BE503205A - - Google Patents

Info

Publication number
BE503205A
BE503205A BE503205DA BE503205A BE 503205 A BE503205 A BE 503205A BE 503205D A BE503205D A BE 503205DA BE 503205 A BE503205 A BE 503205A
Authority
BE
Belgium
Prior art keywords
concrete
tensioned
reinforcements
composite
stresses
Prior art date
Application number
Other languages
English (en)
Publication of BE503205A publication Critical patent/BE503205A/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Rod-Shaped Construction Members (AREA)

Description


   <Desc/Clms Page number 1> 
 



  PERFECTIONNEMENTS APPORTES AUX ELEMENTS DE.CONSTRUCTION. 



   L'invention est relative à des éléments de construction composés formés par une combinaison de béton précontraint et de béton additionnel qui sont liés entre eux de manière telle que les deux constituants forment un é- lément préfabriqué et puissent entièrement coopérer entre eux. 



   Le rôle des parties en béton précontraint, qui occupent des em- placements tels qu'elles recouvrent toutes les surfaces externes soumises à la traction ou tout au moins la plus grande partie de celles-ci et qui peu- vent rester sans être fendillées sous certaines charges, est de maintenir sous contrainte le béton additionnel qui peut être en un mélange plus pauvre, la précontrainte dans les fibres jointives de la partie précontrainte étant notablement plus grande que dans le béton additionnel ce qui empêche la for- mation de fentes ou crevasses visibles sous certaines charges de sorte que ce béton peut être sollicité à un degré beaucoup plus élevé que celui auquel des fissures ou crevasses deviendraient visibles si ce béton était utilisé dans des conditions ordinaires, c'est-à-dire sans contrainte. 



   Par des essais de laboratoire pour lesquels on se sert d'un mi- croscope à pouvoir grossissant élevé, on a toutefois trouvé des petites cre- vasses ou fissures ayant une largeur de 0,0013 mm dans le béton additionnel. 



  Ces crevasses invisibles à l'oeil nu peuvent être considérées comme étant sans danger car elles n'influencent pas les lignes de déformation sous charge et elles peuvent donc être négligées. 



   Il est à noter que, par suite du retrait et du fluage, certaines sollicitations sont transmises par la partie précontrainte au béton addition- nel de sorte que ce dernier est également précontraint jusqu'à un certain de- gré. 



   Par la combinaison susdite, on obtient deux avantages primor- diaux, en premier lieu un effort de précontrainte notablement plus petit est 

 <Desc/Clms Page number 2> 

 nécessaire pour obtenir la précompression indispensable du constituant pré- contraint qui représente seulement une partie de la section transversale to- tale de l'élément complet et, en dernier lieu, le prix de revient de l'élé- ment de construction est fortement réduit, puisque le coût de la masse uni- taire du béton ajouté est seulement une fraction de celui du béton précon- traint et   précoulé.   



   Il est déjà connu de combiner du béton précontraint et coulé au préalable avec du béton additionnel mais, dans tous les cas connus, le béton ajouté est coulé sur place, après que le constituant précoulé et pré- contraint est mis en place, de sorte que ce dernier forme, en plus grande partie, le coffrage pour le béton coulé sur place en étant capable de por- ter, avec ou sans support intermédiaire, le poids mort du béton ajouté. Dans certains cas connus, le béton précontraint et précoulé représente seulement l'armature de l'élément final et la section combinée ne procure donc pas les avantages d'un élément en béton précontraint obtenus dans le cas précédent. 



   Les éléments composés, réalisés selon l'invention, diffèrent de ces dispositions connues par le fait que du béton additionnel n'est pas ajouté sur place quand la pièce précontrainte et précoulée est déjà mise en place, mais bien préalablement au montage de l'élément complet. Le béton additionnel peut donc être ajouté à l'usine ou sur place avant la mise en place de l'élément. Il est également possible de fabriquer les deux parties sur place et de construire des ensembles continus ou des ossatures in situ en se servant de pièces précontraintes et précoulées. 



