur est déterminée en soumettant chacune des pellicules à la falmme   d'un   bec Bunsen. Les deux pellicules ont une excellente stabilité thermique. Les deux pellicules sont égale- ment soumises à un essai de résistance aux alcalis caustiques dans lequel une goutte d'une solution à   2%   de soude caustique est placée sur chacune des pellicules et abandonnée jusqu'au lendemain.

   Les critères de cet essai industriel sont passe (la pellicule est sen- siblement inattaquée par la soude caustique) et passe   pas '   (la pellicule est   solubilisée   rompue ou soulevée par la soude caustique La pellicule de polyamide passe   l'essai   tandis que la pellicule de 
 EMI12.6 
 polyamide ne le passe pas. Après un chauffage de 2e\minutes (soi una augments.tion de 10 minutes) à 204 C, une pellicule du poly- i imide passe l'essai, bien qu'une tache noire soit formée sur la, pellicule par la soude caustique. Le polyamide   chauffé     pendant '   
 EMI12.7 
 cette période prolongée résiste également à la soude caustique/ .sa%j 

 <Desc/Clms Page number 13> 

 altération de la couleur. 



   ±QfiP D'autres essais sont exécutés pour comparer les pro-   priétés   des pellicules de polyamide avec celles des pellicules de polyimide. Des échantillons de tissu de verre   imprègne   des   polymè-   res sont préparés à partir des solutions de ces polymères. Dans chaque cas, le   tissu.de   verre imprégné est chauffé pendant environ
30 minutes à environ 316 C. Les essais sont ensuite exécutés dans des flacons en verre à l'aide de solutions à 5% d'alcali caustique : et à l'aide de solutions à 5% d'acide nitrique. Dans chaque essai, les échantillons de tissu de verre imprégné sont   immerges   dans la solution.

   Les flacons contenant les solutions et les tissus de verre sont ensuite couverts et conservés pendant 30 jours pour   l'essai,   à l'alcali caustique et pendant 3 semaines pour l'essai à l'acide nitrique. Dans l'essai à l'alcali caustique, la   pelliculeß     de polyamide ne manifeste aucune altération après 30 jours, tandis '    que le revêtement de polyimide est dissous après environ 11 jours. 



   Dans l'essai à l'acide, le polyamide n'est pas sensiblement attaquée à la fin des 3 semaines tandis que le revêtement de   polyimide   est   appréciablement   ramolli après ce même temps. 



     EXEMPLES   5 à 7. -
Dans ces exemples, des produits sont préparés, à des   fin:   de comparaison, en effectuant les réactions entre l'anhydride tri-   mellitique   et la p,p'-oxybis (aniline), et entre l'anhydride tri-   mellitique   et la   p,p'-méthylènebis(aniline).   Un mélange de 1,9212 g   (0,01   mole) d'anhydride trimellitique et de   2,0024   g (0,01 mole) de   p,p'-oxybis(aniline)   est fondu et maintenu à environ   250?C   pendant environ 0,5 heure. L'état de fusion n'est que transitoire et la masse se solidifie rapidement. Elle est ensuite mise en solu- tion dans environ 784 cm3 de N,N-diméthylacétamide pour donner une solution à 0,5 g/dl.

   La viscosité inhérente de ce produit   vau t  
0,08. On établit également que ce produit   cesse     d'@tre     soluble   dans le N,N-diméthylacétamide à une concentration   Voisine     de 0%   en soli- des.. 



   Un deuxième mélange de 1,9212 g (0,01 mole)   d'anhy-   

 <Desc/Clms Page number 14> 

 dride trimellitique et de   1,9827   g (0,01 mole) de p,p'-métjylènebis (aniline) est ajouté à 10 cm3 de N,N-diméthylacétamide. Le mélange est chauffé à environ 140 C pendant environ 0,5 heure. La solution est ensuite diluée jusqu'à 0,5 g/dl par addition d'environ 774 cm3 de N,N-diméthylacétamide. La viscosité inhérente du produit est voisine de 0,07. Un échantillon de la solution avant dilution est étendu sur une surface métallique et échauffé. On obtient ainsi une pellicule noire, cassante et hétérogène qui ne convient pas   cornue   revêtement ni comme pellicule. 



