AT524617A1 - Expansionsmaschine - Google Patents

Expansionsmaschine Download PDF

Info

Publication number
AT524617A1
AT524617A1 ATA51085/2020A AT510852020A AT524617A1 AT 524617 A1 AT524617 A1 AT 524617A1 AT 510852020 A AT510852020 A AT 510852020A AT 524617 A1 AT524617 A1 AT 524617A1
Authority
AT
Austria
Prior art keywords
impellers
pistons
shaft
shafts
expansion machine
Prior art date
Application number
ATA51085/2020A
Other languages
English (en)
Other versions
AT524617B1 (de
Original Assignee
Koenig Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koenig Gmbh & Co Kg filed Critical Koenig Gmbh & Co Kg
Priority to ATA51085/2020A priority Critical patent/AT524617B1/de
Priority to EP21213938.0A priority patent/EP4012157A1/de
Publication of AT524617A1 publication Critical patent/AT524617A1/de
Application granted granted Critical
Publication of AT524617B1 publication Critical patent/AT524617B1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B13/00Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion
    • F01B13/04Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder
    • F01B13/045Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder with cylinder axes arranged substantially tangentially to a circle centred on main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/063Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them
    • F01C1/077Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them having toothed-gearing type drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/26Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
    • F02B75/265Engines with cylinder axes substantially tangentially to a circle centred on main-shaft axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)

Abstract

Die Erfindung betrifft eine Expansionsmaschine (100), insbesondere Dampfexpander, zur Umwandlung von Wärme aus einem Arbeitsmedium, insbesondere Dampf, in mechanische Arbeit, insbesondere zur Erzeugung von Strom, umfassend: - eine Expansionseinheit (30), ein Gehäuse (3) und ein Getriebe (10), wobei - die Expansionseinheit (3) zumindest zwei, koaxial zueinander frei drehbar gelagerte Flügelräder (1, 2), insbesondere Flügelradpaare, umfasst, welche in einem gemeinsamen Gehäuse (3) rotierbar angeordnet sind, wobei an den Flügelrädern (1, 2), jeweils zumindest ein torussegmentförmiger Kolben (4), insbesondere zwei torussegmentförmige Kolben (4), angeordnet ist, wobei die Kolben (4) entlang einer torusförmigen Laufbahn (16) relativ zueinander in der Drehachse der Flügelräder (1, 2) drehbar ausgebildet sind, sodass sich zwischen den Kolben (4) mit dem Gehäuse (3) eine der Anzahl der Kolben (4) entsprechenden Anzahl an, insbesondere vier, Flügelkammern (5) ausbilden, - wobei die Flügelräder (1, 2) jeweils eine Welle (6a, 6b) aufweisen, wobei die erste Welle (6a) als Hohlwelle ausgebildet ist und die zweite Welle (6b) in der ersten Welle (6a) koaxial angeordnet ist, - wobei in dem Gehäuse (3) jeweils zumindest ein Einlasskanal (8), insbesondere zwei Einlasskanäle (8), und ein Auslasskanal (9), insbesondere zwei Auslasskanäle (9), derart angeordnet sind, dass das Arbeitsmedium, insbesondere Dampf, über den Einlasskanal (9) in die Flügelkammern (5) einströmen und das expandierte Arbeitsmedium aus dem Auslasskanal (8) ausströmen kann, - - wobei die Wellen (6a, 6b) mit jeweils mit einer der Anzahl der Wellen (6a, 6b) entsprechenden, insbesondere zwei, Getriebeeingangswellen (11a, 11b) des den Wellen (6a, 6b) nachgelagerten Getriebes (10), insbesondere eines Unrundgetriebes, verbunden sind, wobei das Getriebe (10), derart ausgebildet ist, dass die Flügelräder (1, 2) durch die Expansion des Arbeitsmediums mit einer zyklisch ändernden Drehgeschwindigkeit relativ zueinander bewegbar sind, sodass die Volumina der Flügelkammern (5) veränderbar sind, und die zyklische Relativbewegung der zwei zueinander frei drehbar gelagerten Flügelräder (1, 2) zu einer gemeinsamen Drehmomentfunktion auf der Abtriebswelle (12) des Getriebes (10) addierbar sind und insbesondere einem dem Getriebe (10) nachgeordneten Generator zuführbar ist.