   Un élément composé complet, constitué selon l'invention, forme donc un ensemble fabriqué en deux opérations. La partie précontrainte peut contenir des armatures pré-tendues ou post-tendues. Dans ce dernier cas les fils ou câbles peuvent être logés partiellement dans une partie qui, ensuite, est remplie avec du béton additionnel. En plus des fils ou câbles tendus on peut incorporer des fils ou des barres en acier non tendues dans la partie précontrainte ou dans le béton additionnel. Il est également possible d'uti- liser, de.pair avec une post-tension, un ensemble de blocs qui sont précompri- més pour former le constituant précontraint et qui, par suite de la liaison obtenue par les méthodes décrites ci-après, empêche au béton ajouté de pré- senter des crevasses visibles nonobstant l'intervention de sollicitations élevées par traction. 



   Il est souvent préférable d'effectuer la précontrainte en deux phases. Dans ce cas une partie seulement des fils et câbles est tendue pen- dant la première phase quand la première partie de l'élément est soumise à la précontrainte. La deuxième phase de la tension a lieu quand le béton ajou- té a fait prise et quand le poids mort de l'élément composé réagit. Par une telle précontrainte agissant contre l'effet du poids mort d'un élément on obtient des avantages spéciaux puisque les tensions réelles dans le béton sont fortement réduites celles qui sont dues au poids mort diminuant immédia- tement les contraintes nominales produites par la précontrainte appliquée à elle seule. Ces contraintes sont dénommées nominales pour la raison qu'en réalité elles ne se produisent pas puisque le poids mort réagit immédiatement. 



  Cette réduction est très importante car des contraintes nominales non rédui- tes seraient trop élevées si elles pouvaient intervenir. 



   Un effet similaire est obtenu si, à la place d'une partie de l'a- cier incorporé dans la première partie de l'élément composé, on soumet des fils ou câbles à une post-tension dans la deuxième partie ou dans le béton ajouté, comme expliqué plus haut. 



   Une autre possibilité de la combinaison de ces deux dispositions consiste à tendre une partie des armatures incorporées dans la première par- tie de l'élément composé pendant la première phase alors que la partie res- tante ainsi que les armatures du béton ajouté sont tendues pendant une deu- xième phase. Dans ce cas, c'est-à-dire quand une partie des armatures tendues agit contre l'effet du béton ajouté, ce dernier doit également avoir une résistance élevée alors que dans les cas où des armatures tendues ne sont pas ancrées dans le béton ajouté, il n'est pas nécessaire que ce dernier ait 

 <Desc/Clms Page number 3> 

 la même résistance élevée que celle de la première partie précontrainte. 



   L'élément de construction, établi conformément à l'invention, peut être caractérisé principalement par le fait qu'il comporte une section transversale pour laquelle seule la région qui se trouve du côté des fibres externes tendues est précontrainte ou pour laquelle cette région subit une précontrainte supérieure à celle du béton ajoutée De cette manière on ob- tient une réduction importante de l'effort nécessaire pour la précontrainte puisque cette région seulement et non pas toute la section transversale est soumise à la précontrainte.

   On profite alors du fait que les fissures visibles ne se produisent pas si du béton ayant une résistance élevée est lié à du béton ayant une résistance moins élevée, et que la courbe de défor- mation sous charge correspondant à celle d'un matériau homogène, c'est-à- dire non fissuré, est à peine influencée par des petites fissures invisibles. 



   La partie précontrainte peut avoir toute forme voulue, par exem- ple celle d'un rectangle, d'un U, d'un T renversé, du moment qu'elle forme la partie principale soumise à une tension et qu'elle est tellement liée à la partie formée par le béton ajouté que ces deux parties coopèrent complè-   tement.   Une section transversale, qui convient tout particulièrement à la partie précontrainte, est celle en forme de U dans laquelle le béton ajouté est coulé sans nécessiterl'intervention de moules ou de coffrages. Si la zone de tension dans une poutre se trouve à la partie supérieure, par exem- ple à proximité d'un support central d'une poutre continue, on peut se ser- vir d'un rectangle ou d'un T droit, le béton ajouté pouvant être établi sous la zone de traction. 



   L'élément de construction composé et préfabriqué peut être uti- lisé comme une poutre ou poutrelle individuelle ou il peut faire partie d'un ensemble de couverture. 



   Dans ce dernier cas les éléments préfabriqués peuvent comporter des cavités ou des ouvertures transversales pour recevoir des armatures trans- versales qui peuvent relier plusieurs poutres et qui peuvent être tendues, les intervalles subsistant dans les cavités étant, de préférence, remplis avec du mortier. Des joints emboîtés ou droits peuvent être prévus entre les éléments adjacents avec ou sans plaques répartitrices intermédiaires en une matière appropriée quelconque. Il est également possible de prévoir des rai- nures ou gorges entre les éléments adjacents ces rainures étant ensuite rem- plies avec du mortier. 



