AU2016201924A1 - Transbody communication systems employing communication channels - Google Patents

Transbody communication systems employing communication channels Download PDF

Info

Publication number
AU2016201924A1
AU2016201924A1 AU2016201924A AU2016201924A AU2016201924A1 AU 2016201924 A1 AU2016201924 A1 AU 2016201924A1 AU 2016201924 A AU2016201924 A AU 2016201924A AU 2016201924 A AU2016201924 A AU 2016201924A AU 2016201924 A1 AU2016201924 A1 AU 2016201924A1
Authority
AU
Australia
Prior art keywords
module
signal
frequency
functionality
beacon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2016201924A
Inventor
Lawrence W. Ame
Kenneth C. Crandell
Timothy Robertson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proteus Digital Health Inc
Original Assignee
Proteus Digital Health Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proteus Digital Health Inc filed Critical Proteus Digital Health Inc
Priority to AU2016201924A priority Critical patent/AU2016201924A1/en
Publication of AU2016201924A1 publication Critical patent/AU2016201924A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6861Capsules, e.g. for swallowing or implanting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data

Abstract

Abstract A system comprising an in vivo transmitter to transmit an encoded signal, a transbody functionality module to facilitate communication of the encoded signal, and a receiver to receive the encoded signal. Also a method and an article comprising a storage medium. Transbody Communication Environment Communication 100 System 102\ In Vivo Transbody Functionality Receiver Transmitter Module 104 106 108 Encoded Encoded Signal Signal

