AT413009B - Brennstoffzellenstapel aus mittel- oder hochtemperaturbrennstoffzellen - Google Patents
Brennstoffzellenstapel aus mittel- oder hochtemperaturbrennstoffzellen Download PDFInfo
- Publication number
- AT413009B AT413009B AT0026804A AT2682004A AT413009B AT 413009 B AT413009 B AT 413009B AT 0026804 A AT0026804 A AT 0026804A AT 2682004 A AT2682004 A AT 2682004A AT 413009 B AT413009 B AT 413009B
- Authority
- AT
- Austria
- Prior art keywords
- fuel cell
- cell stack
- clamping
- elements
- fuel cells
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims description 68
- 210000004027 cell Anatomy 0.000 claims description 65
- 238000009413 insulation Methods 0.000 claims description 19
- 239000007789 gas Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 4
- 210000003850 cellular structure Anatomy 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910010293 ceramic material Inorganic materials 0.000 claims description 2
- 229910021485 fumed silica Inorganic materials 0.000 claims description 2
- 229910000838 Al alloy Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 239000003562 lightweight material Substances 0.000 claims 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009422 external insulation Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
- H01M8/248—Means for compression of the fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
<Desc/Clms Page number 1>
Die Erfindung betrifft einen Brennstoffzellenstapel aus Mittel- oder Hochtemperaturbrennstoffzellen, welche zur Kompensation des inneren Betriebsdruckes und/oder zur Abdichtung der einzelnen Brennstoffzellen gegeneinander verspannte, auf die beiden Endbereiche des Brennstoffzellenstapels wirkende Spannelemente aufweisen.
Bei Brennstoffzellen müssen zur Kompensation des inneren Betriebsdrucks und/oder und zur Abdichtung einzelner Zellen und/oder zur Gewährleistung guter elektrischer Kontakte der Zwischenplatten/Bipolarplatten mit den Elektroden Kräfte auf den Zellstapel ausgeübt werden.
Diese Kräfte werden in bekannten Brennstoffzellenanordnungen über das BrennstoffzellenGehäuse oder über gesonderte Spannvorrichtungen aufgebracht.
Die Festigkeitswerte von Spannvorrichtungen sind allerdings bei Temperaturen über 300 C wesentlich geringer, sodass relativ hohe Massen zur Aufbringung der mechanischen Kräfte notwendig sind. Bei Temperaturen über 600 C, die bei Festoxid-Brennstoffzellen (SOFC) oder Schmelzkarbonat-Brennstoffzellen (MCFC) vorliegen, sind zudem spezielle metallische Werkstoffe einzusetzen, die teuer sind.
Die thermischen Ausdehnung der Brennstoffzelle beim Hochfahren muss im Spannmechanismus berücksichtigt werden, wobei an der Brennstoffzelle anliegende Ausgleichselemente verwendet werden. Im Betrieb ergibt sich dabei eine inhomogene Temperaturverteilung, weil die Spannvorrichtung und allfällige Ausgleichselemente wie ein Kühlblech wirken.
Bei herkömmlichen Brennstoffzellenanordnungen verzögert die Spannvorrichtung mit ihrer Wärmekapazität den Start und sorgt für eine inhomogene Temperaturverteilung während des Starts. Bei häufigen Kaltstarts geht die Aufheizung solcher Zusatzmassen signifikant in den Kraftstoffverbrauch ein.
Aus der WO 03/028141 A2 ist beispielsweise eine Festoxid-Brennstoffzelle bekannt, welche aus einem Stapel von Einzelzellen besteht, die mit Hilfe einer Spannvorrichtung aus einer Grundplatte und einer Spannplatte gegeneinander verspannt sind. Zwischen der Spannplatte und dem Brennstoffzellenstapel ist ein Faltenbalg aus mehreren Balgelementen angeordnet, welcher die thermische Ausdehnung der Brennstoffzellen beim Hochfahren kompensiert. Der Faltenbalg besteht aus einer hitzebeständigen Metalllegierung und ist mit einem Gas, beispielsweise Luft unter Atmosphärendruck oder einem Inertgas mit höherem Druck, gefüllt.
