WO2022223845A1 - Bloc de construction pour la fabrication d'un batiment et procédé de fabrication d'un batiment - Google Patents

Bloc de construction pour la fabrication d'un batiment et procédé de fabrication d'un batiment Download PDF

Info

Publication number
WO2022223845A1
WO2022223845A1 PCT/EP2022/060936 EP2022060936W WO2022223845A1 WO 2022223845 A1 WO2022223845 A1 WO 2022223845A1 EP 2022060936 W EP2022060936 W EP 2022060936W WO 2022223845 A1 WO2022223845 A1 WO 2022223845A1
Authority
WO
WIPO (PCT)
Prior art keywords
building block
grooves
walls
support
floor
Prior art date
Application number
PCT/EP2022/060936
Other languages
English (en)
Inventor
Laurent Noca
François Cochet
Original Assignee
Laurent Noca
Cochet Francois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laurent Noca, Cochet Francois filed Critical Laurent Noca
Priority to EP22725253.3A priority Critical patent/EP4326951A1/fr
Priority to CA3216409A priority patent/CA3216409A1/fr
Publication of WO2022223845A1 publication Critical patent/WO2022223845A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton
    • E04B1/34823Elements not integrated in a skeleton the supporting structure consisting of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/14Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements being composed of two or more materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton
    • E04B1/34853Elements not integrated in a skeleton the supporting structure being composed of two or more materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/161Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with vertical and horizontal slabs, both being partially cast in situ