Description

TRANSBODY COMMUNICATION SYSTEMS EMPLOYING COMMUNICATION CHANNELS CROSS-REFERENCE TO RELATED APPLICATIONS 5 Pursuant to 35 U.S.C. § 119 (e), this application claims priority to the filing dates of the United States Provisional Patent Application Serial Nos.: 60/990,562 filed November 27, 2007; 60/990,567 filed November 27, 2007 and 60/990,572 filed November 27, 2007; which applications are incorporated herein by reference 10 for all purposes. BACKGROUND Communications play an important role in today's world. Transbody communications, for example, are finding increasing use in medical applications. 15 The term "transbody communications" generally refers to transmission of a signal from an in vivo location to a receiver location, e.g., a second in vivo location, a receiver location extracorporeally associated with the body, etc. Communications, however, may be susceptible to errors. In particular, noisy transmission environments may distort and corrupt communication data. 20 The noisy transmission environments include the body. Additionally, communication devices may err in signal generation and measurement related to the communication data. Further, various devices and combinations of devices may exact high power consumption, resulting in a relatively short life cycle for the devices inside 25 the body. Such a short life cycle may result in replacement surgeries and other inconvenient, expensive, and / or high-risk procedures. As such, there is a continued need for accurate communications and error free data provided via long-lasting devices. Of particular interest is development of communications channels that may be readily deployed to reliably 30 communicate information from an in vivo location to a receiver positioned in, or in close physical proximity to, a body.
Summary The system includes an in vivo transmitter to transmit an encoded signal; a transbody functionality module to facilitate communication of the encoded signal; and a receiver to receive the encoded signal to at least facilitate accurate 5 transbody communications and conserve power consumption. The system may further include at least one of a beacon functionality module, a frequency hopping functionality module, and a collision avoidance functionality module. Related methods and apparatus are also provided. 2 BRIEF DESCRIPTION OF THE FIGURES FIGURE 1 illustrates a communication environment, including a transbody communication system having a transbody functionality module. 5 FIGURE 2 illustrates the transbody functionality module of FIGURE 1 in greater detail. FIGURE 3A illustrates a beacon wakeup module providing a sniff period longer than a transmit signal repetition period. FIGURE 3B illustrates a beacon wakeup module providing a short but 10 frequent sniff period and a long transmit packet are provided. FIGURE 4A illustrates a resonant, narrow band analog circuit. FIGURE 4B illustrates classic power detection circuit. FIGURE 5 illustrates beacon functionality having a long period of a continuous wave tone. 15 FIGURE 6 illustrates a beacon functionality wherein a beacon is associated with one frequency and a message is associated with another frequency. FIGURE 7 illustrates a beacon functionality associated with a two-beacon scheme. 20 FIGURE 8 illustrates a beacon functionality associated with a beacon signal where frequency is a function of time. FIGURE 9 further illustrates a beacon functionality associated with a beacon signal where frequency is a function of time. FIGURE 10 illustrates a collision avoidance functionality having one 25 collision avoidance technique. FIGURES 11A - 11D illustrate a collision avoidance functionality having another collision avoidance approach. FIGURES 12A and 12B illustrate a collision avoidance functionality having a technique to detect a low amplitude signal in a noisy environment. 30 3 DETAILED DESCRIPTION Transbody communication systems employing communication channels 5 are provided. Various aspects facilitate accurate communications in noisy environments as well as provide enhanced power conservation features. More particularly, various aspects may be associated with transbody communication systems, e.g., an in vivo transmitter and a signal receiver (sometimes referred to herein as a "receiver") associated with a body. The receiver may be configured 10 to receive and decode a signal from the in vivo transmitter. Various aspects of the invention are characterized by employing a specific communication channel having transbody functionality, e.g., via a transbody functionality module. Related methods are also provided. The invention may have broad applicability to medical and non-medical 15 fields. The medical fields include, for example, transbody communications systems associated with various medical and therapeutic devices, e.g., cardiac devices, ingestible devices, etc. The non-medical fields include, for example, body associated devices such as gaming devices incorporating physiologic sensing functionality, etc. 20 FIGURE 1 illustrates a communication environment 100, including a transbody communication system 102. The transbody communication system 102 comprises, for example, an in vivo transmitter 104, a transbody functionality module 106, and a receiver 108. In various aspects, the in vivo transmitter 104 transmits a signal, e.g., an encoded signal, via the transbody communication 25 module 104 to the receiver 108, as hereinafter described in detail. 1.0 In Vivo Transmitter Implementations of the in vivo transmitter may vary widely. Generally, an in vivo transmitter 102 includes any in vivo device capable of transmitting a 30 signal, e.g., an encoded signal. In various aspects, the in vivo transmitter 102 may be associated with various devices, e.g., cardiac-related devices, ingestible devices, neural stimulation related devices, medications, etc. The in vivo transmitter 102, for 4 example, may be wholly or partially integrated with such a device, medication, etc. One example of such a device is a pharma-informatics enabled pharmaceutical composition, described in PCT Application Serial No. 5 US2006/016370. Another example is an ingestible event marker (IEM) and a personal receiver, described in U.S. Provisional Patent Application Serial No. 60/949,223. Still another example is a smart parenteral device, described in PCT/US2007/15547. Yet another example is a smart implantable fluid transport device, described in U.S. Provisional Patent Application Serial No. 60/989,078. 10 Still further examples include implantable physiologic event recorders, described in U.S. Patent Nos. 5,919,210, 5,989,352, 6,699,200, and 6,895,275; various systems and methods described in PCT application W02006/116718. Still further examples include PCT application serial Nos. PCT/ US2007/022257; PCT/US07/24225; PCT/US08/56296; PCT/US2008/56299 and PCT/US08/77753; 15 and well as United States Provisional Application Nos. 61/034,085 and 61/105,346. Each of the foregoing is herein incorporated in its entirety by reference. The signal transmitted by the device generally includes any signal, data, identifier, representative thereof, etc. Signals include encoded signals, e.g., 20 encode at origin and decoded at destination. Examples of signals include an identifier of a pharmaceutical, a parenteral delivery device, an ingestible event marker, etc., supra. 2.0 Transbody Functionality Module 25 The signal may be transmitted from the in vivo transmitter 104 via the transbody functionality module 106 to the receiver 108. The transbody functionality module 106 generally uses protocol(s), communication channels, etc., capable of facilitating accurate receipt of signals, data, etc. and / or facilitating low power consumption. Such transbody functionality modules 106 30 include beacon functionality; frequency hopping functionality, and collision avoidance functionality. Each of the foregoing is discussed in detail hereinafter. In various aspects, the transbody functionality module 106, and / or one or a combination of its submodules (described hereinafter), may be implemented as 5 software, e.g,, digital signal processing software; hardware, e.g., a circuit: or combinations thereof. Communication media for transmission may vary. In one aspect, the body of a patient may be employed as a conduction medium for the signal, As such, 5 the signal is conducted between the in vivo transmitter and the receiver via body fluids, etc. In another aspect, the signal is transmitted via radio frequency (RF) transmission. One skilled in the art will recognize that other communication media are also possible. FIGURE 2 illustrates the transbody functionality module 106 of FIGURE 1 10 in greater detail. In various aspects, the transbody functionality modules includes a beacon functionality module 200, a frequency hopping functionality module 202, and a collision avoidance functionality module 204. 2.1 BEACON FUNCTIONALITY MODULE 15 Various aspects may employ the beacon functionality module 200. In various aspects, the beacon functionality module 200 may employ one or more of the following: a beacon wakeup module 200A, a beacon signal module 200B, a wave/frequency module 200C, a multiple frequency module 200D, and a modulated signal module 200E. 20 The beacon functionality module 200 may be associated with beacon communications, e.g., a beacon communication channel, a beacon protocol, etc. For the purpose of the present disclosure, beacons are typically signals sent either as part of a message or to augment a message (sometimes referred to herein as "beacon signals"). The beacons may have well-defined characteristics, 25 such as frequency. Beacons may be detected readily in noisy environments and may be used for a trigger to a sniff circuit, such as those described above. In one aspect, the beacon functionality module 200 may comprise the beacon wakeup module 200A, having wakeup functionality. Wakeup functionality generally comprises the functionality to operate in high power modes 30 only during specific times, e.g., short periods for specific purposes, e.g., to receive a signal, etc. An important consideration on a receiver portion of a system is that it be of low power. This feature may be advantageous in an implanted receiver, to provide for both small size and to preserve a long functioning electrical supply from a battery. The beacon wakeup module 200A 6 may enable these advantages by having the receiver operate in a high power mode for very limited periods of time. Short duty cycles of this kind can provide optimal system size and energy draw features. In practice, the receiver may "wake up" periodically, and at low energy 5 consumption, to perform a "sniff function" via, for example, a sniff circuit. For the purpose of the present application, the term "sniff function" generally refers to a short, low-power function to determine if a transmitter is present. If a transmitter signal is detected by the sniff function, the device may transition to a higher power communication decode mode. If a transmitter signal is not present, the 10 receiver may return, e.g., immediately return, to sleep mode. In this manner, energy is conserved during relatively long periods when a transmitter signal is not present, while high-power capabilities remain available for efficient decode mode operations during the relatively few periods when a transmit signal is present. Several modes, and combination thereof, may be available for operating 15 the sniff circuit. By matching the needs of a particular system to the sniff circuit configuration, an optimized system may be achieved. FIGURE 3A illustrates the beacon wakeup module 200A wherein a sniff period 300 is longer than a transmit signal repetition period 302. The time function is provided on the x axis. As shown, the transmit signal repeats 20 periodically, with a sniff function also running. In practice, effectively, the sniff period 300 is typically longer than the transmit signal repetition period 302. In various aspects, there may be a relatively a long period of time between the sniff periods. In this way, the sniff function, e.g., implemented as a sniff circuit, is guaranteed to have at least one transmission to occur each time the sniff circuit is 25 active. FIGURE 3B illustrates the beacon wakeup module 200A wherein a short but frequent sniff period 306 and a long transmit packet 308 are provided. The sniff circuit will activate at some point during the transmit time. In this manner, the sniff circuit may detect the transmit signal and switch into a high power 30 decode mode. An additional beacon wakeup aspect is to provide the "sniffing" function in a continuous mode. In contrast to the approaches provided above, this aspect of the transbody beacon transmission channel may exploit the fact that the total energy consumption is the product of average power consumption and time. In 7 this aspect, the system may minimize the total energy consumption by having very short periods of activity, in which case the periods of activity are averaged down to a small number. Alternately, a low continuous sniff activity is provided. In this case, the configuration provides a sufficiently low power so that the 5 transmission receiver runs continuously with a total energy consumption at an appropriate level for the parameters of a specific system. The system may be passive. Two examples of circuit implementations are provided. FIGURE 4A illustrates a resonant, narrow band analog circuit 400, 10 including input antenna 402, inductor 404, and capacitors 406. In various aspects, the resonant, narrow band analog circuit 400 may have a high impedance. An LC resonator may be provided that is tuned to the frequency of the transmitted signal. The voltage across the LC circuit may be measured, and run into a comparator. When the voltage measurement exceeds a certain value, 15 a gate may be triggered. The circuitry goes then into a high power mode. FIGURE 4B shows a classic power detect circuit 408. The power detect circuit 408 may be of those known in the art, such as those used in an AM radio to give a light signal that indicates receipt of a radio signal. In one aspect, the power detect circuit 408 is an LC resonant circuit, i.e., a tank circuit. When a 20 signal of the LC resonant frequency is present, the LC tank circuit 'rings up'. Because the circuit has a high Q, its voltage increases dramatically. That voltage is rectified by the diode. When that voltage exceeds a threshold set by Vref, a comparator is triggered. The comparator informs the microprocessor that a signal/circuit is present and directs it to enter the high power mode. 25 Each of the above-described circuits may be very low powered and may comprise only passive components, with the exception of the comparator. The comparator may also be of very low power. Each circuit may operate continuously. Each circuit may inform the microprocessor when a transmitter is present, e.g., a signal is transmitted, to go into the high power mode. For each of 30 these circuits, a useful prerequisite may be a well defined frequency for the transmitter. A type of beacon signal associated with the present transbody communication channel is a continuous wave, single frequency tone. In such a 8 case, the continuous single frequency tone triggers either of the circuits in FIGURES 4A or 4B, when they are tuned to the correct frequency. The beacon signal module 200B may provide for beacon signals to be detected digitally, as shown in FIGURES 3A or 3B. This may be accomplished by 5 sampling the beacon signals with an A->D converter. The beacon signals are put in a digital processing system. Beacon signals are detected by a single frequency tone which has a very strong characteristic. Examples of such systems are provided in FIGURE 5. FIGURE 5 illustrates beacon functionality having a long period of a 10 continuous wave tone, e.g., via the wave/frequency module 200C. In one aspect, the beacon signal consists of a long period of the continuous wave tone. This continuous wave tone has both a modulated portion, which holds the information, and unmodulated portion. In this frequency domain, there is typically a period of well defined frequency. The modulation tends to smear the frequency spectrum. 15 This portion of the wave tone serves as the beacon. It has a single tone in the frequency domain, and is easily recognizable in the spectrogram. Either of the methods shown previously can detect the single frequency tone. This frequency tone alerts the processing circuitry that a message is coming. It then it moves into decode mode so that the message can be 20 understood. In FIGURE 5, this is shown as one packet. FIGURE 6 illustrates beacon functionality wherein a beacon is associated with one frequency, e.g., a beacon channel, and a message is associated with another frequency, e.g., a message channel. This configuration may be advantageous, for example, when the system is dealing with multiple transmit 25 signals. The solid line represents the beacon from Transmit Signal 1. The dashed line represents the beacon from Transmit Signal 2. In various transmission situations, the Transmit Signal 2's beacon might overlap with that of Transmit Signal 1, as depicted. Message Signal 1 and Message Signal 2 can be at different frequencies 30 from their respective beacons. One advantage may be that the beacon from Transmit Signal 2 does not interfere with the message from Transmit Signal 1 at all, even though they are transmitted at the same time. By contrast, if an approach were taken in the example shown in FIGURE 5, the beacon from the 9 second transmit signal would most likely obscure the message from the first transmit signal. In this case, the beacon channel is a well defined frequency band. A message is provided in the channel where the data are actually transmitted. 5 Interference between different messages in the message channel can be handled through collision avoidance, described below. While FIGURE 6 is shown with two transmitters, it will be apparent to one of ordinary skill in the art to modify the system so as to scale it to many more transmitters. The requirements of a particular system may, to some extent, dictate the particular architecture of that 10 system. FIGURE 7 illustrates beacon functionality associated with a two-beacon scheme, e.g., Beacon 1 and Beacon 2. In this case, there is a well-defined mathematical relationship between the frequency of the beacon channel and the frequency of the message channel. If the beacon is a continuous wave signal, or 15 a signal with a very simple modulation, it will be a simple matter to detect the carrier frequency of the beacon signal. In one case, for example, the beacon is at frequency 2f, and the message is at frequency f, as shown in FIGURE 7. In this case, the value of f can be determined from the beacon channel. As a result, if the message is to be demodulated, the frequency is known exactly. 20 This aspect may be used, inter alia, to address frequency uncertainty. This approach may provide a workable system for message channel modulations which do not have well defined carrier frequencies. One example of such message channel modulations is spread spectrum modulations. An attempt to determine the frequency of a spread spectrum 25 modulation in and by itself, can be difficult because there is not a well defined peak in the frequency spectrum. However, having the beacon channel accompanying the message channel with a well-defined mathematical relationship allows the message channel frequency to be determined precisely from the beacon channel. The message channel can then be demodulated 30 based on that information. The above description is of a beacon as a continuous single frequency tone. However, in another aspect, the beacon could have a simple modulation on it. An example of such an aspect is using on-off keying (OOK), or simple frequency modulation. In various aspects, of particular utility is a frequency key 10 shifting (FSK) two tone beacon signal created by two different divide ratios of the master silicon oscillator. This may provide both a unique spectral signature and the frequency ratio of the two tones are invariant to the frequency drift of the silicon oscillator, e.g., an IEM silicon oscillator. The frequency ratio metric may 5 provide a high probability that the signal detected is sourced by the preferred source device, e.g., the IEM. This approach gives the beacon a distinctive signature that is uniquely identifiable from other interferers. In this manner, the system does not risk confusing the beacon with other jammers from the environment. One key characteristic of the frequency is that it stands out as 10 distinctive, and still has a well-defined mathematical relationship in terms of carrier frequency. FIGURE 8 illustrates beacon functionality associated with a beacon signal where frequency is a function of time. One problem that can occur with transmitters is that the carrier frequency is set by a silicon oscillator, and not by a 15 crystal oscillator. This introduces a large uncertainty in characteristic frequency. Determination of that frequency may be a key challenge, both in terms of decoding the packet and detecting the beacon frequency. The circuits provided in FIGURES 4A and 4B provide an example of this approach. If these circuits have high power (Q), the frequency uncertainty may 20 cause the beacon to fall outside of the response function of the sniff circuits. Thus, as illustrated in FIGURES 8 and 9 another type of beacon may be employed. Frequency 700 is ramped over some range, providing a message. Two narrow band filters are provided. The signal is ramped from an fhigh to an flo. Two narrow band filters are tuned to f1 and f2, e.g., via the multiple 25 frequency module 200D. Frequencies f1 and f2 fall between fhigh and fl o w . The output of the filter at f1 shows no power, shows a blip in power as the beacon frequency is ramped through f1 at time t1, and then shows no power. Similarly, the output of the filter at f2 would show no power, show a blip in power as the beacon frequency is ramped through f2 at time t2, and then shows no 30 power. By building a timed-window comparator, an analog sniff circuit is employed which triggers on the time difference between t1 and t2. This can be implemented digitally or in an analog approach. In this case, when the circuit is 11 set on time tl, if time t2 falls within some defined window to, it indicates that a signal is present. The ramp is a very distinctive signature. Frequency f1 firing will be detected, and (by example) 10ms later, f2 firing is detected. If those two events 5 happen within the defined time interval tO, plus or minus t', it indicates that a signal is present. The wakeup circuit is then triggered. The resulting design provides a very low power analog circuit. An important application of the circuit is to determine the frequency as shown in FIGURE 8. The beacon may be modulated to assure that its signature will be 10 distinctive, e.g., via the modulated signal module 200E. One approach to this method is to have the beacon alternate between two frequencies. When this alternation is detected with the well-defined frequency difference and well-defined time period, the confidence level can be very high that a beacon had been detected, rather than some background signal. A similar result can be achieved 15 with on-off keying, in a frequency modulation keying approach. Any standard modulation technique can be applied to a beacon to give it a distinctive character. In various aspects, data may be imprinted on the beacon, to avoid it being confused with any other signal. In various aspects, the sniff circuit triggers only on the beacon. 20 There are multiple beacon approaches available to avoid interference. In the idea related to FIGURE 6, if there are two beacons transmitting at the same time, transmitter 1 could have beacons at multiple frequencies, e.g., via multiple frequency module 200D, to avoid effects from interference. In a related approach, the aspect is simply to have beacons at different frequencies to avoid 25 contention between the beacons. In various aspects, a frequency ratio of a beacon and data channel is invariant to frequency error in the ingestible event marker system to provide additional assurance of detection of the encoded signal. 30 2.2 FREQUENcY HOPPING FUNCTIONALLITY MODULE Various aspects may employ frequency hopping functionality module. The frequency hopping functionality module 202 may be associated with the specific 12 communications channel(s), frequency hopping protocol, etc. As such, various aspects may utilize one or more frequency hopping protocols. For example, the receiver may search the designated range of frequencies in which the transmission could fall. When a single proper decode is achieved, the in vivo 5 transmitter has accomplished its mission of communicating its digital information payload to the receiver. The transmitted frequency uncertainty provided by random frequency hopping, e.g., via a random module 202A, may create multiple benefits. One such benefit, for example, may be easy implementation on a small die. To 10 illustrate, the in vivo transmitter carrier frequency oscillator can be an inaccurate free running oscillator that is easily implemented on a small portion of a 1 mm die. Accuracies on the order of +/- 20 are easily tolerated. This is because the receiver employs frequency searching algorithms. Another such benefit may be extended battery life. To illustrate, over the 15 course of the transmitter battery life, e.g., three to ten minutes, the probability of the transmitter transmitting on a clear channel that can be received by the frequency agile receiver may be significantly enhanced due to random frequency hopping. Still another benefit may be minimized collision events in high volume 20 environments. To illustrate, minimization of collision probability when multiple in vivo transmitters, e.g., ingestible event markers, are potentially transmitting simultaneously, such as in instances where the multiple ingestible event markers are ingested concurrently or in close temporal proximity. Stated differently, without frequency hopping functionality, there may be a high probability that 25 ingestible event markers of a similar lot will transmit on the same (or nearly the same) frequency, resulting in multiple collisions. In certain aspects, the useful frequency spectrum for use in volume conduction applications ranges from about 3 kHz to 150 kHz. Through detailed animal studies it has been observed that in some environments, the in vivo 30 transmitter, supra, having a received signal level in the range of 1 to 100 4V may compete with narrow band interfering signals on the order of hundreds to thousands of pV in the same frequency spectrum. To mitigate the destructive nature of interfering signals, a frequency hopping channel or protocol may be 13 employed in which the in vivo transmitter randomly frequency hops a narrow band transmitted signal, e.g., a modulated signal such as a binary phase shift keying (BPSK) signal or FSK signal, output on each transmission. 5 2.3 COLLISION AvOIDANCE FUNCTIONALITY MODULE Various aspects may employ a collision avoidance functionality module. The collision avoidance functionality module may be associated with the specific communications channel(s), collision avoidance protocols, etc. As such, various 10 aspects may utilize various collision avoidance protocol techniques associated with the specific communications channel(s). Collision avoidance techniques may be particularly useful, for example, in environments where two or more in vivo transmitters are present, e.g., where an individual ingests multiple IEMs. In such an environment, if the various in vivo transmitters send their signals 15 continuously, the transmission of one may obscure the transmission from all the other in vivo transmitters. As a result, failure to detect signals may increase significantly. Various aspects may include various collision avoidance approaches, alone or in various combinations. 20 One such approach employs multiple transmit frequencies. By using frequency-selective filtering, the transmitter broadcasting at f1 can be distinguished from the transmitter broadcasting at f2, even if they are transmitting simultaneously. An alternative to this approach is illustrated in Figure 9. FIGURE 10 illustrates a first collision avoidance technique, e.g., via a 25 transmitter module 204A, wherein Transmitter 1 is broadcasting on f1. Transmitter 2 is broadcasting on f2. A receiver and two band pass filters are provided, e.g., via multiple band pass filter module 204E. Band pass filter 1 is sensitive to f1, band pass filter 2 is sensitive to f2. Once signals from the transmitters, e.g., two IEMs associated with Pill 1 and Pill 2, respectively, get 30 through their respective band pass filters, the signals go to demodulators. In various aspects, these demodulators can be implemented as separate analog circuits or in the digital domain. In this manner, collisions may be avoided. FIGURES 11A - 11D illustrate another collision avoidance approach. In various aspects, the specific communications channel(s) may employ duty cycle 14 modulation, e.g., via a duty cycle modulation module 204B,, wherein a transmitter need not transmit all the time. If two transmitters, e.g., xmtr1 and xmtr2, are not transmitting simultaneously, they will not interfere with each other. For example, If two transmitters are used which have low duty cycles, such as broadcasting 5 10% of the time and off 90% of the time, then probabilistically there is only a 20% chance that the signals will overlap with each other. In this manner, collisions may be avoided. With reference to FIGURE 11A, there a transmitter 1, e.g., xmtrl, that is only on 10% of the time. There is transmitter 2, e.g., xmtr2, that is also only on 10 10% of the time. Of course, there is some probability that they will transmit simultaneously. However, that probability can be controlled by changing the duty cycle and the frequency spread. As a result, if these two transmit periods are slightly different, they will come in and out of interference with each other. The overlap can be controlled, however, by dithering the duty cycle and the frequency 15 spread, e.g., via dither module 204F and spread spectrum module 204D, respectively. In this manner, otherwise occurring collisions may be avoided. With reference to FIGURE 11B, dashed transmitter xmtr2 has a slightly shorter period than the solid transmitter xmtrl. Even though the transmitters begin broadcasting at the same time, after some number of transmissions, the 20 transmitters come out of alignment with each other. As a result, they are now distinct from one another and otherwise occurring collisions may be avoided. With reference to FIGURE 11C, a similar effect can be obtained by having a spread of oscillator frequencies. In practice, the silicon oscillators used for these transmitters have a spread of a few percent in frequency. A 1% difference 25 in frequency means that after a 100 transmissions, two oscillators 1008, 1010 that began in phase with each other are no longer in phase with each other. Various aspects may be based on frequency distribution or the frequencies can also be programmed to be explicitly different, e.g., to have some range of periods. Noise dithering a voltage controlled oscillator frequency can also create 30 this frequency spread. With respect to FIGURE 11D, the retry period is randomized. In this example, xmtrl broadcasts and then waits some random period of time before broadcasting again. The xmtrl then waits another random period of time before broadcasting again, and so forth. Xmtr2 begins broadcasting at the same time. 15 However, in this case it waits a random time before the next transmission, and waits another random time before the next transmission and so forth. In this way, the probability that two transmitters broadcast simultaneously can be controlled by affecting the standard deviation of the retry periods. 5 This approach can be based on a pseudo-random sequence that is preprogrammed into the chip. It can also be based on a real physical random number generator (thermal noise), or on the serial number on the chip. Since every transmitter has a unique serial number, some of the lower bits of the serial number can be used to program this randomization time, either directly or by 10 using a linear shift register. Additional aspects of the transbody transmission channel use spread spectrum transmission to modulate the transmit message. This approach can be direct spread spectrum or frequency hopping spread spectrum. As an example, any of the code division multiple access (CDMA) techniques developed for cell 15 phones that allow for multitudes of cell phones to broadcast on the same frequency without interference can be employed in this aspect. This aspect can also be based on any of the well known codes in spread spectrum, such as Gold Codes or Kasami codes. The challenge to be addressed is approached probabilistically. A code is 20 selected such that there are sufficiently many that the probability of two transmitters having the same code broadcasting at the same time is sufficiently small. This approach ties into the idea of using a beacon to find the carrier frequency because spread spectrum transmissions in general do not have a well defined carrier frequency. That information is determined, such as from the 25 beacon. In certain applications, it is useful to combine the different techniques. By example, when there is a long duty cycle, spread spectrum transmission can be particularly valuable. In this case, the probability of a collision happening is the probability of the long duty cycle times the probability of the spread spectrum. 30 There are no restrictions on combining techniques. In calculations, it is shown that duty cycle works very well for two or three transmitters operating simultaneously. However, in regards to certain applications, the duty cycle method breaks down when there are more than five transmitters providing data in an overlapping time frame. 16 The most straightforward method to bolster the duty cycle is to add retransmit randomization, e.g., via retransmit randomization module 204C. By adding a few bits of retransmit randomization, the effect is immediately rendered much less pronounced. In this aspect, the system can easily distinguish five to 5 ten simultaneous transmissions. To get beyond ten transmissions, spread spectrum is one approach of interest. As systems go to many simultaneous transmitters, even if one has a short duty cycle, the total time that multiple transmitters are transmitting becomes a significant portion of the time and collisions become unavoidable. 10 In systems requiring only a few transmitters, system design can rely on using simpler approaches, such as long duty cycles. Multiple transmit frequencies may be employed in a controlled environment when the frequencies of the transmitters are known. For three to ten transmitters, retransmit randomization works well. Beyond ten transmitters, spread spectrum is one 15 approach that may be employed, and it can combine spread spectrum with other techniques. Plots on long duty cycle show with three simultaneous transmitters there is about a 1% chance of a transmitter not being detected because of a collision. This is during a one minute transmit interval. One important feature of some 20 transmitters systems is that the transmitters have a finite lifetime. In systems where transmitters have very long lifetimes, these concerns may be absent. For other kinds of implanted sensors, these are still very important considerations for power consumption. If the system must wait an hour before a window clear enough to transmit a signal is available, then the transmitter is 25 using power all that time. Another possibility opens up when systems have more sophisticated transmitters. The transmitter can listen for a quiet channel, for example, waiting until it hears nothing transmitting and then transmit. The spread spectrum approach is quantifiable, depending on how many 30 distinct codes are used. When the Kasami set of codes are used there are 32,000 distinct codes. In this case the probability of having two transmitters transmit on the same code is 1/(32,000)2. That probability goes up geometrically with the number of transmitters. Even doing nothing to select transmitters that 17 have distinct codes, and relying on the randomization of code selection, it supports tens, if not hundreds, of transmitters. In certain aspects, receivers of the system are configured to selectively receive a signal in a quiet part of a given spectrum. Figure 12A shows an aspect 5 addressing the problem of detecting a low amplitude signal in a noisy environment. One approach to that problem is to find a quiet place in the noise spectrum. The detector of the receiver is programmed to that frequency band. The transmitter periodically broadcasts in that frequency band. FIGURES 12A and 12B illustrate a technique to detect a low amplitude 10 signal in a noisy environment. With reference to FIGURE 12A, in the case where the receiver surveys the noise spectrum, power is a function of frequency. There is a noisy region, quiet region, followed by a noisy region. The broadcast is provided in the quiet region because the least amount of interference is in that region. 15 In FIGURE 12B, the transmission occurs at multiple different frequencies, e.g., a ramping scheme. In various aspects, other schemes may be used such as frequency hopping or random scheme. Typically, the chosen scheme will densely covers the frequency band of interest. In practice, the transmitter will eventually jump into the quiet band and eventually transmit in the quiet band. By 20 having the receiver listen only in that quiet band, there is a good chance of receiving / decoding that signal due to the excellent signal to noise ratio (SNR. The above configuration in which the receiver is employed to receive only a quiet band is not limited to systems having a collision avoidance channel, as described elsewhere in this application. Instead, receivers as described in any of 25 the following applications may be configured to receive only a quiet channel: PCT application serial no. US2007/024225 titled "Active Signal Processing Personal Health Signal Receivers," and filed on November 19, 2007; WO 2006/116718; 60/866,581; 60/945,251; 60/956,694, 60/887,780 and 2006/116718; the disclosures of which applications are herein incorporated by reference. 30 To illustrate some of the foregoing concepts, in one aspect transmissions are broken into two channels. The first channel is used to broadcast the data. A one to two percent duty cycle is performed. Immunity to collisions is enhanced by randomizing the re-broadcast rate. The second channel is used to broadcast 18 a wakeup beacon. A one to two percent duty cycle is performed. The packet rate is in the 10 mSec range. The beacon transmissions are short, in the range of 100 to 200 uSec, when collisions are not of concern. The beacon and data channel carriers are generated from the same oscillator, so from the beacon the 5 data carrier can be calculated. The receiver will turn on every 10 to 30 seconds for a 10 mSec duration. If a beacon is observed, the receiver will stay on to perform a full demodulation and decode. Otherwise, the receiver will return to sleep. In certain aspects, the above system is modified to include a frequency 10 dither to the packet interval dither. In certain aspects, the above system is modified to include a longer duration transmission of 16 carrier cycles at 25 kHz (640 uS) with a 1 to 2 percent duty cycle. This complies with narrow band filter compatibility. In certain aspects, the above system is modified to so that the modulation 15 as BPSK on OOK on the lower channel. In certain aspects, the above system is modified so that the modulation as OOK burst on the higher beacon channel. In certain aspects, the above system is modified so that the use of simple multidimensional parity check codes for FEC (forward error correction). 20 3.0 Receiver The signal receiver, sometimes referred to herein as the "receiver", generally includes any device or component capable of receiving the signal, e.g., conductively receiving a signal, via one or more specific communication 25 channels. One example of such a receiver is the personal receiver, supra. Another example of the receiver described in the in: PCT application serial no. PCT/US2006/016370 published as WO 2006/116718; PCT application serial No. PCT/2007/24225 published as WO 2008/063626; PCT application serial no. 30 PCT/US2008/52845 published as US2008/052845; the disclosures of which applications are herein incorporated by reference. Various aspects include mobile configurations of the receiver that are sized to be stably associated with a living subject in a manner that does not substantially impact movement of said living subject. In certain aspects, the 19 receiver has a small size. To illustrate, the receiver may occupy a volume of space of about five cm 3 or fewer, such as about three cm 3 or fewer, including about one cm 3 or less. In certain aspects, the receiver has a chip size approximately ranging from ten mm 2 to two cm 2 . 5 The receivers of interest may include both external and implantable receivers. 3.1 External Receivers In external aspects, the receiver may be ex vivo, i.e., present outside of the body during use. External receiver may be configured in any convenient 10 manner. For example, in certain aspects the externals receivers may be configured to be associated with a desirable skin location. As such, in aspects the external receivers may be configured to contact a topical skin location of a subject. Configurations of interest include, but are not limited to: patches, wrist bands, belts, etc. For instance, a watch or belt worn externally and equipped with 15 suitable receiving electrodes can be used as receivers in accordance with one aspect of the present invention. The receivers may provide a further communication path via which collected data can be extracted by a patient or health care practitioner. For instance, an implanted collector may include conventional RF circuitry operating, e.g., in the 405-MHz medical device band, 20 with which a practitioner can communicate. The practitioner may communicate, for example, via a data retrieval device, such as a wand, etc. Where the receiver includes an external component, that component may have output devices for providing data, e.g., audio and/or visual feedback. Examples include audible alarms, LEDs, display screens, or the like. The 25 external component may also include an interface port via which the component can be connected to a computer for reading out data stored therein. By further example, the device may be positioned by a harness that is worn outside the body and has one or more electrodes that attach to the skin at different locations. In certain external aspects, the receiver may be configured to be in contact 30 with or associated with a patient only temporarily, i.e., transiently. For example, the receiver may be associated / attached / in contact while the pill, ingestible event marker, etc., is actually being ingested. To illustrate, the receiver may be configured as an external device having two finger electrodes or handgrips. Upon ingestion of a pharma-informatics 20 enabled pill, the patient touches the electrodes or grabs the handgrips to complete a conductive circuit with the receiver. Upon emission of the signal from the pill, e.g., when the pill dissolves in the stomach, the signal emitted by the identifier of the pill is picked up by the receiver. 5 In certain aspects, the external receiver may include miniaturized electronics which are integrated with the electrodes to form a bandage-style patch with electrodes that, when applied, contact the skin. The bandage-style may be removably attachable, e.g., via an adhesive layer or other construction. A battery and electronics may also be included. The bandage-style patch may be 10 configured to be positioned on a desirable target skin site of the subject, e.g., on the chest, back, side of the torso, etc. In these aspects, the bandage circuitry may be configured to receive signals from devices inside of the subject, e.g., from an identifier of a pharma-informatics enabled pharmaceutical composition, and then relay this information to an external processing device, e.g., a PDA, 15 smartphone, mobile phone, handheld device, computer, etc., as described in greater detail elsewhere. Bandage-style devices that may be readily adapted for use in the present systems include, but are not limited to, those described in U.S. Patent Nos. 6,315,719 and the like, the disclosures of which are herein incorporated by reference. 