Nachteiligerweise ergibt sich beim Betrieb des Brennstoffzellenstapels eine inhomogene Temperaturverteilung, da die Grundplatte der Spannvorrichtung und der metallische Faltenbalg die Wärme aus den angrenzenden Brennstoffzellen ableiten und eine unterschiedliche Wärmeleitfähigkeit aufweisen. Ein weiterer Nachteil besteht darin, dass der Start der Brennstoffzelle bzw. das Erreichen der optimalen Betriebsparameter aufgrund der Wärmekapazität der Spannvorrichtung verzögert wird.
Aufgabe der Erfindung ist es, ausgehend von einem Brennstoffzellenstapel mit einer Spannvorrichtung der eingangs beschriebenen Art, Verbesserungen vorzuschlagen, die für eine homogenere Temperaturverteilung während der Startphase sorgen und die Verwendung leichter, billiger Materialien für die Spannvorrichtung zulassen.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass zwischen den Endbereichen des Brennstoffzellenstapels und dem jeweils zugeordneten Spannelement ein die Spannkraft übertragendes, thermisches Isolierelement angeordnet ist. Insbesondere weisen auch die Seitenbereiche des Brennstoffzellenstapels eine von den Spannelementen freigestellte Aussenisolierung auf.
Die eingangs erwähnten Probleme werden somit durch eine Verlagerung der Spannvorrichtung ausserhalb einer thermischen Isolation gelöst, d. h. das Spannen erfolgt im kalten Bereich. Dadurch können leichte und billige Werkstoffe verwendet werden, welche zum Hochfahren der
<Desc/Clms Page number 2>
Brennstoffzellen nicht mit aufgeheizt werden müssen.
Erfindungsgemäss werden die beiden endseitigen Isolierelemente von der Aussenisolierung des Stapels seitlich umfasst, sodass ein im Wesentlichen geschlossener, thermisch isolierter Raum gebildet wird, in welchem ausser den Brennstoffzellen weitere Brennstoffzellenkomponenten, wie zum Beispiel Hochtemperaturwärmetauscher, Reformer und/oder Brenner, angeordnet sein können. Damit wird - wie bei der Brennstoffzelle selbst - die Masse der heissen Bauteile reduziert, die mechanische Festigkeit für Dichtkräfte oder Betriebsdruckkompensation aufbringen müssen. Dichtkräfte können zum Beispiel an den Schnittstellen der einzelnen Komponenten zur Überführung der Prozessgase notwendig sein.
Heisse Gase führende Rohre haben keinen mechanischen Kontakt zum Spannmechanismus, da zumindest eines der endseitigen, thermischen Isolierelemente Öffnungen für den Durchtritt von Zu- und Ableitungen für die Prozessgase zum Betrieb der Brennstoffzellen aufweist.
Gemäss einer vorteilhaften Weiterbildung der Erfindung sind die Spannelemente mit Hilfe von Spannschrauben gegeneinander verspannt, wobei zumindest ein Spannelement durch Federelemente vorgespannt ist, die ausserhalb der Isolierung für den Brennstoffzellenstapel angeordnet sind. Die thermische Ausdehnung des Stapels kann im Kalten weniger aufwendig und teuer (z. B. durch einfache Spiralfedern) kompensiert werden.
Ein zusätzlicher Vorteil besteht darin, dass die Spannvorrichtung den gesamten Aufbau umfasst und ein mechanisches Gerüst bildet, das ein Gehäuse ersetzt und multifunktional z. B. auch als Befestigungsplattform für elektrische Schnittstellen und Sensorik - Schnittstellen dienen kann.
