AT508303A1 - Flammgeschützte expandierbare polymerisate - Google Patents

Flammgeschützte expandierbare polymerisate Download PDF

Info

Publication number
AT508303A1
AT508303A1 AT15052009A AT15052009A AT508303A1 AT 508303 A1 AT508303 A1 AT 508303A1 AT 15052009 A AT15052009 A AT 15052009A AT 15052009 A AT15052009 A AT 15052009A AT 508303 A1 AT508303 A1 AT 508303A1
Authority
AT
Austria
Prior art keywords
expandable
styrene
polymers
sulfur
polymer
Prior art date
Application number
AT15052009A
Other languages
English (en)
Original Assignee
Sunpor Kunststoff Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunpor Kunststoff Gmbh filed Critical Sunpor Kunststoff Gmbh
Priority to AT15052009A priority Critical patent/AT508303A1/de
Priority to PL10771308T priority patent/PL2480598T3/pl
Priority to CN201080042632.4A priority patent/CN102656218B/zh
Priority to PCT/AT2010/000346 priority patent/WO2011035357A1/de
Priority to JP2012530050A priority patent/JP2013506009A/ja
Priority to EP10771308.3A priority patent/EP2480598B1/de
Priority to RU2012116340/05A priority patent/RU2581865C2/ru
Priority to DE202010017373U priority patent/DE202010017373U1/de
Priority to DK10771308.3T priority patent/DK2480598T3/en
Priority to KR1020127010472A priority patent/KR101786505B1/ko
Priority to ES10771308.3T priority patent/ES2523351T3/es
Priority to SI201030807T priority patent/SI2480598T1/sl
Priority to US13/497,521 priority patent/US20120264837A1/en
Priority to DE202010017374U priority patent/DE202010017374U1/de
Publication of AT508303A1 publication Critical patent/AT508303A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0033Use of organic additives containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