20 3.2 Implantable Receivers In certain aspects, the receiver may be an implantable, i.e., designed and / or configured for implantation into a subject. Implantation may be on a temporary basis or a permanent basis. In these aspects, the receiver is in vivo during use. 25 Generally, implantable receivers may maintain functionality when present in a physiological environment, including a high salt, high humidity environment found inside of a body, for various periods of time. Periods of time, for example, include a few minutes to eighty years. More specific time periods include, for example, one or more hours, one or more days, one or more weeks, one or more months, 30 and one or more years. For implantable aspects, the receiver may have any convenient shape, including but not limited to: capsule-shaped, disc-shaped, etc. Various receivers may have relatively small sizes. These small sizes may be achieved, for example, by incorporation of a rechargeable battery. In one aspect, the 21 rechargeable battery has a life span of about two weeks. In another aspect, the rechargeable battery automatically charges from various sources, e.g., coils in the patient's bed. The receiver may be configured to be placed in a number of different locations. Examples of locations include the abdomen, the small of the 5 back, the shoulder, e.g., where implantable pulse generators are placed, etc. In certain implantable aspects, the receiver is a standalone device, i.e., not physically connected to any other type of implantable device. In yet other aspects, the receiver may be physically coupled to a second implantable device, e.g., a device which serves as a platform for one or more physiological sensors. 10 Such a device may be a lead, such as a cardiovascular lead. To illustrate, the cardiovascular lead may include one or more distinct physiological sensors, e.g., where the lead is a multi-sensor lead (MSL). Implantable devices of interest further include, but are not limited to: implantable pulse generators, neurostimulator devices, implantable loop recorders, etc. 15 Receivers may further include a receiver element which serves to receive the signal of interest. The receiver may include a variety of different types of receiver elements, where the nature of the receiver element necessarily varies depending on the nature of the signal produced by the signal generation element. In certain aspects, the receiver may include one or more electrodes for detecting 20 signal emitted by the signal generation element. To illustrate, the receiver device may be provided with two electrodes that are dispersed at a predetermined distance. The predetermined distance may allow the electrodes to detect a differential voltage. The distance may vary, and in certain aspects, ranges from about 0.1 to about five cm, such as from about 0.5 to about 2.5 cm, e.g., about 25 one cm. In certain aspects, the first electrode is in contact with an electrically conductive body element, e.g., blood, and the second electrode is in contact with an electrically insulative body element relative to said conductive body element, e.g., adipose tissue (fat). In an alternative aspect, a receiver that utilizes a single electrode is employed. In certain aspects, the signal detection component may 30 include one or more coils for detecting a signal emitted by the signal generation element. In certain aspects, the signal detection component includes an acoustic detection element for detecting signal emitted by the signal generation element. A receiver may handle received data in various ways. In some aspects, the receiver simply retransmits the data to an external device, e.g., via 22 conventional RF communication. In other aspects, the receiver processes the received data to determine whether to take some action such as operating an effector that is under its control, activating a visible or audible alarm, transmitting a control signal to an effector located elsewhere in the body, or the like. In still 5 other aspects, the receiver stores the received data for subsequent retransmission to another device or for use in processing of subsequent data, e.g., detecting a change in some parameter over time. The receivers may perform any combination of these and / or other operations using received data. In certain aspects, the data that are recorded on the data storage element 10 include at least one of, if not all of, time, date, and an identifier, e.g., global unique serial number, of each composition administered to a patient. The identifier may be the common name of the composition or a coded version thereof. The data recorded on the data storage element of the receiver may further include medical record information of the subject with which the receiver is 15 associated, e.g., identifying information, such as but not limited to name, age, treatment record, etc. In certain aspects, the data of interest include hemodynamic measurements. In certain aspects, the data of interest include cardiac tissue properties. In certain aspects, the data of interest include various physiologic metrics or parameters, e.g., pressure or volume measurements, 20 temperature, activity, respiration rate, pH, etc. As summarized above, the receivers can be configured to have a very small size. In certain aspects, the desired functionality of the receiver is achieved with one or more integrated circuits and a battery. Aspects of the invention include receivers that have at least a receiver element, e.g., the form of one or 25 more electrodes (such as two spaced apart electrodes) and a power generation element, e.g., a battery, where the battery may be rechargeable, etc., as mentioned above. As such, in certain aspects the power generation element is converted to receive power wirelessly from an external location. Additional elements that may be present in the receiver include, but are 30 not limited to: a signal demodulator, e.g., for decoding the signal emitted from the pharma-informatics enabled identifier; a signal transmitter, e.g., for sending a signal from the receiver to an external location; a data storage element, e.g., for storing data regarding a received signal, physiological parameter data, medical record data, etc.; a clock element, e.g., for associating a specific time with an 23 event, such as receipt of a signal; a pre-amplifier; a microprocessor, e.g., for coordinating one or more of the different functionalities of the receiver. Aspects of implantable versions of the receiver will have a biologically compatible enclosure, two or more sense electrodes, a power source, which 5 could either be a primary cell or rechargeable battery, or one that is powered by broadcast inductively to a coil. The receiver may also have circuitry consisting of: a demodulator to decode the transmitted signal, some storage to record events, a clock, and a way to transmit outside the body. The clock and transmit functionality may, in certain aspects, be omitted. The transmitter could be an RF 10 link or conductive link to move information from local data storage to external data storage. For the external receivers, aspects include structures that have electrodes opposed to the skin, the demodulator, storage, and power. The communication may be wireless or performed over one or more conductive media, e.g., wires, 15 optical fibers, etc. In certain aspects, the same electrodes are used for receiving and transmitting signals. One mode may be a wristwatch which is conductively in contact with the body. To move the data from the implant to the wristwatch, currents may be sent out the pads and received by the wristwatch. There are a 20 number of RF techniques for facilitating transmission out of the body that may be employed, such as inductive protocols that use coils. Alternatively, electric fields may be employed, using insulated electrodes, for example. In certain aspects, the components or functional blocks of the present receivers are present on integrated circuits, where the integrated circuits include 25 a number of distinct functional blocks, i.e., modules. Within a given receiver, at least some of, e.g., two or more, up to an including all of, the functional blocks may be present in a single integrated circuit in the receiver. By single integrated circuit is meant a single circuit structure that includes all of the different functional blocks. As such, the integrated circuit is a monolithic integrated circuit (also 30 known as IC, microcircuit, microchip, silicon chip, computer chip or chip) that is a miniaturized electronic circuit (which may include semiconductor devices, as well as passive components) that has been manufactured in the surface of a thin substrate of semiconductor material. The integrated circuits of certain aspects of the present invention may be hybrid integrated circuits, which are miniaturized 24 electronic circuits constructed of individual semiconductor devices, as well as passive components, bonded to a substrate or circuit board. As reviewed above, the receivers exhibit reliable decoding of an encoded signal even in the presence of substantial noise and a low SNR. This functional 5 aspect of the receivers of the invention may be provided via various schemes. Some such schemes include, for example, coherent demodulation, e.g., Costas loop demodulation, accurate low overhead iterative decoding, Forward Error Correction (FEC), and noise cancellation, e.g., as described in PCT application serial no. PCT/US2007/ 024225 titled "Active Signal Processing Personal Health 10 Receivers," and filed on November 19, 2007; the disclosure of which is herein incorporated by reference. Other receivers of interest include, but are not limited to, those described in: WO 2006/116718; 60/866,581; 60/945,251; 60/956,694, 60/887,780 and WO 2006/116718; the disclosures of which are herein incorporated by reference. 15 Methods Various aspects include, for example, transmitting, via an in vivo transmitter, an encoded signal; facilitating, via a transbody functionality module, communication of the signal; and receiving, via a receiver, the encoded signal, as 20 heretofore described. In one aspect, the method provides characteristics of the encoded signal, wherein the characteristics optimize power consumption to facilitate the receiver in at least one of the following: spending maximum time in an inactive mode, waking up quickly, and waking up during a period of high probability that the 25 transmitter is present. Further, various aspects may alternatively or optionally include such steps related to beacon functionality such as facilitating, via a beacon functionality module, communication of the encoded signal; facilitating, via a frequency hopping functionality module, communication of the encoded signal; and 30 facilitating, via a collision avoidance functionality module, communication of the encoded signal. Some functionality may include, for example, providing beacon wakeup functionality; providing beacon signal functionality; generating a continuous wave, single frequency tone; providing a first frequency that is 25 different from a data signal which is at a second frequency; and modulating the encoded signal. Still further, various aspects may alternatively or optionally include steps related to frequency hopping generating random frequency hops on a narrow 5 band transmitted signal. Further yet, various aspects may alternatively or optionally include steps related to collision avoidance such as transmitting, via a first in vivo transmitter and a second in vivo transmitter, at different frequencies; modulating a duty cycle; retransmitting randomly; and spreading across a frequency spectrum. 10 Modulating a duty cycle may include dithering the duty cycle and spreading among frequencies. Transmitting at different frequencies may comprise providing multiple band pass filtering by different devices wherein respective signals associated with different frequencies are filtered by respective band pass fillers. 15 Articles Various aspects may include an article, comprising, for example, a storage medium having instructions, that when executed by a computing platform, result in execution of a method of providing transbody communications employing 20 communication channels. The method, for example, may comprise various steps/combinations of steps such as transmitting, via an in vivo transmitter, an encoded signal; facilitating, via a transbody functionality module, communication of the signal; and receiving, via a receiver, the encoded signal. Various other steps are illustrated heretofore. 25 ADDITIONAL SYSTEM ASPECTS In certain aspects, the receivers are part of a body associated system or network of sensors, receivers, and optionally other devices, both internal and 30 external, which provide a variety of different types of information that is ultimately collected and processed by a processor, such as an external processor, which then can provide contextual data about a patient as output. For example that sensor may be a member of an in-body network of devices which can provide an output that includes data about pill ingestion, one or more physiological sensed 26 parameters, implantable device operation, etc., to an external collector of the data. The external collector, e.g., in the form of a health care network server, etc., of the data then combines this receiver provided data with additional relevant data about the patient, e.g., weight, weather, medical record data, etc., and may 5 process this disparate data to provide highly specific and contextual patient specific data. Systems of the subject invention include, in certain aspects, a receiver and one or more pharma-informatics enabled active agent containing compositions. The pharma-informatics enabled pharmaceutical composition is an active agent 10 containing composition having an identifier stably associated therewith. In certain aspects, the compositions are disrupted upon administration to a subject. As such, in certain aspects, the compositions are physically broken, e.g., dissolved, degraded, eroded, etc., following delivery to a body, e.g., via ingestion, injection, etc. The compositions of these aspects are distinguished from devices that are 15 configured to be ingested and survive transit through the gastrointestinal tract substantially, if not completely, intact. The compositions include an identifier and an active agent/carrier component, where both of these components are present in a pharmaceutically acceptable vehicle. The identifiers of the compositions may vary depending on the particular 20 aspect and intended application of the composition so long as they are activated (i.e., turned on) upon contact with a target physiological location, e.g., stomach. As such, the identifier may be an identifier that emits a signal when it contacts a target body (i.e., physiological) site. In addition or alternatively, the identifier may be an identifier that emits a signal when interrogated after it has been activated. 25 The identifier may be any component or device that is capable of providing a detectable signal following activation, e.g., upon contact with the target site. In certain aspects, the identifier emits a signal once the composition comes into contact with a physiological target site, e.g., as summarized above. For example, a patient may ingest a pill that, upon contact with the stomach fluids, generates a 30 detectable signal. The compositions include an active agent/carrier component. By "active agent/carrier component" is meant a composition, which may be a solid or fluid (e.g., liquid), which has an amount of active agent, e.g., a dosage, present in a 27 pharmaceutically acceptable carrier. The active agent/carrier component may be referred to as a "dosage formulation." "Active agent" includes any compound or mixture of compounds which produces a physiological result, e.g., a beneficial or useful result, upon contact 5 with a living organism, e.g., a mammal, such as a human. Active agents are distinguishable from such components as vehicles, carriers, diluents, lubricants, binders and other formulating aids, and encapsulating or otherwise protective components. The active agent may be any molecule, as well as binding portion or fragment thereof, that is capable of modulating a biological process in a living 10 subject. In certain aspects, the active agent may be a substance used in the diagnosis, treatment, or prevention of a disease or as a component of a medication. In certain aspects, the active agent may be a chemical substance, such as a narcotic or hallucinogen, which affects the central nervous system and causes changes in behavior. 15 The active agent (i.e., drug) is capable of interacting with a target in a living subject. The target may be a number of different types of naturally occurring structures, where targets of interest include both intracellular and extracellular targets. Such targets may be proteins, phospholipids, nucleic acids and the like, where proteins are of particular interest. Specific proteinaceous 20 targets of interest include, without limitation, enzymes, e.g. kinases, phosphatases, reductases, cyclooxygenases, proteases and the like, targets comprising domains involved in protein-protein interactions, such as the SH2, SH3, PTB and PDZ domains, structural proteins, e.g. actin, tubulin, etc., membrane receptors, immunoglobulins, e.g. IgE, cell adhesion receptors, such 25 as integrins, etc, ion channels, transmembrane pumps, transcription factors, signaling proteins, and the like. The active agent (i.e., drug) may include one or more functional groups necessary for structural interaction with the target, e.g., groups necessary for hydrophobic, hydrophilic, electrostatic or even covalent interactions, depending 30 on the particular drug and its intended target. Where the target is a protein, the drug moiety may include functional groups necessary for structural interaction with proteins, such as hydrogen bonding, hydrophobic-hydrophobic interactions, electrostatic interactions, etc., and may include at least an amine, amide, 28 sulfhydryl, carbonyl, hydroxyl or carboxyl group, such as at least two of the functional chemical groups. Drugs of interest may include cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the 5 above functional groups. Also of interest as drug moieties are structures found among biomolecules, including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Such compounds may be screened to identify those of interest, where a variety of different screening protocols are known in the art. 10 The drugs may be derived from a naturally occurring or synthetic compound that may be obtained from a wide variety of sources, including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including the preparation of randomized 15 oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries. Known 20 pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs. As such, the drug may be obtained from a library of naturally occurring or synthetic molecules, including a library of compounds produced through 25 combinatorial means, i.e., a compound diversity combinatorial library. When obtained from such libraries, the drug moiety employed will have demonstrated some desirable activity in an appropriate screening assay for the activity. Combinatorial libraries, as well as methods for producing and screening such libraries, are known in the art and described in: 5,741,713; 5,734,018; 5,731,423; 30 5,721,099; 5,708,153; 5,698,673; 5,688,997; 5,688,696; 5,684,711; 5,641,862; 5,639,603; 5,593,853; 5,574,656; 5,571,698; 5,565,324; 5,549,974; 5,545,568; 5,541,061; 5,525,735; 5,463,564; 5,440,016; 5,438,119; 5,223,409, the disclosures of which are herein incorporated by reference. 29 Broad categories of active agents of interest include, but are not limited to: cardiovascular agents; pain-relief agents, e.g., analgesics, anesthetics, anti inflammatory agents, etc.; nerve-acting agents; chemotherapeutic (e.g., anti neoplastic) agents; etc. 5 As summarized above, the compositions of the invention further include a pharmaceutically acceptable vehicle (i.e., carrier). Common carriers and excipients, such as corn starch or gelatin, lactose, dextrose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride, and alginic acid are of interest. Disintegrators commonly used in the formulations 10 of the invention include croscarmellose, microcrystalline cellulose, corn starch, sodium starch glycolate and alginic acid. Further details about aspects of pharma-informatics enabled pharmaceutical compositions may be found in pending PCT application PCT/US2006/16370 titled "Pharma-Informatics System" and filed on April 28, 15 2006; as well as United States Provisional Application Serial Nos. 60/807,060 titled "Acoustic Pharma-Informatics System" filed on July 11, 2006; 60/862,925 titled "Controlled Activation Pharma-Informatics System," filed on October 25, 2006; and 60/866,581 titled "In-Vivo Transmission Decoder," filed on November 21, 2006; the disclosures of which are herein incorporated by reference. 20 In certain aspects the systems include an external device which is distinct from the receiver (which may be implanted or topically applied in certain aspects), where this external device provides a number of functionalities. Such an apparatus can include the capacity to provide feedback and appropriate clinical regulation to the patient. Such a device can take any of a number of forms. By 25 example, the device can be configured to sit on the bed next to the patient, e.g., a bedside monitor. Other formats include, but are not limited to, PDAs, smart phones, home computers, etc. The device can read out the information described in more detail in other sections of the subject patent application, both from pharmaceutical ingestion reporting and from physiological sensing devices, such 30 as is produced internally by a pacemaker device or a dedicated implant for detection of the pill. The purpose of the external apparatus is to get the data out of the patient and into an external device. One feature of the external apparatus is its ability to provide pharmacologic and physiologic information in a form that 30 can be transmitted through a transmission medium, such as a telephone line, to a remote location such as a clinician or to a central monitoring agency. Systems of the invention enable a dynamic feedback and treatment loop of tracking medication timing and levels, measuring the response to therapy, and 5 recommending altered dosing based on the physiology and molecular profiles of individual patients. For example, a symptomatic heart failure patient takes multiple drugs daily, primarily with the goal of reducing the heart's workload and improving patient quality of life. Mainstays of therapy include angiotensin converting enzyme (ACE) inhibitors, p-blockers and diuretics. For 10 pharmaceutical therapy to be effective, it is vital that patients adhere to their prescribed regimen, taking the required dose at the appropriate time. Multiple studies in the clinical literature demonstrate that more than 50% of Class II and Ill heart failure patients are not receiving guideline-recommended therapy, and, of those who are titrated appropriately, only 40-60% adhere to the regimen. With the 15 subject systems, heart failure patients can be monitored for patient adherence to therapy, and adherence performance can be linked to key physiologic measurements, to facilitate the optimization of therapy by physicians. In certain aspects, the systems of the invention may be employed to obtain an aggregate of information that includes sensor data and administration data. 20 For example, one can combine the heart rate, the respiration rate, multi-axis acceleration data, something about the fluid status, and something about temperature, and derive indices that will inform about the total activity of the subject, that can be used to generate a physiological index, such as an activity index. For instance, when there is a rise in temperature, heart rate goes up a bit, 25 and respiration speeds up, which may be employed as an indication that the person is being active. By calibrating this, the amount of calories the person is burning at that instant could be determined. In another example, a particular rhythmic set of pulses or multi-axis acceleration data can indicate that a person is walking up a set of stairs, and from that one can infer how much energy they are 30 using. In another aspect, body fat measurement (e.g. from impedance data) could be combined with an activity index generated from a combination of measured biomarkers to generate a physiological index useful for management of a weight loss or cardiovascular health program. This information can be 31 combined with cardiac performance indicators to get a good picture of overall health, which can be combined with pharmaceutical therapy administration data. In another aspect, one might find for example that a particular pharmaceutical correlates with a small increase in body temperature, or a change in the 5 electrocardiogram. One can develop a pharmacodynamic model for the metabolism of the drug, and use the information from the receiver to essentially fit the free parameters in that model to give much more accurate estimation of the levels actually present in the serum of the subject. This information could be fed back to dosing regimes. In another aspect, one can combine information from a 10 sensor that measures uterine contractions (e.g. with a strain gauge) and that also monitors fetal heart rate, for use as a high-risk pregnancy monitor. In certain aspects, the subject specific information that is collected using the systems of the invention may be transmitted to a location where it is combined with data from one or more additional individuals to provide a collection 15 of data which is a composite of data collected from 2 or more, e.g., 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 1000 or more, etc., individuals. The composite data can then be manipulated, e.g., categorized according to different criteria, and made available to one or more different types of groups, e.g., patient groups, health care practitioner groups, etc., where the manipulation 20 of data may be such as to limit the access of any given group to the type of data that group can access. For example, data can be collected from 100 different individuals that are suffering from the same condition and taking the same medication. The data can be processed and employed to develop easy to follow displays regarding patient compliance with a pharmaceutical dosage regimen and 25 general health. Patient members of the group can access this information and see how their compliance matches with other patient members of the group, and whether they are enjoying the benefits that others are experiencing. In yet another aspect, doctors can also be granted access to a manipulation of the composite data to see how their patients are matching up with patients of other 30 doctors, and obtain useful information on how real patients respond to a given therapeutic treatment regimen. Additional functionalities can be provided to the groups given access to the composite data, where such functionalities may include, but are not limited to: ability to annotate data, chat functionalities, security privileges, etc. 32 CoMPUTER READABLE MEDIA & PROGRAMMING In certain aspects, the system further includes an element for storing data, 5 i.e., a data storage element, where this element is present on an external device, such as a bedside monitor, PDA, smart phone, etc. Typically, the data storage element is a computer readable medium. The term "computer readable medium" as used herein refers to any storage or transmission medium that participates in providing instructions and/or data to a computer for execution and/or processing. 10 Examples of storage media include floppy disks, magnetic tape, CD-ROM, a hard disk drive, a ROM or integrated circuit, a magneto-optical disk, or a computer readable card such as a PCMCIA card and the like, whether or not such devices are internal or external to the computer. A file containing information may be "stored" on computer readable medium, where "storing" means recording 15 information such that it is accessible and retrievable at a later date by a computer. With respect to computer readable media, "permanent memory" refers to memory that is permanent. Permanent memory is not erased by termination of the electrical supply to a computer or processor. Computer hard-drive ROM (i.e. ROM not used as virtual memory), CD-ROM, floppy disk and DVD are all 20 examples of permanent memory. Random Access Memory (RAM) is an example of non-permanent memory. A file in permanent memory may be editable and re writable. The invention also provides computer executable instructions (i.e., programming) for performing the above methods. The computer executable 25 instructions are present on a computer readable medium. Accordingly, the invention provides a computer readable medium containing programming for use in detecting and processing a signal generated by a composition of the invention, e.g., as reviewed above. As such, in certain aspects the systems include one or more of: a data 30 storage element, a data processing element, a data display element, data transmission element, a notification mechanism, and a user interface. These additional elements may be incorporated into the receiver and/or present on an external device, e.g., a device configured for processing data and making 33 decisions, forwarding data to a remote location which provides such activities, etc. The above described systems are reviewed in terms of communication between an identifier on a pharmaceutical composition and a receiver. However, 5 the systems are not so limited. In a broader sense, the systems are composed of two or more different modules that communicate with each other, e.g., using the transmitter/receiver functionalities as reviewed above, e.g., using the monopole transmitter (e.g., antenna) structures as described above. As such, the above identifier elements may be incorporated into any of a plurality of different devices, 10 e.g., to provide a communications system between two self-powered devices in the body, where the self-powered devices may be sensors, data receivers and storage elements, effectors, etc. In an exemplary system, one of these devices may be a sensor and the other may be a communication hub for communication to the outside world. This inventive aspect may take a number of forms. There 15 can be many sensors, many senders and one receiver. They can be transceivers so both of these can take turns sending and receiving according to known communication protocols. In certain aspects, the means of communication between the two or more individual devices is the mono polar system, e.g., as described above. In these aspects, each of these senders may be configured to 20 take turns sending a high frequency signal into the body using a monopole pulling charge into and out of the body which is a large capacitor and a conductor. The receiver, a monopole receiver is detecting at that frequency the charge going into and out of the body and decoding an encrypted signal such as an amplitude modulated signal or frequency modulated signal. This aspect of the present 25 invention has broad uses. For example, multiple sensors can be placed and implanted on various parts of the body that measure position or acceleration. Without having wires connecting to a central hub, they can communicate that information through a communication medium. In the methods of the subject invention in which the in vivo transmitter is a 30 pharma-informatics enabled composition, an effective amount of a composition of the invention is administered to a subject in need of the active agent present in the composition, where "effective amount" means a dosage sufficient to produce the desired result, e.g. an improvement in a disease condition or the symptoms associated therewith, the accomplishment of a desired physiological change, etc. 34 The amount that is administered may also be viewed as a therapeutically effective amount. A "therapeutically effective amount" means the amount that, when administered to a subject for treating a disease, is sufficient to effect treatment for that disease. 5 The composition may be administered to the subject using any convenient means capable of producing the desired result, where the administration route depends, at least in part, on the particular format of the composition, e.g., as reviewed above. As reviewed above, the compositions can be formatted into a variety of formulations for therapeutic administration, including but not limited to 10 solid, semi solid or liquid, such as tablets, capsules, powders, granules, ointments, solutions, suppositories and injections. As such, administration of the compositions can be achieved in various ways, including, but not limited to: oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration. In pharmaceutical dosage forms, a given composition may 15 be administered alone or in combination with other pharmaceutically active compounds, e.g., which may also be compositions having signal generation elements stably associated therewith. The subject methods find use in the treatment of a variety of different conditions, including disease conditions. The specific disease conditions treatable 20 by with the subject compositions are as varied as the types of active agents that can be present in the subject compositions. Thus, disease conditions include, but are not limited to: cardiovascular diseases, cellular proliferative diseases, such as neoplastic diseases, autoimmune diseases, hormonal abnormality diseases, infectious diseases, pain management, and the like. 25 By treatment is meant at least an amelioration of the symptoms associated with the disease condition afflicting the subject, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g. symptom, associated with the pathological condition being treated. As such, treatment also includes situations where the pathological condition, or at least 30 symptoms associated therewith, are completely inhibited, e.g. prevented from happening, or stopped, e.g. terminated, such that the subject no longer suffers from the pathological condition, or at least the symptoms that characterize the pathological condition. Accordingly, "treating" or "treatment" of a disease includes preventing the disease from occurring in an animal that may be predisposed to 35 the disease but does not yet experience or exhibit symptoms of the disease (prophylactic treatment), inhibiting the disease (slowing or arresting its development), providing relief from the symptoms or side-effects of the disease (including palliative treatment), and relieving the disease (causing regression of 5 the disease). For the purposes of this invention, a "disease" includes pain. A variety of subjects are treatable according to the present methods. Generally such subjects are "mammals" or "mammalian," where these terms are used broadly to describe organisms which are within the class mammalia, including the orders carnivore (e.g., dogs and cats), rodentia (e.g., mice, guinea 10 pigs, and rats), and primates (e.g., humans, chimpanzees, and monkeys). In representative aspects, the subjects will be humans. In certain aspects, the subject methods, as described above, are methods of managing a disease condition, e.g., over an extended period of time, such as 1 week or longer, 1 month or longer, 6 months or longer, 1 year or longer, 2 years 15 or longer, 5 years or longer, etc. The subject methods may be employed in conjunction with one or more additional disease management protocols, e.g., electrostimulation based protocols in cardiovascular disease management, such as pacing protocols, cardiac resynchronization protocols, etc; lifestyle, such a diet and/or exercise regimens for a variety of different disease conditions; etc. 20 In certain aspects, the methods include modulating a therapeutic regimen based data obtained from the compositions. For example, data may be obtained which includes information about patient compliance with a prescribed therapeutic regimen. This data, with or without additional physiological data, e.g., obtained using one or more sensors, such as the sensor devices described 25 above, may be employed, e.g., with appropriate decision tools as desired, to make determinations of whether a given treatment regimen should be maintained or modified in some way, e.g., by modification of a medication regimen and/or implant activity regimen. As such, methods of invention include methods in which a therapeutic regimen is modified based on signals obtained from the 30 composition(s). In certain aspects, also provided are methods of determining the history of a composition of the invention, where the composition includes an active agent, an identifier element and a pharmaceutically acceptable carrier. In certain aspects where the identifier emits a signal in response to an interrogation, the 36 identifier is interrogate, e.g., by a wand or other suitable interrogation device, to obtain a signal. The obtained signal is then employed to determine historical information about the composition, e.g., source, chain of custody, etc. In yet other aspects where the identifier is one that survives digestion, the 5 methods generally include obtaining the signal generation element of the composition, e.g., by retrieving it from a subject that has ingested the composition, and then determining the history of the composition from obtained signal generation element. For example, where the signal generation element includes an engraved identifier, e.g., barcode or other type of identifier, the 10 engraved identifier may be retrieved from a subject that has ingested the composition and then read to identify at least some aspect of the history of the composition, such as last known purchaser, additional purchasers in the chain of custody of the composition, manufacturer, handling history, etc. In certain aspects, this determining step may include accessing a database or analogous 15 compilation of stored history for the composition. UTILITY Medical aspects of the present invention provide the clinician an important 20 new tool in their therapeutic armamentarium: automatic detection and identification of pharmaceutical agents actually delivered into the body. The applications of this new information device and system are multi-fold. Applications include, but are not limited to: (1) monitoring patient compliance with prescribed therapeutic regimens; (2) tailoring therapeutic regimens based on 25 patient compliance; (3) monitoring patient compliance in clinical trials; (4) monitoring usage of controlled substances; and the like. Each of these different illustrative applications is reviewed in greater detail below in copending PCT Application Serial No. PCT/US2006/ 016370; the disclosure of which is herein incorporated by reference. Additional applications in which the subject receivers 30 find use include, but are not limited to: United States provisional Application Serial Nos: 60/887,780 titled "Receivers For Pharma-Informatics Systems," and filed on February 1, 2007; 60/956,694 titled "Personal Health Receivers," and filed on August 18, 2007 and 60/949,223 titled "Ingestible Event Marker," and 37 filed on July 11, 2007, the disclosures of which applications are incorporated herein by reference. KiTS 5 Also provided are kits for practicing the subject methods. Kits may include one or more receivers of the invention, as described above. In addition, the kits may include one or more dosage compositions, e.g., pharma-informatics enabled dosage compositions. The dosage amount of the one or more pharmacological 10 agents provided in a kit may be sufficient for a single application or for multiple applications. Accordingly, in certain aspects of the subject kits a single dosage amount of a pharmacological agent is present and in certain other aspects multiple dosage amounts of a pharmacological agent may be present in a kit. In those aspects having multiple dosage amounts of pharmacological agent, such 15 may be packaged in a single container, e.g., a single tube, bottle, vial, and the like, or one or more dosage amounts may be individually packaged such that certain kits may have more than one container of a pharmacological agent. Suitable means for delivering one or more pharmacological agents to a subject may also be provided in a subject kit. The particular delivery means 20 provided in a kit is dictated by the particular pharmacological agent employed, as describe above, e.g., the particular form of the agent such as whether the pharmacological agent is formulated into preparations in solid, semi solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants and aerosols, and the like, and the 25 particular mode of administration of the agent, e.g., whether oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc. Accordingly, certain systems may include a suppository applicator, syringe, I.V. bag and tubing, electrode, etc. In certain aspects, the kits may also include an external monitor device, 30 e.g., as described above, which may provide for communication with a remote location, e.g., a doctor's office, a central facility etc., which obtains and processes data obtained about the usage of the composition. In certain aspects, the kits may include a smart parenteral delivery system that provides specific identification and detection of parenteral beneficial agents 38 or beneficial agents taken into the body through other methods, for example, through the use of a syringe, inhaler, or other device that administers medicine, such as described in copending application serial no. 60/819,750; the disclosure of which is herein incorporated by reference. 5 The subject kits may also include instructions for how to practice the subject methods using the components of the kit. The instructions may be recorded on a suitable recording medium or substrate. For example, the instructions may be printed on a substrate, such as paper or plastic, etc. As such, the instructions may be present in the kits as a package insert, in the labeling of 10 the container of the kit or components thereof (i.e., associated with the packaging or sub-packaging) etc. In other aspects, the instructions are present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, etc. In yet other aspects, the actual instructions are not present in the kit, but means for obtaining the instructions from a remote 15 source, e.g. via the internet, are provided. An example of this aspect is a kit that includes a web address where the instructions can be viewed and/or from which the instructions can be downloaded. As with the instructions, this means for obtaining the instructions is recorded on a suitable substrate. Some or all components of the subject kits may be packaged in suitable 20 packaging to maintain sterility. In many aspects of the subject kits, the components of the kit are packaged in a kit containment element to make a single, easily handled unit, where the kit containment element, e.g., box or analogous structure, may or may not be an airtight container, e.g., to further preserve the sterility of some or all of the components of the kit. 25 30 39 It is to be understood that this invention is not limited to particular aspects described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting, since the scope of the present invention will be limited 5 only by the appended claims. Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated 10 or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those 15 included limits are also included in the invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar 20 or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described. All publications and patents cited in this specification are herein 25 incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed 30 as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. 40 It is noted that, as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent 5 basis for use of such exclusive terminology as "solely," "only" and the like in connection with the recitation of claim elements, or use of a "negative" limitation. As will be apparent to those of skill in the art upon reading this disclosure, 10 each of the individual aspects described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible. 15 Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is 20 readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims. 25 Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally 30 intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and aspects of the invention as well as specific examples thereof, are intended to 41 encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, 5 therefore, is not intended to be limited to the exemplary aspects shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims. 42