Description

dem Oberbegriff des Patentanspruchs 9.
Nahezu in jedem produzierenden Gewerbeunternehmen und in diversen technischen Anwendungen fällt neben der benötigten Heizwärme auch nicht benötigte Prozesswärme an, welche in den meisten Fällen ungenutzt über Wärmetauscher an die Umgebung abgegeben wird. Diese Abfuhr von „Abfallwärme“ an die Umgebung findet auch bei Wärmekraftmaschinen in stationären und mobilen Anwendungen statt, dort jedoch aus dem zwangsläufigen Grund, dass bei diesen Anwendungen dieser Umstand von den thermodynamischen Grundgesetzen eingefordert wird. Kurzum, tagtäglich werden beträchtliche Wärmemengen ungenutzt an die Umgebung abgeführt, anstatt dieses Potential zu nutzen und damit einen Beitrag zur Eindämmung des stetig steigenden Energieverbrauchs zu leisten. Ein relativ simpler und vielversprechender Ansatz, das oben angesprochene Abwärmepotential zu nutzen und eine signifikante Wirkungsgradsteigerung der Abwärme produzierenden Gesamtanlage realisieren zu können, liegt in der Nachnutzung der „Abfallwärme“ durch Umwandlung in eine
höherwertige Energieform, nämlich Strom.
Aus dem Stand der Technik sind bereits einige Vorrichtungen und Verfahren bekannt mit denen Strom aus Abwärme erzeugt werden kann. Dabei hat sich herauskristallisiert, dass die Energieumwandlung von Abwärme in Strom am besten durch einen (O)RCKreisprozess mit Hilfe einer geeigneten Expansionsmaschine, verbunden mit einem Generator, bewerkstelligt werden kann. Die Wärmezufuhr bewirkt die Verdampfung des Arbeitsmediums, sodass diese in Form von Dampf zur Verfügung steht, welcher mit Hilfe einer mit einem Generator verbundenen Expansionsmaschine energetisch abgebaut werden kann. Das Arbeitsmedium wird anschließend über einen Wärmetauscher verflüssigt und der Verdampfungsprozess startet von vorne.
Aus dem Stand der Technik ist beispielsweise die Nutzung von „Abfallwärme“ mit Hilfe einer in einem ORC-Kreislauf eingebetteten Expansionsmaschine bekannt. Im Stand der Technik wird dieser Ansatz derzeit jedoch primär für hohe Leistungsbereiche im Megawattbereich angewendet. In diesen vornehmlich stationären Anwendungen hat sich das Turbinenkonzept durchgesetzt, welches keine aufwändigen Schmierkonzepte benötigt, jedoch Schwächen im Teillastgebiet aufweist und hohe Investitionskosten mit sich zieht. Bei kleineren Leistungsdichten sind nach unterschiedlichste Konzepte
Es ist daher Aufgabe der vorliegenden Erfindung eine Ex pansionsmaschine bereitzustellen, die einen hohen Wirkungsgrad bei geringen Kosten ermöglicht.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Dabei ist vorgesehen, dass die Expansionseinheit zumindest zwei, koaxial zueinander frei drehbar gelagerte Flügelräder, insbesondere Flügelradpaare, umfasst, welche in einem gemeinsamen Gehäuse rotierbar angeordnet sind, wobei an den Flügelrädern, jeweils zumindest ein torussegmentförmiger Kolben, insbesondere zwei torussegmentförmige Kolben, angeordnet ist, wobei die Kolben entlang einer torusförmigen Laufbahn relativ zueinander in der Drehachse der Flügelräder drehbar ausgebildet sind, sodass sich zwischen den Kolben mit dem Gehäuse eine der Anzahl der Kolben entsprechenden Anzahl an, insbesondere vier, Flügelkammern ausbilden, wobei die Flügelräder jeweils eine Welle aufweisen, wobei die erste Welle als Hohlwelle ausgebildet ist und die zweite Welle in der ersten Welle koaxial angeordnet ist, wobei in dem Gehäuse jeweils zumindest ein Einlasskanal, insbesondere zwei Einlasskanäle, und ein Auslasskanal, insbesondere zwei Auslasskanäle, derart angeordnet sind, dass das Arbeitsmedium, insbesondere Dampf, über den Einlasskanal in die Flügelkammern einströmen und das