1 • ·· ·· ·· · ·· · « · · ·· ··*· · · β * * · ·#»· ·( · f · «··· · · · · ·
Die vorliegende Erfindung betrifft halogenfrei flammgeschützte, zumindest ein Treibmittel enthaltende, expandierbare Polymerisate, in denen als Flammschutzmittelsystem eine Kombination aus zumindest einer Phosphorverbindung als Flammschutzmittel und zumindest einer Schwefelverbindung als zusätzliches Flammschutzmittel bzw. -Synergist enthalten ist.
Die Erfindung betrifft weiters Verfahren zur Herstellung dieser Polymerisate, weiters mit diesen Flammschutzmittelsystemen geschützte Polymerschaumstoffe und Verfahren zu deren Herstellung, sowie die besondere Verwendung obenstehender Flammschutzmittelsysteme in expandierbaren Polymerisaten sowie Polymerschaumstoffen.
Die Ausrüstung von Polymerschaumstoffen mit Flammschutzmitteln ist für viele Bereiche von Bedeutung bzw. vorgeschrieben. Die Reglementierungen über die Verwendung von Polystyrol-Partikelschaumstoffen aus expandierbarem Polystyrol (EPS) oder von Polystyrol-Extrusionsschaumstoffplatten (XPS) als Isoliermaterial für Gebäude verlangen in den meisten Fällen eine Flammschutzausrüstung. Polystyrol-Homo- und Copolymere werden überwiegend mit halogenhaltigen, insbesondere bromierten organischen Verbindungen wie Hexabromcyclododecan (HBCD) schwer entflammbar gemacht. Diese und eine Reihe anderer bromierter Substanzen sind jedoch auf Grund ihrer potentiellen Umwelt- und Gesundheitsgefährdung in Diskussion geraten bzw. bereits verboten.
Als Alternative existieren zahlreiche halogenfreie Flammschutzmittel. Halogenfreie Flammschutzmittel müssen jedoch zur Erreichung der gleichen Flammschutzwirkung der halogenhaltigen Flammschutzmittel in der Regel in deutlich höheren Mengen eingesetzt werden.
Unter anderem aus diesem Grund können halogenfreie Flammschutzmittel, die in kompakten thermoplastischen Polymeren ersetzbar sind, häufig nicht in gleicher Weise in Polymerschaumstoffen eingesetzt werden, da sie entweder den Schäumprozess stören oder die mechanischen und thermischen Eigenschaften des Polymerschaumstoffes beeinflussen. Bei der Herstellung von expandierbarem Polystyrol durch Suspensionspolymerisation können die hohen Flammschutzmittelmengen außerdem die Stabilität der Suspension verringern und somit das Herstellungsverfahren stören bzw. beeinträchtigen.
Die Wirkung der bei kompakten Polymeren eingesetzten Flammschutzmittel in Polymerschaumstoffen ist häufig aufgrund der Besonderheiten von derartigen Schaumstoffen und des unterschiedlichen Brandverhaltens bzw. wegen unterschiedlicher Brandtests nicht vorhersagbar.
Aus dem Stand der Technik ist der Einsatz von phosphorhaltigen Substanzen in expandierbaren Polymerisaten grundsätzlich bekannt: 2 • · * * ««·· · • · · · · · ···
Die EP-A 834 529 beschreibt expandierbare Styrolpolymerisate, die als halogenfreies Flammschutzmittel eine Mischung aus einer Phosphorverbindung und einem was-serabspaltenden Metallhydroxid enthalten. Bevorzugt werden 5 bis 10 Gew.-% Mg(OH) und 5 bis 10 Gew.-% Triphenylphoshat (TPP) in einem Extruder in geschmolzenes Polystyrol eingearbeitet und granuliert und das Granulat in wässriger Suspension mit Treibmittel nach imprägniert.
Die WO 00/34342 beschreibt ein Verfahren zur Herstellung von expandierbarem Polystyrol durch Suspensionspolymerisation von Styrol in Gegenwart von 5 bis 50 Gew.-% Blähgraphit und gegebenenfalls 2 bis 20 Gew.-% einer Phosphorverbindung als Flammschutzmittel.
Außerdem ist z.B. in der WO 2006/027241 ein halogenfreies Flammschutzmittel für Polymerschaumstoffe beschrieben, nämlich die Phosphorverbindung 9,10-Dihydro-9-oxa-10-phospha-phenantren-10-oxid (6H-Dibenz[c,e]-oxaphosphorin-6-oxid, DOP-O, CAS [35948-25-5]).
Dieses Flammschutzmittel ist bereits einigermaßen gut einsetzbar, es besteht jedoch der Bedarf, derartige Polymerisate bzw. Polymerschaumstoffe noch brandbeständiger zu machen und dies bei möglichst geringem Gehalt an Flammschutzmitteln bzw. ohne den Gehalt an Flammschutzmitteln zu erhöhen.
Aufgabe der vorliegenden Erfindung ist es somit, ein gut brandbeständiges flamm-geschütztes expandierbares Polymerisat mit geringem Gehalt an Flammschutzmitteln und guter Qualität zu schaffen.
Dabei ist es insbesondere wünschenswert, dass das Polymer auch die strengen Anforderungen an die Brandbeständigkeit für z.B. Bauanwendungen erfüllen kann, wie beispielsweise den B2-Kleinbrennertest nach DIN 4102-2 oder den Brandtest nach EN 11925-2.
Weiters ist es Aufgabe der Erfindung, ein vorteilhaftes Verfahren zur Herstellung derartiger Polymerisate zu schaffen.
Eine weitere Aufgabe der Erfindung besteht darin, einen halogenfrei flammge-schützten, jedoch qualitativ entsprechenden, Polymerschaumstoff mit vorteilhaftem Brandverhalten sowie guten mechanischen Eigenschaften sowie ein vorteilhaftes Herstellungsverfahren dafür zu schaffen.
Diese Aufgaben werden durch die unabhängigen Ansprüche der Erfindung gelöst. 3« * » * · · · · ·· · • · · ·* ·· · · · * · • ··· *<· « 4··· « m · f ·
Die Aufgabe wird bei einem Polymerisat bzw. einem Polymerschaumstoff der eingangs erwähnten Art dadurch gelöst, dass im Flammschutzmittelsystem die als Flammschutzmittel wirkende Phosphorverbindung - elementarer Phosphor, insbesondere roter Phosphor, - zumindest eine anorganische Phosphorverbindung oder Hydrolysate oder Salze davon und/oder zumindest eine organische Phosphorverbindung der folgenden allgemeinen Formel (I) oder (II) oder Hydrolysate oder Salze davon, ist
fl R j R2-P=0 Vf R3 R (I) -(II) worin die Reste Ri, R2 und R3 jeweils unabhängig voneinander organische oder anorganische Reste bedeuten, , und dass die als Flammschutzmittel bzw. -Synergist wirkende Schwefelverbindung - elementarer Schwefel und/oder - zumindest eine anorganische oder organische Schwefelverbindung bzw. schwefelhaltige Verbindung ist. Überraschend wurde festgestellt, dass derart flammgeschützte Polymerisate und Polymerschaumstoffe eine in unerwartetem Ausmaß verbesserte Wirkung als Flammschutzmittel aufweisen. Dadurch kann die Gesamtmenge an Flammschutzmitteln verringert werden, was zu einer Vielzahl an Vorteilen, u.a. im Herstellungsverfahren, bei den Kosten, den mechanischen Eigenschaften des Produktes etc. führt. Insbesondere werden auch der Schäumprozess und die mechanischen Eigenschaften des Schaums nicht wesentlich beeinflusst wodurch ein qualitativ hochwertiges Produkt entsteht.