Erfindungsgemäss können die thermischen Isolierelemente und ggf. die Aussenisolierung aus einem porösen keramischen Material, beispielsweise aus gebundener pyrogener Kieselsäure (im Wesentlichen Si02, Ti02 und AI203), oder aus einer im Wesentlichen druckfesten, metallischen Gitter- oder Gerüststruktur mit schlechter Wärmeleitung (ggf. in Kombination mit Vakuumisolation) bestehen.
Die Erfindung wird im Folgenden anhand von schematischen Zeichnungen näher erläutert.
Es zeigen : 1 einen erfindungsgemässen Brennstoffzellenstapel in einem Längsschnitt sowie Fig. 2 eine Ausführungsvariante des Brennstoffzellenstapels in einer Schnittdarstellung gemäss Fig.
Claims (10)
1.
Der in Fig. 1 dargestellte Brennstoffzellenstapel 1 besteht aus Mittel- oder Hochtemperaturbrennstoffzellen 2 beispielsweise Festoxid-Brennstoffzellen (SOFC) oder SchmelzkarbonatBrennstoffzellen (MCFC), welche zur Kompensation des inneren Betriebesdruckes, zur Abdichtung der einzelnen Brennstoffzellen 2 und zur Herstellung guter elektrischer Kontakte der Zwischenplatten bzw. Bipolarplatten mit den Elektroden, mit Hilfe einer Spannvorrichtung 3 gegeneinander verspannt sind, so dass auf den Brennstoffzellenstapel 1 eine durch die Pfeile 4 angedeutete Spannkraft ausgeübt wird. Die Spannvorrichtung 3 weist zwei Spannelemente 5 auf, welche mit Hilfe von Spannschrauben 6 gegeneinander verspannt sind.
Die gesamte Spannvorrichtung 3 befindet sich ausserhalb der thermischen Isolation des Brennstoffzellenstapels 1, wobei zwischen den Endbereichen 7 des Stapels 1 und den jeweils zugeordneten Spannelementen 5 ein im Wesentlichen druckfestes, thermisches Isolierelement 8 angeordnet ist, welches bei den auftretenden Druck- und Temperaturwerten plastische und elastische Verformungen im Bereich von 5 bis 10% aufweist. Die von der Spannvorrichtung 3 aufgebrachte Spannkraft (Pfeile 4 senkrecht zur Brennstoffzellen-Zellebene) wird somit von den Isolierelementen 8 auf den Brennstoffzellenstapel 1 übertragen, so dass für die im kalten Bereich liegende Spannvorrichtung billige, leichte Materialien wie beispielsweise Aluminium oder Aluminiumlegierungen verwendet werden können.
Die Seitenbereiche 9 des Brennstoffzellen-
<Desc/Clms Page number 3>
stapels 1 weisen eine Aussenisolierung 10 auf, welche keine Druckkräfte der Spannvorrichtung 3 aufnimmt (siehe Spalt zwischen den Spannelementen 5 und der Aussenisolierung 10) und zusammen mit den endseitigen Isolierelementen 8 einen im Wesentlichen geschlossenen Raum bildet. Für die Aussenisolierung 10 benötigt man daher ein hochtemperaturfestes, jedoch nicht unbedingt druckfestes Material. Die Aussenisolierung 10 ist mehrteilig ausgeführt (z. B. zwei Halbschalen bei einem zylindrischen Brennstoffzellenstapel) und kann ohne Entfernung der Spannvorrichtung 3 demontiert werden.
Wie in Fig. 1 schematisch dargestellt, weist zumindest eines der endseitigen thermischen Isolierelemente 8 Öffnungen 11 für den Durchtritt von Zu- und Ableitungen 12,13 für die Zufuhr bzw. Abfuhr der für den Betrieb der Brennstoffzellen 2 benötigten Prozessgase auf.