   Les dessins ci-annexés montrent, à titre d'exemple, quelques mo- des de réalisation de l'invention. 



   Les figs. 1, 4 à 9, 11 à 13,15 à 18 et 20, montrent, en coupe transversale, plusieurs éléments de construction composés établis selon l'in- vention. 



   Les figs. 10 et 14 montrent des sections longitudinales de ces éléments. 



   Les figs.   2,19,21   et 22 sont des diagrammes des efforts. 



   La fige 3 montre un diagramme des déformations sous charge. 



   Dans tous les cas on désigne sur les figs. par A la partie de l'élément composé qui est fabriqué pendant la première phase et par B celle fabriquée pendant la deuxième phase. 



   Sur la fig. 1 la partie A a une section en forme de T renversé avec une membrure inférieure sollicitée par traction, une âme et une petite membrure, supérieure sollicitée par compression. La section totale de l'élé- ment est rectangulaire. Des fils prétendus 1 sont incorporés dans la membru- re inférieure et des fils pré-tendus 2 dans la membrure supérieure de la partie précontrainte A. Des armatures supplémentaires 3 et 4 peuvent être logées dans la partie B. Par suite du retrait et du fluage de la partie A certaines contraintes, relativement faibles, sont transmises à la partie B- par adhérence de sorte qu'en réalité la partie B subit également une précon- trainte. 

 <Desc/Clms Page number 4> 

 



   Les diagrammes des efforts de la fig. 2 pour une section homo- gène montre les sollicitations suivantes (a) (a) les contraintes dues à une précontrainte effective passant par le centre de la partie A (b) les contraintes dues à une précontrainte effective dans la membrure in- férieure de la partie A (c) les contraintes dues à la flexion seule (sans tenir compte de la précon- trainte) dans la section continue A-B sous une charge utile W1 en admet- tant que le centre de gravité de cette section se trouve à des distances el et e2 respectivement des fibres inférieures fa et supérieures fd.

   Si le rapport des modules des bétons A et B est égal à l'unité on a el = e2 dans le cas où la section de l'élément est rectangulaire (d) les contraintes résultantes sous la charge W1 dans une section passant par le centre c'est-à-dire (a) + (c); (e) les extrémités résultantes dans une section écartée de l'âme c'est-à- dire (b) + (c); 
On voit qu'une contrainte considérable par tension agit dans la fibre fb du béton B sous la charge utile W1 et cette contrainte peut même dépasser le module de rupture du béton. Par contre la même fibre du béton A est encore sollicitée par compression ou ne subit qu'une légère contrainte par tension. Sur les diagrammes les sollicitations par compression sont dé- signées par + et celles par traction par -.

   Il en résulte que des sollici- tations par compression et, par conséquent, des contraintes nettement diffé- rentes existent dans la fibre fb de la partie A qui est primitivement pré- contrainte, d'une part,et de la partie B qui n'est pas soumise primitive- ment à la précontrainte, d'autre part. A cause de l'allongement important de la fibre fb de la partie B et qui dépasse de très peu l'allongement de rupture, des fissures invisibles peuvent se produire pour cette fibre dans le béton B qui est retenu par son adhérence au béton A lequel peut être en- core sollicité par compression comme montré sur la fig. 2 (e).

   Si la charge utile augmente et atteint la valeur W2, comme sur la fig. 2 (f) les solli- citations par traction se manifestent dans la membrure inférieure de la partie A et ces tensions peuvent atteindre ou même dépasser le module de rupture de la fibre inférieure fa de la fig. 2 (f). Des fissures visibles peuvent alors se produire à partir de cette fibre fa. Pour ces mises sous charge un changement notable se produit dans la pente du diagramme des dé- formations en charge de la   f ig.   3 pour lequel les charges (CH) sont indi- quées en ordonnées et les déformations (DEF) en abscisses. La charge W1 correspond au diagramme des contraintes de la fig. 2c et la charge W2 à celui de la fig. 2f.

   Il est à noter que des fissures minuscules et non vi- sibles, qui peuvent se produire dans la fibre fb sous la charge W1, sont sans influence sur la courbe de déformation en charge et sont donc sans danger. 