Unter dem Begriff der Phosphorverbindungen werden im vorliegenden Text sowohl elementarer Phosphor als auch organische und anorganische Phosphorverbindungen und/oder phosphorhältige Verbindungen sowie Hydrolysate oder Salze davon verstanden bzw. subsumiert.
Elementarer Phosphor tritt in vier allotropen Modifikationen als weißer, roter, schwarzer und violetter Phosphor auf. Jeder dieser Grundtypen bildet verschiedene Kristallstrukturen, wodurch es auch zu Unterschieden in den physikalischen Eigenschaften 4 • · und Reaktivitäten kommt. Als Flammschutzmittel ist der rote Phosphor am vorteilhaftesten einsetzbar.
Als anorganische Phosphorverbindungen kommen vorteilhafterweise die (Po-ly)phosphate, wie nicht kondensierte Salze der phosphorigen Säure oder kondensierte Salze, wie Ammoniumphosphat und Ammoniumpolyphosphat, in Frage.
Die erfindungsgemäß verwendeten organischen Phosphorverbindungen der allgemeinen Formel (I) oder (II)
fl fl-p: 2 i FL (I) fl R„-P=0 2 i
FL (II) können aus den phosphororganischen Verbindungen, wie monomeren organischen Phosphorverbindungen, oder polymeren organischen Phosphorverbindungen, den anorganischen Phosphorverbindungen, etc. ausgewählt werden, wobei Ri, R2 und R3 unabhängig voneinander organische oder anorganische Reste bezeichnen, die dem Fachmann aus dem Stand der Technik bekannt sind.
Die Substituenten bzw. Reste R sind untereinander unabhängig und können gleich oder verschieden sein bzw. sogar ganz fehlen. Die Reste R können vorzugsweise jeweils unabhängig voneinander bedeuten: -H, substituiertes oder nicht substituiertes C1-C15-Alkyl, C^C^-Alkenyl, C3-C8-Cycloalkyl, C6-Ci8-Aryl, C7-C30-Alkylaryl, CrC8-Alkoxy oder Ci-C8-Alkylthio, oder -OH oder -SH sowie Alkalimetall-, Erdalkalimetall-, Ammonium- oder Phosphonium-Salze davon.
Unter dem "Alkyl'-Anteil der optionalen Substituenten R der Phosphorverbindungen gemäß Formel (I) sind sowohl gesättigte als auch ungesättigte Aliphaten zu verstehen, die unverzweigt oder verzweigt sein können, wobei ungesättigte Gruppen bevorzugt sind. Die Substituenten R umfassen vorzugsweise kurzkettige Alkylgruppen mit nicht mehr als 6, noch bevorzugter nicht mehr als 4 oder 3, noch bevorzugter nicht mehr als 2, Kohlenstoffatomen bzw. Phenyl als Arylgruppe. Kürzerkettige Reste sind bevorzugt, da längerkettige Reste, ein hoher Sättigungsgrad sowie eine größere Anzahl an Substituenten die Flammschutzwirkung nachteilig beeinflussen können. Besonders wirkungsvolle Phosphorverbindungen sind bevorzugt möglichst unsubstituiert. 5 • · • · • · · ·· ···· · ι · · • ·· · ·** ····· · • · · · · « ···
Falls Substituenten R vorhanden sind, weisen diese vorzugsweise einen schwefelhaltigen Substituenten, wie z.B. -SH, -SO3NH4, -SO- oder -S02-, oder einen phosphorhäl-tigen Substituenten, wie z.B. -PO(ONH4)2 oder dergleichen, auf, um so die Flammschutzwirkung weiter zu verbessern.
Von den optionalen Salzen etwaiger SH- oder OH-Gruppen der Phosphorverbindungen sind Ammonium- und Phosphoniumsalze bevorzugt, da diese ebenfalls zur Flammschutzwirkung beitragen können. Die Ammonium- und Phosphonium-Ionen können anstelle von Wasserstoffatomen jeweils bis zu vier organische Reste, z.B. oben definierte Substituenten R, aufweisen (d.h. NR4+ bzw. PR4+), wobei jedoch im Falle von Ammonium Wasserstoff als Substituent bevorzugt wird.
Beispiele für solche Phosphorverbindungen der allgemeinen Formel (I) oder (II) sind organische Phosphorverbindungen und deren Salze, wie die monomeren organischen Phosphorverbindungen, eingeschlossen Phosphorsäureester-, Phosphorsäureami-dester- und Phosphonitrilverbindungen, organische Verbindungen der phosphorigen Säure, wie beispielsweise Ester der phosphorigen Säure, Verbindungen der hypophosphori-gen Säure, der Phosphine und Phosphinoxide, wie beispielsweise Triphenylphosphin, Triphenylphosphinoxid und Tricresylphosphinoxid, etc.
Mit Ausnahme der halogenierten Phosphorverbindungen, haben Phosphorverbindungen den Nachteil, dass, wie einleitend erwähnt, in der Regel relativ hohe Konzentrationen davon eingesetzt werden müssen, um eine ausreichende flammhemmende Wirkung zu erzielen. In Polymerschaumstoffen führen diese hohen Konzentrationen meist zu einem Kollaps der Schaumstruktur. Daher war es Aufgabe der vorliegenden Erfindung diese Konzentrationen möglichst zu reduzieren. Dies konnte dadurch erreicht werden, dass zusätzlich schwefelhaltige Verbindungen zugegeben wurden, die überraschenderweise eine überdurchschnittliche Verbesserung der flammhemmenden Wirkung zeigten.
Eine vorteilhafte Ausführungsform der expandierbaren Polymerisate besteht darin, dass die Phosphorverbindung(en) als Flammschutzmittel in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind.
Als vorteilhaft haben sich Phosphorverbindungen erwiesen, die bei der Analyse mittels Thermogravimetrie (TGA) unterhalb von 115°C eine Gewichtsabnahme von kleiner 10 Gew.-% aufweisen. 6
Unter dem Begriff der Schwefelverbindungen werden im vorliegenden Text sowohl elementarer Schwefel als auch organische und anorganische Schwefelverbindungen und/oder schwefelhaltige Verbindungen sowie Hydrolysate oder Salze davon verstanden bzw. subsumiert.
Eine vorteilhafte Ausführungsform der expandierbaren Polymerisate besteht darin, dass die Schwefelverbindung(en) als Flammschutzmittel in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind.
Besonders gut geeignet ist elementarer Schwefel bzw. gelber Cyclooctaschwefel (S8), der vorteilhafterweise in einer Menge von 0,1 bis 10Gew.-%, bevorzugt 0,5 bis 5 Gew.-%, besonders bevorzugt etwa 2 Gew.-%, bezogen auf das erhaltene EPS-Granulat zugegeben wird.
Als Schwefelverbindungen sind beispielsweise Sulfide, Sulfite, Sulfate, Sulfane, Sulfoxylate, Sulfone, Sulfonate, Thiosulfate, Thionite, Thionate, Disulfate, Sulfoxide, Schwefelnitride, Schwefelhalogenide und/oder Organoschwefelverbindungen wie Thiole, Thioether, Thiophene, etc. vorteilhaft ersetzbar.
Weiters haben sich Schwefelverbindungen als vorteilhaft erwiesen, die bei der A-nalyse mittels Thermogravimetrie (TGA) unterhalb von 115°C eine Gewichtsabnahme von kleiner 10 Gew.-% aufweisen, z.B Ammoniumthiosulfat, Dicaprolactamdisulfid, Zinksulfid, Polyphenylensulfid, etc..
Besonders vorteilhaft ist es, wenn die schwefelhaltige Verbindung bzw. Schwefelverbindung zumindest eine S-S-Bindung aufweist, wobei zumindest eines der Schwefelatome in zweiwertiger Form vorliegt, z.B. Disulfite, Dithionite, Cystin, Amylphenoldisulfid, Poly-tert-butylphenoldisulfid etc.