Die thermische Ausdehnung der Brennstoffzellen 2 sowie ggf. die Deformation der Isolierelemente 8 beim Hochfahren wird dadurch kompensiert, dass zumindest ein Spannelement 5 durch Federelemente, beispielsweise Spiralfedern 14 vorgespannt ist, die ausserhalb der Isolierung 8,10 für den Brennstoffzellenstapel 1 angeordnet sind.
Die Spannvorrichtung 3 umfasst den gesamten Aufbau und bildet ein mechanisches Gerüst, das die Funktion eines Gehäuses übernimmt und als Befestigungsplattform für elektrische Anschlüsse 15 bzw. als Sensorschnittstelle dienen kann.
Fig.
2 zeigt eine Ausführungsvariante, bei welcher innerhalb der Spannvorrichtung 3 in einem Raumes, der durch die endseitigen Isolierelemente 8 und die Aussenisolierung 10 gebildet ist, neben den Brennstoffzellen 2 weitere Brennstoffzellenkomponenten, beispielsweise ein Hochtemperaturwärmetauscher 16 und ein Reformer und/oder Brenner 17, angeordnet sind, deren Schnittstellen 18 zur Weiterleitung der Prozessgase von der Spannvorrichtung 3 zusammengepresst werden.
Patentansprüche : 1. Brennstoffzellenstapel (1) aus Mittel- oder Hochtemperaturbrennstoffzellen, welche zur
Kompensation des inneren Betriebsdruckes und/oder zur Abdichtung der einzelnen Brenn- stoffzellen (2) gegeneinander verspannte, auf die beiden Endbereiche (7) des Brennstoff- zellenstapels (1) wirkende Spannelemente (5) aufweisen, dadurch gekennzeichnet, dass zwischen den Endbereichen (7) des Brennstoffzellenstapels (1) und dem jeweils zugeord- neten Spannelement (5) ein die Spannkraft übertragendes, thermisches Isolierelement (8) angeordnet ist.
2. Brennstoffzellenstapel (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Seitenbe- reiche (9) des Brennstoffzellenstapels (1) eine von den Spannelementen (5) freigestellte
Aussenisolierung (10) aufweisen.
3. Brennstoffzellenstapel (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Ausseniso- lierung (10) des Stapels (1) die beiden endseitigen Isolierelemente (8) seitlich umfasst.
4. Brennstoffzellenstapel (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zumindest eines der endseitigen thermischen Isolierelemente (8) Öffnungen (11) für den Durchtritt von Zu- und Ableitungen (12,13) für die Prozessgase zum Betrieb der
Brennstoffzellen (2) aufweist.
5. Brennstoffzellenstapel (1) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass innerhalb eines durch die endseitigen Isolierelemente (8) und der Aussenisolierung (10) gebildeten Raumes weitere Brennstoffzellenkomponenten, wie zum Beispiel Hoch- temperaturwärmetauscher (16), Reformer (17) und/oder Brenner, angeordnet sind.
<Desc/Clms Page number 4>
6. Brennstoffzellenstapel (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Spannelemente (5) mit Hilfe von Spannschrauben (6) gegeneinander verspannt sind, wobei zumindest ein Spannelement (5) durch Federelemente (14), vorzugsweise Spi- ralfedern, vorgespannt ist, die ausserhalb der Isolierung (8,10) für den Brennstoffzellensta- pel (1) angeordnet sind.
7. Brennstoffzellenstapel (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die thermischen Isolierelemente (8) und ggf. die Aussenisolierung (10) aus einem po- rösen keramischen Material, beispielsweise aus gebundener pyrogener Kieselsäure, be- stehen.
8. Brennstoffzellenstapel (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die im Wesentlichen druckfesten, thermischen Isolierelemente (8) aus einer metalli- schen Gitter- oder Stützstruktur bestehen.
9. Brennstoffzellenstapel (1) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Spannelemente (5) und die Spannschrauben (6) ein mechanisches Gerüst bilden, welches die Funktion eines Gehäuses übernimmt und als Schnittstelle (15) für elektrische
Anschlüsse dient.