Definitions

  • the invention relates to a building block for the manufacture of a building and a method of manufacturing a building.
  • the building blocks When designing the building blocks, it is important to take into account the dimensions of the building to be made and especially the number of floors to be supported and the seismic zoning. The greater the number of floors and/or the higher the seismic zoning value, the greater the mechanical strength of the building blocks must be, which naturally results in the production of a heavier building block. There is then an increased difficulty in transporting and mounting the building block. As a result, it is particularly difficult to make buildings with floors from already made building blocks.
  • Prefabricated panels can be made of wood or metal, but they do not have the properties of concrete.
  • building blocks made of wood or metal have limited fire resistance. It also emerges that these building blocks have perfectible thermal comfort and mechanical stability less than that of concrete. Concrete building blocks are heavy which complicates transportation.
  • Document WO 2009/112037 discloses a prefabricated self-supporting construction element intended to form buildings of several floors.
  • the side walls are formed by a reinforced concrete frame filled with lightweight concrete.
  • the outer face of the sidewalls is covered by an insulator which defines grooves.
  • Metal rods are attached to the insulation layer and are embedded in the lightweight concrete inside the frame to reinforce the lightweight concrete of the side walls.
  • Two construction elements are placed next to each other and a casting step is performed to form posts and support beams. Prior to the casting step, a U-shaped connecting element is attached to two adjacent construction elements. It appears that such a building block remains relatively heavy because of its reinforced concrete frames.
  • An object of the invention consists in overcoming these drawbacks, and more particularly in providing a building block which has a reduced mass, in comparison with an equivalent reinforced concrete structure or that of the prior art, while presenting mechanical and an assembly compatible with the construction of a multi-storey building.
  • the floor comprises a support made from a first mixture comprising an inorganic binder and particles of a plant material, the particles being embedded in the mineral binder, the support defining a plurality of first grooves and second grooves, the first grooves having a first longitudinal direction secant to a second longitudinal direction of the second grooves, the volume proportion of particles of a plant material in the first mixture being greater than 50%;
  • the floor comprises a metal frame comprising a plurality of first metal rods disposed in the first grooves and second metal rods disposed in the second grooves, the metal frame having connectors disposed projecting from the support at both ends of the first grooves for lifting the building block; in which the floor comprises a second mixture filling the first grooves and the second grooves and completely covering the metal reinforcement and the support forming reinforced beams, the second mixture having a volume proportion
  • the first metal rods define at least one ring and/or one hook projecting from the support forming the connectors.
  • the first metal rods have a rising connection portion protruding from the support, the rising connection portion being angled to fit into the vertical groove of the outer wall of one of the walls.
  • the first metal rods have a downward connection portion arranged projecting from the support, the downward connection portion is bent to project from the floor in the extension of the longitudinal direction of the vertical groove of one of the walls.
  • the walls are fixed to the floor by means of a plurality of screws.
  • a wall of the plurality of walls is formed by two one-piece parts made of third mix and separated from each other by a housing, the housing being filled with hardened concrete and at least one metal rod at least partially embedded in the concrete cured, the concrete having a content by volume of particles of a plant material lower than that of the third mixture or zero.
  • the invention also relates to a building which is easy to construct while being strong enough to support several floors.
  • first building block is mounted adjacent to the second building block such that the vertical groove of the first building block opposes the vertical groove of the second building block to form a first mold receiving a pylon in concrete.
  • the building comprises a third and a fourth building blocks according to any one of the preceding configurations.
  • the third building block is mounted adjacent to the fourth building block so that the vertical groove of the third building block opposes the vertical groove of the fourth building block to form a second mold receiving a pylon in concrete, the the third building block being mounted on the first building block, the fourth building block being mounted on the second building block, the second mold extending the first mold.
  • the invention also relates to a method which makes it possible to easily produce a building from building blocks. We tend to achieve such a result by means of a process that includes:
  • FIG. 1 schematically illustrates a perspective view of a building block according to the invention
  • FIG. 2 schematically illustrates a perspective view of the connection means between the floor in a building block according to the invention
  • FIG. 3 schematically illustrates a perspective view of a building formed by a plurality of building blocks mounted on top of each other and next to each other;
  • FIG. 4 schematically illustrates a sectional view of a manufacturing process for a floor
  • FIG. 5 schematically illustrates a perspective view of an embodiment of a floor
  • FIG. 6 schematically illustrates a perspective view of a floor in which the support and part of the covering layer are removed;
  • FIG. 7 schematically illustrates a perspective view of an embodiment of a wall
  • FIG. 8 schematically illustrates a perspective view of another embodiment of a wall
  • FIG. 9 schematically illustrates a perspective view of a corner wall
  • FIG. 10 schematically illustrates a perspective view of another embodiment of the flat panel
  • FIG. 11 schematically illustrates the steps of a method of manufacturing a wall with a reinforcing element embedded in the wall
  • FIG. 12 schematically illustrates the steps of another method of manufacturing a wall with one-piece elements connected by a reinforcing element.
  • FIG. 13 schematically illustrates, in section, an embodiment of a wall fixed to a floor.
  • Figures 1 to 3 illustrate one or more building blocks 1 which are modular blocks for the manufacture of a building 2.
  • the building block 1 has a floor 3 and a plurality of walls 4.
  • the floor 3 and the walls 4 are integral with each other to form a one-piece building block 1.
  • the building block 1 can be transported and lifted by conventional transport and lifting means. It is preferable that the building block has a width less than or equal to 4m and a length less than or equal to 25m. It is also preferable that the building block 1 has a mass of less than 70 tons.
  • FIG 4 through Figures 4a, 4b and 4c, there is shown an embodiment of a floor 3.
  • the floor 3 comprises a support 5, a metal frame 6 and a covering layer 7.
  • the support 5 can be a single piece or the support 5 is formed by several elements assembled together as shown in Figures 4a to 4c.
  • the support 5 is made of a first material.
  • the first material is a first mixture containing an inorganic binder and particles of a plant material.
  • the mineral binder is preferably cement or concrete.
  • the first mixture comprises at least 50% by volume of particles of plant material. This high content of plant material particles makes it possible to reduce the density of the support 5 and therefore the final weight of the building block 1 compared to an equivalent concrete construction.
  • the particles of vegetable material are embedded in the mineral binder, that is to say that the particles are completely covered by the mineral binder except possibly on the external faces of the support 5.
  • the particles of vegetable material have a maximum dimension which is less than the thickness of the support 5.
  • the particles of plant material are bonded to each other by the mineral binder. Plant material particles can be of different sizes.
  • the organic element of vegetable origin can be wood, straw, cellulose, hemp or cork.
  • the particles of plant material are preferably particles of wood.
  • the particles of plant material are predominantly wood (by volume).
  • the wooden elements are wooden plates having a length between 1 and 100 mm.
  • the wood chips having a length of between 1 and 60 mm.
  • the wooden elements have a maximum mass concentration of between 20 and 60 mm.
  • These wooden boards have a thickness between 1 mm and 5 mm.
  • microcavities are obtained on the surface of the part, due to the fact that the concrete coats the wooden plates. More particularly, a distribution of surface cavities representing between 30% and 50% of the total surface of the part is obtained.
  • a roughness of between 6 and 15mm The roughness corresponds to the maximum height between a peak and a trough of the surface.
  • formworked raw concrete that is to say construction elements made of raw concrete with formwork
  • a part made with such a material provides large microcavities, in number and in depth, allowing a hardenable mixture deposited later to enter these microcavities.
  • a strong bond is obtained between the hardenable mixture and the part made of hardened mixture, preferably of hardened concrete-wood.
  • a mass ratio of wood chips of between 30% and 70% of the total mass of the part to be produced.
  • the first mixture is a mixture containing a mineral binder, for example concrete, in which particles of a plant element, for example wood, are embedded.
  • the mineral binder is a binder material that is configured to bind the plant material particles together.
  • the mineral binder is chosen from cement, blast furnace slag or lime.
  • a concrete which is a mixture containing water, a binder for example cement and other elements, for example sand and possibly gravel.
  • wood concrete is a mixture containing particles of wood, a mineral binder chosen from cement, blast furnace slag, lime or concrete.
  • the material loaded with vegetable particles makes it possible to provide an improved fire-resistant property to the floor 3.
  • wood is a better thermal insulator than the sand used in conventional concretes.
  • the mineral binder coats elements of plant origin such as wood and protects from flames. It has been observed that under the effect of a fire, the material formed by the first mixture expands less than its equivalent in raw concrete or a steel floor. It has also been observed that the floor does not explode under the thermal stress of the fire or much later.
  • the support 5 has an upper face which is textured.
  • the support 5 defines first grooves 8 and second grooves.
  • the first grooves 8 have a first longitudinal direction which extends along a first direction A.
  • the second grooves have a second longitudinal direction which extends along a second direction which is secant to the first direction, for example perpendicular.
  • the first grooves 8 and the second grooves belong to a plane.
  • the floor 5 also comprises a metal frame 6 which comprises a plurality of first metal rods 9 which are placed in the first grooves 8 as well as by a plurality of second metal rods which are placed in the second grooves.
  • the first metal rods 9 are mechanically fixed to the second metal rods so that the first and the second metal rods form a self-supporting metal frame 6.
  • the mechanical connections ensure the transmission of forces even without a concrete mix in the hardened state.
  • the metal reinforcement 6 is installed inside the grooves of the support 5 and a liquid material is poured so as to completely fill the first grooves 8 and the second grooves as well as to cover the upper face of the support 5 and to embed the reinforcement metal 6.
  • the liquid material is a second mixture which comprises an inorganic binder, for example cement or concrete.
  • the second mixture in the hardened state has a mechanical resistance to bending which is greater than that of the first mixture forming the support 5.
  • the second mixture having a volume proportion of particles of a plant material less than 20%. Once hardened, the second mixture provides, in combination with the metal reinforcement 6, a high mechanical strength to the floor 3 compared to what the support 5 alone can provide, including with the same volume of floor 3 and including with the metal reinforcement 6.
  • the combination of the support 5, the metal reinforcement 6 and the covering layer 7 makes it possible to have a panel with a mechanical resistance which is compatible with use as a floor while having a reduced weight .
  • the first and second metal rods are introduced into the first and second grooves to provide improved resistance to bending compared to an equivalent structure without the metal rods.
  • the first grooves 8 may have an identical or different section to the sections of the second grooves.
  • the first and second grooves can have a section chosen from a square, rectangular, triangular, trapezoidal section or any other shape.
  • each groove Preferably, several metal rods are arranged in each groove.
  • the multiple metal rods are arranged relative to each other to form a three-dimensional structure, for example in the form of a tube.
  • the rods extend along the longitudinal direction of the grooves they fill.
  • the metal reinforcement 6 is perforated so as to be crossed by the second mixture in the liquid state.
  • the support 5 By using a support 5 which comprises at least 50% by volume of particles of plant material, the support 5 has a high surface porosity.
  • the support 5 has surface asperities which are introduced by the particles of plant material.
  • the surface asperities provide a significant roughness which improves the mechanical strength between the second mixture and the support 5.
  • the porosity of the support 5 is particularly advantageous because it allows good mechanical strength between the support 5 on one side and the layer of cover 7 which is reinforced with the metal reinforcement 6 without the need to form grooves 8 having a specific shape or without the need to add an additional attachment element.
  • one or more screws are screwed into the first grooves 8 and/or the second grooves of the support 5 before pouring the second mixture so as to better secure the support 5 and the covering layer 7 formed from the second mixture. which hardened.
  • the metal armature 6 only has connections between the first metal rods 9 and the second metal rods in the connection zones between the first grooves 8 and the second grooves.
  • additional metal rods connect the first metal rods 9 and the second metal rods above the walls delimiting the grooves.
  • the thickness of the covering layer 7 can be greater in order to completely cover the metal reinforcement 6.
  • first rods 9 it is possible to provide for at least a part of the first rods 9 to be fixed on the support 5, for example by screwing in a fastening element which provides the mechanical connection between the first rods 9 and the support 5. It may be the same for the second rods and the support 5.
  • the first rods 9 of the same first groove 8 are arranged together to form a first beam, that is to say a mechanically self-supporting structure without the aid of the support 5 and without using the second mixture. It can be the same for the second rods in the second grooves.
  • self-supporting we mean that the joist supports its own weight.
  • first beams in the first grooves 8 and/or the second beams in the second grooves are not in direct contact with the support 5. It is advantageous that the beams are separated from the support 5 by the second mixture as shown in Figure 4b. Since support 5 is formed from a material having a high content of plant material particles, it is porous and advantageously breathable. It is preferable to completely cover the metal reinforcement with the covering layer in order to protect the metal reinforcement from the humidity which passes through the support 5.
  • the rods of the metal frame 6 are installed in the second mixture which may have the consistency of a paste.
  • the second mixture is viscous enough to oppose the fall of the metal frame 6 under its own weight.
  • the remainder of the second mixture is cast to fill the grooves.
  • the metal reinforcement 6 is kept at a distance from the bottom of the grooves by a support device, for example a crane or an equivalent device or by pins arranged in the bottom of the grooves.
  • the second mixture is poured while the metal frame 6 is supported.
  • the metal frame 6 is separated from the lower wall of the floor 3 by the support 5 which contains particles of a plant element.
  • the floor 3 has good thermal resistance. This configuration makes it possible to improve the fire-resistant property of the floor 3. When flames are in contact with the lower surface of the floor 3, the flames are not in direct contact with the beams.
  • the support 5 limits the spread of heat in the event of a fire.
  • the support 5 made from a first mixture makes it possible to protect the beams from excessive expansion which could occur in the event of a fire.
  • the top of the metal reinforcement 6 has a visible part, that is to say which protrudes from the second mixture and from the grooves. The plate formed at this stage of the process is lightened since the metal reinforcement 6 is not completely coated.
  • the second mixture is mainly or exclusively a mineral fixing binder, for example a concrete or a cement.
  • Concrete is a mixture of different elements, such as gravel, sand, a binder and water.
  • the binder can be cement or lime.
  • the proportions of the different elements of concrete vary according to the hardness of the concrete that one wishes to obtain.
  • one end or at least one end of a support 5 has a connecting part 10.
  • the connecting part 10 is configured to cooperate with the complementary connecting part 10 of an adjacent support 5 to form a larger floor 3 as shown in the diagrams of figure 4.
  • the supports 5 are used separately to form floor parts 3 and the floor parts 3 are associated together to form a floor 3.
  • the supports 5 are associated together and the metal reinforcement 6 is common to the two adjacent supports 5. It is also advantageous to pour the second mixture onto the two adjacent supports 5 to produce a mechanical unit.
  • a single casting step of the second mixture is carried out to fill the grooves and completely cover the metal reinforcement 6 and form the covering layer 7.
  • the composition of the second mixture is substantially identical over the entire height of the cover layer 7.
  • the cover layer 7 is made with several successive stages of casting the second mixture.
  • the composition between castings may be the same or it may vary. It is possible to provide for the upper part of the floor 3 to be formed by a layer of concrete which is devoid of particles of plant material or even that the entire cover layer 7 is a concrete devoid of particles of plant material.
  • the first beams are connected to each other by a trellis 11 which is arranged above the grooves.
  • the mesh 11 can be fixed to the beams for example by welding or by other means, for example cables are used in order to ensure a mechanical connection without the second mixture.
  • the mechanical connection between the mesh 11 and the beams is made by the second mixture.
  • Figures 4a to 4c represent a particular embodiment of a mode of implementation of a method of manufacturing a floor.
  • the floor manufacturing process includes:
  • first metal rods 9 in the first grooves 8 and second metal rods in the second grooves, the first and second metal rods preferably forming a self-supporting metal frame 6,
  • first and second reinforced beams extend according to secant directions in the same plane.
  • the covering layer 7 is formed from the second mixture which preferably contains mainly or exclusively concrete.
  • the metal mesh 11 can be added, so as to provide a covering layer 7 of reinforced concrete.
  • the floor 3 comprises several first reinforced beams arranged horizontally or substantially horizontally.
  • the first beams extend along the first direction A.
  • the first beams are interconnected by second reinforced beams which extend along a second direction secant to the first direction.
  • the reinforced beams form a support grid on which are fixed the connectors arranged projecting from the support.
  • the support grid ensures the mechanical strength of the building block during lifting operations.
  • the holes in the support floor are filled with the first mixture which is less dense than the material forming the grid of the support.
  • Figure 6 illustrates a configuration in which support 5 has been eliminated. In the right part of the floor 3, the covering layer 7 is present. The latter has been eliminated in the left part which then represents the reinforced beams.
  • This configuration makes it possible to form a floor 3 whose mass is reduced thanks to the use of a support 5 loaded with plant particles and whose mechanical strength is sufficient to withstand the mechanical stresses corresponding to a floor 3.
  • the floor 3 has connectors which protrude at the ends of the first grooves 8, that is to say beyond the support 5.
  • the connectors are configured to ensure the lifting of the building block 1 during the phases of transport and positioning.
  • the connectors are fixed to the reinforced beams to allow the lifting of the building block only by means of the floor 3.
  • the building block 1 has a wall 4, among the plurality of walls 4, which comprises a through opening 12.
  • the through opening 12 defines, for example, a door, a window, a French window or a crossing passage between two building blocks. .
  • the walls 4 are fixed to the floor 3 and the walls 4 are fixed between them.
  • the walls 4 and the floor 3 form a one-piece and transportable element.
  • the structure is strong and rigid enough to allow the construction block to be transported without this resulting in deformation of the finishing work which is formed inside the construction block.
  • the building block may have one or more windows and/or one or more doors. It is also possible for the block to have electrical circuitry and/or hydraulic circuitry before it is coupled to another building block 1 .
  • the walls 4 of the plurality of walls 4 are made from a third mixture which comprises a mineral binder and particles of plant material.
  • the particles of a plant material are embedded in the mineral binder, the proportion by volume of particles of a plant material in the third mixture being greater than 50%.
  • the third mixture comprises at least 50% by volume of particles of plant material. This high content of plant material particles makes it possible to reduce the density of the wall and therefore the final weight of the building block 1.
  • the plant material particles are embedded in the mineral binder, i.e. the particles are completely covered by the mineral binder except possibly on the external faces of the wall.
  • the particles of plant material have a maximum dimension which is less than the thickness of the wall 4.
  • the particles of plant material are bonded to each other by the mineral binder. Plant material particles can be of different sizes.
  • An organic element of vegetable origin can be wood, straw, cellulose, hemp or cork.
  • the particles of plant material are preferably particles of wood.
  • the particles of plant material are predominantly wood (by volume).
  • the third mixture conforms to the definition given above for the first mixture.
  • the third material forming the walls 4 is identical to the first material forming the support 5.
  • the walls 4 are made of a material that is lighter than their equivalent solely of concrete or reinforced concrete, which makes it possible to form a building block that is lighter and therefore more easily transportable.
  • Walls made of mineral binder and plant material particles are mechanically less efficient than their equivalent in concrete and reinforced concrete.
  • the walls are devoid of connectors ensuring the lifting of the building block because the walls are not able to support such an operation. Walls may be without wire mesh. It is advantageous for the content of plant material particles to be identical from one end of the wall to the other in the direction of the length and in the direction of the height, which facilitates its manufacture and reduces the risks of stresses and therefore of accelerated aging linked to differential expansion phenomena.
  • the walls 4 define, on their outer wall, a vertical groove 13 extending over the height of the walls 4.
  • the vertical groove 13 preferentially leads to the connectors projecting from the floor 3 and in particular from the support 5 and the reinforced beams.