Claims (20)

1. A system comprising: 5 an in vivo transmitter to transmit an encoded signal; a transbody functionality module to facilitate communication of the encoded signal; and a receiver to receive the encoded signal. 10
2. The system of claim 1, wherein the transbody functionality module is selected from the group consisting essentially of a beacon functionality module, a frequency hopping functionality module, and a collision avoidance functionality module. 15
3. The system of claim 2, wherein the beacon functionality module comprises at least one element selected from the group consisting essentially of: a beacon wakeup module to provide beacon wakeup functionality; a beacon signal module to provide beacon signal functionality; a wave / frequency module to provide a continuous wave and a 20 single frequency tone; a multiple frequency module to provide multiple frequencies; and a modulated signal module to provide at least one modulated encoded signal. 25
4. The system of claim 3, wherein a frequency ratio of a beacon and data channel is invariant to frequency error in an ingestible event marker system to provide additional assurance of detection of the encoded signal.
5. The system of claim 3, wherein the frequency hopping functionality 30 module comprises a random module to provide random frequency hops on a narrow band transmitted signal. 43
6. The system of claim 3, wherein the collision avoidance functionality module comprises at least one element selected from the group consisting essentially of: a transmitter module to provide a first in vivo transmitter transmitting at a 5 first frequency and a second in vivo transmitter transmitting at a second frequency module; a duty cycle modulation module to provide duty cycle modulation functionality; a retransmit randomization module to provide random retransmittals; and 10 a spread spectrum module to provide spread spectrum functionality.
7. The system of claim 6, wherein the duty cycle modulation module includes a dithering module to dither a duty cycle and frequency spread module to spread the transmissions among multiple frequencies. 15
8. The system of claim 6, wherein the transmitter modules comprises a multiple band pass filter module to provide multiple band pass filtering by different devices wherein respective encoded signals are filtered by respective band pass filters. 20
9. A method comprising: transmitting, via an in vivo transmitter, an encoded signal; facilitating, via a transbody functionality module, communication of the signal; and 25 receiving, via a receiver, the encoded signal.
10. The method of claim 9, further comprising: providing characteristics of the encoded signal, wherein the characteristics optimize power consumption to facilitate the receiver in at least 30 one of the following: spending maximum time in an inactive mode, waking up quickly, and waking up during a period of high probability that the transmitter is present. 44
11. The method of claim 9, wherein the facilitating, via a transbody functionality module, communication of the signal comprises at least one of: facilitating, via a beacon functionality module, communication of the encoded signal; 5 facilitating, via a frequency hopping functionality module, communication of the encoded signal; and facilitating, via a collision avoidance functionality module, communication of the encoded signal. 10
12. The method of claim 11, wherein the facilitating, via a beacon functionality module communication of the signal comprises at least one of: providing beacon wakeup functionality; providing beacon signal functionality; generating a continuous wave, single frequency tone; 15 providing a first frequency that is different from a data signal which is at a second frequency; and modulating the encoded signal.
13. The method of claim 11, wherein the facilitating, via a frequency 20 hopping functionality module, communication of the encoded signal comprises generating random frequency hops on a narrow band transmitted signal.
14. The method of claim 11, wherein the facilitating, via a collision avoidance functionality module, communication of the encoded signal comprises 25 at least one of: transmitting, via a first in vivo transmitter at a first frequency and transmitting, via a second in vivo transmitter, at a second frequency; modulating a duty cycle; retransmitting randomly; and 30 spreading across a frequency spectrum.
15. The method of claim 14, wherein the modulating a duty cycle includes dithering the duty cycle and spreading among frequencies. 45
16. The method of claim 14, wherein the transmitting at different frequencies comprises providing multiple band pass filtering by different devices wherein respective encoded signals are filtered by respective band pass fillers. 5
17. The method of claim 9 in a form of a machine-readable medium embodying a set of instructions that, when executed by a machine, causes the machine to perform the method of claim 8.
18. An article, comprising: 10 a storage medium having instructions, that when executed by a computing platform, result in execution of a method of providing transbody communications employing communication channels in a living body, the method comprising: transmitting, via an in vivo transmitter, an encoded signal; facilitating, via a transbody functionality module, communication of 15 the signal; and receiving, via a receiver, the encoded signal.
19. The article of claim 18, further comprising: providing characteristics of the encoded signal, wherein the characteristics 20 optimize power consumption to facilitate the receiver in at least one of the following: spending maximum time in an inactive mode, waking up quickly, and waking up during a period of high probability that the transmitter is present.
20. The article of claim 18, wherein the facilitating, via a transbody 25 functionality module, communication of the signal comprises at least one of: facilitating, via a beacon functionality module, communication of the encoded signal; facilitating, via a frequency hopping functionality module, communication of the encoded signal; and 30 facilitating, via a collision avoidance functionality module, communication of the encoded signal. 46
AU2016201924A 2007-11-27 2016-03-29 Transbody communication systems employing communication channels Abandoned AU2016201924A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2016201924A AU2016201924A1 (en) 2007-11-27 2016-03-29 Transbody communication systems employing communication channels