   -Un troisième mélange d'anhydride trimellitique (0,1 mole) et de   p,p'-oxybis(aniline)   (0,1 mole) dans le N,N-diméthyl-      acétamide (59.5 g) est mis à réagir en solution. La température      de la solution qui est initialement d'environ 25 C, s'élève à envi-. ron 40 C par une réaction exothermique peu violente, et, après addition de 10 g de N,N-diméthylacétamide, est portée à environ 50 C et maintenue à cette valeur pendant environ 3,5 heures. Le      mélange est refroidi à la température ordinaire et   un'   petit supplé- ment de N,N-diméthylacétamide est ajouté. Une portion de la solu-      tion est diluée jusqu'à 0,5 g/dl et a une viscosité inhérente d'en- viron 0,11.

   Une seconde portion de cette solution est étendue et échauffée   à   environ 316 C pendant 2 à 4 minutes. Les pellicules noires, opaques et cassantes qui sont obtenues se fissurent à la flexion et ne manifestent qu'une résistance à l'impact de 1,15   kg. cm.   



  L'adhérence est médiocre et le revêtement s'écaille facilement. 



   Ces résultats montrent que les produits obtenus à partir d'anhydride trimellitique ont des viscosités inhérentes beaucoup plus faibles et des propriétés beaucoup moins intéressantes que celles des produits obtenus à partir du chlorure d'anhydride   4-     carboxyphtalique.   Les viscosités inhérentes des produits ci-dessus sont de 0,08,   0,07   et 0,11 respectivement, c'est-à-dire beaucoup inférieures aux viscosités inhérentes de 0,2 à 0,6 des polyamides suivant l'invention, ce qui indique que les produits obtenus à partir d'anhydride trimellitique libre ont un poids moléculaire beaucoup plus bas que celui des produits qui dérivent du chlorure d'anhydride 4-carboxyphtalique. 

 <Desc/Clms Page number 15> 

 EXEMPLE   8 .

   -   
 EMI15.1 
 Du chlorure d'anhydride 4-carboxyphtalique et de la p,p'..mét'r.ylênebis (aniline) sont mélangés en proportions équimoléculsires et ajoutés à du N,N-diméthylacétaride pour former une solution à environ 33% de solides. L'addition du mélange se fait en environ 45 minutes à une température initiale d'environ 5-10 C, qui, au cours de l'addition, s'élève spontanément   jusqu'à.   environ 
 EMI15.2 
 50*C et est réglée alors par un bain froid. à la fin de la réaction ! exothermique, le mélange est maintenu à 50 C pendant environ 2-2,5 heures, puis est refroidi en environ 1-2 heures jusque 30 C.

   La solution est pompée sous pression dans un réservoir d'eau recyclée      (environ 4 parties d'eau par partie de solution), violemment agitée.( La matière solide qui précipite est isolée dans un filet, Introduite 
 EMI15.3 
 dans un récipient et sousfise'a plusieurs trempages dans l'eau jus- quaà ce que l'effluent soit neutre et que son indice de rétraction soit voisin de 1:3.t, c'est-à-dire celui de l'eau pure. Le précipita est ensuite essoré et séché à une température comprise entre 49 et ; 149"C.