  • the use of walls 4 in a material comprising a mineral binder and particles of plant material makes it possible to form a breathable wall which improves the quality of life in the dwelling.
  • the use of walls 4 in mineral binder with particles of plant material results in a degradation of the mechanical performance of the walls 4 which greatly complicates the installation of a heavy roof or the manufacture of a building 2 with several floors.
  • the building block 1 is advantageous because the groove 13 forms a part of the mold for the production of a vertical pylon 14 or vertical post.
  • the vertical pylon 14 is made of concrete or any other material having mechanical performance superior to that of the material forming the walls 4, for example the second mixture.
  • the material is poured into the mold to form the pylon 14.
  • the vertical pylon 14 is formed by a fourth mixture which may be a concrete devoid of particles of vegetable material or a concrete which contains less than 20% by volume of particles of vegetable material.
  • the wall 4 is made of a material containing a high proportion of plant particles which generates roughness.
  • the concrete poured into the groove 13 will fit into the crevices which improves the mechanical connection between the pylon 14 and the wall 4.
  • the floor 3 has a recess at the end of the first grooves 8.
  • the recess allows to have connectors which are arranged projecting from the first groove 8 to be easily accessible without increasing the footprint of building block 1 .
  • the outer face of the wall 4 is flat or substantially flat and the connectors do not protrude from this flat surface so that the pylon 14 can be formed in the initial size of the building block. 1.
  • the installation of the connectors in a recess of the building block 1 makes it possible to place a building block 1 in contact or almost in contact with an adjacent building block.
  • the recess is preferably present in the support 5.
  • one or more rods or screws are installed in the vertical groove 13 before pouring the fourth mixture so as to increase the quality of the mechanical connection which exists between the wall 4 and the pylon 14.
  • the connectors define at least one ring 15 and/or one hook projecting from the floor 3 for lifting the building block 1 .
  • the first metal rods 9 are installed in a concrete beam or any other material having better mechanical strength than the support 5.
  • the rings/hooks 15 are fixed in the reinforced concrete beams, which makes it possible to easily lift the block of construction by means of floor 3 and not by means of the walls 4.
  • the first metal rods 9 define at least one ring 15 and/or a hook projecting from the support 5 forming the connectors.
  • Document WO2020/016531 discloses a floor formed by a support made of a hardenable material coating wood particles and which defines grooves receiving reinforcement. Unlike this prior art, provision is made to use the mechanical strength of the floor 3 to support the prefabricated building block and to use the metal rods 9 held fixed to the floor to carry out the stress recovery of the final construction. .
  • At least one recess and preferably each recess has a connector in the form of a ring or a hook to perform the lifting of the building block 1 and an additional reinforcement preferably in the form of a ring and intended to transmit the forces between the floor 3 and the pylon 14.
  • the additional reinforcement preferably corresponds to one or more rings larger than the ring of the connector.
  • the additional reinforcement can be formed by one or more first metal rods 9.
  • the first metal rods 9 have a first connection portion or rising connection portion 9a which is mounted projecting from the support 5 and which is angled to fit into the vertical groove 13 of the external wall of one of the walls 4.
  • the rising connection portions 9a which go up along the wall 4 increase the mechanical strength of the pylon 14 and in particular the mechanical performance verticals of the building block 1.
  • the first metal rod 9 ensures the mechanical continuity of the force absorption between the floor 3 and the reinforcement pylon 14.
  • first metal rods 9 have another connection portion, called the descending connection portion 9b which is arranged projecting from the floor 3 and in particular projecting from the support 5 and which is bent to project from the floor 3 down in the extension of the longitudinal direction of the associated vertical groove 13 to fit into the vertical groove 13 of the lower building block.
  • the descending connection portion 9b which is arranged projecting from the floor 3 and in particular projecting from the support 5 and which is bent to project from the floor 3 down in the extension of the longitudinal direction of the associated vertical groove 13 to fit into the vertical groove 13 of the lower building block.
  • connection parts 9a and 9b are angled and point downwards below the level of the floor 3 or upwards along the wall 4.
  • the first rods 9 extend in the plane of the floor 3 in the longitudinal direction of the first grooves 8 before bending.
  • the first rods 9 also extend in the vertical groove 13 in a direction perpendicular or substantially perpendicular to the upper face of the floor 3.
  • the first rods 9 extend continuously from the first grooves 8 to the vertical grooves 13 of the block of building 1 or lower building block 1.
  • the pylon 14 is partly cast.
  • the pylon 14 is not formed over the entire height of the wall 4, but only over a part so as to leave room for the insertion of the angled downward connection portions 9b of the upper building block 1.
  • the portion of pylon 14 which has been cast reinforces the mechanical strength of the wall 4 of the block already in place, which makes it possible to support the installation of the upper building block 1 on the lower building block 1.
  • a new casting of concrete can be carried out to extend the reinforcement pylon 14 on an additional floor.
  • the reinforcement pylon 14 is preferably formed floor by floor, as the building blocks 1 are mounted on top of each other.
  • the pylon 14 is cast in one go for several floors. It is still possible to provide for the pylon to be formed in several stages. For example, the pylon extends over several floors, preferably at least four floors, and the pylon is made in at least two or three stages.
  • the pylon 14 has several metal rods embedded on its height to form a reinforced pylon.
  • a building 2 comprising a ground floor and one or more floors by using building blocks 1 stacked on top of each other.
  • the walls are devoid of reinforcement in metal rods to limit the weight of the walls and therefore the weight of the building block.
  • reinforcing metal rods By refraining from using reinforcing metal rods, it is more difficult to take up vertical forces, i.e. the weight of building blocks and other loads mounted on the building block. In the absence of metal rods, it is more difficult to withstand dynamic forces, for example the stresses present in seismic zones or the wind.
  • a reinforcing pylon 14 which extends from the ground and which connects continuously all the building blocks 1 stacked on top of each other, it is possible to strengthen the structure.
  • a step of reinforcing the walls 4 is then carried out by means of a pylon 14 which is a vertical beam which attaches to the ends of the first rods 9.
  • This architecture makes it possible to form a resistant load-bearing structure with few additional operations after the installation of the building block 1.
  • the pylons 14 are attached directly to the floors 3 by means of the first metal rods 9.
  • the vertical posts 14 and the reinforced beams of the floor 3 form the load-bearing framework of the building.
  • screws 16 connect a wall 4 to the support 5 by crossing the cover layer 7.
  • the high content of plant material particles makes it possible to achieve screwing directly into the wall 4 without having to make a hole beforehand and without having to use a plug or a chemical seal.
  • the screw 16 is directly in contact with the particles of plant material. In comparison in a concrete structure, it is necessary to make a preliminary hole and then fill this hole with a plug or a chemical seal to ensure that the screw remains in place despite the stresses.
  • an adhesive for example an adhesive concrete or an adhesive mortar, associated or not with screws.
  • a metal link 17 provides the mechanical connection between the wall 4 and the floor 3.
  • part of the metal link 17 is embedded in the wall 4.
  • the wall 4 is made by pouring the third mixture into a mold. Part of the metal link 17 is installed in the mold so as to be completely coated by the third mixture. When the third mixture hardens, the metal link 17 becomes unremovable with respect to the wall 4.
  • the metal link 17 has means for anti-rotation of the metal link 17 with respect to the wall 4 as well as means blocking the translation of the metal link 17 with respect to the wall 4. It is preferable that the metal link 17 be fixedly mounted to the wall 4.
  • the projecting portion of the metal link 17 is installed in the floor 3.
  • the projecting portion of the metal link 17 is installed in the mold used to form the floor 3.
  • the projecting portion is installed in the mold used for the pouring the second mixture.
  • the protruding portion is then incorporated into one of the reinforced beams of the floor 3.
  • the protruding portion is fixedly mounted relative to the floor 3. It is preferable that the metal link 17 has a bent portion which provides the mechanical connection between the wall and the floor. .
  • the metal link 17 protrudes from the lower wall of the wall 4.
  • the lower wall of the wall 4 is placed on the support 5 which forms the mold for the pouring of the second mixture.
  • the second mixture is poured which fills the grooves of the support 5, the metal frame 6 and the metal link 17 preferably until it reaches the lower wall of the wall 4. Once the second mixture has hardened, the wall 4 is sealed to the floor 3.
  • the walls 4 are preferably fixed to a reinforcement ring arranged in the top part of the walls 4.
  • the reinforcement ring makes it possible to reduce the bending of the wall 4 with respect to its anchor point on the floor 3.
  • the reinforcement ring or reinforcement block can be made of wood or metallic material or any other suitable material.
  • a building 2 comprises two building blocks 1 arranged adjacent in the same level so that the vertical grooves 13 are arranged facing each other and form a first mold which extends over the height of the walls.
  • the two vertical grooves 13 both open onto the ends of the first rods 9 which protrude from the two floors 3 also arranged adjacent.
  • the ends of the first rods 9 of the two building blocks 1 are present in the same mold.
  • the mold is open in its top portion to allow the pouring of the fourth mixture.
  • the mold is advantageously open in the lower part to allow the connection portion 9b to pass if necessary.
  • the two vertical grooves 13 formed in the outer walls of the two adjacent building blocks 1 meet to form a first mold which opens onto the first metal rods 9.
  • the two outer walls of the walls 4 are in contact or are separated by a distance such that when the fourth mixture is poured into the mold, the fourth mixture remains in the mold.
  • the fourth mixture fills the mold and remains in the mold or extends a few centimeters out of the mold.
  • the fourth mixture fills the mold and completely covers the ends of the first rods 9 of the two building blocks 1. When the fourth mixture hardens, it makes the mechanical connection between the two floors 3 and the two adjacent walls 4.
  • two adjacent building blocks on the same floor are separated by an insulating material, for example a thin layer of air to reduce thermal conduction between two walls.
  • an insulating material for example a thin layer of air to reduce thermal conduction between two walls.
  • a compressible material preferably a compressible insulating material on the wall 4 in the extension of the side walls of the vertical groove 13.
  • the compressible material compresses and ensures the sealing of the mold before pouring the fourth mixture.
  • the compressible material is thermally insulating when it has a higher thermal resistance than that of the material forming the wall 4.
  • the building 2 comprises two adjacent building blocks 1 on the same floor and two adjacent building blocks 1 on a higher level
  • the vertical grooves 13 of the same level are arranged facing each other to form a first mold and a second mold.
  • the two molds meet and extend.
  • the pouring of the fourth mixture makes it possible to form a pylon 14 which mechanically couples the adjacent walls 4 of the two levels as well as the two floors 3.
  • the pylons 14 form a concrete framework which provides the mechanical strength of the building 2.
  • the building blocks 1 provide greater freedom in the construction of buildings 2.
  • the use of a mixture of a mineral binder and the particles of plant material whose volume proportion is greater than 50% makes it possible to form walls 4 which have good sound insulation, good fire resistance while taking advantage of the speed of assembly linked to the prefabricated block.
  • building block 1 is moved from its place of manufacture to its place of use.
  • the building blocks 1 are arranged next to each other or on top of each other to form the building 2.
  • the reinforcement of the mechanical structure of the building is achieved by casting the pylons 14 on the external walls of the building blocks. It is therefore particularly advantageous to carry out at least part of the finishing work inside the building block 1 because the internal walls of the building block are not worked during the assembly of the building 2. This saves time on the construction of the building 2.
  • FIGS. 7 to 10 various particular embodiments of a panel intended for the manufacture of a wall 4 have been represented.
  • FIGS. 7, 8 and 9 illustrate a panel intended for manufacturing a facade wall, c that is to say that the panel has a generally parallelepipedic shape.
  • Figure 9 illustrates a panel intended to manufacture a corner wall, that is to say that the panel comprises two mutually perpendicular parts.
  • the panel is particularly suitable for making a wall of a building with one or more floors.
  • the panel is intended to be placed vertically in relation to the ground.
  • the panel 1 comprises at least one one-piece piece 18. More particularly the one-piece pieces 18 are each made from the third mixture, that is to say a mineral binder such as concrete in which are embedded particles of an element plant, for example wood.
  • the wooden elements are wooden plates having a length of between 10 and 100 mm, preferably between 20 and 60 mm. These wooden boards have a thickness between 1 mm and 5 mm.
  • microcavities are obtained on the surface of the one-piece part 18, due to the fact that the concrete coats the wooden plates. More particularly, a distribution of surface cavities representing between 30% and 50% of the total surface of the one-piece part 18 is obtained. In addition, a roughness of between 6 and 15 mm is obtained.
  • the roughness corresponds to the maximum height between a peak and a trough of the surface.
  • formworked raw concrete that is to say construction elements made of raw concrete with formwork, have a roughness of between 0.3 and 3 mm and a distribution of cavities on the surface of less than 30% of the total area of the building element.
  • a one-piece part 18 made with such a concrete-wood material provides large microcavities, in number and in depth, allowing a hardenable product to enter these microcavities.
  • a strong bond is obtained between the hardenable product and the one-piece concrete-wood part 18.
  • the density of the wood-concrete obtained is between 600 and 1000 kg/m 3 , by varying the composition of the material, preferably it is equal to 800 kg/m 3 . This results in a material that is lighter than raw concrete, i.e. a concrete which does not include wooden elements and whose density is approximately 2300 kg/m 3 .
  • the panel comprises at least one housing 19 intended to receive a reinforcing element 20 resistant to bending.
  • the housing 19 is through the height of the wall 4.
  • a reinforcement element 20 is an element which has an elongated structure configured to improve the resistance to bending of the panel intended to form the wall 4. More particularly, each reinforcement element 20 is formed by one or more mechanical reinforcements 21 which are in the form of an elongated element 21 coated with a curable product comprising a binder.
  • the mechanical reinforcement 21 has an elongated shape.
  • Each mechanical reinforcement 21 can be a rod or a bar.
  • FIGS. 5 to 8 show a reinforcing element 20 comprising four mechanical reinforcements 21.
  • the mechanical reinforcements can be made of fiberglass or carbon, and they are preferably made of metal.
  • the hardenable product is preferably a concrete.
  • the reinforcing element 20 can be a reinforced concrete beam which improves the resistance to bending of the panel. The use of a reinforcing element 20 formed by a reinforced concrete beam provides better resistance to bending compared to an equivalent structure entirely made of wood or concrete.
  • the concrete-wood walls 4 make it possible to carry out various finishing operations, such as carrying out a coating (which is difficult to do on poured raw concrete), and to directly fix means of maintaining the panels on site, such as plates for example in metal that can be easily screwed directly to concrete-wood.
  • Figure 5 illustrates a one-piece element 18 with a through-hole in the height direction.
  • the wall 4 is in the form of a ring so as to define a housing 19 for producing the reinforcing element 20.
  • the hole crossing is not a groove. Unlike a groove, a through hole opens only on two surfaces of the part.
  • FIG. 8 there is shown another embodiment of the wall 4, in which at least two one-piece parts 18 are separated from each other by a reinforcing element 20 which extends over the entire height of the wall as well as over the entire height of the wall. thickness of the wall 4.
  • the reinforcing element 20 is attached to the two one-piece parts 18 to form a self-supporting and transportable wall 4.
  • the two one-piece parts 18 are formed beforehand and they have protruding elements, for example screws which will be embedded in the concrete during the production of the reinforcing element 20.
  • FIG. 8 also illustrates a through opening 12 which passes through wall 4. As previously indicated the through opening can be used to install a door or a window.
  • FIG 9 there is shown a panel particularly suitable for the manufacture of a corner wall.
  • the panel comprises two one-piece parts 18. Each one-piece part 18 is provided with a shoulder 22.
  • the two shoulders 22 are arranged to define a housing 19 intended to receive a reinforcing element 20.
  • the housing 19 is preferably a through hole on the height of wall 4. Housing 19 is filled with concrete and mechanical reinforcements 21 as previously described.
  • a flat facade wall can also be formed by using two one-piece elements 18 each provided with a shoulder 22.
  • the two shoulders 22 form a housing 19 intended to receive a reinforcing element 20.
  • the housing 19 is preferably a hole through the height of the wall 4.
  • the housing 19 is filled with concrete and mechanical reinforcements 21 as described above.
  • a wall 4 provided with a through hole 12 in the direction of the thickness as shown in Figures 1 to 3 and 8 can be reinforced by a reinforcing element 20.
  • the 'element reinforcement 20 is embedded inside the wall 4, that is to say coated with the third mixture on all its faces.
  • the reinforcing element 20 has a content of vegetable particles which is lower than the content of the third mixture to argue the resistance to bending.
  • the reinforcing element 20 is made of concrete devoid of plant particles and more preferably associated with metal rods.
  • reinforcement elements 20 are above and below a through hole 12.
  • the panels reinforced by the reinforcing elements 20 are resistant and can be transported easily. They can therefore be prefabricated in the factory, then mounted on the floor 3. This gives us all the better control over the manufacture of the panels in the factory. However, these configurations are heavier than walls made only in third mix. It is therefore advantageous to limit the use of these reinforcing elements to configurations for which the lateral grooves are more difficult to implement or must be supplemented by additional reinforcement.
  • At least one monobloc part 18 is made of concrete-wood, one or more mechanical reinforcements 21 are placed in a housing 19, then the hardenable product is poured into the housing 19, around of the mechanical reinforcement 21 and in contact with at least one surface of the one-piece part 18.
  • Such a method makes it possible to increase the mechanical strength of the reinforcing element 20 with the one-piece part 18.
  • the connection between the reinforcing element 20 and the one-piece part 18 is also reinforced thanks to the microcavities created on the surface of the one-piece part 18, and to the pouring of the liquid hardenable product which is introduced into these microcavities. After curing the curable product 14, a strong shear resistant bond is obtained.
  • Figures 11a to 11e illustrate the steps of a method for producing a wall according to Figure 7.
  • the method comprises a first step S1 in which the mineral binder is poured in the liquid state in which the elements are embedded of wood in a mold 23 provided with at least one reservation 24 as illustrated in figures 11a and 11b.
  • a base 25 can be placed at the bottom of the mold 23 on which the reservation 24 is positioned.
  • the one-piece part 8 is obtained, as illustrated in FIG. 11c.
  • the reservation 24 is removed in order to form at least one through hole within the one-piece piece 8.
  • a third step illustrated in FIG.
  • one or more mechanical reinforcements 21 are placed within each through-hole formed, as illustrated in FIGS. 11d and 11e.
  • the projecting parts make it easier to link two adjacent panels if necessary.
  • another mineral binder in the liquid state is used to connect the protruding parts of the mechanical reinforcements together.
  • the hardenable product comprising a binder is poured into each through-hole to coat the mechanical reinforcements 21 and fix the reinforcing element 20 to the one-piece part 8, as illustrated in FIGS. 11d and 11e .
  • FIG. 12 comprising FIGS. 12a to 12e, the steps of a second mode of implementation of a method of manufacturing a panel intended to form a wall 4 have been represented.
  • a panel comprising at least two one-piece parts 8 is manufactured, as shown in FIG. 12b.
  • the method comprises a first step T1 of supplying at least two one-piece parts 8 each made from a third mixture and separated from one another by at least one housing 26, as illustrated in FIG. 12b.
  • the supply step T1 comprises an initial step, illustrated in FIG. 10a, in which at least one reservation 24 is placed within a mold 23, as illustrated in FIG. 15a, then a pouring of the third mixture , within the mold 23.
  • a withdrawal of the reservations 24 is carried out to form the housings 26.
  • one or more mechanical reinforcements 21 are placed within each housing 26.
  • the mechanical reinforcements 21 rest on supports 27 to center the reinforcements 13 within the housings 16.
  • a hardenable product comprising a binder is poured into each housing 26 to coat each reinforcement 13 and fix it to two one-piece parts 8 neighbors.
  • two adjacent one-piece parts 8 is meant two one-piece parts 8 separated by a housing 26.
  • the mold 23 is removed to obtain the panel. Supports 27 can be removed or left in housings 26.
  • the one-piece parts 8 are held together by metal plates screwed into the wood-concrete or screws, before pouring the hardenable product S2.
  • the metal plates make it possible to limit the forces generated by the hardenable product on the one-piece parts 8.
  • the panel obtained has large contact surfaces between the one-piece piece 8 and the reinforcing element 20.
  • the one-piece piece made of the third mixture has numerous microcavities, that is to say blind orifices, created by the elements of wood. Indeed, the concrete coats the wooden elements, which creates microcavities on the surface of the one-piece piece 8.
  • the connecting surface is increased all the more with a through hole opening out at two ends of the one-piece part 8. a strong bond between the hardenable product and the concrete-wood, which provides great adhesion of the reinforcing element 20 to the one-piece part 8.
  • a panel which makes it possible to more quickly create a wall adapted to anti-seismic standards, since it incorporates reinforcing elements with a increased flexural strength.
  • a panel is simple to make.
  • the panel is resistant and lighter than a panel made of raw concrete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Revetment (AREA)

