BE536722A - - Google Patents

Info

Publication number
BE536722A
BE536722A BE536722DA BE536722A BE 536722 A BE536722 A BE 536722A BE 536722D A BE536722D A BE 536722DA BE 536722 A BE536722 A BE 536722A
Authority
BE
Belgium
Prior art keywords
elements
walls
tanks
reinforced concrete
buttresses
Prior art date
Application number
Other languages
French (fr)
Publication of BE536722A publication Critical patent/BE536722A/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H7/00Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
    • E04H7/22Containers for fluent solids, e.g. silos, bunkers; Supports therefor
    • E04H7/24Constructions, with or without perforated walls, depending on the use of specified materials
    • E04H7/26Constructions, with or without perforated walls, depending on the use of specified materials mainly of concrete, e.g. reinforced concrete or other stone-like materials
    • E04H7/28Constructions, with or without perforated walls, depending on the use of specified materials mainly of concrete, e.g. reinforced concrete or other stone-like materials composed of special building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/14Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element
    • E04B2/24Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element the walls being characterised by fillings in some of the cavities forming load-bearing pillars or beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Description

       

   <Desc/Clms Page number 1> 
 



   Si l'on excepte les constructions métalliques qui s'imposent dans certains cas, pour des raisons spéciales, on a recours généralement, soit au béton armé coulé en coffrage, soit surtout pour les constructions enterrées, à la maçonnerie de briques en terre cuite ou en blocs de béton. 



   Ces procédés présentent tous deux des inconvénients connus. 



   Pour le béton armé, les coffrages onéreux généralement constitués de bois bruts assemblés par clouage ne présentent pas toujours la rigidité et l'indéformabilité requises, leurs déformations influencent la position des armatures, et la structure du béton. 



   La préparation du béton, au chantier peut nuire à l'homogénéité du mélange des agrégats, principalement au dosage de l'eau souvent exposé aux risques des   intempéries,à   la propreté et à la constance des autres cons- tituants, aux troubles causés à la mise en oeuvre par les variations du temps, de la température, par la nécessité des reprises journalières. - 
Les décoffrages souvent prématurés, le retrait, etc..., Ces risques entrai- nent la nécessité d'emploi de coefficients de sécurité qui grèvent le coût des constructions. 



   Pour la maçonnerie, dont le coût est souvent plus avantageux, les conditions essentielles de stabilité et de résistance ne sont assurées   qu'im-   parfaitement et empiriquement, aussi est-elle de plus en plus écartée pour des constructions dont les conditions de sollicitations s'écartent un peu des bâtisses courantes et doivent être prises en sérieuses considérations. 



   Par suite de la porosité inégale des différents éléments, la mas- se peut absorber, par places une proportion trop grande de l'eau de gâchage des mortiers et enduits, et réduire localement, malgré les soins apportés   à la   construction, l'étanchéité de l'ensemble. 



   Pour remédier à tous ces inconvénients, on préconise ici l'emploi d'éléments ou claveaux, en béton armé, préfabriqués en usine, dont l'assem- blage sur chantier est aisé et rapide et peut être exécuté par un personnel de spécialisation courante. 



   Ces éléments sont conditionnés de façon à rendre la manutention aisée, tout en réduisant notablement la main d'oeuvre de manipulation des appareils en briques. Ils comprennent une partie centrale formant une por- tion de la paroi à construire, encadrée latéralement de nervures verticales dont la partie extérieure est creuse (fig. I et 12). Dans les cas de for- tes sollicitations, ces nervures peuvent encadrer complètement la paroi sur tout son contour,, Dans un but de simplification, cette variante n'est pas représentée aux dessins. 



   La juxtaposition des nervures de deux éléments laisse entre-eux un vide dans lequel on coule au fur et à mesure de l'élévation de la paroi en construction, un contrefort en béton armé vertical, formant un ensemble monolithe. Les contreforts ainsi établis, à des distances facilement cal- culables, ont leur base ancrée par des armatures en L, dans le béton du ra- dier de la construction. Ils peuvent l'être encore si on le juge opportun dans la dalle ou la voûte de couverture, quand celles-ci existent, soit dans un système de poutres d'entretoisement. 



   Le dispositif d'armatures longitudinales assurant la liaison des éléments aux contreforts est indiqué aux figures 7 et 8. 