expandierte Arbeitsmedium aus dem Auslasskanal ausströmen kann, wobei die Wellen mit jeweils mit einer der Anzahl der Wellen entsprechenden, insbesondere zwei, Getriebeeingangswellen des den Wellen nachgelagerten Getriebes, insbesondere eines Unrundgetriebes, verbunden sind, wobei das Getriebe, derart ausgebildet ist, dass die Flügelräder durch die Expansion des Arbeitsmediums mit einer zyklisch ändernden Drehgeschwindigkeit relativ zueinander bewegbar sind, sodass die Volumina der Flügelkammern veränderbar sind, und die zyklische Relativbvewegung der zwei zueinander frei drehbar gelagerten Flügelräder zu einer gemeinsamen Drehmomentfunktion auf der Abtriebswelle des Getriebes addierbar sind und insbesondere einem dem Getriebe nachgeordneten Generator zuführbar ist.
Die Erfindungsgemäße Expansionsmaschine zeichnet sich durch ein komplett neuartiges mechanisches Konzept aus. Geringe Komplexität und wenig bewegte Teile führen zu deutlich geringeren Teilekosten und zu deutlich geringeren spezifischen Investitionskosten gegenüber der aktuellen aus dem Stand der Technik bekannten Lösungen. Darüber hinaus lässt das technische Konzept der vorliegenden Erfindung auf
Besonders vorteilhafte Ausführungsformen der Expansionsmaschine werden durch die Merkmale der abhängigen Ansprüche näher definiert:
Um die Drehmomente der Wellen einfach zusammenführen zu können, kann vorgesehen sein, dass auf den Getriebeeingangswellen im Getriebe jeweils ein Ovalzahnrad angeordnet ist, wobei die Abtriebswelle zwei um 180 Grad zueinander versetzte exzentrisch angeordnete Zahnräder aufweist, die jeweils mit einem der auf den Getriebeeingangswellen angeordneten Ovalzahnrädern verzahnt sind und in dieses im
Eingriff angeordnet sind.
Eine besonders bevorzugte und kompakte Anordnung wird erreicht, indem an den Flügelrädern jeweils zwei torussegmentförmige Kolben aufweist, die um 180 Grad versetzt an der jeweiligen Welle angeordnet sind. Durch die symmetrische Anordnung der Kolben wird weiters auch eine vorteilhafte Gewichtsverteilung an den Wellen der bewegten Massenkräfte erreicht.
Eine einfache Fertigung und besonders günstige Befestigung der Kolben an den Wellen wird erreicht, wenn dass die torussegmentförmigen Kolben jeweils kraftschlüssig, insbesondere über eine Schraubverbindung, mit den Wellen verbunden sind.
Vorteilhaft kann vorgesehen sein, dass die Kolben jeweils einen, insbesondere nierenförmigen, Fortsatz aufweisen der in eine gegengleich ausgebildete Ausnehmung eingreift, wobei die Ausnehmung in einem an den Wellen angeordneten, von diesen abstehenden Befestigungsfortsatz ausgebildet ist und wobei die der Fortsatz an dem Befestigungsfortsatz kraftschlüssig, bevorzugt mit einer Schraubverbindung, verbunden ist.
Die Massenkräfte der bewegten Teile kann weiter reduziert werden, indem die Kolben hohl ausgebildet sind und jeweils stirnseitig mit einem Kolbendeckel verschlossen sind.
Eine gute Führung der Kolben und ein einfacher und kompakter Aufbau kann erreicht werden, wenn die vorgegebene torusförmige Laufbahn der Kolben durch zwei Torushalbschalen ausgebildet ist, wobei insbesondere die zwei Torushalbschalen innerhalb eines Gehäuserings angeordnet und durch diesen zentriert sind.
Es ist weiters Aufgabe der Erfindung, eine Anlage zur zur Umwandlung von Wärme aus einem Arbeitsmedium, insbesondere Dampf, in mechanische Arbeit, insbesondere zur Erzeugung von Strom bereit zu stellen.
Diese Aufgabe wird durch die Merkmale des Anspruchs 9 gelöst. Dabei ist vorgesehen, dass die Anlage eine Wärmequelle, zumindest einen Verdichter, einen Wärmetauscher und eine Expansionsmaschine umfasst, wobei die Expansionsmaschine als