Abstract

Un bloc de construction (1) pour la fabrication d'un bâtiment (2) comporte un plancher (3) et des murs (4). Un des murs (4) comporte une réservation traversante. Les murs (4) sont fixés au plancher (3) et entre eux. Le plancher (3) comporte un support réalisé en béton-bois et il définit des rainures. Une armature métallique formée par une pluralité de tiges métalliques est disposée dans les rainures. Au moins des premières tiges métalliques font saillies aux extrémités de premières rainures. Un béton remplit les rainures et recouvre complètement l'armature métallique et le support. Les murs (4) sont réalisés en béton-bois et définissent sur leur paroi externe une rainure verticale s'étendant sur la hauteur des murs (4) et débouchant sur les premières tiges métalliques en saillie du support.

Description

BLOC DE CONSTRUCTION POUR LA FABRICATION D’UN BATIMENT ET PROCÉDÉ DE FABRICATION D’UN BATIMENT
Domaine technique
L’invention concerne un bloc de construction pour la fabrication d’un bâtiment et un procédé de fabrication d’un bâtiment.
État de la technique
Pour la fabrication d’un bâtiment, il existe différentes méthodes de fabrication et notamment l’assemblage de blocs de constructions modulaires qui sont accolés les uns aux autres puis fixés pour former la structure du bâtiment. Il est connu de réaliser des blocs constructifs dans de multiples matériaux. Les blocs constructifs pré-montés permettent de réaliser la structure dans des conditions mieux maîtrisées. Les blocs sont réalisés bien avant le montage ce qui permet de fabriquer un bâtiment plus rapidement car les temps de séchage sont supprimés.
Lors de la conception des blocs de construction, il est important de prendre en compte les dimensions du bâtiment à réaliser et surtout le nombre d’étages à supporter et le zonage sismique. Plus le nombre d’étages est important et/ou plus la valeur de zonage sismique est élevée, plus la tenue mécanique des blocs de construction doit être importante ce qui se traduit naturellement par la réalisation d’un bloc de construction plus lourd. Il existe alors une difficulté accrue dans le transport et le montage du bloc de construction. En conséquence, il est particulièrement difficile de réaliser des bâtiments avec des étages à partir de blocs de construction déjà réalisés.
On peut réaliser des panneaux préfabriqués en bois ou en métal, mais ils ne présentent pas les propriétés du béton. Notamment, les blocs de construction en bois ou en métal possèdent une résistance au feu limitée. Il ressort également que ces blocs de construction présentent un confort thermique perfectible et une stabilité mécanique inférieure à celle du béton. Les blocs de construction en béton sont lourds ce qui complique le transport.
Le document WO 2009/112037 divulgue un élément de construction autoportant préfabriqué destiné à former des bâtiments de plusieurs étages. Les parois latérales sont formées par un cadre en béton armé rempli par un béton léger. La face externe des parois latérales est recouverte par un isolant qui définit des rainures. Des tiges métalliques sont fixées à la couche d’isolant et sont noyées dans le béton léger à l’intérieur du cadre pour renforcer le béton léger des parois latérales. Deux éléments de construction sont disposés l’un à côté de l’autre et une étape de coulage est réalisée pour former des poteaux et des poutres de support. Préalablement à l’étape de coulage, un élément de connexion en forme de U est fixé à deux éléments de construction adjacents. Il ressort qu’un tel bloc de construction reste relativement lourd à cause de ses cadres en béton armé.
Exposé de l'invention
Un objet de l’invention consiste à pallier ces inconvénients, et plus particulièrement à fournir un bloc de construction qui possède une masse réduite, en comparaison d’une structure équivalente en béton armée ou celle de l’art antérieur, tout en présentant une tenue mécanique et un montage compatible avec la réalisation d’un bâtiment à plusieurs étages.
On tend à résoudre ces inconvénients au moyen d’un bloc de construction pour la fabrication d’un bâtiment comportant :
- un plancher ;
- une pluralité de murs, au moins un mur de la pluralité de murs comportant une réservation traversante, les murs de la pluralité de murs étant fixés au plancher et fixés entre eux ; dans lequel le plancher comporte un support réalisé dans un premier mélange comportant un liant minéral et des particules d’un matériau végétal, les particules étant noyées dans le liant minéral, le support définissant une pluralité de premières rainures et de deuxièmes rainures, les premières rainures ayant une première direction longitudinale sécante à une deuxième direction longitudinale des deuxièmes rainures, la proportion volumique en particules d’un matériau végétal dans le premier mélange étant supérieure à 50% ; dans lequel le plancher comporte une armature métallique comportant une pluralités de premières tiges métalliques disposées dans les premières rainures et de deuxièmes tiges métalliques disposées dans les deuxièmes rainures, l’armature métallique possédant des connecteurs disposées en saillies du support aux deux extrémités des premières rainures pour le levage du bloc de construction ; dans lequel le plancher comporte un deuxième mélange remplissant les premières rainures et les deuxièmes rainures et recouvrant complètement l’armature métallique et le support formant des poutres armées, le deuxième mélange possédant une proportion volumique en particules d’un matériau végétal inférieure à 20% ; dans lequel les murs de la pluralité de murs sont réalisés dans un troisième mélange qui comporte un liant minéral et des particules d’un matériau végétal, les particules étant noyées dans le liant minéral, la proportion volumique en particules d’un matériau végétal dans le troisième mélange étant supérieure à 50% ; dans lequel les murs définissent sur leur paroi externe une rainure verticale s’étendant sur la hauteur des murs et débouchant sur les premières tiges métalliques en saillie du support.
Selon un aspect de l’invention, les premières tiges métalliques définissent au moins un anneau et/ou un crochet en saillie du support formant les connecteurs.
De manière préférentielle, les premières tiges métalliques possèdent une portion de connexion montante saillante du support, la portion de connexion montante étant coudée pour s’installer dans la rainure verticale de la paroi externe d’un des murs. Avantageusement, les premières tiges métalliques possèdent une portion de connexion descendante disposée en saillie du support, la portion de connexion descendante est coudée pour faire saillie du plancher dans le prolongement de la direction longitudinale de la rainure verticale d’un des murs.
Dans un mode de réalisation particulier, les murs sont fixés au plancher au moyen d’une pluralités de vis.
Selon un autre aspect, un mur de la pluralité de murs est formé par deux pièces monoblocs réalisées en troisième mélange et séparées entre elles par un logement, le logement étant rempli de béton durci et au moins une tige métallique au moins partiellement noyé dans le béton durci, le béton ayant une teneur volumique en particules d’un matériau végétal inférieure à celle du troisième mélange ou nulle.
L’invention a également pour objet un bâtiment qui est facile à réaliser tout en étant suffisamment résistant pour supporter plusieurs étages.
On tend à atteindre ce résultat au moyen d’un bâtiment comportant un premier et un deuxième blocs de construction selon l’une quelconque des configurations précédentes. Le premier bloc de construction est monté adjacent au deuxième bloc de construction de sorte que la rainure verticale du premier bloc de construction se trouve en vis-à-vis de la rainure verticale du deuxième bloc de construction pour former un premier moule recevant un pylône en béton.
Dans un mode de réalisation particulier, le bâtiment comporte un troisième et un quatrième blocs de construction selon l’une quelconque des configurations précédentes. Le troisième bloc de construction est monté adjacent au quatrième bloc de construction de sorte que la rainure verticale du troisième bloc de construction se trouve en vis-à-vis de la rainure verticale du quatrième bloc de construction pour former un deuxième moule recevant un pylône en béton, le troisième bloc de construction étant monté sur le premier bloc de construction, le quatrième bloc de construction étant monté sur le deuxième boc de construction, le deuxième moule prolongeant le premier moule.
L’invention a également pour objet un procédé qui permet de réaliser facilement un bâtiment à partir de blocs de construction. On tend atteindre un tel résultat au moyen d’un procédé qui comporte :
- fournir un premier et un deuxième blocs de construction selon l’une quelconque des configurations précédentes ;
- disposer le premier bloc de construction adjacent au deuxième bloc de construction de sorte que la rainure verticale du premier bloc de construction se trouve en vis-à-vis de la rainure verticale du deuxième bloc de construction pour former un premier moule ;
- couler du béton dans le premier moule pour former un pylône en béton.
Description des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation et de mise en œuvre de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- la figure 1 , illustre schématiquement une vue en perspective d’un bloc de constructions selon l’invention ;
- la figure 2, illustre schématiquement une vue en perspective des moyens de connexion entre le plancher dans un bloc de construction selon l’invention ;
- la figure 3, illustre schématiquement une vue en perspective d’un bâtiment formé par une pluralité de blocs de construction montés les uns sur les autres et les uns à côté des autres ;
- la figure 4, illustre schématiquement une vue en coupe d’un procédé de fabrication d’un plancher ;
- la figure 5 illustre schématiquement une vue en perspective d’un mode de réalisation d’un plancher ; - la figure 6 illustre schématiquement une vue en perspective d’un plancher dans lequel le support et une partie de la couche de recouvrement sont supprimés ;
- la figure 7 illustre schématiquement une vue en perspective d’un mode de réalisation d’un mur ;
- la figure 8 illustre schématiquement une vue en perspective d’un autre mode de réalisation d’un mur ;
- la figure 9 illustre schématiquement une vue en perspective d’un mur en coin ;
- la figure 10 illustre schématiquement une vue en perspective d’un autre mode de réalisation du panneau plan ;
- la figure 11 illustre schématiquement les étapes d’un procédé de fabrication d’un mur avec un élément de renfort encastré dans le mur ;
- la figure 12 illustre schématiquement les étapes d’un autre procédé de fabrication d’un mur avec des éléments monoblocs connectés par un élément de renfort.
- la figure 13 illustre schématiquement, en coupe, un mode réalisation d’un mur fixé à un plancher.
Description détaillée
Les figures 1 à 3 illustrent un ou plusieurs blocs de construction 1 qui sont des blocs modulaires pour la fabrication d’un bâtiment 2. Le bloc de construction 1 possède un plancher 3 et une pluralité de murs 4. Le plancher 3 et les murs 4 sont solidaires entre eux pour former un bloc de construction 1 monobloc. Le bloc de construction 1 peut être transporté et soulevé par des moyens conventionnels de transport et de levage. Il est préférable que le bloc de construction possède une largeur inférieure ou égale à 4m et une longueur inférieure ou égale à 25m. Il est également préférable que le bloc de construction 1 possède une masse inférieure à 70 Tonnes.
Afin de fournir une solution technique intéressante d’un point de vue économique et mécanique, des compromis sont à réaliser pour la formation du plancher 3 et des murs 4. Sur la figure 4, à travers les figures 4a, 4b et 4c, on a représenté un mode de réalisation d’un plancher 3. Le plancher 3 comporte un support 5, une armature métallique 6 et une couche de recouvrement 7. Le support 5 peut être une pièce monobloc ou le support 5 est formé par plusieurs éléments assemblés entre eux comme cela est illustré aux figures 4a à 4c.
Selon un mode de réalisation préféré, le support 5 est réalisé dans un premier matériau. Le premier matériau est un premier mélange contenant un liant minéral et des particules d’un matériau végétal. Le liant minéral est préférentiellement du ciment ou du béton. Le premier mélange comporte au moins 50% volumique de particules de matériau végétal. Cette forte teneur en particules de matériau végétal permet de réduire la densité du support 5 et donc le poids final du bloc de construction 1 par rapport à une construction équivalente en béton. Les particules de matériau végétal sont noyées dans le liant minéral, c’est-à-dire que les particules sont complètement recouvertes par le liant minéral sauf éventuellement sur les faces externes du support 5. Les particules de matériau végétal possèdent une dimension maximale qui est inférieure à l’épaisseur du support 5. Les particules de matériau végétal sont liées les unes aux autres par le liant minéral. Les particules de matériau végétal peuvent être de tailles différentes. L’élément organique d’origine végétal peut être du bois, de la paille, de la cellulose, du chanvre ou du liège. Les particules de matériau végétal sont préférentiellement des particules en bois. De manière préférentielle, les particules de matériau végétal sont majoritairement du bois (en volume). Les éléments en bois sont des plaquettes de bois ayant une longueur comprise entre 1 et 100 mm. Préférentiellement, les plaquettes de bois ayant une longueur comprise entre 1 et 60 mm. De manière privilégiée, les éléments en bois présentent une concentration massique maximum comprise entre 20 et 60 mm. Ces plaquettes de bois ont une épaisseur comprise entre 1 mm et 5 mm. Lorsqu’on utilise des plaquettes de bois ayant une longueur entre 1 et 100 mm, on obtient des microcavités en surface de la pièce, du fait que le béton enrobe les plaquettes de bois. Plus particulièrement, on obtient une distribution des cavités en surface représentant entre 30% et 50% de la surface totale de la pièce. En outre, on obtient une rugosité comprise entre 6 et 15 mm. La rugosité correspond à la hauteur maximum entre un sommet et un creux de la surface.
On note que le béton brut coffré, c'est-à-dire les éléments de construction réalisés en béton brut avec un coffrage, ont une rugosité comprise entre 0,3 et 3 mm et une distribution des cavités en surface inférieure à 30% de la surface totale de l’élément de construction. Ainsi, grâce au mélange utilisant des plaquettes de longueur comprise entre 1 et 100mm et plus préférentiellement entre 20 et 60 mm, on crée plus de microcavités et des microcavités qui sont plus profondes qu’un béton brut coffré. Une pièce réalisée avec un tel matériau procure des microcavités importantes, en nombre et en profondeur, permettant à un mélange durcissable déposé postérieurement de s’introduire dans ces microcavités. Ainsi on obtient une liaison forte entre le mélange durcissable et la pièce réalisée en mélange durci, de préférence en béton-bois durci. En outre, on peut utiliser un rapport massique de plaquettes de bois compris entre 30% et 70% de la masse totale de la pièce à réaliser.
Le premier mélange est un mélange contenant un liant minéral par exemple du béton au sein duquel sont noyés des particules d’un élément végétal par exemple du bois. Le liant minéral est un matériau liant qui est configuré pour lier les particules de matériau végétal entre elles. Préférentiellement, le liant minéral est choisi parmi un ciment, du laitier de haut fourneau ou de la chaux. Il est également possible d’utiliser un béton qui est un mélange contenant de l’eau, un liant par exemple du ciment et d’autres éléments, par exemple du sable et éventuellement du gravier. Par abus de langage un béton de bois est un mélange contenant des particules de bois un liant minéral choisi parmi un ciment, du laitier de haut fourneau, de la chaux ou du béton.