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US99056707P 2007-11-27 2007-11-27
US99057207P 2007-11-27 2007-11-27
US99056207P 2007-11-27 2007-11-27
US60/990,567 2007-11-27
US60/990,572 2007-11-27
US60/990,562 2007-11-27
AU2014203793A AU2014203793A1 (en) 2007-11-27 2014-07-10 Transbody communication systems employing communication channels
AU2016201924A AU2016201924A1 (en) 2007-11-27 2016-03-29 Transbody communication systems employing communication channels

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2014203793A Division AU2014203793A1 (en) 2007-11-27 2014-07-10 Transbody communication systems employing communication channels

Publications (1)

Publication Number Publication Date
AU2016201924A1 true AU2016201924A1 (en) 2016-05-19

Family

ID=40669666

Family Applications (3)

Application Number Title Priority Date Filing Date
AU2008329620A Active AU2008329620B2 (en) 2007-11-27 2008-11-26 Transbody communication systems employing communication channels
AU2014203793A Abandoned AU2014203793A1 (en) 2007-11-27 2014-07-10 Transbody communication systems employing communication channels
AU2016201924A Abandoned AU2016201924A1 (en) 2007-11-27 2016-03-29 Transbody communication systems employing communication channels

Family Applications Before (2)

Application Number Title Priority Date Filing Date
AU2008329620A Active AU2008329620B2 (en) 2007-11-27 2008-11-26 Transbody communication systems employing communication channels
AU2014203793A Abandoned AU2014203793A1 (en) 2007-11-27 2014-07-10 Transbody communication systems employing communication channels

Country Status (13)

Country Link
US (2) US20090135886A1 (en)
EP (1) EP2215726B1 (en)
JP (2) JP5794782B2 (en)
KR (1) KR101586193B1 (en)
CN (1) CN101926097B (en)
AU (3) AU2008329620B2 (en)
CA (1) CA2717809A1 (en)
DK (1) DK2215726T3 (en)
ES (1) ES2661739T3 (en)
IL (1) IL206049A (en)
MY (1) MY154699A (en)
SG (1) SG190590A1 (en)
WO (1) WO2009070773A1 (en)

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
EP2392258B1 (en) 2005-04-28 2014-10-08 Proteus Digital Health, Inc. Pharma-informatics system
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
WO2007028035A2 (en) 2005-09-01 2007-03-08 Proteus Biomedical, Inc. Implantable zero-wire communications system
CN105468895A (en) 2006-05-02 2016-04-06 普罗透斯数字保健公司 Patient customized therapeutic regimens
US20080020037A1 (en) * 2006-07-11 2008-01-24 Robertson Timothy L Acoustic Pharma-Informatics System
EP2087589B1 (en) 2006-10-17 2011-11-23 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
KR101611240B1 (en) 2006-10-25 2016-04-11 프로테우스 디지털 헬스, 인코포레이티드 Controlled activation ingestible identifier
EP2069004A4 (en) 2006-11-20 2014-07-09 Proteus Digital Health Inc Active signal processing personal health signal receivers
CA2676407A1 (en) 2007-02-01 2008-08-07 Proteus Biomedical, Inc. Ingestible event marker systems
CA2676280C (en) 2007-02-14 2018-05-22 Proteus Biomedical, Inc. In-body power source having high surface area electrode
WO2008112577A1 (en) 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a multi-directional transmitter
WO2008112578A1 (en) 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a deployable antenna
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
FI2192946T3 (en) 2007-09-25 2022-11-30 In-body device with virtual dipole signal amplification
ES2661739T3 (en) 2007-11-27 2018-04-03 Proteus Digital Health, Inc. Transcorporeal communication systems that employ communication channels
CA2717862C (en) 2008-03-05 2016-11-22 Proteus Biomedical, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
ES2696984T3 (en) 2008-07-08 2019-01-21 Proteus Digital Health Inc Ingestion event marker data infrastructure
MY154217A (en) 2008-08-13 2015-05-15 Proteus Digital Health Inc Ingestible circuitry
US8036748B2 (en) 2008-11-13 2011-10-11 Proteus Biomedical, Inc. Ingestible therapy activator system and method
SG172077A1 (en) 2008-12-11 2011-07-28 Proteus Biomedical Inc Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
TWI503101B (en) 2008-12-15 2015-10-11 Proteus Digital Health Inc Body-associated receiver and method
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
WO2010080843A2 (en) 2009-01-06 2010-07-15 Proteus Biomedical, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
CN102365084B (en) 2009-01-06 2014-04-30 普罗秋斯数字健康公司 Pharmaceutical dosages delivery system
WO2010111403A2 (en) 2009-03-25 2010-09-30 Proteus Biomedical, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
MX2011011506A (en) 2009-04-28 2012-05-08 Proteus Biomedical Inc Highly reliable ingestible event markers and methods for using the same.
EP2432458A4 (en) 2009-05-12 2014-02-12 Proteus Digital Health Inc Ingestible event markers comprising an ingestible component
US8558563B2 (en) 2009-08-21 2013-10-15 Proteus Digital Health, Inc. Apparatus and method for measuring biochemical parameters
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
UA109424C2 (en) 2009-12-02 2015-08-25 PHARMACEUTICAL PRODUCT, PHARMACEUTICAL TABLE WITH ELECTRONIC MARKER AND METHOD OF MANUFACTURING PHARMACEUTICAL TABLETS
US8315224B2 (en) * 2010-01-22 2012-11-20 General Electric Company Methods and systems for reuse of radio resources in medical telemetry networks
BR112012019212A2 (en) 2010-02-01 2017-06-13 Proteus Digital Health Inc data collection system
KR20170121299A (en) 2010-04-07 2017-11-01 프로테우스 디지털 헬스, 인코포레이티드 Miniature ingestible device
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
JP6114693B2 (en) 2010-09-30 2017-04-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Body-worn sensor network using redundant parameter prioritization and temporal alignment
JP2014504902A (en) 2010-11-22 2014-02-27 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible device with medicinal product
FR2972588A1 (en) 2011-03-07 2012-09-14 France Telecom METHOD FOR ENCODING AND DECODING IMAGES, CORRESPONDING ENCODING AND DECODING DEVICE AND COMPUTER PROGRAMS
EP2683291B1 (en) 2011-03-11 2019-07-31 Proteus Digital Health, Inc. Wearable personal body associated device with various physical configurations
JP6027726B2 (en) * 2011-06-07 2016-11-16 オリンパス株式会社 Wireless communication terminal
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
CN103827914A (en) 2011-07-21 2014-05-28 普罗秋斯数字健康公司 Mobile communication device, system, and method
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
US20130129869A1 (en) 2011-11-23 2013-05-23 Hooman Hafezi Compositions comprising a shelf-life stability component
JP2015534539A (en) 2012-07-23 2015-12-03 プロテウス デジタル ヘルス, インコーポレイテッド Technique for producing an ingestible event marker with an ingestible component
BR112015001743A2 (en) 2012-07-26 2017-07-04 Mashiach Adi implant encapsulation
US9268909B2 (en) 2012-10-18 2016-02-23 Proteus Digital Health, Inc. Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
KR101916418B1 (en) 2012-11-29 2018-11-08 삼성전자주식회사 Method and apparatus for reducing power consumption of receiver
WO2014120669A1 (en) 2013-01-29 2014-08-07 Proteus Digital Health, Inc. Highly-swellable polymeric films and compositions comprising the same
WO2014151929A1 (en) 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
JP6511439B2 (en) 2013-06-04 2019-05-15 プロテウス デジタル ヘルス, インコーポレイテッド Systems, devices, and methods for data collection and outcome assessment
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
EP3047618B1 (en) 2013-09-20 2023-11-08 Otsuka Pharmaceutical Co., Ltd. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
WO2015044722A1 (en) 2013-09-24 2015-04-02 Proteus Digital Health, Inc. Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
US9417845B2 (en) * 2013-10-02 2016-08-16 Qualcomm Incorporated Method and apparatus for producing programmable probability distribution function of pseudo-random numbers
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
WO2015106007A1 (en) 2014-01-10 2015-07-16 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
AU2015204701B2 (en) 2014-01-10 2018-03-15 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
US9808631B2 (en) 2014-08-06 2017-11-07 Cardiac Pacemakers, Inc. Communication between a plurality of medical devices using time delays between communication pulses to distinguish between symbols
US9694189B2 (en) 2014-08-06 2017-07-04 Cardiac Pacemakers, Inc. Method and apparatus for communicating between medical devices
US9757570B2 (en) 2014-08-06 2017-09-12 Cardiac Pacemakers, Inc. Communications in a medical device system
WO2016033197A2 (en) 2014-08-28 2016-03-03 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
WO2016126613A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10220213B2 (en) 2015-02-06 2019-03-05 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
WO2016130477A2 (en) 2015-02-09 2016-08-18 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque id tag
WO2016141046A1 (en) 2015-03-04 2016-09-09 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
CN107427222B (en) 2015-03-18 2021-02-09 心脏起搏器股份公司 Communication in a medical device system using link quality assessment
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
DE102015104141A1 (en) 2015-03-19 2016-09-22 Albert-Ludwigs-Universität Freiburg Receiving device and method for operating a receiving device
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
CN108136186B (en) 2015-08-20 2021-09-17 心脏起搏器股份公司 System and method for communication between medical devices
EP3337559B1 (en) 2015-08-20 2019-10-16 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
WO2017040153A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
WO2017040115A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. System for detecting tamponade
WO2017044389A1 (en) 2015-09-11 2017-03-16 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
CN108136185B (en) 2015-10-08 2021-08-31 心脏起搏器股份公司 Apparatus and method for adjusting pacing rate in an implantable medical device
WO2017106693A1 (en) 2015-12-17 2017-06-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
WO2017127548A1 (en) 2016-01-19 2017-07-27 Cardiac Pacemakers, Inc. Devices for wirelessly recharging a rechargeable battery of an implantable medical device
US10350423B2 (en) 2016-02-04 2019-07-16 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
CN105892317A (en) * 2016-03-31 2016-08-24 创领心律管理医疗器械(上海)有限公司 Implantable medical device, data outputting and receiving methods thereof and communication mechanism
US11116988B2 (en) 2016-03-31 2021-09-14 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
WO2018005373A1 (en) 2016-06-27 2018-01-04 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed p-waves for resynchronization pacing management
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
US10688304B2 (en) 2016-07-20 2020-06-23 Cardiac Pacemakers, Inc. Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
CN109843149B (en) 2016-07-22 2020-07-07 普罗秋斯数字健康公司 Electromagnetic sensing and detection of ingestible event markers
WO2018035343A1 (en) 2016-08-19 2018-02-22 Cardiac Pacemakers, Inc. Trans septal implantable medical device
CN109641129B (en) 2016-08-24 2023-06-30 心脏起搏器股份公司 Cardiac resynchronization with timing management using fusion facilitation
WO2018039335A1 (en) 2016-08-24 2018-03-01 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using p-wave to pace timing
US10994145B2 (en) 2016-09-21 2021-05-04 Cardiac Pacemakers, Inc. Implantable cardiac monitor
WO2018057318A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
CN109963499B (en) 2016-10-26 2022-02-25 大冢制药株式会社 Method for manufacturing capsules with ingestible event markers
AU2017350759B2 (en) 2016-10-27 2019-10-17 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
WO2018081275A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
EP3532159B1 (en) 2016-10-27 2021-12-22 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
WO2018081237A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
CN109890456B (en) 2016-10-31 2023-06-13 心脏起搏器股份公司 System for activity level pacing
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
WO2018089311A1 (en) 2016-11-08 2018-05-17 Cardiac Pacemakers, Inc Implantable medical device for atrial deployment
CN109952129B (en) 2016-11-09 2024-02-20 心脏起搏器股份公司 System, device and method for setting cardiac pacing pulse parameters for a cardiac pacing device
EP3541473B1 (en) 2016-11-21 2020-11-11 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
JP6843240B2 (en) 2016-11-21 2021-03-17 カーディアック ペースメイカーズ, インコーポレイテッド Implantable medical device with permeable housing and induction coil placed around the housing
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
CN110198759B (en) 2017-01-26 2023-08-11 心脏起搏器股份公司 Leadless implantable device with removable fasteners
EP3573709A1 (en) 2017-01-26 2019-12-04 Cardiac Pacemakers, Inc. Leadless device with overmolded components
WO2018140617A1 (en) 2017-01-26 2018-08-02 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
AU2018248361B2 (en) 2017-04-03 2020-08-27 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
CN111107899B (en) 2017-09-20 2024-04-02 心脏起搏器股份公司 Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
US11234280B2 (en) 2017-11-29 2022-01-25 Samsung Electronics Co., Ltd. Method for RF communication connection using electronic device and user touch input
CN111417430B (en) * 2017-11-29 2024-03-08 美敦力公司 Tissue conduction communication between devices
EP3717064B1 (en) 2017-12-01 2023-06-07 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
EP3717059A1 (en) 2017-12-01 2020-10-07 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
US11071870B2 (en) 2017-12-01 2021-07-27 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
EP3717060B1 (en) 2017-12-01 2022-10-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
EP3735293B1 (en) 2018-01-04 2022-03-09 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
TWI667860B (en) 2018-02-09 2019-08-01 鉅旺生技股份有限公司 Long-range wireless charging enhancement structure for implantable medical devices
EP3768369A1 (en) 2018-03-23 2021-01-27 Medtronic, Inc. Av synchronous vfa cardiac therapy
EP3768160B1 (en) 2018-03-23 2023-06-07 Medtronic, Inc. Vfa cardiac therapy for tachycardia
CN111902187A (en) 2018-03-23 2020-11-06 美敦力公司 VFA cardiac resynchronization therapy
US11235161B2 (en) 2018-09-26 2022-02-01 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11951313B2 (en) 2018-11-17 2024-04-09 Medtronic, Inc. VFA delivery systems and methods
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
WO2023028164A1 (en) * 2021-08-24 2023-03-02 Canary Medical Switzerland Ag Implantable medical device with sensing and communication functionality