erfindungsgemäße Expansionsmaschine ausgebildet ist.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und den beiliegenden Zeichnungen.
Die Erfindung ist im Folgenden anhand von besonders vorteilhaften, aber nicht einschränkend zu verstehenden Ausführungsbeispielen in den Zeichnungen schematisch dargestellt und wird unter Bezugnahme auf die Zeichnungen beispielhaft beschrieben:
Fig. 1 zeigt eine erfindungsgemäßen Expansionsmaschine in isometrischer Ansicht, Fig. 2 zeigt eine Schnittansicht der Flügelräder der Expansionsmaschine, Fig. 3 zeigt eine isometrische Ansicht der Flügelräder gemäß Fig. 2, Fig. 4 zeigt eine isometrische Ansicht des ersten Flügelrads, Fig. 5 zeigt eine isometrische Ansicht des zweiten Flügelrads, Fig. 6 zeigt eine Explosionsansicht des ersten Flügelrads in isometrischer Ansicht, Fig. 7 zeigt eine Ansicht der Flügelräder, die in dem Gehäuse angeordnet sind, in isometrischer Ansicht, Fig. 8 zeigt eine isometrische Ansicht der Torushalbschalen 17 mit Gehäusering, Fig. 9 zeigt eine Torushalbschale in isometrischer Ansicht, Fig. 10 zeigt eine isometrische Ansicht des Getriebes ohne Gehäusedarstellung, Fig. 11 zeigt eine Schnittansicht des Getriebes, Fig. 12 zeigt eine Schnittansicht durch die Expansionsmaschine mit Getriebe und in den Fig. 13 und 14 eine schematische Darstellung eines Expansionsvorgangs des Arbeitsmediums.
In Fig. 1 ist eine isometrische Ansicht der erfindungsgemäßen Expansionsmaschine 100 dargestellt. Die Expansionsmaschine 100 umfasst eine Expansionseinheit 30, die an
einem Generator zur Erzeugung von Strom genutzt.
Wie in den Fig. 2 bis 6 dargestellt, umfasst die Expansionsmaschine 100 zwei koaxial zueinander angeordnete Flügelräder 1, 2 (Fig. 2). Das erste Flügelrad 1 ist in dem zweiten Flügelrad 2 gelagert, sodass die Flügelräder 1, 2 frei zueinander drehbar sind. Die Welle 6b des zweiten Flügelrads 2 ist als Hohlwelle ausgebildet, wobei die erste Welle 6a des ersten Flügelrads 1 in die als Hohlwelle ausgebildete zweite Welle 6b des zweiten Flügelrads 2 hineingesteckt bzw in dieser angeordnet ist und gemeinsam gelagert ist. Durch die Ausbildung der ineinander gelagerten Flügelräder 1, 2 wird eine besonders kompakte Bauart erreicht, die einfach eine Relativbewegung des ersten Flügelrads 1 zum zweiten Flügelrad 2 erlaubt. An den Flügelrädern 1, 2 sind jeweils zwei Kolben 4 befestigt, die durch die relative Drehbarkeit des ersten Flügelrads 1 zum zweiten Flügelrad 2 den Abstand zwischen den Kolben 4 verändern können. Die Expansionsmaschine 100 weist weiters ein Gehäuse 3 auf, in dem die Flügelräder 1, 2 gelagert sind (Fig. 1, Fig. 8). Die Kolben 4 sind torussegmentförmig ausgebildet, weisen also einen kreisförmigen Querschnitt auf (Fig. 2) und erstrecken sich über ein Teilsegment des Umfangs des jeweiligen Flügelrads 1, 2. Die Kolben 4 sind entlang einer torusförmigen Laufbahn 16 relativ zueinander in der Drehachse der Flügelräder 1, 2 drehbar ausgebildet. Zwischen den Kolben 4 ist eine der Anzahl der Kolben 4 entsprechende Anzahl an Flügelkammern 5 — also an bei dieser Ausführungsform vier Flügelkammern 5 — ausgebildet (Fig. 7). Die Flügelkammern 5 bilden mit den Kolben 4 und dem Gehäuse 3 der Expansionsmaschine 100 einen abgeschlossenen Raum, in dem der durch die Zuleitung 31 über Einlasskanäle 8 eingebrachte Dampf expandiert und eine Kraft bzw. ein Drehmoment auf die Stirnseite 45 der Kolben 4 aufbringt. Durch die relative Drehbarkeit der Flügelräder 1, 2 zueinander wird durch Aufbringen einer Kraft durch den Dampf auf die Stirnseite 45 der Kolben 4 eine Veränderung des Abstands zwischen den Stirnseiten 45 der in den Flügelkammern 5 benachbarten Kolben 4 bewirkt, sodass zwischen den Flügelrädern 1, 2 ein Drehmoment auf deren Wellen 6a, 6b erzeugt wird. Der expandierte Dampf tritt dann über die