Le matériau chargé en particules végétales, de préférence le béton-bois permet de procurer une propriété anti-feu améliorée au plancher 3. En effet, le bois est un meilleur isolant thermique que le sable utilisé dans les bétons classiques. En outre, le liant minéral enrobe les éléments d’origine végétal tel que le bois et les protège des flammes. Il a été observé que sous l’effet d’un feu, le matériau formé par le premier mélange se dilate moins que son équivalent en béton brut ou qu’un plancher en acier. Il a été également observé que le plancher n’explose sous la contrainte thermique du feu ou bien plus tard.
Le support 5 présente une face supérieure qui est texturée. Le support 5 définit des premières rainures 8 et des deuxièmes rainures. Les première rainures 8 présentent une première direction longitudinale qui s’étend selon une première direction A. Les deuxièmes rainures présentent une deuxième direction longitudinale qui s’étend selon une deuxième direction qui est sécante à la première direction, par exemple perpendiculaire. Les premières rainures 8 et les deuxièmes rainures appartiennent à un plan.
Le plancher 5 comporte également une armature métallique 6 qui comporte une pluralité de premières tiges métalliques 9 qui sont disposées dans les premières rainures 8 ainsi que par une pluralité de deuxièmes tiges métalliques qui sont disposées dans les deuxième rainures.
De manière préférentielle, les premières tiges métalliques 9 sont fixées mécaniquement aux deuxièmes tiges métalliques de sorte que les premières et les deuxièmes tiges métalliques forment une armature métallique 6 autoportante. Les connexions mécaniques assurent la transmission des efforts même sans un mélange de béton à l’état durci.
L’armature métallique 6 est installée à l’intérieur des rainures du support 5 et un matériau liquide est coulé de manière à remplir complètement les première rainures 8 et les deuxièmes rainures ainsi que pour recouvrir la face supérieure du support 5 et noyer l’armature métallique 6. Le matériau liquide est un deuxième mélange qui comporte un liant minéral, par exemple du ciment ou du béton. Le deuxième mélange à l’état durci présente une résistance mécanique à la flexion qui est supérieure à celle du premier mélange formant le support 5. Le deuxième mélange possédant une proportion volumique en particules d’un matériau végétal inférieure à 20%. Une fois durci, le deuxième mélange procure, en association, avec l’armature métallique 6 une tenue mécanique importante au plancher 3 en comparaison de ce que peut procurer le support 5 seul, y compris avec le même volume de plancher 3 et y compris avec l’armature métallique 6. L’association du support 5, de l’armature métallique 6 et de la couche de recouvrement 7 permet d’avoir un panneau avec une résistance mécanique qui est compatible avec une utilisation comme plancher tout en ayant un poids réduit. De manière préférentielle, les premières et deuxièmes tiges métalliques sont introduites dans les premières et deuxièmes rainures pour conférer une résistance à la flexion améliorée en comparaison d’une structure équivalente sans les tiges métalliques.
Les premières rainures 8 peuvent présenter une section identique ou différente aux sections des deuxièmes rainures. Les premières et deuxièmes rainures peuvent présenter une section choisie parmi une section carrée, rectangulaire, triangulaire, trapézoïdale ou de forme quelconque.
De manière préférentielle, plusieurs tiges métalliques sont disposées dans chaque rainure. Dans les rainures, les multiples tiges métalliques sont agencées les unes par rapport aux autres pour former une structure tridimensionnelle, par exemple sous la forme d’un tube. Les tiges s’étendent selon la direction longitudinale des rainures qu’elles remplissent. L’armature métallique 6 est ajourée de manière à être traversée par le deuxième mélange à l’état liquide.
En utilisant un support 5 qui comporte au moins 50% volumique de particules en matériau végétal, le support 5 présente une porosité de surface importante. Le support 5 possède des aspérités en surface qui sont introduites par les particules de matériau végétal. Les aspérités de surface procurent une rugosité importante ce qui améliore la tenue mécanique entre le deuxième mélange et le support 5. La porosité du support 5 est particulièrement avantageuse car elle permet une bonne tenue mécanique entre le support 5 d’un côté et la couche de recouvrement 7 qui est renforcée avec l’armature métallique 6 sans qu’il soit besoin de former des rainures 8 ayant une forme spécifique ou sans qu’il soit besoin de rajouter un élément d’accrochage supplémentaire.
De manière avantageuse, une ou plusieurs vis sont visées dans les premières rainures 8 et/ou les deuxièmes rainures du support 5 avant de couler le deuxième mélange de manière à mieux solidariser le support 5 et la couche de recouvrement 7 formée à partir du deuxième mélange qui a durci.
Il est particulièrement avantageux que l’armature métallique 6 possède uniquement des connexions entre les premières tiges métalliques 9 et les deuxièmes tiges métalliques dans les zones de raccordement entre les premières rainures 8 et les deuxièmes rainures. En alternative, des tiges métalliques additionnelles relient les premières tiges métalliques 9 et les deuxièmes tiges métalliques au-dessus des parois délimitant les rainures. Dans ce mode de réalisation, l’épaisseur de la couche de recouvrement 7 peut être plus importante pour recouvrir complètement l’armature métallique 6.
Il est possible de prévoir qu’au moins une partie des premières tiges 9 soit fixée sur le support 5, par exemple par vissage d’un élément accrochage qui assure la connexion mécanique entre les premières tiges 9 et le support 5. Il peut en être de même pour les deuxièmes tiges et le support 5.
Dans un mode de réalisation particulier, les premières tiges 9 d’une même première rainure 8 sont agencées les unes aux autres pour former une première poutrelle, c’est-à-dire une structure mécaniquement autoportante sans l’aide du support 5 et sans l’aide du deuxième mélange. Il peut en être de même pour les deuxièmes tiges dans les deuxièmes rainures. Par autoportante, on entend que la poutrelle supporte son propre poids.
Il est avantageux que les premières poutrelles dans les premières rainures 8 et/ou les deuxièmes poutrelles dans les deuxièmes rainures ne soient pas en contact direct avec le support 5. Il est avantageux que les poutrelles soient séparées du support 5 par le deuxième mélange comme cela est illustré à la figure 4b. Le support 5 étant formé dans un matériau ayant une forte teneur en particules de matériau végétal, il est poreux et avantageusement perspirant. Il est préférable de complètement recouvrir l’armature métallique par la couche de recouvrement afin de protéger l’armature métallique de l’humidité qui traverse le support 5.
Il est possible de couler une partie du deuxième mélange dans le fond des premières rainures 8 et/ou des deuxièmes rainures avant d’installer les tiges de l’armature métallique 6. Une fois que le deuxième mélange se solidifie, les tiges de l’armature métallique 6 sont installées dans le deuxième mélange qui peut avoir la consistance d’une pâte. Le deuxième mélange est assez visqueux pour s’opposer à la chute de l’armature métallique 6 sous son propre poids.
Une fois le deuxième mélange solidifié ou durant la solidification du deuxième mélange présent dans le fond des rainures, le reste du deuxième mélange est coulé pour remplir les rainures.
En alternative, l’armature métallique 6 est maintenue à distance du fond des rainures par un dispositif de support, par exemple une grue ou un dispositif équivalent ou par des pions disposés dans le fond des rainures. Le deuxième mélange est coulé alors que l’armature métallique 6 est supportée.
L’armature métallique 6 est séparée de la paroi inférieure du plancher 3 par le support 5 qui contient des particules d’un élément végétal. Le plancher 3 présente une bonne résistance thermique. Cette configuration permet d’améliorer la propriété anti-feu du plancher 3. Lorsque des flammes sont en contact de la surface inférieure du plancher 3, les flammes ne sont pas en contact direct avec les poutrelles. Le support 5 limite la propagation de la chaleur en cas d’incendie. En outre, le support 5 réalisé à partir d’un premier mélange permet de protéger les poutrelles d’une dilatation excessive qui pourrait survenir en cas d’incendie. Dans un mode de réalisation particulier, le sommet de l’armature métallique 6 a une partie apparente, c’est-à-dire qui fait saillie du deuxième mélange et des rainures. La plaque formée à ce stade du procédé est allégée puisque l’armature métallique 6 n’est pas entièrement enrobée.
Le deuxième mélange est majoritairement ou exclusivement un liant minéral de fixation, par exemple un béton ou un ciment. Le béton est un mélange de différents éléments, tels que du gravier, du sable, un liant et de l’eau. Le liant peut être un ciment ou de la chaux. Les proportions des différents éléments du béton varient selon la dureté du béton que l’on souhaite obtenir.
Dans un mode de réalisation particulier, une extrémité ou au moins une extrémité d’un support 5 possède une partie de liaison 10. La partie de liaison 10 est configurée pour coopérer avec la partie de liaison 10 complémentaire d’un support 5 adjacent pour former un plancher 3 plus grand comme cela est illustré sur les schémas de la figure 4. Dans une configuration particulière, les supports 5 sont utilisés séparément pour former des parties de plancher 3 et les parties de plancher 3 sont associées ensemble pour former un plancher 3. Dans un autre mode de réalisation, les supports 5 sont associés ensemble et l’armature métallique 6 est commune aux deux supports 5 adjacents. Il est également avantageux de couler le deuxième mélange sur les deux supports 5 adjacents pour réaliser une unité mécanique.
Dans un mode de réalisation, une seule étape de coulée du deuxième mélange est réalisée pour remplir les rainures et recouvrir complètement l’armature métallique 6 et former la couche de recouvrement 7. La composition du deuxième mélange est sensiblement identique sur toute la hauteur de la couche de recouvrement 7. Dans une alternative de réalisation, la couche de recouvrement 7 est réalisée avec plusieurs étapes successives de coulées du deuxième mélange. La composition entre les coulées peut être identique ou elle peut varier. Il est possible de prévoir que la partie supérieure du plancher 3 soit formée par une couche de béton qui est dépourvue de particules en matériau végétal voire que toute la couche de recouvrement 7 soit un béton dépourvu de particules en matériau végétal.
Dans une configuration particulière illustrée à la figure 4c, les premières poutrelles sont reliées les unes aux autres par un treillis 11 qui est disposé au-dessus des rainures. Le treillis 11 peut être fixé aux poutrelles par exemple par soudure ou par d’autres moyens, par exemple des câbles sont utilisés afin d’assurer une connexion mécanique sans le deuxième mélange. En alternative, la liaison mécanique entre le treillis 11 et les poutrelles est réalisée par le deuxième mélange.
Les figures 4a à 4c représentent un mode de réalisation particulier d’un mode de mise en œuvre d’un procédé de fabrication d’un plancher. Le procédé de fabrication du plancher comprend :
- une fourniture d’un support 5 monobloc définissant des première rainures 8 et des deuxièmes rainures ;
- un placement de premières tiges métalliques 9 dans les premières rainures 8 et de deuxièmes tiges métalliques dans les deuxièmes rainures, les première et deuxième tiges métalliques formant préférentiellement une armature métallique 6 autoportante,
- un coulage du deuxième mélange dans les premières rainures 8 et les deuxièmes rainures de manière à former une poutre armée dans chacune des premières et deuxièmes rainures et fixer l’armature 6 au support 5. Les première et deuxième poutres armées s’étendent selon des directions sécantes dans un même plan.
Sur la figure 4c, on a représenté un mode de mise en œuvre d’un procédé de fabrication d’un plancher 2 et le procédé comprend en plus :
- une fourniture d’un plancher 3 tel que défini ci-avant ; et
- un coulage d’une couche de recouvrement 7 formant la partie supérieure du plancher 3. La couche de recouvrement 7 est formée à partir du deuxième mélange qui préférentiellement contient majoritairement ou exclusivement du béton. Lorsqu’on coule le revêtement en béton, on peut ajouter le treillis métallique 11 , de manière à fournir une couche de recouvrement 7 en béton armé.
Comme illustré à la figure 5, le plancher 3 comporte plusieurs premières poutres armées disposées horizontalement ou sensiblement horizontalement. Les premières poutres s’étendent selon la première direction A. Les premières poutres sont connectées entre elles par des deuxièmes poutres armées qui s’étendent selon une deuxième direction sécante à la première direction. Les poutres armées formes une grille de support sur laquelle sont fixés les connecteurs disposés en saillie du support. La grille de support assure la tenue mécanique du bloc de construction lors des opérations de levage. Les trous du plancher de support sont remplis par le premier mélange qui est moins dense que le matériau formant la grille du support. La figure 6 illustre une configuration dans laquelle le support 5 a été éliminé. Dans la partie droite du plancher 3, la couche de recouvrement 7 est présente. Cette dernière a été éliminée dans la partie gauche qui représente alors les poutres armées.
Cette configuration permet de former un plancher 3 dont la masse est réduite grâce à l’utilisation d’un support 5 chargé avec des particules végétales et dont la tenue mécanique est suffisante pour supporter les contraintes mécaniques correspondant à un plancher 3.
Le plancher 3 possède des connecteurs qui font saillie aux extrémités des premières rainures 8, c’est-à-dire au-delà du support 5. Les connecteurs sont configurés pour assurer le levage du bloc de construction 1 lors des phases de transport et de positionnement. Les connecteurs sont fixés aux poutres armées pour autoriser le levage du bloc de construction uniquement au moyen du plancher 3. Le bloc de construction 1 possède un mur 4, parmi la pluralité de murs 4, qui comporte une réservation traversante 12. La réservation traversante 12 définit par exemple une porte, une fenêtre, une porte-fenêtre ou un passage traversant entre deux blocs de construction.
Les murs 4 sont fixés au plancher 3 et les murs 4 sont fixés entre eux. Les murs 4 et le plancher 3 forment un élément monobloc et transportable. La structure est suffisamment solide et rigide pour autoriser le transport du bloc de construction sans que cela ne se traduise par une déformation du second œuvre qui est formé à l’intérieur du bloc de construction. Par exemple, le bloc de construction peut posséder une ou plusieurs fenêtres et/ou une ou plusieurs portes. Il est également possible que le bloc possède une circuiterie électrique et/ou une circuiterie hydraulique avant son accouplement à un autre bloc de construction 1 .
Les murs 4 de la pluralité de murs 4 sont réalisés dans un troisième mélange qui comporte un liant minéral et des particules d’un matériau végétal. Les particules d’un matériau végétal sont noyées dans le liant minéral, la proportion volumique en particules d’un matériau végétale dans le troisième mélange étant supérieure à 50%. Le troisième mélange comporte au moins 50% volumique de particules de matériau végétal. Cette forte teneur en particules de matériau végétal permet de réduire la densité du mur et donc le poids final du bloc de construction 1. Les particules de matériau végétal sont noyées dans le liant minéral, c’est-à-dire que les particules sont complètement recouvertes par le liant minéral sauf éventuellement sur les faces externes du mur. Les particules de matériau végétal possèdent une dimension maximale qui est inférieure à l’épaisseur du mur 4. Les particules de matériau végétal sont liées les unes aux autres par le liant minéral. Les particules de matériau végétal peuvent être de tailles différentes. Un élément organique d’origine végétal peut être du bois, de la paille, de la cellulose, du chanvre ou du liège. Les particules de matériau végétal sont préférentiellement des particules en bois. De manière préférentielle, les particules de matériau végétal sont majoritairement du bois (en volume). Le troisième mélange est conforme à la définition donnée plus haut pour le premier mélange. Dans un mode de réalisation particulier, le troisième matériau formant les murs 4 est identique au premier matériau formant le support 5.