Family Cites Families (438)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799802A (en) * 1966-06-28 1974-03-26 F Schneble Plated through hole printed circuit boards
US3642008A (en) * 1968-09-25 1972-02-15 Medical Plastics Inc Ground electrode and test circuit
US3679480A (en) 1969-05-08 1972-07-25 Dow Chemical Co Electrical cell assembly
US3719183A (en) * 1970-03-05 1973-03-06 H Schwartz Method for detecting blockage or insufficiency of pancreatic exocrine function
US3944064A (en) 1973-10-26 1976-03-16 Alza Corporation Self-monitored device for releasing agent at functional rate
US4106348A (en) 1974-02-20 1978-08-15 U.S. Philips Corporation Device for examination by means of ultrasonic vibrations
US3893111A (en) 1974-03-14 1975-07-01 Albert Albert F System and method for remote monitoring of animal temperature
US4077397A (en) * 1974-10-07 1978-03-07 Baxter Travenol Laboratories, Inc. Diagnostic electrode assembly
ZA755785B (en) * 1974-10-07 1976-08-25 Baxter Laboratories Inc Diagnostic electrode assembly
US4055178A (en) 1976-03-10 1977-10-25 Harrigan Roy Major Drug delivery device for preventing contact of undissolved drug with the stomach lining
JPS5475284A (en) * 1977-11-29 1979-06-15 Asahi Chemical Ind Threeeterminal magnetic reluctance effect element
DE2928477C3 (en) 1979-07-14 1982-04-15 Battelle-Institut E.V., 6000 Frankfurt Device for the release of substances at defined locations in the digestive tract
US4331654A (en) 1980-06-13 1982-05-25 Eli Lilly And Company Magnetically-localizable, biodegradable lipid microspheres
US4578061A (en) * 1980-10-28 1986-03-25 Lemelson Jerome H Injection catheter and method
US4418697A (en) 1981-08-17 1983-12-06 Francine Tama Electrode attachment method
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4564363A (en) 1983-07-13 1986-01-14 Smithkline Beckman Corporation Delayed action assembly
GB8322007D0 (en) 1983-08-16 1983-09-21 Wellcome Found Pharmaceutical delivery system
GB8422876D0 (en) 1984-09-11 1984-10-17 Secr Defence Silicon implant devices
FR2571603B1 (en) 1984-10-11 1989-01-06 Ascher Gilles PORTABLE ELECTROCARDIOGRAM RECORDER
US4681111A (en) * 1985-04-05 1987-07-21 Siemens-Pacesetter, Inc. Analog and digital telemetry system for an implantable device
US4654165A (en) 1985-04-16 1987-03-31 Micro Tracers, Inc. Microingredient containing tracer
US4635641A (en) * 1985-10-16 1987-01-13 Murray Electronics Associates Limited Multi-element electrode
US4725997A (en) 1986-08-22 1988-02-16 Aprex Corporation Contingent dosing device
US4784162A (en) 1986-09-23 1988-11-15 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
US4896261A (en) 1986-11-24 1990-01-23 Motorola Inc. System for scheduling serial message transmission on a bus which is adoptable for rescheduling prioritized messages using a doubly-linked list
US4876093A (en) 1987-07-02 1989-10-24 Alza Corporation Dispenser with dispersing member for delivering beneficial agent
DE3723310A1 (en) 1987-07-15 1989-01-26 John Urquhart PHARMACEUTICAL PREPARATION AND METHOD FOR THE PRODUCTION THEREOF
US5002772A (en) 1988-05-31 1991-03-26 Pfizer Inc. Gastric retention system for controlled drug release
US4975230A (en) 1988-06-17 1990-12-04 Vapor Technologies Inc. Method of making an open pore structure
US5281287A (en) * 1989-07-21 1994-01-25 Iomed, Inc. Method of making a hydratable bioelectrode
WO1991003184A1 (en) 1989-08-29 1991-03-21 William Prym-Werke Gmbh & Co. Kg Button fastener, in particular for items of clothing
US4987897A (en) 1989-09-18 1991-01-29 Medtronic, Inc. Body bus medical device communication system
US6749122B1 (en) * 1990-05-25 2004-06-15 Broadcom Corporation Multi-level hierarchial radio-frequency system communication system
US5395366A (en) 1991-05-30 1995-03-07 The State University Of New York Sampling capsule and process
US5279607A (en) * 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
US6605046B1 (en) 1991-06-03 2003-08-12 Del Mar Medical Systems, Llc Ambulatory physio-kinetic monitor with envelope enclosure
US5176626A (en) 1992-01-15 1993-01-05 Wilson-Cook Medical, Inc. Indwelling stent
JPH05228128A (en) 1992-02-25 1993-09-07 Olympus Optical Co Ltd Capsule for medical treatment
US5283136A (en) 1992-06-03 1994-02-01 Ramot University Authority For Applied Research And Industrial Development Ltd. Rechargeable batteries
US5318557A (en) 1992-07-13 1994-06-07 Elan Medical Technologies Limited Medication administering device
JP3454525B2 (en) 1992-07-23 2003-10-06 三洋電機株式会社 Micromachines and power systems in micromachines
US7758503B2 (en) 1997-01-27 2010-07-20 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US5757326A (en) 1993-03-29 1998-05-26 Seiko Epson Corporation Slot antenna device and wireless apparatus employing the antenna device
US5394882A (en) * 1993-07-21 1995-03-07 Respironics, Inc. Physiological monitoring system
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
DE69532572T2 (en) 1994-03-11 2004-08-05 Ntt Docomo, Inc. TIME DIVERSITY COMMUNICATION ARRANGEMENT
US5600548A (en) * 1994-08-11 1997-02-04 Sundstrand Corporation DC content control for an inverter
IE70735B1 (en) 1994-08-15 1996-12-11 Elan Med Tech Orally administrable delivery device
DE9414065U1 (en) * 1994-08-31 1994-11-03 Roehm Gmbh Thermoplastic plastic for pharmaceutical casings soluble in intestinal juice
US5485841A (en) 1995-02-14 1996-01-23 Univ Mcgill Ultrasonic lung tissue assessment
US5778882A (en) 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US5845265A (en) 1995-04-26 1998-12-01 Mercexchange, L.L.C. Consignment nodes
US6083248A (en) * 1995-06-23 2000-07-04 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5720771A (en) 1995-08-02 1998-02-24 Pacesetter, Inc. Method and apparatus for monitoring physiological data from an implantable medical device
USD377983S (en) 1995-09-13 1997-02-11 Mohamed Sabri Cardiac monitor
US5596302A (en) 1996-01-17 1997-01-21 Lucent Technologies Inc. Ring oscillator using even numbers of differential stages with current mirrors
US5868136A (en) * 1996-02-20 1999-02-09 Axelgaard Manufacturing Co. Ltd. Medical electrode
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
UA48221C2 (en) 1996-04-01 2002-08-15 Валєрій Івановіч Кобозєв Electrical gastro-intestinal tract stimulator
GB9608268D0 (en) 1996-04-22 1996-06-26 Robertson James L Blister pack
US5864578A (en) 1996-04-29 1999-01-26 Golden Bridge Technology, Inc. Matched filter-based handoff method and apparatus
JP3740212B2 (en) * 1996-05-01 2006-02-01 株式会社ルネサステクノロジ Nonvolatile semiconductor memory device
JPH09330159A (en) 1996-06-11 1997-12-22 Omron Corp Data processor, game controller data processing method and game processing method
US5792048A (en) 1996-09-03 1998-08-11 Schaefer; Guenter Indentification pill with integrated microchip: smartpill, smartpill with integrated microchip and microprocessor for medical analyses and a smartpill, smartbox, smartplague, smartbadge or smartplate for luggage control on commercial airliners
US5963132A (en) 1996-10-11 1999-10-05 Avid Indentification Systems, Inc. Encapsulated implantable transponder
US6394953B1 (en) 2000-02-25 2002-05-28 Aspect Medical Systems, Inc. Electrode array system for measuring electrophysiological signals
US8734339B2 (en) 1996-12-16 2014-05-27 Ip Holdings, Inc. Electronic skin patch for real time monitoring of cardiac activity and personal health management
US5928142A (en) 1996-12-17 1999-07-27 Ndm, Inc. Biomedical electrode having a disposable electrode and a reusable leadwire adapter that interfaces with a standard leadwire connector
US6122351A (en) 1997-01-21 2000-09-19 Med Graph, Inc. Method and system aiding medical diagnosis and treatment
US5921925A (en) 1997-05-30 1999-07-13 Ndm, Inc. Biomedical electrode having a disposable electrode and a reusable leadwire adapter that interfaces with a standard leadwire connector
US5862808A (en) * 1997-08-26 1999-01-26 Cigar Savor Enterprises Llc Cigar punch
US6409674B1 (en) 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US5948227A (en) 1997-12-17 1999-09-07 Caliper Technologies Corp. Methods and systems for performing electrophoretic molecular separations
GB9801363D0 (en) 1998-01-22 1998-03-18 Danbiosyst Uk Novel dosage form
US6097927A (en) 1998-01-27 2000-08-01 Symbix, Incorporated Active symbolic self design method and apparatus
US6038464A (en) * 1998-02-09 2000-03-14 Axelgaard Manufacturing Co., Ltd. Medical electrode
US6275476B1 (en) 1998-02-19 2001-08-14 Micron Technology, Inc. Method of addressing messages and communications system
US6141592A (en) 1998-03-06 2000-10-31 Intermedics Inc. Data transmission using a varying electric field
DE69910003T2 (en) 1998-05-13 2004-04-22 Cygnus, Inc., Redwood City MONITORING PHYSIOLOGICAL ANALYSIS
TW406018B (en) 1998-05-21 2000-09-21 Elan Corp Plc Improved adhesive system for medical devices
US6477424B1 (en) * 1998-06-19 2002-11-05 Medtronic, Inc. Medical management system integrated programming apparatus for communication with an implantable medical device
US6704602B2 (en) 1998-07-02 2004-03-09 Medtronic, Inc. Implanted medical device/external medical instrument communication utilizing surface electrodes
US7209787B2 (en) * 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
NZ510107A (en) 1998-09-04 2003-03-28 Wolfe Res Pty Ltd Medical implant system
WO2000016280A1 (en) 1998-09-11 2000-03-23 Key-Trak, Inc. Object tracking system with non-contact object detection and identification
DE19983480T1 (en) 1998-09-18 2001-11-29 Hitachi Maxell Semiconductor device for contactless communication
US6708060B1 (en) * 1998-11-09 2004-03-16 Transpharma Ltd. Handheld apparatus and method for transdermal drug delivery and analyte extraction
US6217744B1 (en) 1998-12-18 2001-04-17 Peter Crosby Devices for testing fluid
US6117077A (en) 1999-01-22 2000-09-12 Del Mar Medical Systems, Llc Long-term, ambulatory physiological recorder
US6358202B1 (en) * 1999-01-25 2002-03-19 Sun Microsystems, Inc. Network for implanted computer devices
US8636648B2 (en) 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6200265B1 (en) * 1999-04-16 2001-03-13 Medtronic, Inc. Peripheral memory patch and access method for use with an implantable medical device
ATE256421T1 (en) * 1999-05-25 2004-01-15 Medicotest As SKIN ELECTRODE
US6366206B1 (en) 1999-06-02 2002-04-02 Ball Semiconductor, Inc. Method and apparatus for attaching tags to medical and non-medical devices
JP3402267B2 (en) * 1999-06-23 2003-05-06 ソニーケミカル株式会社 Electronic element mounting method
DE19929328A1 (en) 1999-06-26 2001-01-04 Daimlerchrysler Aerospace Ag Device for long-term medical monitoring of people
US6307468B1 (en) * 1999-07-20 2001-10-23 Avid Identification Systems, Inc. Impedance matching network and multidimensional electromagnetic field coil for a transponder interrogator
HN2000000165A (en) * 1999-08-05 2001-07-09 Dimensional Foods Corp EDIBLE HOLOGRAPHIC PRODUCTS, PARTICULARLY PHARMACEUTICALS, AND METHODS AND APPLIANCES FOR PRODUCERS.
US6206702B1 (en) 1999-08-24 2001-03-27 Deborah A. Hayden Methods and devices for treating unilateral neglect
US6526034B1 (en) * 1999-09-21 2003-02-25 Tantivy Communications, Inc. Dual mode subscriber unit for short range, high rate and long range, lower rate data communications
US6533733B1 (en) * 1999-09-24 2003-03-18 Ut-Battelle, Llc Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring
US6990082B1 (en) * 1999-11-08 2006-01-24 Intel Corporation Wireless apparatus having a transceiver equipped to support multiple wireless communication protocols
EP1089572B1 (en) * 1999-09-30 2011-09-21 Sony Corporation Recording apparatus, recording method, and record medium
US6426863B1 (en) 1999-11-25 2002-07-30 Lithium Power Technologies, Inc. Electrochemical capacitor
WO2001045793A1 (en) * 1999-12-21 2001-06-28 Medtronic, Inc. System for dynamic remote networking with implantable medical devices
GB9930000D0 (en) 1999-12-21 2000-02-09 Phaeton Research Ltd An ingestible device
US6294999B1 (en) 1999-12-29 2001-09-25 Becton, Dickinson And Company Systems and methods for monitoring patient compliance with medication regimens
US7039453B2 (en) 2000-02-08 2006-05-02 Tarun Mullick Miniature ingestible capsule
IL177381A0 (en) 2000-03-08 2006-12-10 Given Imaging Ltd A device for in vivo imaging
US6526315B1 (en) * 2000-03-17 2003-02-25 Tanita Corporation Portable bioelectrical impedance measuring instrument
US6654638B1 (en) 2000-04-06 2003-11-25 Cardiac Pacemakers, Inc. Ultrasonically activated electrodes
US6496705B1 (en) * 2000-04-18 2002-12-17 Motorola Inc. Programmable wireless electrode system for medical monitoring
US6432292B1 (en) 2000-05-16 2002-08-13 Metallic Power, Inc. Method of electrodepositing metal on electrically conducting particles
US6680923B1 (en) * 2000-05-23 2004-01-20 Calypso Wireless, Inc. Communication system and method
IL163684A0 (en) 2000-05-31 2005-12-18 Given Imaging Ltd Measurement of electrical characteristics of tissue
GB0014855D0 (en) * 2000-06-16 2000-08-09 Isis Innovation Combining measurements from different sensors
GB0014854D0 (en) * 2000-06-16 2000-08-09 Isis Innovation System and method for acquiring data
US7009946B1 (en) * 2000-06-22 2006-03-07 Intel Corporation Method and apparatus for multi-access wireless communication
US6961285B2 (en) 2000-07-07 2005-11-01 Ddms Holdings L.L.C. Drug delivery management system
JP4428835B2 (en) 2000-08-09 2010-03-10 昭和電工株式会社 Magnetic recording medium and method for manufacturing the same
US8036731B2 (en) 2001-01-22 2011-10-11 Spectrum Dynamics Llc Ingestible pill for diagnosing a gastrointestinal tract
KR20020015907A (en) 2000-08-23 2002-03-02 정병렬 A method and system of a fitness using a game control for a beating of the heart
US20020026111A1 (en) * 2000-08-28 2002-02-28 Neil Ackerman Methods of monitoring glucose levels in a subject and uses thereof
US7685005B2 (en) * 2000-08-29 2010-03-23 Medtronic, Inc. Medical device systems implemented network scheme for remote patient management
DE60102331T2 (en) * 2000-09-08 2005-03-17 Matsushita Electric Works, Ltd., Kadoma Data transmission system using a human body as a signal transmission path
US6720923B1 (en) 2000-09-14 2004-04-13 Stata Labs, Llc Antenna design utilizing a cavity architecture for global positioning system (GPS) applications
US7460130B2 (en) * 2000-09-26 2008-12-02 Advantage 3D Llc Method and system for generation, storage and distribution of omni-directional object views
US7024248B2 (en) 2000-10-16 2006-04-04 Remon Medical Technologies Ltd Systems and methods for communicating with implantable devices
US6632175B1 (en) 2000-11-08 2003-10-14 Hewlett-Packard Development Company, L.P. Swallowable data recorder capsule medical device
US6929636B1 (en) 2000-11-08 2005-08-16 Hewlett-Packard Development Company, L.P. Internal drug dispenser capsule medical device
US6689117B2 (en) 2000-12-18 2004-02-10 Cardiac Pacemakers, Inc. Drug delivery system for implantable medical device
KR100526699B1 (en) 2001-01-17 2005-11-08 이종식 Method and System for Network Games
JP2002224053A (en) 2001-02-05 2002-08-13 Next:Kk Remote medical control system
JP2002263185A (en) 2001-03-12 2002-09-17 Sanyo Electric Co Ltd Medicine administration system and method and medicine administration device
JP2002290212A (en) 2001-03-27 2002-10-04 Nec Corp Voltage controlled oscillator
US6342774B1 (en) * 2001-03-27 2002-01-29 Motorola, Inc. Battery having user charge capacity control
JP2002291684A (en) 2001-03-29 2002-10-08 Olympus Optical Co Ltd Endoscope for surgical operation, and outer tube
GR1003802B (en) * 2001-04-17 2002-02-08 Micrel �.�.�. ������� ��������� ��������������� ��������� Tele-medicine system
US6694161B2 (en) 2001-04-20 2004-02-17 Monsanto Technology Llc Apparatus and method for monitoring rumen pH
US6782290B2 (en) 2001-04-27 2004-08-24 Medtronic, Inc. Implantable medical device with rechargeable thin-film microbattery power source
EP1397660B1 (en) 2001-05-20 2013-05-15 Given Imaging Ltd. A floatable in vivo sensing device
ATE404114T1 (en) 2001-06-18 2008-08-15 Given Imaging Ltd SWALLOWABLE IN-VIVO CAPSULE WITH A CIRCUIT BOARD HAVING RIGID AND FLEXIBLE SECTIONS
US7160258B2 (en) * 2001-06-26 2007-01-09 Entrack, Inc. Capsule and method for treating or diagnosing the intestinal tract
US7044911B2 (en) * 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
CA2752782A1 (en) 2001-07-11 2003-01-23 Cns Response, Inc. Electroencephalography based systems and methods for selecting therapies and predicting outcomes
US20030017826A1 (en) 2001-07-17 2003-01-23 Dan Fishman Short-range wireless architecture
US6951536B2 (en) 2001-07-30 2005-10-04 Olympus Corporation Capsule-type medical device and medical system
US6650191B2 (en) 2001-09-07 2003-11-18 Texas Instruments Incorporated Low jitter ring oscillator architecture
US6604650B2 (en) 2001-09-28 2003-08-12 Koninklijke Philips Electronics N.V. Bottle-cap medication reminder and overdose safeguard
US20050137480A1 (en) 2001-10-01 2005-06-23 Eckhard Alt Remote control of implantable device through medical implant communication service band
US6840904B2 (en) * 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
US20030152622A1 (en) 2001-10-25 2003-08-14 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral diuretic
US7377647B2 (en) 2001-11-13 2008-05-27 Philadelphia Retina Endowment Fund Clarifying an image of an object to perform a procedure on the object
GB0130010D0 (en) * 2001-12-14 2002-02-06 Isis Innovation Combining measurements from breathing rate sensors
US7016648B2 (en) * 2001-12-18 2006-03-21 Ixi Mobile (Israel) Ltd. Method, system and computer readable medium for downloading a software component to a device in a short distance wireless network
US7877273B2 (en) 2002-01-08 2011-01-25 Fredric David Abramson System and method for evaluating and providing nutrigenomic data, information and advice
AU2003205153A1 (en) 2002-01-11 2003-07-30 Hexalog Sa Systems and methods for medication monitoring
US6958034B2 (en) 2002-02-11 2005-10-25 Given Imaging Ltd. Self propelled device
US6935560B2 (en) 2002-02-26 2005-08-30 Safety Syringes, Inc. Systems and methods for tracking pharmaceuticals within a facility
US20030162556A1 (en) 2002-02-28 2003-08-28 Libes Michael A. Method and system for communication between two wireless-enabled devices
US7468032B2 (en) 2002-12-18 2008-12-23 Cardiac Pacemakers, Inc. Advanced patient management for identifying, displaying and assisting with correlating health-related data
JP4363843B2 (en) * 2002-03-08 2009-11-11 オリンパス株式会社 Capsule endoscope
US7022070B2 (en) 2002-03-22 2006-04-04 Mini-Mitter Co., Inc. Method for continuous monitoring of patients to detect the potential onset of sepsis
JP3869291B2 (en) 2002-03-25 2007-01-17 オリンパス株式会社 Capsule medical device
US7654901B2 (en) 2002-04-10 2010-02-02 Breving Joel S Video game system using bio-feedback devices
US20030216622A1 (en) 2002-04-25 2003-11-20 Gavriel Meron Device and method for orienting a device in vivo
TW553735B (en) 2002-05-01 2003-09-21 Jin-Shing Luo Common electrode using human body as common electric reservoir and application thereof
JP2003325439A (en) 2002-05-15 2003-11-18 Olympus Optical Co Ltd Capsule type medical treatment device
JP2004041709A (en) 2002-05-16 2004-02-12 Olympus Corp Capsule medical care device
US6847844B2 (en) 2002-06-06 2005-01-25 University Of Pittsburgh Of The Commonwealth System Of Higher Education Method of data communication with implanted device and associated apparatus
US20040008123A1 (en) 2002-07-15 2004-01-15 Battelle Memorial Institute System and method for tracking medical devices
US20040019172A1 (en) 2002-07-26 2004-01-29 Tou-Hsiung Yang Biodegradable, water absorbable resin and its preparation method
US7211349B2 (en) 2002-08-06 2007-05-01 Wilson Greatbatch Technologies, Inc. Silver vanadium oxide provided with a metal oxide coating
US7291014B2 (en) * 2002-08-08 2007-11-06 Fats, Inc. Wireless data communication link embedded in simulated weapon systems
US7619819B2 (en) * 2002-08-20 2009-11-17 Illumina, Inc. Method and apparatus for drug product tracking using encoded optical identification elements
US7020508B2 (en) * 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US20040049245A1 (en) 2002-09-09 2004-03-11 Volker Gass Autonomous patch for communication with an implantable device, and medical kit for using said patch
GB2393356B (en) * 2002-09-18 2006-02-01 E San Ltd Telemedicine system
US7118531B2 (en) * 2002-09-24 2006-10-10 The Johns Hopkins University Ingestible medical payload carrying capsule with wireless communication
US6842636B2 (en) * 2002-09-27 2005-01-11 Axelgaard Manufacturing Co., Ltd. Medical electrode
US7736309B2 (en) * 2002-09-27 2010-06-15 Medtronic Minimed, Inc. Implantable sensor method and system
US20040073454A1 (en) 2002-10-10 2004-04-15 John Urquhart System and method of portal-mediated, website-based analysis of medication dosing
US20050272989A1 (en) 2004-06-04 2005-12-08 Medtronic Minimed, Inc. Analyte sensors and methods for making and using them
US6959217B2 (en) 2002-10-24 2005-10-25 Alfred E. Mann Foundation For Scientific Research Multi-mode crystal oscillator system selectively configurable to minimize power consumption or noise generation
EP1432140B1 (en) * 2002-10-31 2017-12-20 Nippon Telegraph And Telephone Corporation Transceiver capable of causing series resonance with parasitic capacitance
EP1437784B1 (en) 2002-11-08 2012-05-30 Honda Motor Co., Ltd. Electrode for solid polymer fuel cell
WO2004045374A2 (en) * 2002-11-14 2004-06-03 Ethicon Endo-Surgery, Inc. Methods and devices for detecting tissue cells
JP2006507885A (en) 2002-11-29 2006-03-09 ギブン イメージング リミテッド In vivo diagnosis method, apparatus and system
BR0317275A (en) 2002-12-11 2005-11-08 Pfizer Prod Inc Controlled release of an active substance in a high fat environment
JP2006509574A (en) 2002-12-16 2006-03-23 ギブン イメージング リミテッド Apparatus, system, and method for selective actuation of in-vivo sensors
US7505029B2 (en) 2002-12-31 2009-03-17 Intel Corporation System and method for controlling multiple processing units with a single input device
US7811231B2 (en) * 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US6975174B1 (en) 2002-12-31 2005-12-13 Radioframe Networks, Inc. Clock oscillator
KR100873683B1 (en) 2003-01-25 2008-12-12 한국과학기술연구원 Method and system for data communication in human body and capsule-type endoscope used therein
US20040267240A1 (en) 2003-01-29 2004-12-30 Yossi Gross Active drug delivery in the gastrointestinal tract
KR20050098277A (en) 2003-01-29 2005-10-11 이-필 파마 리미티드 Active drug delivery in the gastrointestinal tract
US7002476B2 (en) 2003-01-30 2006-02-21 Leap Of Faith Technologies, Inc. Medication compliance system
JP4158097B2 (en) 2003-02-27 2008-10-01 ソニー株式会社 Authentication system
US7653031B2 (en) * 2003-03-05 2010-01-26 Timothy Gordon Godfrey Advance notification of transmit opportunities on a shared-communications channel
EP1606758B1 (en) * 2003-03-21 2015-11-18 Welch Allyn, Inc. Personal status physiologic monitor system
IL161096A (en) 2003-03-27 2008-08-07 Given Imaging Ltd Device, system and method for measuring a gradient in-vivo
US20040193446A1 (en) 2003-03-27 2004-09-30 Mayer Steven Lloyd System and method for managing a patient treatment program including a prescribed drug regimen
GB0308114D0 (en) 2003-04-08 2003-05-14 Glaxo Group Ltd Novel compounds
GB0308467D0 (en) * 2003-04-11 2003-05-21 Rolls Royce Plc Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components
FI116117B (en) * 2003-04-17 2005-09-30 Polar Electro Oy Measuring device and method for measuring heart rate and the method of manufacture of the measuring device
US7972616B2 (en) 2003-04-17 2011-07-05 Nanosys, Inc. Medical device applications of nanostructured surfaces
JP4414682B2 (en) 2003-06-06 2010-02-10 オリンパス株式会社 Ultrasound endoscope device
US7252152B2 (en) 2003-06-18 2007-08-07 Weatherford/Lamb, Inc. Methods and apparatus for actuating a downhole tool
WO2004112592A1 (en) 2003-06-24 2004-12-29 Olympus Corporation Capsule type medical device communication system, capsule type medical device, and biological information reception device
JP2007527737A (en) * 2003-07-16 2007-10-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Portable electronic devices and health care systems designed to monitor a person's physiological condition
WO2005007223A2 (en) 2003-07-16 2005-01-27 Sasha John Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations
JP4038575B2 (en) 2003-07-25 2008-01-30 独立行政法人産業技術総合研究所 Biosensor, biosensor device or biosensor storage method
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US20050055014A1 (en) 2003-08-04 2005-03-10 Coppeta Jonathan R. Methods for accelerated release of material from a reservoir device
US7787946B2 (en) 2003-08-18 2010-08-31 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US20050172958A1 (en) 2003-08-20 2005-08-11 The Brigham And Women's Hospital, Inc. Inhalation device and system for the remote monitoring of drug administration
EP1677674A4 (en) * 2003-08-20 2009-03-25 Philometron Inc Hydration monitoring
US8346482B2 (en) * 2003-08-22 2013-01-01 Fernandez Dennis S Integrated biosensor and simulation system for diagnosis and therapy
JP4398204B2 (en) 2003-08-29 2010-01-13 オリンパス株式会社 In-subject introduction apparatus and wireless in-subject information acquisition system
JP3993546B2 (en) 2003-09-08 2007-10-17 オリンパス株式会社 In-subject introduction apparatus and wireless in-subject information acquisition system
US20050062644A1 (en) * 2003-09-08 2005-03-24 Leci Jonathan Ilan Capsule device to identify the location of an individual
KR101084554B1 (en) 2003-09-12 2011-11-17 보디미디어 인코퍼레이티드 Method and apparatus for measuring heart related parameters