In den Fig. 7 und 8 ist eine bevorzugte Ausführungsform der Expansionsmaschine 100 mit Gehäuse 3 dargestellt. Die torusförmige Laufbahn 16 der Kolben 4 wird durch zwei Torushalbschalen 17 ausgebildet (Fig. 9), die übereinander zusammengesetzt werden und die Laufbahn 16 der Kolben 4 (Fig. 7) ausbilden. Die Torushalbschalen 17 werden durch einen Gehäusering 18 in Position gehalten und durch diesen zentriert. In Achsrichtung der Flügelräder 1, 2 sind die Flügelkammern 5 durch Gehäusedeckel 20 verschlossen. In den Torushalbschalen 17 und dem Gehäusering 18 sind jeweils zwei Einlasskanäle 8 und zwei Auslasskanäle 9 ausgebildet. Über die Einlasskanäle 8 kann Dampf in die jeweilige Flügelkammer 5 einströmen, in der Flügelkammer 5 expandieren und dann über den jeweiligen Auslasskanal 9 aus dem Expansionsmaschine 100 wieder austreten. Der Einlasskanal 8 ist dabei entsprechend dem Expansionsverhältnisses des Dampfs kleiner Ausgebildet als der Auslasskanal 9.
Fig. 9 zeigt eine Ausführungsform einer Torushalbschale 17 in isometrischer Ansicht. Die Torushalbschale 17 weist eine den Kolben 4 gegengleich ausgebildete, torusförmige Vertiefung auf, die die Laufbahn 16 der Kolben 4 bildet. Im Umfang der Laufbahn 16 der Torushalbschale 17 sind die Einlasskanäle 8 und die Auslasskanäle 9 in Form von in den Umfang der Laufbahn 16 ausgebildeter Schlitze 19 angeordnet. Die Schlitze 19 verlaufen über einen definierten ,‚ den Einlasskanälen 8 und Auslasskanälen 9 entsprechenden Umfangabschnitt der torusförmigen Laufbahn 16 der Kolben 4 und sind parallel zueinander und parallel zu der durch die Kolben 4 gebildeten Ebene angeordnet.
Fig. 10 zeigt eine Detailansicht des dem Expansionsmaschine 100 nachgelagerten Getriebes 10. Durch die relative Drehbarkeit der Flügelräder 1, 2 zueinander wird über die Wellen 6a, 6b ein durch den in den Flügelkammern 5 expandierenden Dampf aufgebrachtes Drehmoment an die Getriebeeingangswellen 11a, 11b des Getriebes 10 weitergeleitet. (Fig.11, Fig. 12) Das Getriebe 10 umfasst dabei die gleiche Anzahl an Getriebeeingangswellen 11a, 11b, die der Anzahl der Wellen 6a, 6b bzw. der Anzahl der Flügelräder 1, 2 entspricht. Die zweite Getriebeeingangswelle 11b ist entsprechend der zweiten Welle 6b als Hohlwelle ausgebildet und mit dieser drehmomentübertragend verbunden. Die erste Getriebeeingangswelle 11a ist mit der ersten Welle 6a des ersten Flügelrads 1 drehmomentübertragend verbunden und innerhalb der als Hohlwelle ausgebildeten zweiten Getriebeeingangswelle 11a angeordnet (Fig. 12). An den Getriebeeingangswellen 11a, 11b ist jeweils ein Ovalzahnrad 13, 14 angeordnet, wobei
7725
In Fig. 12 ist eine Schnittansicht des erfindungsgemäßen Expansionsmaschine 100 dargestellt. Das Getriebe 10 ist an der Expansionseinheit 30 angeordnet und mit dieser verbunden. Die Wellen 6a, 6b sind mit den jeweiligen Getriebeeingangswellen 11a, 11b drehmomentübertragend über eine stirnseitige Verzahnung, bei dieser Ausführungsform eine Hirthverzahnung formschlüssig verbunden, sodass das an den Wellen 6a, 6b eingeleitete Drehmoment einfach an die Getriebeeingangswellen 11a, 11b übertragen
werden kann.
In den Fig. 4 bis 6 sind Ansichten der Flügelräder 1, 2 dargestellt. Die Flügelräder 1, 2 weisen jeweils zwei torussegmentförmige Kolben 4 auf, die um 180 Grad in Bezug auf die Drehachse der Flügelräder 1, 2 versetzt an der jeweiligen Welle 6a, 6b angeordnet sind. Die Kolben 4 sind dabei über eine kraftschlüssige Verbindung — bei dieser Ausführungsform über eine Schraubverbindung — mit den Wellen 6a, 6b verbunden. Wie in den Fig. 4 und 6 dargestellt, weisen die torussegmentförmigen Kolben 4 des ersten