Besonders bevorzugte Kombinationen von Phosphorverbindungen und Schwefelverbindungen sind: - Ammoniumpolyphosphat mit gelben Schwefel (S8), - Ammoniumpolyphosphat mit Ammoniumthiosulfat, - Ammoniumpolyphosphat mit Zinksulfid, - Triphenylphosphin mit Cystin und
Triphenylphosphin mit Polyphenylensulfid. 7 • · • · • ♦ f · ♦ • · · ·· «··· · · · « • · · » · ··«·» · • · # · · · · · ·
Die erfindungsgemäßen expandierbaren Polymerisate sind vorzugsweise expandierbare Styrolpolymerisate (EPS) bzw. expandierbare Styrolpolymer Granulate (EPS), welche insbesondere aus Homo- und Copolymeren von Styrol, vorzugsweise glasklares Polystyrol (GPPS), Schlagzähpolystyrol (HIPS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A-IPS), Styrol-alpha-Methylstyrol-copolymere, Acrylnitril-Butadien-Styrolpolymerisate (ABS), Styrol-Acrylnitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Me-thyacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)-polymerisate oder Mischungen davon oder mit Polyphenylenether (PPE) oder Polypheny-lensulfid (PPS) bestehen. Gerade für Polystyrol ist der Bedarf an qualitativ hochwertigen Produkten besonders hoch.
Die genannten Styrol polymere können zur Verbesserung der mechanischen Eigenschaften oder der Temperaturbeständigkeit gegebenenfalls unter Verwendung von Verträglichkeitsvermittlem mit thermoplastischen Polymeren, wie Polyamiden (PA), Polyolefinen, wie Polypropylen (PP) oder Polyethylen (PE), Polyacrylaten, wie Polymethyl-methacrylat (PMMA), Polycarbonat (PC), Polyestern, wie Polyethylenterephthalat (PET) oder Polybutylenterephthalat (PBT), Polyethersulfonen (PES), Polyetherketonen oder Polyethersulfiden (PES) oder Mischungen davon in der Regel in Anteilen von insgesamt bis maximal 30 Gew.-%, bevorzugt im Bereich von 1 bis 10 Gew.-%, bezogen auf die Polymerschmelze, abgemischt werden.
Des weiteren sind Mischungen in den genannten Mengenbereichen auch mit z. B hydrophob modifizierten oder funktionalisierten Polymeren oder Oligomeren, Kautschuken, wie Polyacrylaten oder Polydienen, z. B. Styrol-Butadien-Blockcopolymeren oder biologisch abbaubaren aliphatischen oder aliphatisch/aromatischen Copolyestem möglich.
Als Verträglichkeitsvermittler eignen sich z.B. Maleinsäureanhydrid-modifizierte Styrolcopolymere, Epoxidgruppenhaltige Polymere oder Organosilane.
Die Wirksamkeit des Flammschutzsystems kann durch den Zusatz geeigneter Flammschutzsynergisten, wie die thermischen Radikalbildner Dicumylperoxid, Ditert-butylperoxid oder Dicumyl, noch weiter verbessert werden.
Auch können zusätzlich weitere Flammschutzmittel, wie Melamin, Melamincyanu-rate, Metalloxide, Metallhydroxide oder Synergisten wie Sb203 oder Zn-Verbindungen, eingesetzt werden. 8 • · ·· · * « · · ···« · • * · * · · ··· • · · · · · ··· ·· *ι
Wenn auf die vollständige Halogenfreiheit des Polymerisats oder des Polymerschaumstoffes verzichtet werden kann, können halogenreduzierte Schaumstoffe durch die Verwendung der Phosphorverbindungen und den Zusatz geringerer Mengen an halogenhaltigen, insbesondere bromierten Flammschutzmitteln, wie Hexabromcyclododecan (HBCD), bevorzugt in Mengen im Bereich von 0,05 bis 1, insbesondere 0,1 bis 0,5 Gew.-%, hergestellt werden.
Ein weiterer Aspekt der Erfindung betrifft die Herstellung derartiger Polymerisate. Erfindungsgemäß können die eingangs erwähnten flammgeschützten, expandierbaren Polymerisate durch Beimischung der obenstehenden Phosphorverbindungen sowie Schwefel und/oder zumindest einer schwefelhaltigen Verbindung bzw. Schwefelverbindung in an sich bekannter Weise hergestellt werden.
Eine vorteilhafte Verfahrensführung sieht dabei vor, dass eine oder mehrere Phosphorverbindungen, die Schwefelverbindung(en) und ein Treibmittel mit einer Styrolpolymerschmelze mit Hilfe eines dynamischen bzw. statischen Mischers gemischt und anschließend granuliert werden.
Alternativ kann vorgesehen werden, dass eine oder mehrere Phosphorverbindungen, sowie die Schwefelverbindung(en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem Polystyrolpolymerisat zugemischt und aufgeschmolzen werden und die Schmelze anschließend mit Treibmittel versetzt und granuliert wird.
Alternativ kann weiters vorgesehen werden, dass eine oder mehrere Phosphorverbindungen und die Schwefelverbindung(en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem EPS oder zugemischt werden und die Mischung anschließend aufgeschmolzen und granuliert wird.
Alternativ kann weiters vorgesehen werden, dass die Granulatherstellung durch Suspensions-Polymerisation von Styrol in wässriger Suspension in Gegenwart einer oder mehrerer Phosphorverbindungen, der Schwefelverbindung(en) und eines Treibmittels erfolgt.
Ein weiteres erfindungsgemäßes Verfahren zur Herstellung der erfindungsgemäßen flammgeschützten expandierbaren Styrolpolymerisate (EPS) umfasst die Schritte: - Gemeinsames Dosieren in einen Extruder von PS- oder EPS-Granulat mit einem Molekulargewicht von Mw > 120 000 g/mol, bevorzugt von 150 000 bis 250 000 g/mol, besonders bevorzugt von 180 000 bis 220 000 g/mol, sowie von einer oder mehrerer Phosphorverbindungen, der Schwefelverbindung(en) und gegebenenfalls von einem oder mehreren weiteren Additiven, - Gemeinsames Aufschmelzen aller Komponenten im Extruder 9 • ·· ·· ·· » ·· « • ·· · · ··«· · · β· • · ··· · ·«·· · • · · t · ν · * # • · ·· · · ·«· Μ * · - Optionale Zudosierung zumindest eines Treibmittels
- Mischung aller Komponenten bei einer Temperatur > 120°C
Granulierung mittels druckbeaufschlagter Unterwassergranulierung, bei z.B. 1-20 bar, zu einer Granulatgröße < 5 mm, bevorzugt 0,2 bis 2,5 mm, bei einer Wassertemperatur von 30 bis 100°C, insbesondere 50 bis 80°C, - gegebenenfalls oberflächliche Beschichtung mit Coatingmitteln, z.B. Silikate, Metallsalze von Fettsäuren, Fettsäureester, Fettsäureamide.
Die erfindungsgemäßen halogenfrei flammgeschützten, expandierbaren Styrolpolymere (EPS) und Styrolpolymerextrusionschaumstoffe (XPS) können durch Einmischen eines Treibmittels, einer oder mehrerer Phosphorverbindungen sowie von elementarem Schwefel und/oder einer schwefelhaltigen Verbindung bzw. Schwefelverbindung in die Polymerschmelze und anschließende Extrusion zu Schaumstoffplatten, Schaumstoffsträngen, oder expandierbaren Granulaten hergestellt werden.
Bevorzugt weist das expandierbare Styrolpolymer ein Molekulargewicht > 120.000, besonders bevorzugt im Bereich von 180.000 bis 220.000 g/mol auf. Aufgrund des Molekulargewichtsabbau durch Scherung und/oder Temperatureinwirkung liegt das Molekulargewicht des expandierbaren Polystyrols in der Regel etwa 10.000 g/mol unter dem Molekulargewicht des eingesetzten Polystyrols.