Les murs 4 sont réalisés dans un matériau qui est plus léger que leur équivalent uniquement en béton ou en béton armé ce qui permet de former un bloc de construction plus léger et donc plus facilement transportable. Les murs réalisés en liant minéral et en particules de matériau végétal sont moins performants mécaniquement que leur équivalent en béton et en béton armé. Les murs sont dépourvus de connecteurs assurant le levage du bloc de construction car les murs ne sont pas en mesure de supporter une telle opération. Les murs peuvent être dépourvus d’un treillis métallique. Il est avantageux que la teneur en particule de matériau végétal soit identique d’une extrémité à l’autre du mur dans le sens de la longueur et dans le sens de la hauteur ce qui facilite sa fabrication et réduit les risques de contraintes et donc de vieillissement accéléré liés à des phénomènes de dilatation différentielle.
Les murs 4 définissent, sur leur paroi externe, une rainure verticale 13 s’étendant sur la hauteur des murs 4. La rainure verticale 13 débouche préférentiellement sur les connecteurs en saillie du plancher 3 et notamment du support 5 et des poutres armées. L’utilisation de murs 4 en un matériau comportant un liant minéral et des particules de matériau végétal permet de former un mur perspirant ce qui améliore la qualité de vie dans le logement. Cependant, l’utilisation de murs 4 en liant minéral avec des particules de matériau végétal se traduit par une dégradation des performances mécaniques des murs 4 ce qui complique fortement l’installation d’un toit lourd ou la fabrication d’un bâtiment 2 avec plusieurs étages.
Le bloc de construction 1 est avantageux car la rainure 13 forme une partie de moule pour la réalisation d’un pylône 14 vertical ou poteau vertical. Le pylône 14 vertical est réalisé en béton ou dans tout autre matériau présentant des performances mécaniques supérieures à celles du matériau formant les murs 4, par exemple le deuxième mélange. Le matériau est coulé dans le moule pour former le pylône 14. Le pylône 14 vertical est formé par un quatrième mélange qui peut être un béton dépourvu de particules en matériau végétal ou un béton qui contient moins de 20% volumique de particules en matériau végétal.
Une fois le bloc de construction 1 installé, il est possible de former rapidement un pylône de renforcement 14, comme cela est illustré à la figure 3. Le mur 4 est réalisé dans un matériau contenant une forte proportion de particules végétales ce qui génère de la rugosité. Le béton coulé dans la rainure 13 va s’insérer dans les anfractuosités ce qui améliore la connexion mécanique entre le pylône 14 et le mur 4.
De manière avantageuse illustrée aux figures 1 et 2, le plancher 3 comporte un renfoncement à l’extrémité des premières rainures 8. Le renfoncement permet d’avoir des connecteurs qui sont disposées en saillie de la première rainure 8 pour être facilement accessibles sans augmenter l’encombrement du bloc de construction 1 . De manière préférentielle, à l’exception des renfoncements, la face externe du mur 4 est plane ou sensiblement plane et les connecteurs ne font pas saillie de cette surface plane afin que le pylône 14 puisse être formé dans l’encombrement initial du bloc de construction 1. L’installation des connecteurs dans un renfoncement du bloc de construction 1 permet de placer un bloc de construction 1 en contact ou quasiment en contact d’un bloc de construction adjacent. Le renfoncement est préférentiellement présent dans le support 5.
De manière avantageuse, une ou plusieurs tiges ou vis sont installées dans la rainure verticale 13 avant de couler le quatrième mélange de manière à augmenter la qualité de la liaison mécanique qui existe entre le mur 4 et le pylône 14.
Dans un mode de réalisation particulier, les connecteurs définissent au moins un anneau 15 et/ou un crochet en saillie du plancher 3 pour le levage du bloc de construction 1 . Les premières tiges métalliques 9 sont installées dans une poutre en béton ou tout autre matériau ayant une meilleure tenue mécanique que le support 5. Les anneaux/crochets 15 sont fixés dans les poutres en béton armé ce qui permet de réaliser facilement le levage du bloc de construction au moyen du plancher 3 et non au moyen des murs 4. Préférentiellement, les premières tiges métalliques 9 définissent au moins un anneau 15 et/ou un crochet en saillie du support 5 formant les connecteurs.
Le document W02020/016531 divulgue un plancher formé par un support réalisé dans un matériau durcissable enrobant des particules de bois et qui définit des rainures recevant un ferraillage. A la différence de cet art antérieur, il est prévu d’utiliser la résistance mécanique du plancher 3 pour supporter le bloc de construction préfabriqué et d’utiliser les tiges métalliques 9 maintenues fixement au plancher pour réaliser la reprise d’effort de la construction finale.
Dans un mode de réalisation particulier, au moins un renfoncement et de préférence chaque renfoncement possède un connecteur sous la forme d’un anneau ou d’un crochet pour réaliser le levage du bloc de construction 1 et une armature additionnelle préférentiellement sous la forme d’un anneau et destiné à transmettre les efforts entre le plancher 3 et le pylône 14. L’armature additionnelle correspond préférentiellement à un ou plusieurs anneaux plus grands que l’anneau du connecteur. L’armature additionnelle peut être formée par une ou plusieurs première tiges métalliques 9.
Dans un autre mode de réalisation particulier, les premières tiges métalliques 9 possèdent une première portion de connexion ou portion de connexion montante 9a qui est montée en saillie du support 5 et qui est coudée pour s’installer dans la rainure verticale 13 de la paroi externe d’un des murs 4. Lors de l’opération de coulage du quatrième mélange pour former le pylône de renforcement 14, les portions de connexion montantes 9a qui remontent le long du mur 4 augmentent la tenue mécanique du pylône 14 et notamment les performances mécaniques verticales du bloc de construction 1. La première tige métallique 9 assure la continuité mécanique de la reprise d’effort entre le plancher 3 et le pylône de renforcement 14. Il est également avantageux de prévoir que les premières tiges métalliques 9 possèdent une autre portion de connexion, dite portion de connexion descendante 9b qui est disposée en saillie du plancher 3 et notamment en saillie du support 5 et qui est coudées pour faire saillie du plancher 3 vers le bas dans le prolongement de la direction longitudinale de la rainure verticale 13 associée pour s’insérer dans la rainure verticale 13 du bloc de construction inférieur.
En d’autres termes, les parties de connexion 9a et 9b sont coudées et se dirigent vers le bas sous le niveau du plancher 3 ou vers le haut le long du mur 4. Les premières tiges 9 s’étendent dans le plan du plancher 3 selon la direction longitudinale des premières rainures 8 avant de se couder. Les premières tiges 9 s’étendent également dans la rainure verticale 13 selon une direction perpendiculaire ou sensiblement perpendiculaire à la face supérieure du plancher 3. Les premières tiges 9 s’étendent continûment depuis les premières rainures 8 jusqu’aux rainures verticales 13 du bloc de construction 1 ou du bloc de construction 1 inférieur.
Il est intéressant de prévoir la formation d’une dalle destinée à supporter le bloc de construction 1 et de former un trou à l’intérieur de la dalle pour recevoir les portions de connexion descendantes 9b dirigées vers le bas. Lorsque le pylône 14 est coulé, il comporte une partie formant une portion armée qui s’étend à l’intérieur de la dalle. Cette configuration est également très intéressante lorsque plusieurs blocs de construction 1 sont montés les uns sur les autres. La rainure verticale 13 du bloc de construction 1 inférieur est prolongée par la rainure verticale du bloc de construction 1 supérieur. Les tiges métalliques 9 coudées vers le bas permettent de renforcer la tenue mécanique du pylône 14 de renforcement dans la portion qui fait le lien mécanique entre le plancher 3 du niveau supérieur et la portion de pylône 14 du niveau inférieur. La figure 3 illustre un mode réalisation où le pylône 14 s’étend sur plusieurs étages et connecte plusieurs blocs de construction 1 montés les uns sur les autres. De manière avantageuse, une fois le bloc de construction 1 inférieur posé, le pylône 14 est coulé en partie. Le pylône 14 n’est pas formé sur toute la hauteur du mur 4, mais sur une partie seulement de manière à laisser la place pour l’insertion des portions de connexion descendantes 9b coudées du bloc de construction 1 supérieur. La portion de pylône14 qui a été coulée renforce la tenue mécanique du mur 4 du bloc déjà en place ce qui permet de supporter l’installation du bloc de construction 1 supérieur sur le bloc de construction 1 inférieur. Une fois le bloc de construction 1 supérieur posé sur le bloc de construction 1 inférieur, une nouvelle coulée de béton peut être réalisée pour prolonger le pylône de renforcement 14 sur un étage supplémentaire. Le pylône de renforcement 14 est préférentiellement formé étage par étage, au fur et à mesure que les blocs de construction 1 sont montés les uns sur les autres. Cette construction permet de relâcher les contraintes mécaniques sur les murs des blocs de construction et donc réduire le poids du bloc de construction. En alternative, le pylône 14 est coulé en une fois pour plusieurs étages. Il est encore possible de prévoir que le pylône soit formé en plusieurs étapes. Par exemple, le pylône s’étend sur plusieurs étages, de préférence au moins quatre étages et le pylône est réalisé en au moins deux ou trois étapes.
De manière préférentielle, le pylône 14 possède plusieurs tiges métalliques noyées sur sa hauteur pour former un pylône armé.
Il est possible de former un bâtiment 2 comportant un rez-de-chaussée et un ou plusieurs étages en utilisant des blocs de construction 1 empilés les uns sur les autres. De manière préférentielle, les murs sont dépourvus de renfort en tiges métalliques pour limiter le poids des murs et donc le poids du bloc de construction. En s’abstenant d’utiliser des tiges métalliques de renfort, il est plus difficile de reprendre les efforts verticaux, c’est-à-dire le poids des blocs de construction et autres charges montés sur le bloc de construction. En l’absence de tiges métalliques, il est plus difficile de supporter les efforts dynamiques, par exemple les sollicitations présentes dans les zones sismiques ou le vent. Cependant, en formant un pylône de renforcement 14 qui s’étend depuis le sol et qui connecte continûment tous les blocs de construction 1 empilés les uns sur les autres, il est possible de renforcer la structure. On profite d’un bloc de construction 1 dont la masse est réduite ce qui facilite le transport et le positionnement du bloc de construction 1. On réalise ensuite une étape de renforcement des murs 4 au moyen d’un pylône 14 qui est une poutre verticale qui se fixe aux extrémités des premières tiges 9. Cette architecture permet de former une structure porteuse résistante avec peu d’opérations supplémentaires après l’installation du bloc de construction 1. Les pylônes 14 se fixent directement aux planchers 3 au moyen des première tiges métalliques 9. Les poteaux verticaux 14 et les poutres armées du plancher 3 forment l’ossature porteuse du bâtiment.
Afin de fixer les murs 4 sur le plancher 3, il est avantageux d’utiliser des vis 16. Les vis 16 connectent un mur 4 au support 5 en traversant la couche de recouvrement 7. La forte teneur en particules de matériau végétal permet de réaliser un vissage directement dans le mur 4 sans avoir à réaliser préalablement un trou et sans avoir à utiliser une cheville ou un scellage chimique. Il en va de même pour le support 5. Il est donc avantageux de fixer le mur 4 au support 5 au moyen d’une ou plusieurs vis 16 sans utilisation d’un scellage chimique et sans cheville. La vis 16 est directement au contact des particules de matériau végétal. En comparaison dans une structure en béton, il est nécessaire de faire un trou préalable puis de remplir ce trou par une cheville ou un scellage chimique pour s’assurer que la vis reste en place malgré les sollicitations. Il est également possible de réaliser la fixation du mur 4 avec le plancher 3 par une colle, par exemple un béton colle ou un mortier colle, associée ou non à des vis.
Dans un autre mode de réalisation illustré à la figure 13, un lien métallique 17 réalise la connexion mécanique entre le mur 4 et le plancher 3. Dans un mode de réalisation préférentiel, une partie du lien métallique 17 est noyée dans le mur 4. Le mur 4 est réalisé en versant le troisième mélange dans un moule. Une partie du lien métallique 17 est installée dans le moule de manière à être complètement enrobée par le troisième mélange. Lorsque le troisième mélange durcit, le lien métallique 17 devient indémontable par rapport au mur 4. Avantageusement, le lien métallique 17 possède des moyens d’anti-rotation du lien métallique 17 par rapport au mur 4 ainsi que des moyens bloquant la translation du lien métallique 17 par rapport au mur 4. Il est préférable que le lien métallique 17 soit monté fixement au mur 4.
La portion saillante du lien métallique 17 est installée dans le plancher 3. De manière préférentielle, la portion saillante du lien métallique 17 est installée dans le moule utilisé pour former le plancher 3. Avantageusement, la portion saillante est installée dans le moule utilisé pour le versement du deuxième mélange. La portion saillante est alors incorporée dans une des poutres armées du plancher 3. La portion saillante est montée fixement par rapport au plancher 3. Il est préférable que le lien métallique 17 présente une portion coudée qui réalise la liaison mécanique entre le mur et le plancher.
Dans un mode de réalisation particulier, le lien métallique 17 fait saillie de la paroi inférieure du mur 4. La paroi inférieure du mur 4 est posée sur le support 5 qui forme le moule pour le versement du deuxième mélange. Le deuxième mélange est versé qui remplit les rainures du support 5, l’armature métallique 6 et le lien métallique 17 de préférence jusqu’à atteindre la paroi inférieure du mur 4. Une fois le deuxième mélange durci, le mur 4 est scellé au plancher 3.
Afin d’améliorer la tenue mécanique du bloc de construction 1 , les murs 4 sont préférentiellement fixés à un anneau de renforcement disposé dans la partie sommitale des murs 4. L’anneau de renforcement permet de réduire la flexion du mur 4 par rapport à son point d’ancrage sur le plancher 3. L’anneau de renforcement ou bloc de renforcement peut être en bois ou en matériau métallique ou en tout autre matériau adapté.
De manière préférentielle, un bâtiment 2 comporte deux blocs de construction 1 disposés adjacents dans un même niveau de sorte que les rainures verticales 13 soient disposées en vis-à-vis et forment un premier moule qui s’étend sur la hauteur des murs. Les deux rainures verticales 13 débouchent l’une et l’autre sur les extrémités des premières tiges 9 qui font saillies des deux planchers 3 également disposés adjacents. Les extrémités des premières tiges 9 des deux blocs de construction 1 sont présentes dans un même moule. Le moule est ouvert dans sa portion sommitale pour autoriser le coulage du quatrième mélange. Le moule est avantageusement ouvert dans la partie inférieure pour laisser passer la portion de connexion 9b le cas échéant.
Les deux rainures verticales 13 formées dans les parois externes des deux blocs de construction 1 adjacents se rejoignent pour former un premier moule qui débouche sur les premières tiges métalliques 9. Les deux parois externes des murs 4 sont en contact ou sont séparées d’une distance telle que lorsque le quatrième mélange est coulé dans le moule, le quatrième mélange reste dans le moule. Le quatrième mélange remplit le moule et reste dans le moule ou s’étend sur une distance de quelques centimètres hors du moule. Le quatrième mélange remplit le moule et recouvre complètement les extrémités des premières tiges 9 des deux blocs de construction 1. Lorsque le quatrième mélange durcit, il réalise la connexion mécanique entre les deux planchers 3 et les deux murs 4 adjacents.