   Suivant la direction des pressions à combattre, les nervures pour- ront être soit extérieures aux parois, soit intérieures, soit môme en partie intérieures et en partie extérieures de telle façon que les contreforts puissent être établis pour résister dans les meilleurs conditions aux solli- 

 <Desc/Clms Page number 2> 

 citations à envisager. 



   Les éléments peuvent être construits à simple paroi (fig. I, et 5), ou à double parois (fig. 2 et 6), quand une isolation thermique est exi- gée. Les parois peuvent avoir une forme plane, ou courbe (fig. 5 et 6), ou de profil quelconque. 



   Pour les réservoirs de forme rectangulaire, les intersections des plans perpendiculaires s'effectuent en éléments de forme spéciale (fig. 3 et 4). Le vide vertical réservé aux colonnes d'angle en béton armé peut avoir une section carrée, rectangulaire, ou circulaire, ou autre quelconque appropriée. Les prolongements creux servant de logement aux colonnes ont une hauteur égale à la moitié de celle des claveaux, et sont alternative- ment attachés aux claveaux de l'une et de l'autre face perpendiculaires d'u- ne même assise. On obtient ainsï par la coulée des colonnes d'angle, des blocs monolithes fermement attachés aux deux faces à joindre. 



   Pour la jonction horizontale entre les différentes assises d'élé- ments, on peut employer des dispositions variées assurant de façon certai- ne, et l'étanchéité des joints et la rigidité de la construction. Parmi d'autres dispositions possibles on peut suivant l'importance des pressions agissant sur les parois, utiliser, soit un simple joint en gradin, soit un joint à rainures et languette, (fig. 10 et   11),   soit un vide ménageant en- tre les deux faces superposées un espace suffisant pour y loger, au cours de la construction, une armature horizontale servant également de liaison entre les éléments d'une même assise et constituant, avec les contreforts, verticaux, un réseau complet (fig. 9). 



   Les avantages revendiqués pour ce mode de construction en béton armé en éléments préfabriqués sont nombreux : 
La construction en usine des éléments élimine tous les risques de manque d'homogéinité des matières, de leur solidité, et de la prise. 



   Les mélanges utilisés et la disposition des armatures peuvent être étudiés et réalisés dans les conditions les meilleures et avec une stricte régularité. 



   La simplicité de la construction des parois donne une sécurité totale à la résistance aux sollicitations à envisager. 



   Le calcul des éléments, notamment l'épaisseur des parois, les sec- tions et la disposition des armatures, le calcul des contreforts et colon- nes d'angle peuvent être adaptés sans difficultés à chaque cas particulier. 



  Les règles classiques peuvent être employées pour ces calculs sans donner lieu à des difficultés d'interprétation. 



   Bien qu'ayant toutes les qualités des constructions en béton armé coulées sur place auxquelles il est même supérieur pour les questions de sécurité invoquées dans l'exposé ci-dessus, le système préconisé a l'énorme avantage de ne pas nécessiter l'établissement, puis le démontage de coffra- ges coûteux et souvent imparfaits.



   <Desc / Clms Page number 1>
 



   With the exception of metal constructions which are required in certain cases, for special reasons, we generally use either reinforced concrete poured into formwork, or especially for buried constructions, masonry of terracotta bricks or in concrete blocks.



   These methods both have known drawbacks.



   For reinforced concrete, expensive formworks generally made of rough timber assembled by nailing do not always have the required rigidity and indeformability, their deformations influence the position of the reinforcements and the structure of the concrete.



   The preparation of concrete on the site can adversely affect the homogeneity of the mixture of aggregates, mainly the dosage of water often exposed to the risks of bad weather, the cleanliness and consistency of the other constituents, the disturbances caused to the implemented by variations in time and temperature, by the need for daily recoveries. -
Often premature formwork stripping, shrinkage, etc. These risks entail the need to use safety coefficients which increase the cost of construction.



   For masonry, the cost of which is often more advantageous, the essential conditions of stability and resistance are only imperfectly and empirically ensured, so it is increasingly discarded for constructions whose stress conditions are depart a little from the current buildings and must be taken into serious consideration.