JP4153852B2 (en) * 2003-09-18 2008-09-24 オリンパス株式会社 Energy supply coil and wireless in-vivo information acquisition system using the same
US20050075145A1 (en) 2003-10-03 2005-04-07 Dvorak Joseph L. Method and system for coordinating use of objects using wireless communications
US20050096514A1 (en) 2003-11-01 2005-05-05 Medtronic, Inc. Gastric activity notification
US6892590B1 (en) 2003-11-04 2005-05-17 Andermotion Technologies Llc Single-balanced shield electrode configuration for use in capacitive displacement sensing systems and methods
US7101343B2 (en) 2003-11-05 2006-09-05 Temple University Of The Commonwealth System Of Higher Education Implantable telemetric monitoring system, apparatus, and method
JP2005158770A (en) 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Laminated substrate and manufacturing method thereof, manufacturing method and apparatus of module using the laminated substrate
US6987691B2 (en) 2003-12-02 2006-01-17 International Business Machines Corporation Easy axis magnetic amplifier
US7427266B2 (en) 2003-12-15 2008-09-23 Hewlett-Packard Development Company, L.P. Method and apparatus for verification of ingestion
JP2005185567A (en) 2003-12-25 2005-07-14 Olympus Corp Medical capsule apparatus
JP2005192821A (en) 2004-01-07 2005-07-21 Olympus Corp Capsule type medical apparatus
US7081807B2 (en) 2004-01-14 2006-07-25 Joseph Lai Automatic pill reminder bottles
US7176784B2 (en) * 2004-01-21 2007-02-13 Battelle Memorial Institute K1-53 Multi-mode radio frequency device
US7647112B2 (en) * 2004-02-11 2010-01-12 Ethicon, Inc. System and method for selectively stimulating different body parts
US20060154642A1 (en) 2004-02-20 2006-07-13 Scannell Robert F Jr Medication & health, environmental, and security monitoring, alert, intervention, information and network system with associated and supporting apparatuses
US20050187789A1 (en) 2004-02-25 2005-08-25 Cardiac Pacemakers, Inc. Advanced patient and medication therapy management system and method
US7904133B2 (en) 2004-02-27 2011-03-08 Koninklijke Philips Electronics N.V. Wearable wireless device for monitoring, analyzing and communicating physiological status
US7406105B2 (en) 2004-03-03 2008-07-29 Alfred E. Mann Foundation For Scientific Research System and method for sharing a common communication channel between multiple systems of implantable medical devices
JP4520198B2 (en) * 2004-04-07 2010-08-04 オリンパス株式会社 In-subject position display system
CN101103350A (en) 2004-04-24 2008-01-09 鹰锐系统股份有限公司 Integrated, non-sequential, remote medication management and compliance system
US20050245794A1 (en) 2004-04-29 2005-11-03 Medtronic, Inc. Communication with implantable monitoring probe
EP1750585A1 (en) * 2004-05-16 2007-02-14 Medic4all AG Method and device for measuring physiological parameters at the hand
US7125382B2 (en) * 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
JP4445799B2 (en) * 2004-05-24 2010-04-07 オリンパス株式会社 Intra-subject introduction device and medical device
US7653542B2 (en) 2004-05-26 2010-01-26 Verizon Business Global Llc Method and system for providing synthesized speech
WO2005119610A1 (en) * 2004-05-28 2005-12-15 Jan De Geest Communication unit for a person's skin
WO2005123185A1 (en) 2004-06-10 2005-12-29 Ndi Medical, Llc Implantable system for processing myoelectric signals
JP2006006377A (en) 2004-06-22 2006-01-12 Elquest Corp Powder paper for packing medicine
US7460014B2 (en) 2004-06-22 2008-12-02 Vubiq Incorporated RFID system utilizing parametric reflective technology
US20060001496A1 (en) 2004-07-02 2006-01-05 Abrosimov Igor A Array oscillator and polyphase clock generator
JP4462614B2 (en) * 2004-07-05 2010-05-12 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Short-range wireless communication system, portable terminal device, and wireless communication device
US7614743B2 (en) * 2004-07-20 2009-11-10 Medtronic, Inc. Vital signs monitoring system with wireless pupilometer interface
WO2006008740A1 (en) * 2004-07-21 2006-01-26 Aerotel Medical Systems (1998) Ltd. Wearable device, system and method for measuring physiological and/or environmental parameters
US20080045843A1 (en) * 2004-08-12 2008-02-21 Tomoharu Tsuji Via-Human-Body Information Transmission System and Transmitter-Receiver
US7317378B2 (en) 2004-08-17 2008-01-08 Tagent Corporation Product identification tag device and reader
US7253716B2 (en) 2004-08-17 2007-08-07 Tagent Corporation Trackable pills with electronic ID tags
US20060058602A1 (en) * 2004-08-17 2006-03-16 Kwiatkowski Krzysztof C Interstitial fluid analyzer
CN101010114B (en) 2004-08-27 2010-05-26 皇家飞利浦电子股份有限公司 Electronically and remotely controlled pill and system for delivering at least one medicament
KR100727817B1 (en) * 2004-09-07 2007-06-13 한국전자통신연구원 The communication apparatus using the human body with the medium and method for the same
GB2418144A (en) 2004-09-17 2006-03-22 Psimedica Ltd Medical device for delivery of beneficial substance
US20060065713A1 (en) 2004-09-24 2006-03-30 John Russell Kingery System and method for monitored administration of medical products to patients
CN101040286B (en) 2004-09-30 2012-10-03 皇家飞利浦电子股份有限公司 System for automatic continuous and reliable patient identification for association of wireless medical devices to patients
US20060078765A1 (en) 2004-10-12 2006-04-13 Laixia Yang Nano-structured ion-conducting inorganic membranes for fuel cell applications
JP2008011865A (en) 2004-10-27 2008-01-24 Sharp Corp Healthcare apparatus and program for driving the same to function
AU2005229684A1 (en) 2004-11-04 2006-05-18 Given Imaging Ltd Apparatus and method for receiving device selection and combining
US7414534B1 (en) 2004-11-09 2008-08-19 Pacesetter, Inc. Method and apparatus for monitoring ingestion of medications using an implantable medical device
US7930064B2 (en) 2004-11-19 2011-04-19 Parata Systems, Llc Automated drug discrimination during dispensing
WO2006059338A2 (en) * 2004-12-02 2006-06-08 Given Imaging Ltd. Device, system and method of in-vivo electro-stimulation
US8374693B2 (en) 2004-12-03 2013-02-12 Cardiac Pacemakers, Inc. Systems and methods for timing-based communication between implantable medical devices
US7616710B2 (en) 2004-12-08 2009-11-10 Electronics And Telecommunications Research Institute Frequency offset estimating method and receiver employing the same
DE602005007847D1 (en) 2004-12-30 2008-08-14 Given Imaging Ltd System for localization of an in-vivo signal source
US20060148254A1 (en) 2005-01-05 2006-07-06 Mclean George Y Activated iridium oxide electrodes and methods for their fabrication
JP2008526419A (en) 2005-01-18 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronically controlled ingestible capsule for sampling fluid in the digestive tract
EP1861158A2 (en) 2005-01-18 2007-12-05 Koninklijke Philips Electronics N.V. System for controlling traversal of an ingested capsule
US7683761B2 (en) * 2005-01-26 2010-03-23 Battelle Memorial Institute Method for autonomous establishment and utilization of an active-RF tag network
US7345588B2 (en) 2005-01-28 2008-03-18 Innotek, Inc. Receiver collar
JP4731936B2 (en) 2005-02-09 2011-07-27 本田技研工業株式会社 Rotary variable resistor
JP4099484B2 (en) 2005-02-09 2008-06-11 株式会社カイザーテクノロジー Communications system.
US20090030293A1 (en) 2005-02-11 2009-01-29 The University Court Of The University Of Glasgow Sensing device, apparatus and system, and method for operating the same
US7850645B2 (en) 2005-02-11 2010-12-14 Boston Scientific Scimed, Inc. Internal medical devices for delivery of therapeutic agent in conjunction with a source of electrical power
KR20060097523A (en) 2005-03-10 2006-09-14 강성철 Apparatus for automatic peeling and plating of lead wire
US20060252999A1 (en) 2005-05-03 2006-11-09 Devaul Richard W Method and system for wearable vital signs and physiology, activity, and environmental monitoring
US20060216603A1 (en) 2005-03-26 2006-09-28 Enable Ipc Lithium-ion rechargeable battery based on nanostructures
JP2006278091A (en) 2005-03-29 2006-10-12 Hitachi Maxell Ltd Coin-shaped silver-oxide battery
US20060224326A1 (en) 2005-03-31 2006-10-05 St Ores John W Integrated data collection and analysis for clinical study
GB0506925D0 (en) * 2005-04-06 2005-05-11 Zarlink Semiconductor Ab Ultra low power wake-up solution for implantable RF telemetry devices
US7414543B2 (en) 2005-04-28 2008-08-19 Honeywell International Inc. Multiple miniature avionic displays
EP2392258B1 (en) 2005-04-28 2014-10-08 Proteus Digital Health, Inc. Pharma-informatics system
US20060255064A1 (en) 2005-05-10 2006-11-16 Par Technologies, Llc Fluid container with integrated valve
CN101217945B (en) 2005-05-20 2012-07-11 陶氏环球技术有限责任公司 Oral drug compliance monitoring using radio frequency identification tags
JP4254747B2 (en) 2005-05-31 2009-04-15 カシオ計算機株式会社 Light source device and projection device
WO2006133444A2 (en) 2005-06-09 2006-12-14 Medtronic, Inc. Implantable medical device with electrodes on multiple housing surfaces
WO2006130988A1 (en) 2005-06-10 2006-12-14 Telecommunications Research Laboratories Wireless communication system
US7782189B2 (en) 2005-06-20 2010-08-24 Carestream Health, Inc. System to monitor the ingestion of medicines
US7299034B2 (en) 2005-06-21 2007-11-20 Lawrence Kates System and method for wearable electronics
US20070016089A1 (en) * 2005-07-15 2007-01-18 Fischell David R Implantable device for vital signs monitoring
EP3424421A3 (en) 2005-07-20 2019-03-06 Neil R. Euliano Electronic pill for monitoring medication compliance
EP1909765A1 (en) 2005-07-22 2008-04-16 Dow Gloval Technologies Inc. Oral drug compliance monitoring using sound detection
CN100471445C (en) * 2005-08-01 2009-03-25 周常安 Paster style physiological monitoring device, system and network
WO2007021496A2 (en) 2005-08-18 2007-02-22 Walker Digital, Llc Systems and methods for improved health care compliance
US8116809B2 (en) * 2005-08-29 2012-02-14 Intel Corporation Method and apparatus of multiple entity wireless communication adapter
US8827904B2 (en) * 2005-08-31 2014-09-09 Medtronic, Inc. Automatic parameter status on an implantable medical device system
WO2007028035A2 (en) 2005-09-01 2007-03-08 Proteus Biomedical, Inc. Implantable zero-wire communications system
JP2007068622A (en) 2005-09-05 2007-03-22 Olympus Corp Acquisition system for biological information of subject
US7673679B2 (en) 2005-09-19 2010-03-09 Schlumberger Technology Corporation Protective barriers for small devices
GB0519837D0 (en) 2005-09-29 2005-11-09 Smartlife Technology Ltd Knitting techniques
GB0519836D0 (en) 2005-09-29 2005-11-09 Smartlife Technology Ltd Contact sensors
WO2007050079A1 (en) * 2005-10-26 2007-05-03 Thomson Licensing A system and method for compensating for a satellite gateway failure
US7456329B2 (en) 2005-11-30 2008-11-25 Exxonmobil Chemical Patents Inc. Polyolefins from non-conventional feeds
CN101321494B (en) 2005-11-30 2011-04-06 皇家飞利浦电子股份有限公司 Electro-mechanical connector for thin medical monitoring patch
US8083128B2 (en) * 2005-12-02 2011-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8295932B2 (en) 2005-12-05 2012-10-23 Metacure Limited Ingestible capsule for appetite regulation
NL1030608C2 (en) 2005-12-06 2007-06-07 Patrick Antonius Hendri Meeren Blister package, assembly of a blister package and a holder, and method for packaging objects.
JP2007159631A (en) 2005-12-09 2007-06-28 Taito Corp Game machine and game program
US20070135691A1 (en) 2005-12-12 2007-06-14 General Electric Company Medicament compliance monitoring system, method, and medicament container
EP1970055B1 (en) 2005-12-29 2010-11-24 Osmotica Kereskedelmi És Szolgáltató Kft Multi-layered tablet with triple release combination
TWI306023B (en) 2005-12-30 2009-02-11 Ind Tech Res Inst Monitoring apparatus for physical movements of a body organ and method for acouiring the same
CN101371528A (en) 2006-01-11 2009-02-18 高通股份有限公司 Methods and apparatus for communicating device capability and/or setup information
CN100571239C (en) * 2006-01-16 2009-12-16 华为技术有限公司 Synchronizing pilot sequence generation system and method in the communication system
US8150502B2 (en) 2006-02-06 2012-04-03 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive cardiac monitor and methods of using continuously recorded cardiac data
EP1993437A4 (en) * 2006-02-24 2014-05-14 Hmicro Inc A medical signal processing system with distributed wireless sensors
US8200320B2 (en) 2006-03-03 2012-06-12 PhysioWave, Inc. Integrated physiologic monitoring systems and methods
US20070237719A1 (en) 2006-03-30 2007-10-11 Jones Christopher M Method and system for monitoring and analyzing compliance with internal dosing regimen
US7806852B1 (en) 2006-04-03 2010-10-05 Jurson Phillip A Method and apparatus for patient-controlled medical therapeutics
MY187397A (en) * 2006-04-28 2021-09-22 Qualcomm Inc Method and apparatus for enhanced paging
CN105468895A (en) 2006-05-02 2016-04-06 普罗透斯数字保健公司 Patient customized therapeutic regimens
EP2027732A2 (en) * 2006-05-10 2009-02-25 Interdigital Technology Corporation Method and apparatus for battery management in a converged wireless transmit/receive unit
US20080051647A1 (en) * 2006-05-11 2008-02-28 Changwang Wu Non-invasive acquisition of large nerve action potentials (NAPs) with closely spaced surface electrodes and reduced stimulus artifacts
EP2029194A2 (en) 2006-05-19 2009-03-04 CVRX, Inc. Characterization and modulation of physiologic response using baroreflex activation in conjunction with drug therapy
FI120482B (en) 2006-06-08 2009-11-13 Suunto Oy Anturointijärjestely
WO2007149546A2 (en) 2006-06-21 2007-12-27 Proteus Biomedical, Inc. Implantable medical devices comprising cathodic arc produced structures
CN101472640B (en) 2006-06-23 2012-12-12 皇家飞利浦电子股份有限公司 Medicament delivery system
US20080046038A1 (en) * 2006-06-26 2008-02-21 Hill Gerard J Local communications network for distributed sensing and therapy in biomedical applications
PL1872765T3 (en) 2006-06-29 2009-10-30 Edwin Kohl Personalized blister pack and method for automated packaging of an individually determined composition
US8165896B2 (en) 2006-06-29 2012-04-24 The Invention Science Fund I, Llc Compliance data for health-related procedures
IL176712A0 (en) 2006-07-05 2007-10-31 Michael Cohen Alloro Medication dispenser
EP2037999B1 (en) 2006-07-07 2016-12-28 Proteus Digital Health, Inc. Smart parenteral administration system
US20080020037A1 (en) 2006-07-11 2008-01-24 Robertson Timothy L Acoustic Pharma-Informatics System
WO2008008845A2 (en) 2006-07-11 2008-01-17 Microchips, Inc. Multi-reservoir pump device for dialysis, biosensing, or delivery of substances
US7962174B2 (en) * 2006-07-12 2011-06-14 Andrew Llc Transceiver architecture and method for wireless base-stations
US20080021521A1 (en) * 2006-07-18 2008-01-24 Cardiac Pacemakers, Inc. Implantable Medical Device Communication System
US8588887B2 (en) 2006-09-06 2013-11-19 Innurvation, Inc. Ingestible low power sensor device and system for communicating with same
US8615284B2 (en) 2006-09-06 2013-12-24 Innurvation, Inc. Method for acoustic information exchange involving an ingestible low power capsule
US20080077028A1 (en) 2006-09-27 2008-03-27 Biotronic Crm Patent Personal health monitoring and care system
WO2008038246A2 (en) 2006-09-29 2008-04-03 Koninklijke Philips Electronics, N.V. Miniaturized threshold sensor
US20080091089A1 (en) 2006-10-12 2008-04-17 Kenneth Shane Guillory Single use, self-contained surface physiological monitor
EP2087589B1 (en) 2006-10-17 2011-11-23 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
KR101611240B1 (en) 2006-10-25 2016-04-11 프로테우스 디지털 헬스, 인코포레이티드 Controlled activation ingestible identifier
US8214007B2 (en) 2006-11-01 2012-07-03 Welch Allyn, Inc. Body worn physiological sensor device having a disposable electrode module
EP2069004A4 (en) 2006-11-20 2014-07-09 Proteus Digital Health Inc Active signal processing personal health signal receivers
JP5830222B2 (en) * 2006-11-21 2015-12-09 メディメトリクス ペルソナリズド ドルグ デリヴェリー ベー ヴェ Ingestible electronic capsule and in vivo drug delivery or diagnostic system
GB0624085D0 (en) * 2006-12-01 2007-01-10 Oxford Biosignals Ltd Biomedical signal analysis method
US8180425B2 (en) 2006-12-05 2012-05-15 Tyco Healthcare Group Lp ECG lead wire organizer and dispenser
WO2008068695A1 (en) 2006-12-07 2008-06-12 Koninklijke Philips Electronics N.V. Handheld, repositionable ecg detector
CA2676407A1 (en) 2007-02-01 2008-08-07 Proteus Biomedical, Inc. Ingestible event marker systems
CA2676280C (en) 2007-02-14 2018-05-22 Proteus Biomedical, Inc. In-body power source having high surface area electrode
WO2008112577A1 (en) 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a multi-directional transmitter
WO2008112578A1 (en) 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a deployable antenna
US8091790B2 (en) 2007-03-16 2012-01-10 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Security for blister packs
WO2008120128A2 (en) 2007-03-30 2008-10-09 Koninklijke Philips Electronics N.V. System and method for pill communication and control
US8412293B2 (en) * 2007-07-16 2013-04-02 Optiscan Biomedical Corporation Systems and methods for determining physiological parameters using measured analyte values
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
US8943780B1 (en) 2007-05-30 2015-02-03 Walgreen Co. Method and system for verification of product transfer from an intermediate loading cartridge to a multi-container blister pack
US20080300572A1 (en) * 2007-06-01 2008-12-04 Medtronic Minimed, Inc. Wireless monitor for a personal medical device system
GB2450517A (en) 2007-06-27 2008-12-31 Smartlife Technology Ltd Electrical resistance of yarn or fabric changes with temperature
CN201076456Y (en) 2007-06-29 2008-06-25 洪金叶 Clamp style wireless transmission pulse detection device
US20090009332A1 (en) 2007-07-03 2009-01-08 Endotronix, Inc. System and method for monitoring ingested medication via rf wireless telemetry
JP5065780B2 (en) * 2007-07-03 2012-11-07 株式会社日立製作所 RFID tag mounting board
JP4520491B2 (en) 2007-07-09 2010-08-04 オリンパス株式会社 Capsule medical system
US8340750B2 (en) * 2007-07-19 2012-12-25 Medtronic, Inc. Mechanical function marker channel for cardiac monitoring and therapy control
KR101080423B1 (en) * 2007-08-03 2011-11-04 삼성전자주식회사 Multi module combination type portable electronic device
US20090048498A1 (en) * 2007-08-17 2009-02-19 Frank Riskey System and method of monitoring an animal
US20090062670A1 (en) 2007-08-30 2009-03-05 Gary James Sterling Heart monitoring body patch and system
JP2009061236A (en) 2007-09-07 2009-03-26 Arimasa Nishida Small terminal with functions of reading and inputting multi-data on personal medical information, of data management, analysis, and display, and of entertainment, game, and communication to facilitate self-management for health, having strong bio-feedback effect on life-style related disease, which allows unified management of measured personal data at first when developing medical information database at medical institute, or local/national government
EP2200512A1 (en) 2007-09-14 2010-06-30 Corventis, Inc. Adherent device for respiratory monitoring and sleep disordered breathing
WO2009036319A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent emergency patient monitor
WO2009036313A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent device with multiple physiological sensors
WO2009036306A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent cardiac monitor with advanced sensing capabilities
FI2192946T3 (en) 2007-09-25 2022-11-30 In-body device with virtual dipole signal amplification
US20090105561A1 (en) 2007-10-17 2009-04-23 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Medical or veterinary digestive tract utilization systems and methods
ES2661739T3 (en) 2007-11-27 2018-04-03 Proteus Digital Health, Inc. Transcorporeal communication systems that employ communication channels
US20090149839A1 (en) 2007-12-11 2009-06-11 Hyde Roderick A Treatment techniques using ingestible device
EP2249908B1 (en) * 2008-01-25 2014-01-01 Medtronic, Inc. Sleep stage detection
JP5156427B2 (en) 2008-02-13 2013-03-06 富士フイルム株式会社 Capsule endoscope system
CN102083364B (en) 2008-03-10 2013-11-13 皇家飞利浦电子股份有限公司 ECG monitoring system with configurable alarm limit
WO2009112972A2 (en) 2008-03-10 2009-09-17 Koninklijke Philips Electronics, N.V. Continuous outpatient ecg monitoring system
US20090253960A1 (en) 2008-04-03 2009-10-08 Olympus Medical Systems Corp. Antenna unit and receiving apparatus for capsule medical apparatus
US8690769B2 (en) * 2008-04-21 2014-04-08 Philometron, Inc. Metabolic energy monitoring system
US20090292194A1 (en) 2008-05-23 2009-11-26 Corventis, Inc. Chiropractic Care Management Systems and Methods
CH699071A2 (en) 2008-07-02 2010-01-15 Flakes S A A braking and / or mechanical locking.
EP2310989A4 (en) * 2008-07-07 2013-03-13 Mario W Cardullo Dynamically distributable nano rfid device and related method
ES2696984T3 (en) 2008-07-08 2019-01-21 Proteus Digital Health Inc Ingestion event marker data infrastructure
US8152020B2 (en) 2008-07-09 2012-04-10 Flowers Mary E Dosage dispensing and tracking container
MY154217A (en) 2008-08-13 2015-05-15 Proteus Digital Health Inc Ingestible circuitry
KR101028584B1 (en) 2008-08-27 2011-04-12 주식회사 바이오프로테크 Tab electrode and wire leading to the same
GB2463054A (en) 2008-08-30 2010-03-03 Adavanced Telecare Solutions L Device for monitoring the removal of items placed in compartments of a blister package using ambient light
US20100063841A1 (en) 2008-09-05 2010-03-11 Vital Data Technology, Llc System and method of notifying designated entities of access to personal medical records
US8036748B2 (en) 2008-11-13 2011-10-11 Proteus Biomedical, Inc. Ingestible therapy activator system and method
SG172077A1 (en) 2008-12-11 2011-07-28 Proteus Biomedical Inc Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
TWI503101B (en) 2008-12-15 2015-10-11 Proteus Digital Health Inc Body-associated receiver and method
US20100160742A1 (en) 2008-12-18 2010-06-24 General Electric Company Telemetry system and method
WO2010080843A2 (en) 2009-01-06 2010-07-15 Proteus Biomedical, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
CN105380650A (en) 2009-01-06 2016-03-09 普罗秋斯数字健康公司 High-throughput production of ingestible event markers
KR100927471B1 (en) 2009-01-07 2009-11-19 주식회사 두성기술 The breast attachment type wireless heart rate apparatus
US8395521B2 (en) 2009-02-06 2013-03-12 University Of Dayton Smart aerospace structures
US8224667B1 (en) 2009-02-06 2012-07-17 Sprint Communications Company L.P. Therapy adherence methods and architecture
WO2010115194A1 (en) 2009-04-03 2010-10-07 Intrapace, Inc. Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments
MX2011011506A (en) 2009-04-28 2012-05-08 Proteus Biomedical Inc Highly reliable ingestible event markers and methods for using the same.
EP2432458A4 (en) 2009-05-12 2014-02-12 Proteus Digital Health Inc Ingestible event markers comprising an ingestible component
US20100299155A1 (en) 2009-05-19 2010-11-25 Myca Health, Inc. System and method for providing a multi-dimensional contextual platform for managing a medical practice
US8440274B2 (en) 2009-05-26 2013-05-14 Apple Inc. Electronic device moisture indicators
US8468115B2 (en) 2009-06-25 2013-06-18 George Mason Intellectual Properties, Inc. Cyclical behavior modification
US9024766B2 (en) 2009-08-28 2015-05-05 The Invention Science Fund, Llc Beverage containers with detection capability
UA109424C2 (en) 2009-12-02 2015-08-25 PHARMACEUTICAL PRODUCT, PHARMACEUTICAL TABLE WITH ELECTRONIC MARKER AND METHOD OF MANUFACTURING PHARMACEUTICAL TABLETS
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
WO2011076884A2 (en) 2009-12-23 2011-06-30 Delta, Dansk Elektronik, Lys Og Akustik A monitoring system
US8560040B2 (en) 2010-01-04 2013-10-15 Koninklijke Philips N.V. Shielded biomedical electrode patch
KR101034998B1 (en) 2010-02-18 2011-05-17 대한메디칼시스템(주) Connecting structure for snap electrode and electric wire
WO2011133799A1 (en) 2010-04-21 2011-10-27 Northwestern University Medical evaluation system and method using sensors in mobile devices
EP3387991B1 (en) 2010-05-12 2022-06-15 Irhythm Technologies, Inc. Device features and design elements for long-term adhesion
US8301232B2 (en) 2010-06-08 2012-10-30 Alivecor, Inc. Wireless, ultrasonic personal health monitoring system
US20110301439A1 (en) 2010-06-08 2011-12-08 AliveUSA LLC Wireless, ultrasonic personal health monitoring system
CN103154929A (en) 2010-06-14 2013-06-12 特鲁塔格科技公司 System for producing a packaged item with an identifier
US20110304131A1 (en) 2010-06-14 2011-12-15 Trutag Technologies, Inc. Labeling and verifying an item with an identifier
CN103124976B (en) 2010-06-14 2016-06-08 特鲁塔格科技公司 For the system that the article of packaging are verified
CN103189855B (en) 2010-06-14 2016-10-19 特鲁塔格科技公司 For using the system of the article in database authentication packaging
US9585620B2 (en) 2010-07-27 2017-03-07 Carefusion 303, Inc. Vital-signs patch having a flexible attachment to electrodes
US20120089000A1 (en) 2010-10-08 2012-04-12 Jon Mikalson Bishay Ambulatory Electrocardiographic Monitor For Providing Ease Of Use In Women And Method Of Use
USD639437S1 (en) 2010-10-08 2011-06-07 Cardiac Science Corporation Wearable ambulatory electrocardiographic monitor
WO2012097505A1 (en) 2011-01-18 2012-07-26 北京超思电子技术有限责任公司 Measuring apparatus
US20120197144A1 (en) 2011-01-27 2012-08-02 Koninklijke Philips Electronics N.V. Exchangeable electrode and ecg cable snap connector
GB2487758A (en) 2011-02-03 2012-08-08 Isansys Lifecare Ltd Health monitoring electrode assembly
US9626650B2 (en) 2011-04-14 2017-04-18 Elwha Llc Cost-effective resource apportionment technologies suitable for facilitating therapies