In einer bevorzugten Ausführungsform sind die Kolben 4 der Expansionsmaschine 100, wie beispielsweise in Fig. 2 dargestellt, hohl ausgebildet und sind jeweils stirnseitig mit einem Kolbendeckel 44 verschlossen. Durch die hohle Ausbildung der Kolben 4 wird eine Gewichtsersparnis erzielt, die weiter zu geringeren Massenkräften an den Flügelrädern 1, 2 führt.
In den Fig. 1 bis 12 ist eine bevorzugte Ausführungsform der Expansionsmaschine 100 mit vier Kolben 4 dargestellt, wobei auch Ausführungsformen mit jeweils einem an den Flügelrädern 1, 2 angeordneten Kolben 4 bzw. zwei Kolben 4 der Expansionsmaschine 100 insgesamt oder auch eine höhere Anzahl als vier Kolben 4, beispielsweise sechs, acht, zehn oder zwölf Kolben 4, vorgesehen sein können.
Die erfindungsgemäße Expansionsmaschine 100 findet bevorzugt in einer Anlage zur Umwandlung von Wärme aus einem Arbeitsmedium, insbesondere Dampf, in mechanische Arbeit Anwendung bzw ist bevorzugt in einer derartigen Anlage angeordnet. Dabei wird das von einem Verdichter verdichtete Arbeitsmedium in einer Wärmequelle erhitzt und verdampft. Über Leitungen wird dieser Dampf dann an die Expansionsmaschine 100 geleite. In der Expansionsmaschine 100 wird dann das Arbeitsmedium expandiert und an den Stirnseiten 45 der Kolben 4 eine Kraft appliziert, die an die Wellen 6a, 6b als Drehmoment weitergegeben wird. Diese Drehmoment wird dann im Getriebe 10 zusammen addiert und über die Abtriebswelle 10, beispielweise an einen Generator oder einen nachgelagerten Einheit zur Erzeugung von Strom oder der weitern Umwandlung abgegeben. Das expandierte Arbeitsmedium wird dann in einem Wärmetauscher kondensiert und wieder dem Verdichter zugeführt. Optional können auch wie bei den aus dem Stand der Technik bekannten Wärmeprozessen auch noch andere Komponenten wie Überhitzer oder andere Wärmetauscher vorgesehen sein.
Optional zu den in den Fig. 1 bis 12 dargestellten Ausführungsformen, kann das Getriebe 10 auch andere Ausbildungen aufweisen.
In den Fig. 13 und 14 ist eine schematische Darstellung während eines Arbeitstaktes des Arbeitsmediums bzw die Flügelräder 1, 2 in zwei Arbeitspositionen dargestellt. Durch den über die Einlasskanäle 8 eingeströmtes Arbeitsmedium wird der Winkel zwischen den Kolben 4 der Flügelräder 1, 2 zueinander verändert. Das über die Einlasskanäle 8 in die Flügelkammern 5 eingetretene Arbeitsmedium bewirkt durch dessen Expansion eine Winkelveräderung der Flügelräder 1,2 zueinander, sodass der Raum zweier Flügelkammern 5 minimiert und der Raum der anderen zwei Flügelkammern 5, in denen sich das Arbeitsmedium ausdehnt maximiert wird (Fig. 13). Nach erreichen der maximalen Expansion wird eine Überschneidung der Flügelkammern 5 mit den Auslasskanälen 9 erreicht und das expandierte Arbeitsmedium tritt aus den Flügelkammern 5 aus und die zuvor komprimierten Räume der andern beiden Flügelkammern 5 erweitern sich durch das über die Einlasskanäle 8 in diese eingetretene Arbeitsmedium wieder. So entsteht ein zyklische Veränderung der Größen der Flügelkammern 5 durch die Expansion des Arbeitsmediums und es wird ein Druck auf die Kolben 4 bzw. ein Drehmoment auf die Flügelräder 1, 2 und deren Wellen 6a, 6b erzeugt. Bei den der Erfindung zugrunde liegenden Untersuchungen hat sich dabei vorteilhaft ergeben, dass die Lage der Einlasskanäle 8 und Auslasskanäle 9 sowie deren Größe in Bezug auf die Winkel der Expansionsmaschine für den Einlassstart y ES = - 93, 00 Grad und einen Einlasswinkel vonaE = 18, 36 Grad, für den Auslassstart einen Winkel von y AS = —- 201, 91 Grad und einen Auslasswinkel von a A = 43, 18 Grad sind.