   Les figs. 4 à 7 montrent d'autres sections transversales obtenues par une combinaison des parties A et B, les parties B ayant une forme rectan- gulaire, creuse et en I alors que la partie précontrainte A a une forme géné- rale en U et en T. 



   Les figs. 8 à 10 montrent, en deux coupes transversales et une coupe longitudinale, l'application de l'invention à une poutre continue dans laquelle les parties A1 de la fig. 8 se trouvent dans les zones de traction au bas de la poutre alors que la partie A2 se trouve au-dessus d'un support de la poutre à la partie supérieure de celle-ci. 



   Une adhérence suffisante doit, bien entendu, être assurée entre les faces de contact des parties A et B. Ceci peut être obtenu en rendant les faces intéressées rugueuses, en leur faisant comporter des nervures ou stries ou en faisant dépasser sur ces faces des liens ou parties métalliques. 



  Les nervures ou stries sont, de préférence, transversales par rapport aux éléments de manière à augmenter leur résistance au cisaillement. Si les fils . dans les parties Al et A2 sont pré-tendus, ils peuvent être prolongés au-delà 

 <Desc/Clms Page number 5> 

 des extrémités de ces parties pour obtenir une bonne liaison. Il est égale- ment possible de se servir d'une construction composée comportant les parties A1, A2 et B pour former des cadres. Dans ce dernier cas les parties A2 au lieu d'être rectilignes forment des angles droits aux coins du cadre et l'en- semble peut être constitué par des pièces préfabriquées A1 et A2 alors que la partie B en béton   est=coulée   sur place. 



   Les figs. 11 et 12 montrent, respectivement en coupe transver- sale et en coupe longitudinale, une poutre constituée par un assemblage de blocs Ao à section en forme de Uo Un bloc terminal spécial Ao' comporte une partie pleine 6 dans laquelle les fils ou câbles en acier 5, logés dans les cavités des blocs Ao, sont ancrés en 7. Au lieu d'adopter une section rectan- gulaire comme sur la fig. 11 on peut donner à   Isolément   complet une section en I ou en T comme montré respectivement sur les figs. 13 et 14. Dans ces cas il est possible de noyer les armatures tendues 5 dans le béton ajouté B pour obtenir ainsi une très bonne adhérence.

   Ceci présente un grand avan- tage car généralement on fait passer les armatures post-tendues dans des trous de sorte que l'adhérence est limitée quand on remplit les trous avec du mortier après avoir tendu ces armatures. 



   Les figs. 15 et 16 montrent, en coupe transversale, des poutres composées, placées côte à côte, pour former le tablier d'un pont ou un plan- cher. Des armatures 8 peuvent dans ce cas être logées dans des passages ou rainures en étant soumises à une pré-tension pour obtenir une répartition transversale des charges. Sur la fig. 15 l'élément composé a une section transversale en I alors que sur la fige 16 cette section est rectangulaire avec des rebords inférieurs 9 de chaque côté. Dans ces cas les armatures, qui, lorsqu'elles sont post-tendues, sont similaires à celles de la fig. 12, sont ancrées dans des nervures terminales spéciales 6 et sont, de préférence, tendues en deux opérations.

   Sur la fige 16 les armatures 5a sont pré-tendues avant que le béton B soit ajouté et quand la précompression agit dans la zone de traction de la section combinée (membrure inférieure de la partie A). 



  Après que le béton B a été ajouté, les armatures 5b sont tendues contre l'ac- tion du poids mort de l'élément combiné. L'avantage ainsi obtenu est décrit plus en détail ci-après. Il est possible, selon la fig. 15, de prévoir des fils pré-tendus 1 pour la première phase et des câbles post-tendus 5 pour la deuxième phase, ces câbles étant ensuite retenus par bourrage. En outre, les éléments composés selon la fig. 16 comportent, de préférence, des arma- ture transversales 8 ce qui permet de procéder à la pré-tension transversale après montage et avant que le béton additionnel 11 soit introduit dans les cavités formées au-dessus des rebords 9 des éléments composés adjacents.