Der Styrolpolymerschmelze können auch Polymerrezyklate der genannten thermoplastischen Polymeren, insbesondere Styrolpolymere und expandierbare Styrolpolymere (EPS) in Mengen zugemischt werden, die deren Eigenschaften nicht wesentlich verschlechtern, in der Regel in Mengen von maximal 50 Gew.-%, insbesondere in Mengen von 1 bis 20 Gew.-%.
Die treibmittelhaltige Styrolpolymerschmelze enthält in der Regel eine oder mehrere Treibmittel in homogener Verteilung in einem Anteil von insgesamt 2 bis 10 Gew.-% bevorzugt 3 bis 7 Gew.-%, bezogen auf die treibmittelhaltige Styrolpolymerschmelze. Als Treibmittel eignen sich die üblicherweise in EPS eingesetzten physikalischen Treibmittel, wie aliphatische Kohlenwasserstoffe mit 2 bis 7 Kohlenstoffatomen, Alkohole, Ketone, Ether oder halogenierte Kohlenwasserstoffe. Bevorzugt wird iso-Butan, n-Butan, iso-Pentan, n-Pentan eingesetzt. Für XPS werden bevorzugt C02 oder Mischungen mit Alkoholen oder Ketonen eingesetzt. 10
• 9 • 9 9*9 9 9«·« 9 9 9 9 # 9 9 9 99 99 99« 9* 9«
Die zugesetzte Treibmittelmenge wird so gewählt, dass die expandierbaren Styrolpolymere (EPS) ein Expansionsvermögen von 7 bis 200 g/l, bevorzugt 10 bis 50 g/l aufweisen.
Die erfindungsgemäßen expandierbaren Styrolpolymergranulate (EPS) weisen in der Regel eine Schüttdichte von höchstens 700 g/l bevorzugt im Bereich von 590 bis 660 g/l auf.
Des weiteren können der Styrolpolymerschmelze Additive, Keimbildner, Füllstoffe, Weichmacher, lösliche und unlösliche anorganische und/oder organische Farbstoffe und Pigmente, z.B. IR-Absorber, wie Russ, Graphit oder Aluminiumpulver, gemeinsam oder räumlich getrennt, z.B. über Mischer oder Seitenextruder, zugegeben werden. In der Regel werden die Farbstoffe und Pigmente in Mengen im Bereich von 0,01 bis 30, bevorzugt im Bereich von 1 bis 10 Gew.-%, zugesetzt. Zur homogenen und mikrodispersen Verteilung der Pigmente in dem Styrolpolymer kann es insbesondere bei polaren Pigmenten zweckmäßig sein, ein Dispergierhilfsmittel, z.B Organosilane, epoxygruppenhaltige Polymere oder Maleinsäureanhydrid-gepfropfte Styrolpolymere, einzusetzen. Bevorzugte Weichmacher sind Mineralöle, Phthalate, die in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das Styrolpolymerisat, eingesetzt werden können.
Ein weiterer Aspekt der Erfindung betrifft einen Polymerschaumstoff, insbesondere einen Styrolpolymer-Partikelschaumstoff oder einen extrudierten Polystyrol-Hartschaum (XPS), enthaltend als Flammschutzmittel zumindest eine der eingangs beschriebenen Phosphorverbindungen, sowie elementaren Schwefel und/oder zumindest eine schwefelhaltige Verbindung bzw. Schwefelverbindung.
Ein vorteilhafter Polymerschaumstoff ist erhältlich aus den erfindungsgemäßen flammgeschützten expandierbaren Polymerisaten, insbesondere aus expandierbaren Styrolpolymerisaten (EPS), insbesondere durch Aufschäumen und Vereintem der Polymerisatkügelchen oder durch Extrusion des Granulates.
Die halogenfreien, flammgeschützten Polymerschaumstoffe weisen bevorzugt eine Dichte im Bereich von 8 bis 200 g/l, besonders bevorzugt im Bereich von 10 bis 50 g/l auf und sind bevorzugt zu mehr als 80 %, besonders bevorzugt zu 95 bis 100%, geschlos-senzellig bzw. besitzen eine überwiegend geschlossenzellige Zellstruktur mit mehr als 0,5 Zellen pro mm3.
Erfindungsgemäß wird zumindest eine der Phosphorverbindungen, in Kombination mit Schwefel und/oder einer schwefelhaltigen Verbindung bzw. Schwefelverbindung als 11 * · • ·*· ·*·· · » · · · · · ··· »« · <* * · ·#· ·· · m
Flammschutzmittel bzw. -Synergist in expandierbaren Polymerisaten, insbesondere in expandierbaren Styrolpolymerisaten (EPS) bzw. expandierbaren Styrolpolymer Granulaten (EPS) oder in Polymerschaumstoffen, insbesondere in Styrolpolymer-Partikelschaumstoffen, erhältlich durch Aufschäumen aus expandierbaren Polymerisaten, oder in extrudierten Polystyrol-Hartschäumen (XPS), eingesetzt.
Zur Herstellung von flammgeschütztem extrudierten Polystyrol-Hartschaum (XPS) werden die Phosphorverbindungen, die Schwefelverbindungen und ein Treibmittel mit einer Styrolpolymerschmelze mit Hilfe eines dynamischen bzw. statischen Mischers gemischt und anschließend geschäumt oder die Phosphorverbindungen und die Schwefelverbindungen werden mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem Polystyrolpolymerisat zugemischt und aufgeschmolzen, und die Schmelze anschließend mit Treibmittel versetzt und geschäumt.
Dem Fachmann sind die ersetzbaren Phosphorverbindungen und die Schwefelverbindungen als solche, ebenso wie Verfahren zu ihrer Herstellung aus dem allgemeinen Fachwissen bekannt.
Verfahren zur Herstellung von damit flammgeschützten expandierbaren Polymerisaten, z.B. von EPS, in Form von Granulaten bzw. Perlen sind dem Fachmann ebenfalls an sich bekannt. Die Herstellung der erfindungsgemäßen Polymerisate mit obenstehenden Phosphorverbindungen und Schwefelverbindungen funktioniert im wesentlichen analog. So können beispielsweise die Ausführungsbeispiele der WO 2006/027241 herangezogen werden. Ebensolches gilt auch für die Polymerschaumstoffe bzw. für XPS.
Wie die Zugabe des Schwefels bzw. der Schwefelverbindungen erfolgen kann, ist ebenfalls bekannt. So kann elementarer Schwefel beispielsweise in verkapselter Form bzw. als beschichtete Granulate oder Partikel eingebracht werden.
Die vorliegende Erfindung wird nachstehend nunmehr beispielhaft anhand von fünf konkreten, jedoch nicht einschränkend zu verstehenden, Ausführungsbeispielen 1 bis 5 detailliert beschrieben. Bei den Beispielen 6 bis 10 handelt es sich um Vergleichsbeispiele, um die synergistische Wirkung des Flammschutzmittelsystems zu zeigen:
Die konkreten vorteilhaften Ausführungsbeispiele zeigen die Flammschutzmittelkombinationen aus - Ammoniumpolyphosphat (APP) mit gelben Schwefel (S8), - Ammoniumpolyphosphat (APP) mit Ammoniumthiosulfat (ATS), - Ammoniumpolyphosphat (APP) mit Zinksulfid (ZnS),
Triphenylphosphin mit Cystin und Triphenylphosphin mit Polyphenylensulfid (PPS).
Beispiel 1 (Ausführunqsbeispiel - APP + S):
Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit Mw/Mn =2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 12Gew.-% Ammoniumpolyphosphat (APP) und 2 Gew.-% gelber Schwefel (S8), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwas-sergranulierer zu kompakten EPS-Granulaten granuliert.