De manière préférentielle, deux blocs de constructions adjacents d’un même étage, sont séparés par un matériau isolant, par exemple une fine couche d’air pour réduire la conduction thermique entre deux murs. Il est avantageux de disposer un matériau compressible, de préférence un matériau isolant compressible sur le mur 4 dans le prolongement des parois latérales de la rainure verticale 13. Lorsque deux blocs de construction 1 sont mis en contact, le matériau compressible se comprime et assure l’étanchéité du moule avant de couler le quatrième mélange. Le matériau compressible est thermiquement isolant lorsqu’il possède une résistance thermique supérieure à celle du matériau formant le mur 4.
Il est également possible d’installer des tiges métalliques dans le moule formé par les deux rainures latérales 13 pour renforcer la tenue mécanique du pylône 14. Lorsque le bâtiment 2 comporte deux blocs de construction 1 adjacents sur un même étage et deux blocs de construction 1 adjacents sur un niveau supérieur, les rainures verticales 13 d’un même niveau sont disposées en vis-à-vis pour former un premier moule et un deuxième moule. Les deux moules se rejoignent et se prolongent. Le coulage du quatrième mélange permet de former un pylône 14 qui couple mécaniquement les murs 4 adjacents des deux niveaux ainsi que les deux planchers 3. Les pylônes 14 forment une ossature en béton qui assure la tenue mécanique du bâtiment 2.
Les blocs de construction 1 offrent une plus grande liberté dans la construction des bâtiments 2. L’utilisation d’un mélange d’un liant minéral et des particules de matériau végétal dont la proportion volumique est supérieure à 50% permet de former des murs 4 qui présentent une bonne isolation acoustique, une bonne résistance au feu tout en profitant de la rapidité de montage liée au bloc préfabriqué.
Une fois réalisé, le bloc de construction 1 est déplacé de son lieu de fabrication jusqu’à son lieu d’utilisation. Les blocs de construction 1 sont disposés les uns à côté des autres ou les uns sur les autres pour former le bâtiment 2. Le renforcement de la structure mécanique du bâtiment est réalisé par le coulage des pylônes 14 sur les parois externes des blocs de construction. Il est donc particulièrement avantageux de réaliser au moins une partie du second œuvre à l’intérieur du bloc de construction 1 car les parois internes du bloc de construction ne sont pas travaillées lors du montage du bâtiment 2. Cela permet de gagner du temps sur la fabrication du bâtiment 2.
Sur les figures 7 à 10, on a représenté différents modes de réalisation particuliers d’un panneau destiné à la fabrication d’un mur 4. En particulier les figures 7, 8 et 9 illustrent un panneau destiné à fabriquer un mur de façade, c’est-à-dire que le panneau a une forme globalement parallélépipédique. La figure 9 illustre un panneau destiné à fabriquer un mur d’angle, c’est-à-dire que le panneau comporte deux pièces perpendiculaires entre elles. De manière générale, le panneau est particulièrement adapté pour réaliser un mur d’un bâtiment à un ou plusieurs étages. Le panneau est destiné à être placé verticalement par rapport au sol.
Le panneau 1 comporte au moins une pièce monobloc 18. Plus particulièrement les pièces monobloc 18 sont chacune réalisées dans le troisième mélange, c’est- à-dire un liant minéral tel que du béton au sein duquel sont noyés des particules d’un élément végétal par exemple du bois. Les éléments en bois sont des plaquettes de bois ayant une longueur comprise entre 10 et 100 mm, de préférence entre 20 et 60 mm. Ces plaquettes de bois ont une épaisseur comprise entre 1 mm et 5 mm. Lorsqu’on utilise des plaquettes de bois ayant une longueur entre 20 et 60 mm, on obtient des microcavités en surface de la pièce monobloc 18, du fait que le béton enrobe les plaquettes de bois. Plus particulièrement, on obtient une distribution des cavités en surface représentant entre 30% et 50% de la surface totale de la pièce monobloc 18. En outre, on obtient une rugosité comprise entre 6 et 15 mm. La rugosité correspond à la hauteur maximum entre un sommet et un creux de la surface. On note que le béton brut coffré, c'est-à-dire les éléments de construction réalisés en béton brut avec un coffrage, ont une rugosité comprise entre 0,3 et 3 mm et une distribution des cavités en surface inférieure à 30% de la surface totale de l’élément de construction. Ainsi, grâce au matériau béton-bois utilisant des plaquettes de longueur comprise entre 20 et 60 mm, on crée plus de microcavités et des microcavités qui sont plus profondes qu’un béton brut. Une pièce monobloc 18 réalisée avec un tel matériau béton-bois procure des microcavités importantes, en nombre et en profondeur, permettant à un produit durcissable de s’introduire dans ces microcavités. Ainsi on obtient une liaison forte entre le produit durcissable et la pièce monobloc en béton-bois 18. En outre, on peut utiliser un rapport massique de plaquettes de bois compris entre 30% et 70% de la masse totale de la pièce monobloc 18.
La masse volumique du béton-bois obtenue est comprise entre 600 et 1000 kg/m3, en faisant varier la composition du matériau, de préférence elle est égale à 800 kg/ m3. On obtient ainsi un matériau plus léger que le béton brut, c’est-à-dire un béton qui ne comporte pas d’éléments en bois et dont la masse volumique est d’environ 2300kg / m3.
Dans un mode de réalisation particulier, le panneau comporte au moins un logement 19 destiné à recevoir un élément de renfort 20 résistant à la flexion. De manière préférentiellement, le logement 19 est traversant sur la hauteur du mur 4.
Un élément de renfort 20 est un élément qui possède une structure allongée configurée pour améliorer la résistance à la flexion du panneau destiné à former le mur 4. Plus particulièrement, chaque élément de renfort 20 est formé d’un ou plusieurs renforts mécaniques 21 qui se présentent sous la forme d’un élément allongé 21 enrobé d’un produit durcissable comprenant un liant. Le renfort mécanique 21 a une forme allongée. Chaque renfort mécanique 21 peut être une tige ou une barre. Par exemple, on a représenté sur les figures 5 à 8 un élément de renfort 20 comprenant quatre renforts mécaniques 21. Les renforts mécaniques peuvent être en fibre de verre ou en carbone, et ils sont préférentiellement en métal. Le produit durcissable est de préférence un béton. L’élément de renfort 20 peut être une poutre en béton armée qui améliore la résistance à la flexion du panneau. L’utilisation un élément de renfort 20 formé par une poutre en béton armé procure une meilleure résistance à la flexion en comparaison d’une structure équivalente intégralement en bois ou en béton.
Les murs 4 en béton-bois permettent de réaliser différentes opérations de finition, comme réaliser un enduit (qui est difficile à faire sur du béton brut coulé), et de fixer directement des moyens de maintien des panneaux sur chantier, comme par exemple des plaques en métal qui peuvent être facilement vissées directement sur le béton-bois.
La figure 5 illustre un élément monobloc 18 avec un trou traversant dans le sens de la hauteur. Le mur 4 se présente sous la forme d’un anneau de manière à définir un logement 19 pour la réalisation de l’élément de renfort 20. Le trou traversant n’est pas une rainure. A la différence d’une rainure, un orifice traversant débouche uniquement sur deux surfaces de la pièce.
Sur la figure 8, on a représenté un autre mode de réalisation du mur 4, dans lequel au moins deux pièces monoblocs 18 sont séparées entre elles par un élément de renfort 20 qui s’étend sur toute la hauteur du mur ainsi que sur toute l’épaisseur du mur 4. L’élément de renfort 20 est fixé aux deux pièces monoblocs 18 pour former un mur 4 autoportant et transportable. De manière préférentielle, les deux pièces monoblocs 18 sont formées préalablement et elles possèdent des éléments en saillies, par exemple des vis qui seront noyées dans le béton lors de la réalisation de l’élément de renfort 20. La figure 8 illustre également une ouverture traversante 12 qui traverse le mur 4. Comme indiqué précédemment l’ouverture traversante peut être utilisée pour installer une porte ou une fenêtre.
Sur la figure 9, on a représenté un panneau particulièrement adapté à la fabrication d’un mur d’angle. Le panneau comporte deux pièces monoblocs 18. Chaque pièce monobloc 18 est munie d’un épaulement 22. Les deux épaulements 22 sont agencés pour définir un logement 19 destiné à recevoir un élément de renfort 20. Le logement 19 est préférentiellement un trou traversant sur la hauteur du mur 4. Le logement 19 est rempli de béton et de renforts mécaniques 21 comme cela a été décrit précédemment.
Comme illustré à la figure 10, un mur de façade plan peut également être formé en utilisant deux éléments monobloc 18 muni chacun d’un épaulement 22. Les deux épaulements 22 forment un logement 19 destiné à recevoir un élément de renfort 20. Le logement 19 est préférentiellement un trou traversant sur la hauteur du mur 4. Le logement 19 est rempli de béton et de renforts mécaniques 21 comme cela a été décrit précédemment.
De manière préférentielle, un mur 4 muni d’un trou traversant 12 dans le sens de l’épaisseur comme cela est illustré aux figures 1 à 3 et 8 peut être renforcé par un élément de renfort 20. A la différence des configurations précédentes, l’élément de renfort 20 est noyé à l’intérieur du mur 4, c’est-à-dire enrobé par le troisième mélange sur toutes ses faces. De manière privilégiée, l’élément de renfort 20 possède une teneur en particules végétales qui est inférieure à la teneur du troisième mélange pour argumenter la résistance à la flexion. De préférence, l’élément de renfort 20 est en béton dépourvu de particules végétales et plus préférentiellement associé à des tiges métalliques. Par exemple, les éléments de renfort 20 sont au-dessus et en dessous d’un trou traversant 12.
Les panneaux renforcés par les éléments de renfort 20 sont résistants et peuvent être transportés facilement. Ils peuvent donc être préfabriqués en usine, puis être montés sur le plancher 3. On maîtrise d’autant mieux la fabrication des panneaux en usine. Cependant, ces configurations sont plus lourdes que des murs uniquement réalisés en troisième mélange. Il est donc avantageux de limiter l’utilisation de ces éléments de renfort aux configurations pour lesquelles les rainures latérales sont plus difficiles à mettre en œuvre ou doivent être complétées par un renfort additionnel.
Pour réaliser les murs 4, définis ci-avant, on réalise au moins une pièce monobloc 18 en béton-bois, on place un ou plusieurs renforts mécaniques 21 dans un logement 19, puis on coule le produit durcissable au sein du logement 19, autour du renfort mécanique 21 et en contact avec au moins une surface de la pièce monobloc 18. Un tel procédé permet d’augmenter la tenue mécanique de l’élément de renfort 20 avec la pièce monobloc 18. La liaison entre l’élément de renfort 20 et la pièce monobloc 18 est en outre renforcée grâce aux microcavités créées en surface de la pièce monobloc 18, et au versement du produit durcissable liquide qui s’introduit au sein de ces microcavités. Après durcissement du produit durcissable 14, on obtient une liaison forte résistante au cisaillement.
Les figures 11a à 11e illustrent les étapes d’un procédé de réalisation d’un mur conforme à la figure 7. Le procédé comporte une première étape S1 dans laquelle on verse le liant minéral à l’état liquide au sein duquel sont noyés les éléments de bois dans un moule 23 muni d’au moins une réservation 24 comme illustrée aux figure 11a et 11b. Par exemple, on peut placer un socle 25 au fond du moule 23 sur lequel est positionnée la réservation 24. Après durcissement du liant minéral, on obtient la pièce monobloc 8, comme illustré à la figure 11c. Puis, lors d’une deuxième étape, illustrée à la figure 11 c, on retire la réservation 24 afin de former au moins un orifice traversant au sein de la pièce monobloc 8. Puis, lors d’une troisième étape, illustrée aux figures 11 d et 11 e, on place un ou plusieurs renforts mécaniques 21 au sein de chaque orifice traversant formé, comme illustré sur les figures 11 d et 11e. Par exemple, on peut utiliser un ou plusieurs renforts mécaniques 21 plus haut que la hauteur de la pièce monobloc 8 pour obtenir un ou plusieurs renforts mécaniques 21 ayant une partie en saillie du produit durcissable et de l’élément monobloc 8. Les parties en saillie permettent de faciliter le chaînage de deux panneaux adjacents si nécessaire. Par exemple on utilise un autre liant minéral à l’état liquide pour relier les parties saillantes des renforts mécaniques entre elles. Puis, à l’étape S2, on verse le produit durcissable comprenant un liant au sein de chaque orifice traversant pour enrober les renforts mécaniques 21 et fixer l’élément de renfort 20 à la pièce monobloc 8, comme illustré aux figures 11 d et 11e.
Sur la figure 12 comportant les figures 12a à 12e, on a représenté les étapes d’un deuxième mode de mise en œuvre d’un procédé de fabrication d’un panneau destiné à former un mur 4. Selon ce deuxième mode de mise en œuvre, on fabrique un panneau comprenant au moins deux pièces monoblocs 8, tel qu’illustré à la figure 12b. Le procédé comporte une première étape de fourniture T1 d’au moins deux pièces monobloc 8 réalisées chacune en troisième mélange et séparées entre elles par au moins un logement 26, comme illustré à la figure 12b. En variante, l’étape de fourniture T1 comporte une étape initiale, illustrée à la figure 10a, dans laquelle on dispose au moins une réservation 24 au sein d’un moule 23, comme illustré à la figure 15a, puis un versement du troisième mélange, au sein du moule 23. Puis un retrait des réservations 24 est réalisé pour former les logements 26. Après l’étape T1 de fourniture, on place, lors d’une deuxième étape T2 illustrée à la figure 12c, un ou plusieurs renforts mécaniques 21 au sein de chaque logement 26. Préférentiellement, les renforts mécaniques 21 reposent sur des supports 27 pour centrer les armatures 13 au sein des logements 16. Puis, lors d’une troisième étape S2 illustrée à la figure 12d, on verse un produit durcissable comprenant un liant au sein de chaque logement 26 pour enrober chaque armature 13 et la fixer à deux pièces monoblocs 8 voisines. On entend par deux pièces monoblocs 8 voisines, deux pièces monoblocs 8 séparées par un logement 26. Puis, lors d’une quatrième étape illustrée à la figure 12e, on retire le moule 23 pour obtenir le panneau. Les supports 27 peuvent être retirés ou laissés au sein des logements 26.
Avantageusement, on maintient les pièces monoblocs 8 entre elles par des plaques en métal vissées dans le béton-bois ou des vis, avant de verser S2 le produit durcissable. Les plaques en métal permettent de limiter les efforts générés par le produit durcissable sur les pièces monoblocs 8.
Le panneau obtenu comporte des surfaces de contact importante entre la pièce monobloc 8 et l’élément de renfort 20. La pièce monobloc réalisée en troisième mélange présente de nombreuses microcavités, c’est-à-dire des orifices borgnes, créées par les éléments de bois. En effet, le béton enrobe les éléments en bois, ce qui crée les microcavités en surface de la pièce monobloc 8. Ainsi, lorsqu’on coule le produit durcissable au sein d’un logement prévu dans la pièce monobloc, le produit va remplir les nombreuses microcavités pour augmenter la surface de liaison entre l’élément de renfort 20 et la pièce monobloc 8. On augmente d’autant plus la surface de liaison avec un orifice traversant débouchant au niveau de deux extrémités de la pièce monobloc 8. On obtient ainsi une liaison forte entre le produit durcissable et le béton-bois, ce qui offre une grande adhérence de l’élément de renfort 20 à la pièce monobloc 8.
Ainsi, on fournit un panneau qui permet de réaliser plus rapidement un mur adapté aux normes antisismiques, car il incorpore des éléments de renfort ayant une résistance à la flexion renforcée. En outre, un tel panneau est simple à réaliser. Avantageusement, le panneau est résistant et plus léger qu’un panneau réalisé en béton brut.