   Ce béton additionnel 11, qui assure la liaison avec les armatures tendues 5b mais qui n'est pas essentiel pour le pouvoir sustentateur de l'ensemble, peut être constitué en un ciment ayant une forte teneur en alumine afin que la construction puisse être mise sous charge peu après son montage. Ceci est particulièrement important dans le cas d'un viaduc sous rails pour lequel le tablier doit pouvoir être remplacé en peu de temps. Il est évidemment pos- sible de placer les armatures 5b dans la partie ajoutée B et de se contenter de couler le béton 11 après la mise en place des éléments composés préfabri- qués. On peut faire observer que la partie A des éléments utilisés pour la construction des viaducs sous rails ne doivent pas être constitués par des blocs tels que Ao et qu'il est possible de les construire en une seule pièce intégrale.

   Dans ce cas les armatures tendues peuvent être incorporées en to- talité ou en partie dans la partie A c'est-à-dire qu'on peut prévoir des fils pré-tendus 1 comme sur la fige 1 alors qu'une autre partie peut, si on le dé- sire, être post-tendue contre   l'effet   du poids mort de l'élément composé com- plet, des armatures 5 étant incorporées dans la partie B comme montré sur la fig. 11. Dans tous ces cas, les armatures tendues sont ancrées dans la pre- mière partie A. 



   La fige 17 montre un élément composé en forme de I dans lequel une partie des armatures tendues est ancrée dans la partie B et une partie seulement de ces armatures dans la partie A. La fig. 18 montre la section transversale de la partie A de forme-rectangulaire avec des nervures ou stries 

 <Desc/Clms Page number 6> 

 
12 sur sa face supérieure pour obtenir une bonne liaison. On a recours à trois câbles 5a1, 5a2 et 5a3 dont deux seulement 5a1 et 5a2 peuvent être ten- dus pendant une première phase en donnant un diagramme rectangulaire, montré sur la fig. 19, qui correspond à une précompression uniforme.

   Trois autres câbles   5bl.,   5b2 et 5b3 sont établis dans la partie B le câble médian 5b3 ayant une section transversale plus grande tout en ayant ses extrémités re- courbées, comme montré sur la fig. 17, en vue d'obtenir une répartition u- niforme de la contrainte à proximité des supports de l'élément composé. Quand les trois câbles 5b ainsi que le troisième câble 5a3 sont tendus contre l'ef- fet du poids mort de l'élément composé, comme montré sur la fig. 20, on ob- tient une répartition des sollicitations comme montré par le diagramme de la fig. 21 (a) qui montre l'effet des contraintes nominales dues à la pré- contrainte considérée à elle seule.

   On voit sur ce diagramme de la fig. 21 (a) que les contraintes nominales par compression sont trop élevées à la fi- bre inférieure de A de même que, parfois, les contraintes par traction à la fibre supérieure de B peuvent être trop élevées. Toutefois, comme le moment fléchissant dû au poids mort réagit contre ces contraintes nominales, les contraintes dues au poids mort seul sont montrées sur le diagramme de la fig. 21 (b)--, on obtient les contraintes indiquées sur la fig. 21 (c), qui sont les résultantes de celles indiquées sur les figs. 21 (a) et 21 (b). 



   On voit que ces résultantes sont fortement diminuées et paraissent être dans les limites des contraintes permises malgré que la section de l'élément soit relativement étroite. La répartition des contraintes s'applique, évidemment, à la section médiane d'une poutre reposant sur des appuis simples. Vers les extrémités, où le moment fléchissant dû au poids mort diminue, .comme visible également sur la fige 21 (b), les sollicitations sont réduites et les con- traintes résultantes deviennent trop élevées. Pour éviter.cet inconvénient les câbles sont recourbés vers le haut, à leurs extrémités, comme indiqué en 5b3 sur la fig. 17 pour obtenir, à proximité de ces extrémités, une répar- tition des contraintes pour laquelle les effets de compression, à la partie , supérieure et à la partie inférieure, ne sont pas trop différents.

   Ceci est bien connu et ne fait pas l'objet de la présente invention. En ce qui con- cerne la fig. 17 on peut ajouter qu'en plus des câbles tendus 5a et 5b on doit faire intervenir, dans la plupart des cas, des câbles non tendus 13, puisqu'en ayant recours à une section composée de ce genre il se produit une diminution de l'effort de précontrainte nécessaire, cette diminution é- tant particulièrement substantielle quand la précontrainte est faite en deux phases. Pour disposer d'un renforcement suffisant pour obtenir le facteur de sécurité nécessaire contre une rupture, des armatures supplémentaires sont indispensables mais celles-ci ne doivent pas être tendues. 