Beispiel 2 (Ausführungsbeispiel - APP + ATS):
Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit Mw/Mn =2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 12 Gew.-% Ammoniumpolyphosphat (APP) und 5 Gew.-% Ammoniumthiosul-fat (ATS), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 150°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unter-wassergranulierer zu kompakten EPS-Granulaten granuliert.
Beispiel 3 (Ausführunqsbeispiel - APP + ZnS):
Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit Mw/Mn =2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 12Gew.-% Ammoniumpolyphosphat (APP) und 5 Gew.-% Zinksulfid (ZnS), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwassergranu-lierer zu kompakten EPS-Granulaten granuliert.
Beispiel 4 (Ausführunqsbeispiel - Triphenylphosphin + Cystin):
Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit Mw/Mn =2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 12 Gew,-% Triphenylphosphin und 5 Gew.-% Cystin, bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte 13 gefördert und mit einem druckbeaufschlagten Unterwassergranulierer zu kompakten EPS-Granulaten granuliert.
Beispiel 5 (Ausführunqsbeispiel - Triphenylphosphin + PPS):
Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit Mw/Mn =2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 12 Gew.-% Triphenylphosphin und 5 Gew.-% Polyphenylensulfid (PPS), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwassergranulierer zu kompakten EPS-Granulaten granuliert.
Beispiel 6 (Vergleichsbeispiel zu Beispiel 1 bis 3 - nur APP):
Beispiel 1 wurde wiederholt mit dem Unterschied, dass kein Schwefel bzw. keine Schwefelverbindung zugegeben wurde.
Beispiel 7 (Verqleichsbeispiel zu Beispiel 4 und 5 - nur Triphenylphosphin):
Beispiel 4 wurde wiederholt mit dem Unterschied, dass kein Schwefel bzw. keine Schwefelverbindung zugegeben wurde.
Beispiel 8 (Verqleichsbeispiel zu Beispiel 3 - nurZnS):
Beispiel 3 wurde wiederholt mit dem Unterschied, dass keine Phosphorverbindung zugegeben wurde.
Beispiel 9 (Verqleichsbeispiel zu Beispiel 5 - nur PPS):
Beispiel 5 wurde wiederholt mit dem Unterschied, dass keine Phosphorverbindung zugegeben wurde.
Beispiel 10 (Referenzbeispiel - HBCD):
Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge MW = 200.000 g/mol, Uneinheitlichkeit MW/Mn=2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 2 Gew.-% HBCD (Hexabromcyclododecan), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwassergranulierer zu kompakten EPS-Granulaten granuliert. • « * · 14
Nachfolgende Tabelle 1 stellt die Ergebnisse übersichtlich nebeneinander, wobei das Brandverhalten von definierten Prüfkörpern sowie die Zeit bis zum Kollaps der aufgeschäumten Schaumstoffperlen bzw. die Stabilität überprüft wurde.
Tabelle 1: Prüfung der expandierbaren Polymerisate bzw. der Polymerschaumstoffe
Brandprüfung Stabilität Versuch 1 (nach Beispiel 1) 2 1 Versuch 2 (nach Beispiel 2) 2 1 Versuch 3 (nach Beispiel 3) 3 1 Versuch 4 (nach Beispiel 4) 1 3 Versuch 5 (nach Beispiel 5) 2 2 Versuch 6 (nach Beispiel 6) 5 1 Versuch 7 (nach Beispiel 7) 4 3 Versuch 8 (nach Beispiel 8) 5 1 Versuch 9 (nach Beispiel 9) 4 1 Referenzversuch (nach Beispiel 10) 1 1
Die Ergebnisse der Versuche in den beiden rechten Spalten wurden durch Prüfungen mit Produkten der zuvor beschriebenen Beispiele 1 bis 10 gewonnen.
Dabei stellen die Beispiele 6 bis 9 die Bezugspunkte für die Beispiele 1 bis 5 dar. Als Referenz für den Stand der Technik gilt Beispiel 10.
Auf diesem Referenzversuch 10 nehmen alle Bewertungen der Prüfungen Bezug, indem die Resultate mit Zahlenwerten von 1 bis 5 bezeichnet sind, wobei kleine Zahlen, insbesondere 1, dabei tendenziell vorteilhafter, größere Zahlen, insbesondere 5, nachteiliger sind. im Detail:
Brandprüfung (Spalte 2 in Tabelle 1):
Die aus den Beispielen erhaltenen EPS-Granulate wurden mit gesättigtem Wasserdampf zu Schaumstoffperlen mit einer Rohdichte von 15 bis 25 kg/m3 vorgeschäumt, für 24 Stunden zwischengelagert und in einem Formteilautomaten zu Schaumstoffplatten geformt.
Aus den Schaumstoffplatten wurden Prüfkörper mit 2 cm Dicke geschnitten, die nach 72 Stunden Konditionierung bei 70°C in einem Brandtest nach DIN 4102-2 (B2 -Kleinbrennertest) unterzogen wurden. • « 15 : :: ;: ......... . :· · ··: : ··:: : *..**..* ·· ··· *· *·
Die mit Zahlen zwischen 1 und 5 bewerteten Ergebnisse wurden relativ zu mit He-xabromcyclododecan (HBCD) flammgeschützen EPS (Beispiel 8) bewertet. Dabei bedeuten in Spalte „Brandprüfung“ Werte von 1, dass sich die Testsubstanz hinsichtlich ihres Brandverhaltens gleich gut wir HBCD-geschütztes EPS verhält. Werte von 5 bedeuten, dass das Brandverhalten sehr schlecht ist und dem von nicht flammgeschützten EPS entspricht.
Stabilität (Spalte 3 in Tabelle 1) der Schaumstrukturen:
Die aus den Beispielen erhaltenen EPS-Granulate wurden gesättigtem Wasserdampf ausgesetzt und die Zeit bestimmt, bis ein Kollabieren der Perlen eintrat. Diese Zeit wurde in der Zusammenfassung der Ergebnisse relativ zu EPS Partikel ohne Flammschutzmittel bewertet. Durch die weichmachende Wirkung der Flammschutzmittel auf Phosphorbasis zeigten die EPS Partikel unterschiedliche Stabilität beim Vorschäumen.
Dabei bedeuten in Spalte 3 Werte von 1, dass die Perlen normale Stabilität aufweisen. Werte von 5 bedeuten, dass die Perlen unmittelbar kollabieren ohne dass eine Schaumstruktur entsteht, die für die Formteilherstellung geeignet wäre.
Wie sich aus den Ergebnissen deutlich erkennen lässt, weisen die Werkstoffe der Beispiele 1 bis 5 überraschend deutlich verbesserte Ergebnisse bei der Brandprüfung im Vergleich zu den Werkstoffen der Beispiele 6 bis 9 auf, die - vor allem auch in dieser Höhe - nicht zu erwarten waren.
Weder durch die Zugabe von Phosphorverbindungen allein (Beispiele 6 und 7) noch durch die Zugabe von Schwefelverbindungen allein (Beispiele 8 und 9) konnten vergleichbare Ergebnisse erzielt werden.
Das Brandschutzverhalten hat sich durch die gleichzeitige Zugabe der Phosphorverbindungen und der Schwefelverbindungen synergistisch gesteigert.
Die erfindungsgemäßen bzw. auf diese Weise geschützten Polymerisate und Schaumstoffe sind somit hinsichtlich ihres Brandverhaltens wesentlich vorteilhafter als nur mit Phosphorverbindungen oder Schwefelverbindungen allein geschützte Polymerisate.
Ebenfalls überraschend wurde die Stabilität nur unwesentlich beeinflusst bzw. sogar gesteigert.