   As a result of the uneven porosity of the various elements, the mass can absorb, in places a too large proportion of the mixing water of the mortars and plasters, and locally reduce, despite the care taken in the construction, the waterproofing of all.



   To remedy all these drawbacks, we recommend here the use of elements or keystones, in reinforced concrete, prefabricated in the factory, the assembly of which on site is easy and rapid and can be carried out by personnel of current specialization.



   These elements are packaged in such a way as to make handling easy, while significantly reducing the labor involved in handling brick devices. They include a central part forming a portion of the wall to be constructed, laterally framed by vertical ribs, the outer part of which is hollow (fig. I and 12). In the case of strong stresses, these ribs can completely surround the wall over its entire contour. For the sake of simplification, this variant is not shown in the drawings.



   The juxtaposition of the ribs of two elements leaves between them a void into which one flows as the wall under construction rises, a vertical reinforced concrete buttress, forming a monolith. The buttresses thus established, at easily calculable distances, have their base anchored by L-shaped reinforcements, in the concrete of the structural base. They can still be if deemed appropriate in the slab or roof vault, when these exist, or in a system of bracing beams.



   The longitudinal reinforcement device connecting the elements to the buttresses is shown in Figures 7 and 8.



   Depending on the direction of the pressures to be combated, the ribs may be either external to the walls, or internal, or even partly internal and partly external so that the buttresses can be established to withstand the stresses under the best conditions.

 <Desc / Clms Page number 2>

 quotes to consider.



   The elements can be constructed as single-walled (fig. I, and 5), or double-walled (fig. 2 and 6), when thermal insulation is required. The walls may have a planar or curved shape (fig. 5 and 6), or any profile.



   For rectangular shaped tanks, the intersections of the perpendicular planes are made in specially shaped elements (fig. 3 and 4). The vertical void reserved for the reinforced concrete corner columns may have a square, rectangular, or circular section, or any other suitable. The hollow extensions serving as housing for the columns have a height equal to half that of the keystones, and are alternately attached to the keystones of one and the other perpendicular face of a same seat. One thus obtains by the casting of the corner columns, monolithic blocks firmly attached to the two faces to be joined.



   For the horizontal junction between the different bases of elements, various arrangements can be used which ensure, with certainty, both the tightness of the joints and the rigidity of the construction. Among other possible arrangements, depending on the size of the pressures acting on the walls, it is possible to use either a simple stepped seal, or a tongue-and-groove seal, (fig. 10 and 11), or a vacuum leaving it in- be the two superimposed faces sufficient space to accommodate, during construction, a horizontal reinforcement also serving as a link between the elements of the same base and constituting, with the vertical buttresses, a complete network (fig. 9) .



   The advantages claimed for this method of construction in reinforced concrete in prefabricated elements are numerous:
The factory construction of the elements eliminates all risks of lack of homogeneity of materials, their solidity, and the setting.



   The mixtures used and the arrangement of the reinforcements can be studied and produced under the best conditions and with strict regularity.



   The simplicity of the construction of the walls gives total security to the resistance to the stresses to be considered.



   The calculation of the elements, in particular the thickness of the walls, the cross-sections and the arrangement of the reinforcements, the calculation of the buttresses and corner columns can be adapted without difficulty to each particular case.



  The classical rules can be used for these calculations without giving rise to difficulties of interpretation.



   Although having all the qualities of reinforced concrete constructions cast in place to which it is even superior for the safety issues mentioned in the above description, the recommended system has the enormous advantage of not requiring establishment, then the dismantling of expensive and often imperfect boxes.


    

Claims (1)