Claims

Revendications
1. Bloc de construction (1 ) pour la fabrication d’un bâtiment (2) comportant :
- un plancher (3) ;
- une pluralité de murs (4), au moins un mur (4) de la pluralité de murs (4) comportant une réservation traversante (12), les murs (4) de la pluralités de murs (4) étant fixés au plancher (3) et fixés entre eux ; dans lequel le plancher (3) comporte un support (5) et une armature métallique (6) comportant une pluralités de premières tiges métalliques (9) disposées dans les premières rainures (8) et de deuxièmes tiges métalliques disposées dans les deuxièmes rainures, ; dans lequel les murs (4) définissent, sur leur paroi externe, une rainure verticale (13) s’étendant sur la hauteur des murs (4) ; caractérisé en ce que le plancher (3) comporte un support (5) réalisé dans un premier mélange comportant un liant minéral et des particules d’un matériau végétal, les particules étant noyées dans le liant minéral, la proportion volumique en particules d’un matériau végétal dans le premier mélange étant supérieure à 50% , le support (5) définissant une pluralité de premières rainures (8) et de deuxièmes rainures, les premières rainures (8) s’étendant d’une extrémité à l’autre du support (5) et dans lequel les premières rainures (8) présentent une première direction longitudinale sécante à une deuxième direction longitudinale des deuxièmes rainures ; en ce que les premières tiges métalliques (9) sont disposées dans les premières rainures (8) et les deuxièmes tiges métalliques sont disposées dans les deuxièmes rainures ; en ce que le plancher (3) comporte un deuxième mélange remplissant les premières rainures (8) et les deuxièmes rainures et recouvrant complètement l’armature métallique (6) et le support (5) pour former des poutres armées, le deuxième mélange possédant une proportion volumique en particules d’un matériau végétal inférieure à 20% ; en ce que l’armature métallique (6) possède des connecteurs disposés en saillies du support (5) aux deux extrémités des premières rainures (8) selon la première direction longitudinale pour le levage du bloc de construction (1) ; et en ce que les murs (4) de la pluralité de murs (4) sont réalisés dans un troisième mélange qui comporte un liant minéral et des particules d’un matériau végétal, les particules étant noyées dans le liant minéral, la proportion volumique en particules d’un matériau végétal dans le troisième mélange étant supérieure à 50% ; et en ce que la rainure verticale (13) débouche sur les connecteurs en saillie du support (5) et les poutres armées.
2. Bloc de construction (1) selon la revendication 1 dans lequel les premières tiges métalliques (9) définissent au moins un anneau (15) et/ou un crochet en saillie du support (5) formant les connecteurs.
3. Bloc de construction (1) selon la revendication 2 dans lequel les premières tiges métalliques (9) possèdent une portion de connexion montante (9a) saillante du support (5), la portion de connexion montante (9a) étant coudée pour s’installer dans la rainure verticale (13) de la paroi externe d’un des murs (4).
4. Bloc de construction (1) selon l’une des revendications 1 à 3 dans lequel les premières tiges métalliques (9) possèdent une portion de connexion descendante (9b) disposée en saillie du support (5), la portion de connexion descendante (9b) est coudée pour faire saillie du plancher (3) dans le prolongement de la direction longitudinale de la rainure verticale (13) d’un des murs (4).
5. Bloc de construction (1) selon l’une des revendications 1 à 4 dans lequel les murs (4) sont fixés au plancher (3) au moyen d’une pluralités de vis (16).
6. Bloc de construction (1) selon l’une des revendications 1 à 5 dans lequel un mur (4) de la pluralité de murs (4) est formé par deux pièces monoblocs (8) réalisées en troisième mélange et séparées entre elles par un logement, le logement étant rempli de béton durci et au moins une tige métallique (21) au moins partiellement noyé dans le béton durci, le béton ayant une teneur volumique en particules d’un matériau végétal inférieure à celle du troisième mélange ou nulle.
7. Bâtiment (2) comportant un premier et un deuxième blocs de construction (1) selon l’une quelconque des revendications précédentes dans lequel le premier bloc de construction (1) est monté adjacent au deuxième bloc de construction (1) de sorte que la rainure verticale (13) du premier bloc de construction (1) se trouve en vis-à-vis de la rainure verticale (13) du deuxième bloc de construction (1) pour former un premier moule recevant un pylône (14) en béton.
8. Bâtiment selon la revendication 8 comportant un troisième et un quatrième blocs de construction (1) selon l’une quelconque des revendications 1 à 6 dans lequel le troisième bloc de construction (1) est monté adjacent au quatrième bloc de construction (1) de sorte que la rainure verticale (13) du troisième bloc de construction (1) se trouve en vis-à-vis de la rainure verticale (13) du quatrième bloc de construction (1) pour former un deuxième moule recevant un pylône (14) en béton, le troisième bloc de construction (1) étant monté sur le premier bloc de construction (1), le quatrième bloc de construction (1) étant monté sur le deuxième boc de construction (1), le deuxième moule prolongeant le premier moule.
9. Procédé de fabrication d’un bâtiment (2) comportant les étapes suivantes :
- fournir un premier et un deuxième blocs de construction (1) selon l’une quelconque des revendications 1 à 6 ;
- disposer le premier bloc de construction (1) adjacent au deuxième bloc de construction (1) de sorte que la rainure verticale (13) du premier bloc de construction (1) se trouve en vis-à-vis de la rainure verticale (13) du deuxième bloc de construction (1) pour former un premier moule ;
- couler du béton dans le premier moule pour former un pylône (14) en béton.
PCT/EP2022/060936 2021-04-23 2022-04-25 Bloc de construction pour la fabrication d'un batiment et procédé de fabrication d'un batiment WO2022223845A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22725253.3A EP4326951A1 (fr) 2021-04-23 2022-04-25 Bloc de construction pour la fabrication d'un batiment et procédé de fabrication d'un batiment
CA3216409A CA3216409A1 (fr) 2021-04-23 2022-04-25 Bloc de construction pour la fabrication d'un batiment et procede de fabrication d'un batiment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2104267A FR3122200B1 (fr) 2021-04-23 2021-04-23 Bloc de construction pour la fabrication d’un batiment et procédé de fabrication d’un batiment
FRFR2104267 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022223845A1 true WO2022223845A1 (fr) 2022-10-27

Family

ID=75954128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/060936 WO2022223845A1 (fr) 2021-04-23 2022-04-25 Bloc de construction pour la fabrication d'un batiment et procédé de fabrication d'un batiment

Country Status (4)

Country Link
EP (1) EP4326951A1 (fr)
CA (1) CA3216409A1 (fr)
FR (1) FR3122200B1 (fr)
WO (1) WO2022223845A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045078A2 (fr) * 1999-04-14 2000-10-18 Simon Alexander Systême de construction modulaire de bâtiments
WO2009112037A1 (fr) 2008-03-14 2009-09-17 Buildpod International Ltd Élément de construction autoportant préfabriqué
WO2020016531A1 (fr) 2018-07-17 2020-01-23 Constructions Composites Bois Plaque et dalle destinees a realiser un plancher ou une paroi et procedes de fabrication de telles plaque et dalle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045078A2 (fr) * 1999-04-14 2000-10-18 Simon Alexander Systême de construction modulaire de bâtiments
WO2009112037A1 (fr) 2008-03-14 2009-09-17 Buildpod International Ltd Élément de construction autoportant préfabriqué
WO2020016531A1 (fr) 2018-07-17 2020-01-23 Constructions Composites Bois Plaque et dalle destinees a realiser un plancher ou une paroi et procedes de fabrication de telles plaque et dalle

Also Published As

Publication number Publication date
FR3122200B1 (fr) 2023-11-03
EP4326951A1 (fr) 2024-02-28
CA3216409A1 (fr) 2022-10-27
FR3122200A1 (fr) 2022-10-28

Similar Documents

Publication Publication Date Title
EP2295666B1 (fr) Procédé de fabrication de panneaux avec isolation integrée et d'un tel panneau
FR3017889A1 (fr) Panneau de construction composite
WO2022223845A1 (fr) Bloc de construction pour la fabrication d'un batiment et procédé de fabrication d'un batiment
CA3106583A1 (fr) Plaque et dalle destinees a realiser un plancher ou une paroi et procedes de fabrication de telles plaque et dalle
FR2885624A1 (fr) Procede de construction d'un batiment prefabrique et element constitutif de ce batiment
WO2018215278A1 (fr) Coffrage perdu isolant et procede associe pour realiser un mur
FR2939817A1 (fr) Bloc elementaire prefabrique pour la construction d'un mur a isolation exterieure
CA3163004A1 (fr) Panneaux destines a la fabrication d'un mur et procedes de fabrication de tels panneaux
EP1063364B1 (fr) Mur isolant
CA2655169A1 (fr) Panneau prefabrique pour construction de batiment et procede de fabrication d'un tel panneau
FR3021982A1 (fr) Element de construction pour un batiment et procede de fabrication d'un tel element
EP3828358B1 (fr) Mur à coffrage intégré et procédé de fabrication dudit mur
US20240209618A1 (en) Building block for constructing a building and method for constructing a building
WO2023046679A1 (fr) Construction munie de panneaux de façades et procédé de fabrication d'une telle construction
WO2023025826A1 (fr) Panneau mural et procédé de fabrication d'un tel panneau mural
LU81521A1 (fr) Elements composites en beton,en particulier hourdis destines a la construction et procede pour leur realisation
WO2010048966A1 (fr) Systeme de construction en beton blinde d'acier
EP4390000A1 (fr) Panneau de construction hybride préfabriqué notamment pour façade de bâtiment
EP0145062B1 (fr) Procédé industrialisé pour l'érection d'ouvrages de maçonnerie ayant une structure en terre cuite et ciment, et blocs pour la mise-en-oeuvre dudit procédé
EP1780184A1 (fr) Procédé de renforcement sur site d'un élément de construction et élément de construction renforcé
WO2021229088A1 (fr) Panneau pour plancher ou paroi et procédé de fabrication d'un tel panneau
BE541742A (fr)
EP4368790A1 (fr) Système constructif pour la réalisation de murs
FR3118639A1 (fr) Élément de construction à structure porteuse en bois noyée dans un isolant en béton végétal, et structure le comprenant
BE369128A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22725253

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18288016

Country of ref document: US

Ref document number: 3216409

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022725253

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022725253

Country of ref document: EP

Effective date: 20231123