Claims (16)

  1. • * · · 16 Patentansprüche: 1. Halogenfrei flammgeschützte, zumindest ein Treibmittel enthaltende, expandierbare Polymerisate, in denen als Flammschutzmittelsystem eine Kombination aus zumindest einer Phosphorverbindung als Flammschutzmittel und zumindest einer Schwefelverbindung als zusätzliches Flammschutzmittel bzw. -Synergist enthalten ist, dadurch gekennzeichnet, dass a) die Phosphorverbindung - elementarer Phosphor, insbesondere roter Phosphor, - zumindest eine anorganische Phosphorverbindung oder Hydrolysate oder Salze davon und/oder - zumindest eine organische Phosphorverbindung der folgenden allgemeinen Formel (I) oder (II) oder Hydrolysate oder Salze davon, ist R, R | R2-P=0 RrP * I R, R (l) .(II) worin die Reste Ri, R2 und R3 jeweils unabhängig voneinander organische oder anorganische Reste bedeuten, und dass b) die Schwefelverbindung - elementarer Schwefel und/oder - zumindest eine anorganische oder organische Schwefelverbindung bzw. schwefelhaltige Verbindung ist.
  2. 2. Expandierbare Polymerisate nach Anspruch 1, dadurch gekennzeichnet, dass die Phosphorverbindung(en) in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind.
  3. 3. Expandierbare Polymerisate nach der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schwefelverbindung(en) in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind. 17
  4. 4. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass gelber Cyclooctaschwefel (S8) in einer Menge von 0,1 bis 10 Gew.-%, insbesondere in einer Menge von etwa 0,5 bis 5 Gew.-%, vorzugsweise etwa 2 Gew.-%, bezogen auf das Gesamtgewicht des Polymers enthalten ist.
  5. 5. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schwefelverbindung(en) bei einer Analyse mittels Thermogra-vimetrie unterhalb von 115°C eine Gewichtsabnahme von weniger als 10 Gew.-% aufweisen.
  6. 6. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Phosphorverbindung(en) bei einer Analyse mittels Thermogra-vimetrie unterhalb von 115°C eine Gewichtsabnahme von weniger als 10 Gew.-% aufweisen.
  7. 7. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schwefelverbindung(en) zumindest eine S-S-Bindung aufweist, wobei zumindest eines der Schwefelatome in zweiwertiger Form vorliegt.
  8. 8. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die expandierbaren Polymerisate expandierbare Styrolpolymerisate (EPS) bzw. expandierbare Styrolpolymer Granulate (EPS) sind, welche insbesondere aus Homo- und Copolymeren von Styrol, vorzugsweise glasklares Polystyrol (GPPS), Schlagzähpolystyrol (HIPS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A-IPS), Styrol-alpha-Methylstyrol-copolymere, Acrylnitril-Butadien-Styrolpolymerisate (ABS), Styrol-Acrylnitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Methyacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)-polymerisate oder Mischungen davon oder mit Polyphenylenether (PPE) oder Polyphenylensulfid (PPS) bestehen.
  9. 9. Verfahren zur Herstellung von flammgeschützten, expandierbaren Polymerisaten gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Flammschutzmittel zumindest eine Phosphorverbindung gemäß einem der vorangehenden Ansprüche sowie als zusätzliches Flammschutzmittel bzw. -Synergist zumindest eine Schwefelverbindung gemäß einem der vorangehenden Ansprüche eingesetzt wird.
  10. 10. Verfahren zur Herstellung von flammgeschützten, expandierbaren Styrolpolymerisaten (EPS) nach Anspruch 9, 18 - wobei die Phosphorverbindung(en) und die Schwefelverbindung(en) und ein Treibmittel mit einer Styrolpolymerschmelze mit Hilfe eines dynamischen bzw. statischen Mischers gemischt und anschließend granuliert werden oder - wobei die Phosphorverbindung(en) und die Schwefelverbindung(en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem Polystyrol Polymerisat zugemischt und aufgeschmolzen werden, und die Schmelze anschließend mit Treibmittel versetzt und granuliert wird oder - wobei die Phosphorverbindung(en) und die Schwefelverbindung(en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem EPS oder zugemischt werden, und die Mischung anschließend aufgeschmolzen und granuliert wird oder - wobei die Granulatherstellung durch Suspensions-Polymerisation von Styrol in wässriger Suspension in Gegenwart der Phosphorverbindung(en) und der Schwefelverbindungien) und eines Treibmittels erfolgt.
  11. 11. Verfahren zur Herstellung von flammgeschützten expandierbaren Styrolpolymerisaten (EPS) nach Anspruch 9 oder 10 umfassend die Schritte: - Gemeinsames Dosieren in einen Extruder von PS- oder EPS-Granulat mit einem Molekulargewicht von Mw > 120 000 g/mol, bevorzugt von 150 000 bis 250 000 g/mol, besonders bevorzugt von 180 000 bis 220 000 g/mol, sowie von den Phos-phorverbindung(en) und den Schwefelverbindung(en) und gegebenenfalls von einem oder mehreren weiteren Additiven, insbesondere a) Flammschutzsynergisten, z.B. thermische Radikalbildner, wie Dicumylperoxid, in einer Konzentration von 0,1 bis 20 Gew.-%, b) Infrarottrübungsmittel, z.B. Graphit, Ruß, Aluminium, Titandioxid, in einer Konzentration von 0,1 bis 1 Gew.-%, c) Stabilisatoren, z.B. Nitroxyl-Radikal bildende Substanzen, wie HTEMPO, in einer Konzentration von 0,1 bis 1 Gew.-%, d) weitere halogenierte oder halogenfreie Flammschutzmittel, z.B. HBCD, DOP-O, Magnesiumhydroxid, in einer Konzentration von 0,1 bis 20 Gew.-% und/oder e) Füllstoffe, z.B. Kreide, Talkum, Silikate, in einer Konzentration von 1 bis 20 Gew.-% 19
    - Gemeinsame Aufschmelzung aller Komponenten im Extruder, - Optionale Zudosierung zumindest eines Treibmittels, - Mischung aller Komponenten bei einer Temperatur > 120°C, - Granulierung mittels druckbeaufschlagter Unterwassergranulierung, bei z.B. 1-20 bar, zu einer Granulatgröße < 5 mm, bevorzugt 0,2 bis 2,5 mm, bei einer Wassertemperatur von 30 bis 100°C, insbesondere 50 bis 80°C, gegebenenfalls oberflächliche Beschichtung mit Coatingmitteln, z.B. Silikate, Metallsalze von Fettsäuren, Fettsäureester, Fettsäureamide.
  12. 12. Flammgeschützte, expandierbare Styrolpolymerisate (EPS) erhältlich nach einem Verfahren gemäß einem der Ansprüche 9 bis 11.
  13. 13. Polymerschaumstoff, insbesondere Styrolpolymer-Partikelschaumstoff oder extrudierter Polystyrol-Hartschaum (XPS), enthaltend als Flammschutzmittel zumindest eine Phosphorverbindung gemäß einem der Ansprüche 1 bis 8 sowie als zusätzliches Flammschutzmittel bzw. -Synergist zumindest eine Schwefelverbindung gemäß einem der Ansprüche 1 bis 8.
  14. 14. Polymerschaumstoff nach Anspruch 13 erhältlich aus flammgeschützten expandierbaren Polymerisaten gemäß einem der Ansprüche 1 bis 8, insbesondere aus expandierbaren Styrolpolymerisaten (EPS), insbesondere durch Aufschäumen und Versintern der Polymerisate oder durch Extrusion.
  15. 15. Polymerschaumstoff nach Anspruch 13 oder 14 mit einer Dichte zwischen 7 und 200 g/l und/oder einer überwiegend geschlossenzelligen Zellstruktur mit mehr als 0,5 Zellen pro mm3 bzw. einer Struktur bei der mehr als 80% der Zellen geschlossenzellig sind.
  16. 16. Verwendung von zumindest einer Phosphorverbindung als Flammschutzmittel gemäß einem der Ansprüche 1 bis 8, in Kombination mit zumindest einer Schwefelverbindung als zusätzliches Flammschutzmittel bzw. -Synergist gemäß einem der Ansprüche 1 bis 8, - in expandierbaren Polymerisaten, insbesondere in expandierbaren Styrolpolymerisaten (EPS) bzw. expandierbaren Styrolpolymer Granulaten (EPS) gemäß Anspruch 8, oder - in Polymerschaumstoffen, insbesondere in Styrolpolymer-Partikelschaumstoffen, erhältlich durch Aufschäumen aus expandierbaren Polymerisaten, oder in extrudierten Polystyrol-Hartschäumen (XPS). Wien, 24. September 2009
AT15052009A 2009-09-24 2009-09-24 Flammgeschützte expandierbare polymerisate AT508303A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
AT15052009A AT508303A1 (de) 2009-09-24 2009-09-24 Flammgeschützte expandierbare polymerisate
PL10771308T PL2480598T3 (pl) 2009-09-24 2010-09-22 Ognioodporne spienialne produkty polimeryzacji styrenu
CN201080042632.4A CN102656218B (zh) 2009-09-24 2010-09-22 阻燃可膨胀聚合物
PCT/AT2010/000346 WO2011035357A1 (de) 2009-09-24 2010-09-22 Flammgeschützte expandierbare polymerisate
JP2012530050A JP2013506009A (ja) 2009-09-24 2010-09-22 防炎性の発泡性重合体
EP10771308.3A EP2480598B1 (de) 2009-09-24 2010-09-22 Flammgeschützte expandierbare styrol-polymerisate
RU2012116340/05A RU2581865C2 (ru) 2009-09-24 2010-09-22 Огнестойкие расширяющиеся полимеризаты
DE202010017373U DE202010017373U1 (de) 2009-09-24 2010-09-22 Flammgeschützte expandierbare Polymerisate
DK10771308.3T DK2480598T3 (en) 2009-09-24 2010-09-22 Flame retardant expandable styrene polymers
KR1020127010472A KR101786505B1 (ko) 2009-09-24 2010-09-22 방염성의 발포성 중합체
ES10771308.3T ES2523351T3 (es) 2009-09-24 2010-09-22 Polímeros de estireno expandibles
SI201030807T SI2480598T1 (sl) 2009-09-24 2010-09-22 Plamtenje zavirajoči ekspandibilni stirenski polimeri
US13/497,521 US20120264837A1 (en) 2009-09-24 2010-09-22 Flameproof expandable polymerizates
DE202010017374U DE202010017374U1 (de) 2009-09-24 2010-09-22 Flammgeschützte expandierbare Polymerisate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT15052009A AT508303A1 (de) 2009-09-24 2009-09-24 Flammgeschützte expandierbare polymerisate