Claims (1)

  1. Patentansprüche:
    Expansionsmaschine (100), insbesondere Dampfexpander, zur Umwandlung von Wärme aus einem Arbeitsmedium, insbesondere Dampf, in mechanische Arbeit, insbesondere zur Erzeugung von Strom, umfassend:
    - eine Expansionseinheit (30), ein Gehäuse (3) und ein Getriebe (10), dadurch gekennzeichnet, dass die Expansionseinheit (3) zumindest zwei, koaxial zueinander frei drehbar gelagerte Flügelräder (1, 2), insbesondere Flügelradpaare, umfasst, welche in einem gemeinsamen Gehäuse (3) rotierbar angeordnet sind, wobei an den Flügelrädern (1, 2), Jeweils zumindest ein torussegmentförmiger Kolben (4), insbesondere zwei torussegmentförmige Kolben (4), angeordnet ist, wobei die Kolben (4) entlang einer torusförmigen Laufbahn (16) relativ zueinander in der Drehachse der Flügelräder (1, 2) drehbar ausgebildet sind, sodass sich zwischen den Kolben (4) mit dem Gehäuse (3) eine der Anzahl der Kolben (4) entsprechenden Anzahl an, insbesondere vier, Flügelkammern (5) ausbilden, wobei die Flügelräder (1, 2) Jeweils eine Welle (6a, 6b) aufweisen, wobei die erste Welle (6a) als Hohlwelle ausgebildet ist und die zweite Welle (6b) in der ersten Welle (6a) koaxial angeordnet ist, wobei in dem Gehäuse (3) jeweils zumindest ein Einlasskanal (8), insbesondere zwei Einlasskanäle (8), und ein Auslasskanal (9), insbesondere zwei Auslasskanäle (9), derart angeordnet sind, dass das Arbeitsmedium, insbesondere Dampf, über den Einlasskanal (9) in die Flügelkammern (5) einströmen und das expandierte Arbeitsmedium aus dem Auslasskanal (8) ausströmen kann, - wobei die Wellen (6a, 6b) mit jeweils mit einer der Anzahl der Wellen (6a, 6b) entsprechenden, insbesondere zwei, Getriebeeingangswellen (11a, 11b) des den Wellen (6a, 6b) nachgelagerten Getriebes (10), insbesondere eines Unrundgetriebes, verbunden sind, wobei das Getriebe (10), derart ausgebildet ist, dass die Flügelräder (1, 2) durch die Expansion des Arbeitsmediums mit einer zyklisch ändernden Drehgeschwindigkeit relativ zueinander bewegbar sind, sodass die Volumina der Flügelkammern (5) veränderbar sind, und die zyklische Relativbewegung der zwei zueinander frei drehbar gelagerten Flügelräder (1, 2) zu einer gemeinsamen Drehmomentfunktion auf der Abtriebswelle (12) des Getriebes (10) addierbar sind und insbesondere einem dem Getriebe (10) nachgeordneten Generator zuführbar ist.
    Expansionsmaschine (100) nach Anspruch 1, dadurch gekennzeichnet, dass auf den Getriebeeingangswellen (11a, 11b) im Getriebe (10) jeweils ein Ovalzahnrad (13, 14)
    N AS
    11/25‘
    angeordnet ist, wobei die Abtriebswelle (12) zwei um 180 Grad zueinander versetzte exzentrisch angeordnete Zahnräder (15a, 15b) aufweist, die jeweils mit einem der auf den Getriebeeingangswellen (11a, 11b) angeordneten Ovalzahnrädern (13, 14) verzahnt sind und in dieses im Eingriff angeordnet sind.
    Expansionsmaschine (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass an den Flügelrädern (1, 2) jeweils zwei torussegmentförmige Kolben (4) aufweist, die um 180 Grad versetzt an der jeweiligen Welle (6a, 6b) angeordnet sind.
    Expansionsmaschine (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die torussegmentförmigen Kolben (4) jeweils kraftschlüssig, insbesondere über eine Schraubverbindung, mit den Wellen (6a, 6b) verbunden sind.
    Expansionsmaschine (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Kolben (4) jeweils einen, insbesondere nierenförmigen, Fortsatz (41) aufweisen der in eine gegengleich ausgebildete Ausnehmung (42) eingreift, wobei die Ausnehmung (42) in einem an den Wellen (6a, 6b) angeordneten, von diesen abstehenden Befestigungsfortsatz (43) ausgebildet ist und wobei die der Fortsatz (41) an dem Befestigungsfortsatz (43) kraftschlüssig, bevorzugt mit einer Schraubverbindung, verbunden ist.
    Expansionsmaschine (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Kolben (4) hohl ausgebildet sind und jeweils stirnseitig mit einem Kolbendeckel (44) verschlossen sind.
    Expansionsmaschine (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die vorgegebene torusförmige Laufbahn (16) der Kolben (4) durch zwei Torushalbschalen (17) ausgebildet ist, wobei insbesondere die zwei Torushalbschalen (17) innerhalb eines Gehäuserings (18) angeordnet und durch
    diesen zentriert sind.
    Expansionsmaschine (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Einlasskanal (8) und der Auslasskanal (9) jeweils durch eine Anzahl in dem Gehäuse (3), insbesondere den Torushalbschalen (17), angeordneter Schlitze (19) ausgebildet sind, wobei sich die Schlitze (19) über einen
    definierten Umfangsabschnitt der torusförmigen Laufbahn (16) der Kolben (4)
    erstrecken.
    . Anlage zur Umwandlung von Wärme aus einem Arbeitsmedium, insbesondere Dampf,
    in mechanische Arbeit, insbesondere zur Erzeugung von Strom, umfassend eine Wärmequelle, zumindest einen Verdichter, einen Wärmetauscher und eine Expansionsmaschine (100), dadurch gekennzeichnet, dass Expansionsmaschine (100) nach einem der Ansprüche 1 bis 8 ausgebildet ist.
ATA51085/2020A 2020-12-14 2020-12-14 Expansionsmaschine AT524617B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ATA51085/2020A AT524617B1 (de) 2020-12-14 2020-12-14 Expansionsmaschine
EP21213938.0A EP4012157A1 (de) 2020-12-14 2021-12-13 Expansionsmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA51085/2020A AT524617B1 (de) 2020-12-14 2020-12-14 Expansionsmaschine