   Pour la section montrée sur la fig. 17 deux câbles non tendus 
13 sont incorporés respectivement dans les parties A et B. 



   Les figs. 18 et 20 servent à illustrer respectivement les pha- . ses 1 et 2. Les câbles 5 sont logés dans des passages 14 et du mortier d'en- robage 15 peut, de préférence, être introduit dans ces passages après que les câbles ont été tendus et retenus par ancrage. Sur la fig. 17 ces passages et cet enrobage ne sont pas montrés. De même sur la fig. 20 on ne montre pas les passages et les enrobages pour les câbles 5a1 et 5a2 qui ont été tendus et enrobés pendant la première phase. 



   La fig. 22 montre la répartition des contraintes après la mise en charge. On voit sur la fig. 22 la précontrainte effective contre l'effet du poids mort comme sur la fige 21 (c). La fig. 22 (b) est le diagramme quand une charge additionnelle se présente (charge utile) sans tenir compte de la précontrainte et la fig. 22 (c) montre le diagramme des contraintes résultantes sous une charge utile c'est-à-dire (a) + (b). 



   On voit que des contraintes élevées par traction se produisent dans la fibre du bas de la partie B, ces contraintes pouvant être supérieu- res à la résistance à la flexion du béton (module de rupture). Aussi long- temps que des fissures ne se forment pas dans la partie A aucune crevasse vi- sible ne se produit dans la partie B. Il est également possible que des ten- sions se manifestent dans le béton de la partie A et dans ce cas on 

 <Desc/Clms Page number 7> 

 peut éviter la formation de fissures si ces tensions dans la partie A sont limitées et ne dépassent, en aucun cas, le module de rupture. 



   Comme il va de soi, et comme il résulte d'ailleurs déjà de ce qui précède, l'invention ne se limite aucunement à celui de ses modes d'ap- plication non plus qu'à ceux des modes de réalisation de ses diverses par- ties, ayant plus spécialement été indiqués; elle en embrasse, au contraire, toutes les variantes. 



   REVENDICATIONS. 



   1. Un élément de construction composé comprenant, en combinai- son, du béton précontraint et du béton additionnel liés entre eux, avec le béton précontraint recouvrant au moins la majeure partie des surfaces ex- ternes soumises à la traction de l'élément et maintenant sous contrainte le béton additionnel, la précontrainte de la première partie dans les fibres jointives étant considérablement plus grande que dans le béton additionnel.

Claims (1)