Publications (1)

Publication Number Publication Date
AT508303A1 true AT508303A1 (de) 2010-12-15

Family

ID=43302199

Family Applications (1)

Application Number Title Priority Date Filing Date
AT15052009A AT508303A1 (de) 2009-09-24 2009-09-24 Flammgeschützte expandierbare polymerisate

Country Status (1)

Country Link
AT (1) AT508303A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089667A1 (de) * 2010-12-27 2012-07-05 Basf Se Flammschutzsystem
AT511086A4 (de) * 2011-04-18 2012-09-15 Krems Chemie Chemical Services Ag Melaminthiosulfat

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089667A1 (de) * 2010-12-27 2012-07-05 Basf Se Flammschutzsystem
CN103415557A (zh) * 2010-12-27 2013-11-27 巴斯夫欧洲公司 阻燃体系
KR20140019317A (ko) * 2010-12-27 2014-02-14 바스프 에스이 난연제 시스템
CN103415557B (zh) * 2010-12-27 2015-11-25 巴斯夫欧洲公司 阻燃体系
KR101951964B1 (ko) * 2010-12-27 2019-02-25 바스프 에스이 난연제 시스템
AT511086A4 (de) * 2011-04-18 2012-09-15 Krems Chemie Chemical Services Ag Melaminthiosulfat
AT511086B1 (de) * 2011-04-18 2012-09-15 Krems Chemie Chemical Services Ag Melaminthiosulfat

Similar Documents

Publication Publication Date Title
EP2480598B1 (de) Flammgeschützte expandierbare styrol-polymerisate
AT511395B1 (de) Flammgeschützte expandierbare polymerisate
EP2449018B1 (de) Flammgeschützte expandierbare polymerisate
EP1819758B1 (de) Halogenfrei flammgeschützte, expandierbare styrolpolymerisate
EP2478044B1 (de) Halogenfreie, flammgeschützte polymerschaumstoffe, enthaltend mindestens eine oligophosphorverbindung
EP1694754A1 (de) Partikelschaumstoffformteile aus expandierbaren, füllstoff enthaltenden polymergranulaten
EP2513209A1 (de) Flammgeschützte polymerschaumstoffe
EP2609144A1 (de) Flammgeschützte, wärmedämmende polymerisate und verfahren zu deren herstellung
EP2658905B1 (de) Flammschutzsystem
DE102004044380A1 (de) Halogenfreie, flammgeschützte Polymerschaumstoffe
AT511090B1 (de) Flammgeschützte expandierbare polymerisate
AT508304A1 (de) Flammgeschützte expandierbare polymerisate
EP4077481B1 (de) Flammgeschützte copolymere und formmassen
EP2531552A2 (de) Halogenfreie, phosphorhaltige flammgeschützte polymerschaumstoffe
AT508303A1 (de) Flammgeschützte expandierbare polymerisate
AT511509A1 (de) Expandierbare polymerisate aus celluloseacetatbutyrat und styrolpolymerisat
AT508507B1 (de) Flammgeschützte expandierbare polymerisate
WO2011095552A1 (de) Flammschutzmittel
EP4263753B1 (de) Brandhindernde copolymere und formmassen
AT509959B1 (de) Flammgeschützte expandierbare polymerisate

Legal Events

Date Code Title Description
REJ Rejection

Effective date: 20160515