   Le précipité sec est ensuite mis en solution dans un ,, a+1 ngo , de 2 parties de N-aéthylpyrrolidone et de 1 partie de N,-àlnéthyl '   acétamido   à une teneur de 20-35% en poids en   solides.  
Cette solution de polyamide convient bien pour   forcer   
 EMI15.4 
 une pellicule ayant des propriétéo analogues à celiez des pelliculosi du polyamide de   l'exemple   2. Pana le procédé décrit pour préparer la solution de polyamide, les hydracides   halogène     entraîna   sont séparés   en substance     entièrement   par le lavage à l'eau décrit. On      obtient ainsi une   solution   qui convient très bien pour   ],-'émaillage   du fil. 
 EMI15.5 
 



  FIPIE ,9,- 
On effectue le traitement d'un polyamide afin d'améliorer      ses caractéristiques de   solubilité;'   Le polyamide est préparé à partir d'un mélange de 842,28 g du chlorure d'anhydride   4-carboxy-   
 EMI15.6 
 phtalique et de ?92,9g de psp'.-oxyb3s (aniline) introduit dans environ 3525 cm3 de N,N,.-dlmdthYlfoxmamide à environ 14*C en environ 15 minutes. La température de réac;on' s --lève à environ 55"C. A ce 

 <Desc/Clms Page number 16> 

   moment,   environ   1175   cm3 de N,N-diméthylacétamide sont ajoutés et le mélange de réaction est agité à environ 50 C pendant environ 4. heures, sa viscosité étant alors de 150 poises. 



   Une partie de la solution est versée dans un grand excès d'eau où elle coagule en fils jaunes. Les fils sont lavés plusieurs fois à l'eau, trempés jusqu'au lendemain dans l'eau puis sont essorés et séchés à la température ordinaire dans un courant d'air. Les fils séchés sont dissous dans le N,N-diméthylformanide   ;          pour   former une solution à 15% de solides et ayant une viscosité de 
30 poises. 



   Une seconde portion (environ 86 g) de la   solution   est versée dans environ 1 litre de KOH 0,5N (dans l'eau) pour former un précipité de fils blancs. Après trempage pendant 1 heure dans ce milieu, les fils sont retirés, lavés à l'eau et trempés dans de l'acide chlorhydrique 0,5N (dans l'eau) pendant environ 1 heure. Ils. sont ensuite lavés à l'eau, trempés jusqu'au lendemain dans l'eau, essorés et séchés   à.   la   température   ordinaire dans un courant   d'air...   



   Les fils secs sont dissous dans le N,N-diméthylformaminde pour donner. 



  -une solution à 15% de solides ayant une viscosité de 0,6 point. Une seconde solution dans le même solvant, ayantune teneur en solides de 35% est préparée également et a une viscosité de 100 poises. 



   Les solutions ayant une teneur de 15% et de 35% en soli-      des sont appliquées sur des panneaux de cuivre et   chauffées   pendant 
2 minutes à 316 C pour donner des   revêtement?   transparents tenaces, qui satisfont à un essai de flexibilité sur un mandrin de 3,17 mm et résistent à un impact de   173   kg.cm aussi bien sur une surface plane que sur une surface courbe. 



   Les résultats ci-dessus montrent que les caractéristiques de solubilité du polyamide obtenu dans les deux premiers para- graphes de cet exemple sont améliorées par un traitement par KOH   et '   HCl. La   solution   de polyamide avant traitement contient   15% de   soli- des eta une viscosité   d   30 poises. Après le traitement du polyami-   de,   la solution à 15% de solides n'a plus qu'une viscosité de 0,6 poise, ce qui est une diminution   remarquable.   Cette solution, ainsi que celle à 35% de solides donnent cependant des revêtements trans- 

 <Desc/Clms Page number 17> 

 
 EMI17.1 
 parente tenaces aysw t'8e bonnet caraotéristique8 de flexibilité et de résistance à l'impact. 