Publications (2)

Publication Number Publication Date
AT524617A1 true AT524617A1 (de) 2022-07-15
AT524617B1 AT524617B1 (de) 2023-05-15

Family

ID=78844744

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA51085/2020A AT524617B1 (de) 2020-12-14 2020-12-14 Expansionsmaschine

Country Status (2)

Country Link
EP (1) EP4012157A1 (de)
AT (1) AT524617B1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1068170A (en) * 1963-01-22 1967-05-10 Aero Commerce G M B H Rotary piston machines
WO2014076637A1 (en) * 2012-11-15 2014-05-22 I.V.A.R. S.P.A. Rotary expander and cogeneration plant of electrical and heat energy comprising the rotary expander

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398643A (en) * 1965-07-30 1968-08-27 Schudt Hans Rotary piston engine, pump or other machine
AU2003223101A1 (en) * 2003-02-13 2004-09-06 Vishvas Ambardekar Revolving piston internal combustion engine
CA2450542C (en) * 2003-11-21 2011-01-04 Anatoly Arov Arov engine/pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1068170A (en) * 1963-01-22 1967-05-10 Aero Commerce G M B H Rotary piston machines
WO2014076637A1 (en) * 2012-11-15 2014-05-22 I.V.A.R. S.P.A. Rotary expander and cogeneration plant of electrical and heat energy comprising the rotary expander

Also Published As

Publication number Publication date
EP4012157A1 (de) 2022-06-15
AT524617B1 (de) 2023-05-15

Similar Documents

Publication Publication Date Title
DE2152517B2 (de) Parallel- und aussenachsige rotationskolbenmaschine, insbesondere rotationskolben-brennkraftmaschine
DE112013006341T5 (de) Abgas-Energierückgewinnungssystem
DE2400052A1 (de) Verbrennungsmotor
DE102006018183A1 (de) Drehkolbenmaschine
DE102008050014A1 (de) Zink'sche Tangential-Verbrennung Turbine
EP0369991B1 (de) Dreh-Hubkolben-Maschine
AT524617B1 (de) Expansionsmaschine
DE1426773A1 (de) Drehantriebsvorrichtung
EP0087746A1 (de) Abgasbetriebener Rotationskolbenlader
EP0130436A1 (de) Rotationskolbenmaschine als Expansionsmaschine oder Verdichter
EP3022444B1 (de) Rotationskolbenmaschine
DE2619474A1 (de) Leistungsgenerator
DE3043825A1 (de) Expansionsmaschine, insbesondere freikolben-stirling-maschine, mit hydrodynmaischem schmiersystem
DE4419616C1 (de) Innenachsige achsenparallele Drehkolbenmalschine
DE102009052960B4 (de) Freikolben-Brennkraftmaschine
DE102007054321A1 (de) Kolbenmaschine
DE19827474C2 (de) Wärmemaschinenvorrichtung
EP0544025A1 (de) Rotationskolbenmaschine für kompressible und nicht kompressible Medien
DE4118938C2 (de) Rotationsschwingkolbenmotor
DE10206144A1 (de) Getriebe
DE202009017893U1 (de) Verbrennungsmotor
DE1451686C (de) Umlaufkolbenmaschine des mittelachsigen Typs, bestehend aus zwei parallelachsig zur gemeinsamen Welle angeordneten Maschineneinheiten
DE2918369A1 (de) Rotations-expansionsmaschine
DE2405706A1 (de) Rotationsmechanismus
DE1451686B (de) Umlaufkolbenmaschine des mittelachsi gen Typs, bestehend aus zwei parallelachsig zur gemeinsamen Welle angeordneten Maschi neneinheiten