10. Brennstoffzellenstapel (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Brennstoffzellenstapel (1) Festoxid-Brennstoffzellen (SOFC) oder Schmelzkarbo- nat-Brennstoffzellen (MCFC) aufweist.
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT0026804A AT413009B (de) | 2004-02-19 | 2004-02-19 | Brennstoffzellenstapel aus mittel- oder hochtemperaturbrennstoffzellen |
| PCT/AT2005/000041 WO2005078841A2 (de) | 2004-02-12 | 2005-02-10 | Vorrichtung und verfahren zur bestimmung von betriebsparametern von einzelzellen oder kurzstacks von brennstoffzellen |
| GB0616078A GB2424991B (en) | 2004-02-12 | 2005-02-10 | Device & Method For Determining The Operating Parameters Of Individual Cells Or Short Stacks Of Fuel Cells |
| DE112005000291.8T DE112005000291B4 (de) | 2004-02-12 | 2005-02-10 | Brennstoffzellenstapel aus Mittel- oder Hochtemperaturbrennstoffzellen |
| US10/588,790 US7897290B2 (en) | 2004-02-12 | 2005-02-10 | Device and method for determining the operating parameters of indiviudal cells or short stacks of fuel cells |
| US12/926,522 US20110070512A1 (en) | 2004-02-12 | 2010-11-23 | Device and method for determining the operating parameters of individual fuel cells or short stacks of fuel cells |
| US12/926,521 US20110070514A1 (en) | 2004-02-12 | 2010-11-23 | Device and method for determining the operating parameters of individual fuel cells or short stacks of fuel cells |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT0026804A AT413009B (de) | 2004-02-19 | 2004-02-19 | Brennstoffzellenstapel aus mittel- oder hochtemperaturbrennstoffzellen |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| ATA2682004A ATA2682004A (de) | 2005-02-15 |
| AT413009B true AT413009B (de) | 2005-09-26 |
Family
ID=34140198
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AT0026804A AT413009B (de) | 2004-02-12 | 2004-02-19 | Brennstoffzellenstapel aus mittel- oder hochtemperaturbrennstoffzellen |
Country Status (1)
| Country | Link |
|---|---|
| AT (1) | AT413009B (de) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1870951A1 (de) * | 2006-06-21 | 2007-12-26 | ElringKlinger AG | Brennstoffzellenstapel |
| EP1870953A1 (de) * | 2006-06-21 | 2007-12-26 | ElringKlinger AG | Brennstoffzellenstapel |
| DE102007011793A1 (de) * | 2007-03-12 | 2008-09-18 | Mtu Cfc Solutions Gmbh | Dichtungsvorrichtung für eine Brennstoffzellenanordnung |
| WO2008086781A3 (de) * | 2007-01-16 | 2009-02-26 | Enerday Gmbh | Medienversorgungsplatte für einen brennstoffzellenstapel |
| DE102013013723A1 (de) * | 2013-08-20 | 2015-02-26 | Stephan Köhne | Vorrichtung zur Verspannung eines Brennstoffzellen-Stapels zur Strom- und/oder Wärmeerzeugung mit integrierter Temperaturregulierung des Brennstoffzellen-Stapels |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000035038A1 (en) * | 1998-12-11 | 2000-06-15 | International Fuel Cells, Llc | Proton exchange membrane fuel cell external manifold seal |
| GB2368968A (en) * | 2000-11-06 | 2002-05-15 | Ballard Power Systems | Electrochemical cell stack and method of manufacturing electrochemical cell assembly |
| WO2003028141A2 (en) * | 2001-09-26 | 2003-04-03 | Global Thermoelectric Inc. | Solid oxide fuel cell compression bellows |
-
2004
- 2004-02-19 AT AT0026804A patent/AT413009B/de not_active IP Right Cessation