  #Q- D'autre. pôlyamidea août preparea on appliquant le procède dea exesplea Oi-ào*mé, à partir du chlorure d'anhydride 1 
 EMI17.2 
 , 
 EMI17.3 
 4-ear'ôoxyghtaliqùo et d'autrea diaoinea 0roiàatiqUoé priteairea, OOr4111. la p-phenylene diamine et la m-ph4nyl'n. dizaine. Le  polli- oulea de ces polya>140* ont des proprilt6. tris 1nt4r...ante.. 1 Bien que divers modos et detaila d*exécution aient été d'or1t. pour illuatrer l'invention, il va de aoi que oolio-oi est susceptible nombrousoa variant.. e;'modit1oation. éano *oP%ir de .on cadre. 1. V END ICA ' ION 
 EMI17.4 
 REVENDICATIONS. 
 EMI17.5 
 



  ------------------.-----¯.- 1.- Pol7Qlre solide de haut poids aoleoulaire, obtenu à partir d'une diaoino aromatique primaire et d'un halotenure diacide dérivé de l'anhydride tri,neilitique qui contient au mo1n. un groupe halogénure d'l:1cide, notara:oant ,en position 4, ce polymère ayant des 
 EMI17.6 
 
 EMI17.7 
 propriétés filmogènes et ayant, en solution dans le N,N-dim6thyl 
 EMI17.8 
 . 
 EMI17.9 
 acétxaide, une viscosité inhérente d'au [Mina environ 0,2. 



  2.- Polyaere suivant la revendication 1, caractérise en 
 EMI17.10 
 ce qu'il est soluble.dans un solvant organique polaire. 
 EMI17.11 
 3.- Polyaéro suivant la revendication 1, caractérise 
 EMI17.12 
 en ce qu'il est insoluble dans un solvant organique polaire. 
 EMI17.13 
 



  4.- Polymère suivant la revendication l, caractérise jn ce que l'halogénure d'acide est le chlorure d'snhydride 4-carbo- ) xyphtalique. 1 5.- Polymère suivant la revendication 1, caractérisé en ce que la dialuine' aromatique primaire est la p,$I'-méthylèneb18 
 EMI17.14 
 (aniline). 
 EMI17.15 
 



  6.- Polymère suivant la revendication 1, caractérisé en ce que la diaine aromatique primaire est la p,p'-ox,b11 (aniline). 



  7.- Fil d'e cuivre éma111' convenant pour 1er applioation électriques à haute ,tetàpérature, caractéris' en ce quÍ1i I.t revêtu 

 <Desc/Clms Page number 18> 

 d'un polymère solide de haut poids moléculaire dérivant d'une dia- mine   aromatique   primaire et d'un halogénure décide dórivé de l'an- hydride trimellitique qui contient au moins un troupe halogénure décide, notamment en position 4, co polymère étant inaoluble dans un solvant organique polaire. 



   8.- Procédé de préparation de polymères solides de haut poids moléculaire à propriétés filmogènes et   solubles   dans un solvant organique polaire, caractérisé en ce qu'on fait réagir des quantités sensiblement équimoléculaires d'une diamine   aromatique'     primaire   et d'un halogónure d'acide   dérive   de l'anhydride trimelli- tiqua qui contient au moins un groupe halogénure   d'acide,   notam- ment en position 4, dans un solvant organique polsire, dans   dee   conditions   sensjhleent   anhydres., pendant une durée et à une tempé- rature de nature   à   donner un polymère comportant des groupescar- boxyliques et dos groupes amide libres susceptibles de réagir encore,

   ce polymère étant soluble dans ce solvant organique polaire. 



   9.- Procédé suivant la revendication 8,   caractérisa   en ce qu'on chauffe on outre le polymère pendant un temps et à une température suffisants pour transformer sensiblement tous les groupes carboxyliques et tous les groupes amide en groupes imide,   foraant     ainsi   un second polymère qui est insoluble,\dans ce solvant organique polaire. * 
10. - Procédé suivant la revendication 8, caractérisé en ce qu'on   élimine   l'hydracide   halogène   du polymère et on chauffe le   poly@ère   pendant un temps et à une   teapérature   suffisants pour transformer sensiblement tous les groupes carboxyliques etles .

   groupes amide en groupes imide, formant ainsi un second polymère qui est insoluble dans ce solvant   organique   polaire. 