RESUME. ABSTRACT. La présente demande a pour objet l'invention d'éléments en béton armé préfabriqués en usine, destinés à l'établissement, sans coffrage, de parois pouvant résister à des pressions soit extérieures, soit intérieures, telles qu'elles se présentent dans les bassins, cuves, réservoirs, silos, murs de soutenement, voûtes, hourdis, galeries, hangars, etc.... The present application relates to the invention of reinforced concrete elements prefabricated in the factory, intended for the establishment, without formwork, of walls capable of withstanding either external or internal pressures, such as they occur in the basins. , tanks, tanks, silos, retaining walls, vaults, slabs, galleries, hangars, etc .... La disposition de ces éléments permet de les relier entre eux, au cours de leur assemblage, par un réseau de contreforts et d'armatures <Desc/Clms Page number 3> perpendiculaires à ceux-ci, convenablement espacés dans chaque sens et cou- lés dans des logements appropriés, dans un enrobage de béton de façon à créer un ensemble entièrement monolithe, dont les différents éléments peu- vent être facilement calculés et appropriés aux pressions que les parois auront à supporter. The arrangement of these elements makes it possible to connect them together, during their assembly, by a network of buttresses and reinforcements <Desc / Clms Page number 3> perpendicular to these, suitably spaced in each direction and cast in suitable housings, in a concrete cover so as to create an entirely monolithic whole, the different elements of which can be easily calculated and adapted to the pressures that the walls will have to endure.
BE536722D BE536722A (en)

Publications (1)

Publication Number Publication Date
BE536722A true BE536722A (en)

Family

ID=167317

Family Applications (1)

Application Number Title Priority Date Filing Date
BE536722D BE536722A (en)

Country Status (1)

Country Link
BE (1) BE536722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1129674B (en) * 1959-11-24 1962-05-17 Ilia Doganoff Dr Ing Reinforced concrete cooling tower, the shell of which consists essentially of prefabricated parts
FR2416992A1 (en) * 1978-02-14 1979-09-07 Simon Alexandre Construction process for silo - with rectangular concrete panels dry jointed horizontally and fixed by in-situ corner columns to form square cells
DE3305932A1 (en) * 1983-02-21 1984-08-23 Gerhard 2803 Weyhe Schmied Container, in particular of reinforced concrete construction, with a container shell comprising closed, prefabricated, slab-shaped segments, in particular for fluid media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1129674B (en) * 1959-11-24 1962-05-17 Ilia Doganoff Dr Ing Reinforced concrete cooling tower, the shell of which consists essentially of prefabricated parts
FR2416992A1 (en) * 1978-02-14 1979-09-07 Simon Alexandre Construction process for silo - with rectangular concrete panels dry jointed horizontally and fixed by in-situ corner columns to form square cells
DE3305932A1 (en) * 1983-02-21 1984-08-23 Gerhard 2803 Weyhe Schmied Container, in particular of reinforced concrete construction, with a container shell comprising closed, prefabricated, slab-shaped segments, in particular for fluid media

Similar Documents

Publication Publication Date Title
US2920475A (en) Building panel
US5860262A (en) Permanent panelized mold apparatus and method for casting monolithic concrete structures in situ
EP0014294A1 (en) Insulating precast building element
EP2096221B1 (en) Construction block with built-in insulation
EP0048728A1 (en) Construction system based on thin concrete boards and cassette element for the implementation of the system.
BE536722A (en)
EP2423402B1 (en) Highly insulated prefabricated element
CA2405638A1 (en) Engineered wall system
FR2638182A1 (en) MODULAR PREFABRICATED CONSTRUCTION FOR HOUSEHOLD USE
WO1990015202A1 (en) Construction consisting of prefabricated panels and method for producing said panels
WO1999002793A1 (en) Method for constructing individual houses using modular panels made of composite synthetic materials
FR2554487A1 (en) One-storey insulating modular formwork element for walls and floors, used in erecting a building
CH289601A (en) Wall in molded elements.
JPH0427018A (en) Construction of concrete assembly-type basement
BE843192A (en) STRUCTURE CONSISTING OF MODULAR ELEMENTS FOR INDUSTRIALIZED CONSTRUCTION
FR2520414A1 (en) Prefabricated triangulated roofing section - is in one piece of lightweight reinforced concrete of full or half roof width in length
BE456410A (en)
FR2519668A1 (en) Single level building construction - has external panels made up of cellular concrete blocks on frame
FR2812011A1 (en) Insulating and self-draining wall block has open cavity for draining and mains pipes or cables
BE421071A (en)
JPH0427023A (en) Structure of concrete assembly-type basement
WO2005005742A1 (en) Building construction method
FR2462525A1 (en) Wall block of square U-shape in plan - uses quarter length leg width and is placed in staggered rows with legs interlocking to form voided wall
JPH0427022A (en) Structure of concrete assembly-type basement
FR2508081A1 (en) Transportable sectional building - has sections fitted out in factory prior to transportation and assembly into completed building