  1. 2. Un élément de construction composé suivant la revendication précédente dans lequel, sous une charge utile, seules des contraintes par compression se produisent dans les fibres externes de la zone de traction, alors que des contraintes par traction apparaissent dans le béton addition- nel, lesquelles peuvent être supérieures au module de rupture du béton sans aucun développement de fissures visibles dans le béton.
    3. Un élément de construction composé suivant la revendication 1, dans lequel, sous une charge utile, des contraintes par traction se pro- duisent dans les fibres externes de la zone de traction, sans développement de fissures dans ces fibres et dans lequel la contrainte exercée par la première partie sur le béton additionnel est de telle valeur que des fissu- res visibles ne se produisent pas dans ce béton quand l'élément est soumis à une charge utile.
    4. Un élément de construction composé comprenant, en combinai- son, du béton précontraint et du béton additionnel liés entre eux recouvrant au moins la majeure partie des surfaces externes soumises à la traction de l'élément et maintenant le béton additionnel sous une telle contrainte que des fissures visibles ne se produisent pas dans ce béton quand l'élément est soumis à une charge utile.
    5. Un élément de construction composé suivant l'une ou l'autre des revendications précédentes dans lequel le béton additionnel est ajouté à la ou aux parties précontraintes et préfabriquées soit à l'usine même soit sur place avant montage, et non lorsque les parties préfabriquées sont déjà mises en place.
    6. Un élément de construction composé suivant l'une ou l'autre des revendications précédentes dans lequel les deux parties constitutives de l'élément composé sont fabriquées sur place.
    7. Un élément de construction composé suivant l'une ou l'autre des revendications précédentes dans lequel la partie précontrainte et préfa- briquée contient des armatures pré-tendues ou post-tendues avec ou sans ar- matures ou renforcements non-tendus soit dans la partie précontrainte soit dans le béton additionnel.
    8. Un élément de construction composé suivant l'une ou l'autre des revendications précédentes dans lequel certaines des armatures de ren- forcement tendues se prolongent jusque dans les parties de l'élément conte- nant le béton .additionnel.
    9. Un élément de construction composé suivant l'une ou l'autre des revendications précédentes dans lequel la précontrainte est effectuée en deux phases de manière qu'une partie seulement du renforcement soit ten- due pendant la première phase et avant que le béton additionnel ait durci ou soit mis en place, la deuxième phase de la tension ayant lieu quand le béton ajouté a durci et quand le poids mort de l'élément composé se fait sen- tir pour réduire ainsi les contraintes qui se produisent alors dans le béton. <Desc/Clms Page number 8>
    10. Une structure continue ou ossature formée comme élément de construction composé suivant l'une ou l'autre des revendications précédentes dans laquelle des éléments primitivement précontraints sont établis dans les zones de traction respectives de la structure.
    11. Un élément de construction composé suivant l'une ou l'autre des revendications précédentes dans lequel la partie primitivement précon- trainte et préfabriquée a une section transversale rectangulaire en U ou en T renversé formant la zone de traction principale de l'élément.
    12. Un élément de construction composé suivant l'une ou l'autre des revendications précédentes pour une construction de couverture pourvue de cavités ou ouvertures transversales pour des armatures qui peuvent être adjointes à plusieurs éléments juxtaposés, ces armatures pouvant ensuite ê- tre tendues et retenues par le remplissage ou bourrage de ces cavités ou ouvertures avec du mortier.
    13. Eléments de construction composés construits et adaptés pour opérer substantiellement comme décrit avec référence aux dessins annexés.
BE503205D BE503205A (fr)

Publications (1)

Publication Number Publication Date
BE503205A true BE503205A (fr)

Family

ID=144476

Family Applications (1)

Application Number Title Priority Date Filing Date
BE503205D BE503205A (fr)

Country Status (1)

Country Link
BE (1) BE503205A (fr)

Similar Documents

Publication Publication Date Title
BE483753A (fr)
FR2661434A1 (fr) Pont comprenant un tablier et au moins deux pylones, et son procede de construction.
EP2868829B1 (fr) Procédé de renforcement d&#39;un élément de construction en bois par assemblage d&#39;un module de renfort mis en post-tension
BE503205A (fr)
EP1065317B1 (fr) Câble de suspension pour pont suspendu
EP0331664B1 (fr) Tabliers de pont préfabriqués et leurs procédés de réalisation
FR3018298B1 (fr) Barrette de renfort pour element de structure
FR2599070A2 (fr) Liaison metallique rigide entre planchers-dalles levees et poteaux prefabriques en beton arme pour structures autostables
CH690965A5 (fr) Dispositif de renforcement des structures, notamment des dalles en béton armé.
FR2850409A1 (fr) Procede d&#39;assemblage d&#39;elements de beton prefabriques
BE483749A (fr) Perfectionnements apportés aux éléments de construction en béton armé et à leurs procédés de fabrication
BE483750A (fr)
LU86748A1 (fr) Procede de realisation de poutres composees de poutrelles en acier et de beton et poutres obtenues selon ce procede
BE531642A (fr)
FR3095821A1 (fr) Dalle de balcon et procédé de construction d’un bâtiment
EP2396482A2 (fr) Poutre en beton precontraint realisee par emboitement de deux longerons et procede d&#39;aboutage de deux poutres.
FR2600587A1 (fr) Polyester precontraint et procede de fabrication
EP2141300B1 (fr) Procédé de réalisation d&#39;une pièce en beton et cage de ferraillage pour pièce ainsi réalisee
BE445777A (fr)
CH569870A5 (en) Composite beam with rigid reinforcement - has axial tension on reinforcement removed after concrete sets to compress concrete
BE831670A (fr) Procede de construction d&#39;un pont avec tablier de structure mixte en acier et en beton
BE661699A (fr)
WO2022223845A1 (fr) Bloc de construction pour la fabrication d&#39;un batiment et procédé de fabrication d&#39;un batiment
BE452375A (fr)
FR3114823A1 (fr) Système de pont modulaire et son procédé de fabrication