   11.- Procède suivant la revendication 8, caractérisé en : ce qu'on traite d'abord le polymère par une solution aqueuse d'un alcali dilué puis on traite le produit du premier traitement par une solution aqueuse d'un acide dilué pour   former   un polymère ayant une solubilité accrue dans un   solvant   organique polaire. 

 <Desc/Clms Page number 19> 

 



   12 - Procédé suivant la revendication 11, caractéisé en ce vue l'alcali et l'acide sont présents chacun en une concentra-, tion d'environ O,1N à 0,5N. 



   13 - Procédé suivant la revendication 12, caractérisé en ce que le solvant est le N,N-diméthylacétamide, l'alcali est l'hydroxyde de potassium et l'acide est l'acide chlorhydrique. 



   14 - Compositions et procédés, en substance comme décrit ci-dessus avec référence particulière aux exemples.

BE650979D BE650979A (fr)

Publications (1)

Publication Number Publication Date
BE650979A true BE650979A (fr)

Family

ID=205967

Family Applications (1)

Application Number Title Priority Date Filing Date
BE650979D BE650979A (fr)

Country Status (1)

Country Link
BE (1) BE650979A (fr)

Similar Documents

Publication Publication Date Title
US11267942B2 (en) Polyamide-imide film
US4440915A (en) Stabilized polyphenylene sulfide and method for producing same
US4048144A (en) Preparation of solid polymers from aromatic primary diamine and acyl halide of trimellitic anhydride
WO2012144563A1 (fr) Solution de polyamide-imide et film de polyamide-imide
KR101540827B1 (ko) 폴리아믹산 용액의 제조 방법 및 폴리아믹산 용액
CA1042579A (fr) Compose soluble dans l&#39;eau comprenant un sel d&#39;ammonium d&#39;un precurseur de polyimide
JPH0830097B2 (ja) 安定なテトラフルオルエチレン共重合体粒子の製造法
KR100235802B1 (ko) 폴리이미드전구 체용액,이의 제조방법,이로부터 수득되는 성형체 및 피복물
FR2564469A1 (fr) Complexes de sulfure de polyarylene, procedes de production et utilisations de ceux-ci
KR0161313B1 (ko) 폴리이미드 아미 에스테르 화합물 및 그 제조방법
CN111212867A (zh) 聚酰亚胺树脂及其制造方法、聚酰亚胺溶液、以及聚酰亚胺薄膜及其制造方法
JP2020029486A (ja) ポリイミド粉体、ポリイミドワニス、ポリイミドフィルムおよびポリイミド多孔質膜
JP2009256610A (ja) 芳香族ポリアミド及びその製造方法
EP0091778B1 (fr) Feuille en polyamide aromatique
JPH02269742A (ja) フッ素含有結合基を有するポリアミドイミドポリマー
JPH05271539A (ja) ポリイミド前駆体の粉粒体、その混合物及びその製造方法
JPH11333376A (ja) ポリイミド前駆体溶液並びにそれから得られる塗膜及びその製造方法
JPH02142830A (ja) 2―(3―アミノフェニル)―2―(4―アミノフェニル)ヘキサフルオロプロパンから得られたコポリイミド
BE650979A (fr)
JP3421776B2 (ja) ポリアミドイミド樹脂組成物及びそのワニス並びに該ワニスの製造法
CN113788769B (zh) 一种含氟二胺单体及其制备方法
JPH08225645A (ja) 無色透明なポリイミド成形体およびその製法
CH439736A (fr) Procédé de préparation de polymères
JPH036225A (ja) 12―fフッ素含有連結基を有するポリイミドポリマー
JPH07324163A (ja) ポリアミド酸溶液及びその製造方法