Also Published As

Publication number Publication date
CN101926097A (en) 2010-12-22
SG190590A1 (en) 2013-06-28
AU2014203793A1 (en) 2014-07-31
IL206049A (en) 2015-03-31
MY154699A (en) 2015-07-15
DK2215726T3 (en) 2018-04-09
WO2009070773A1 (en) 2009-06-04
EP2215726B1 (en) 2018-01-10
AU2008329620B2 (en) 2014-05-08
US20090135886A1 (en) 2009-05-28
JP5794782B2 (en) 2015-10-14
KR20100086050A (en) 2010-07-29
US11612321B2 (en) 2023-03-28
JP2011505108A (en) 2011-02-17
EP2215726A1 (en) 2010-08-11
AU2008329620A1 (en) 2009-06-04
EP2215726A4 (en) 2012-05-09
KR101586193B1 (en) 2016-01-18
CN101926097B (en) 2016-10-05
JP2015122811A (en) 2015-07-02
ES2661739T3 (en) 2018-04-03
US20200254268A1 (en) 2020-08-13
IL206049A0 (en) 2010-11-30
CA2717809A1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
US11612321B2 (en) Transbody communication systems employing communication channels
US9444503B2 (en) Active signal processing personal health signal receivers
US10441194B2 (en) Ingestible event marker systems
US8115618B2 (en) RFID antenna for in-body device
US20160380708A1 (en) Systems and methods for resolving ingestible event marker (iem) contention
CA2909033C (en) Electronic medication compliance monitoring system and associated methods
AU2012247015B2 (en) Ingestible event marker systems

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application