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000035038A1 (en) * | 1998-12-11 | 2000-06-15 | International Fuel Cells, Llc | Proton exchange membrane fuel cell external manifold seal |
| GB2368968A (en) * | 2000-11-06 | 2002-05-15 | Ballard Power Systems | Electrochemical cell stack and method of manufacturing electrochemical cell assembly |
| WO2003028141A2 (en) * | 2001-09-26 | 2003-04-03 | Global Thermoelectric Inc. | Solid oxide fuel cell compression bellows |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1870951A1 (de) * | 2006-06-21 | 2007-12-26 | ElringKlinger AG | Brennstoffzellenstapel |
| EP1870953A1 (de) * | 2006-06-21 | 2007-12-26 | ElringKlinger AG | Brennstoffzellenstapel |
| WO2008086781A3 (de) * | 2007-01-16 | 2009-02-26 | Enerday Gmbh | Medienversorgungsplatte für einen brennstoffzellenstapel |
| US9508997B2 (en) | 2007-01-16 | 2016-11-29 | Sunfire Gmbh | Media supply plate for a fuel cell stack |
| DE102007011793A1 (de) * | 2007-03-12 | 2008-09-18 | Mtu Cfc Solutions Gmbh | Dichtungsvorrichtung für eine Brennstoffzellenanordnung |
| US8460837B2 (en) | 2007-03-12 | 2013-06-11 | Uwe Burmeister | Sealing device for a fuel cell arrangement |
| DE102013013723A1 (de) * | 2013-08-20 | 2015-02-26 | Stephan Köhne | Vorrichtung zur Verspannung eines Brennstoffzellen-Stapels zur Strom- und/oder Wärmeerzeugung mit integrierter Temperaturregulierung des Brennstoffzellen-Stapels |
| DE102013013723B4 (de) * | 2013-08-20 | 2015-04-23 | Stephan Köhne | Vorrichtung zur Verspannung eines Brennstoffzellen-Stapels zur Strom- und/oder Wärmeerzeugung mit integrierter Temperaturregulierung des Brennstoffzellen-Stapels |
Also Published As
| Publication number | Publication date |
|---|---|
| ATA2682004A (de) | 2005-02-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE112005000291B4 (de) | Brennstoffzellenstapel aus Mittel- oder Hochtemperaturbrennstoffzellen | |
| DE69837848T2 (de) | Eine brennstofzellenanordnung | |
| EP0513021B1 (de) | Festelektrolyt-brennstoffzelle und verfahren zu ihrer herstellung | |
| EP2435775B1 (de) | Schichtwärmeübertrager für hohe temperaturen | |
| EP2115804A1 (de) | Brennstoffzellenstapel und dichtung für einen brennstoffzellenstapel sowie deren herstellungsverfahren | |
| DE9013735U1 (de) | Hochdruckentladungslampe | |
| EP1597786B1 (de) | Herstellung eines hochtemperatur-brennstoffzellenstapels | |
| AT413009B (de) | Brennstoffzellenstapel aus mittel- oder hochtemperaturbrennstoffzellen | |
| DE19517042C1 (de) | Brennstoffzellenanordnung | |
| DE102008051181A1 (de) | Brennstoffzellensystem | |
| EP1246283B1 (de) | Elektrisch isolierende Abstandshalter/Dichtungsanordnung | |
| DE102007053879A1 (de) | Hochtemperatur-Brennstoffzellenstapel sowie dessen Herstellung | |
| WO2009018792A1 (de) | Verspannung eines hochtemperaturbrennstoffzellenstacks | |
| DE2848185C2 (de) | Verfahren zum Verbinden eines vielschichtigen, verschleißbaren Keramik-Metall-Teiles | |
| DE69825704T2 (de) | Hochdruckentladungslampe und Herstellungsverfahren derselben | |
| EP1864347B1 (de) | Anlage mit hochtemperatur-brennstoffzellen und einer multikomponenten-hülle zu einem zellenstappel | |
| DE19650903C2 (de) | Brennstoffzellenmodul mit einer Gasversorgungseinrichtung | |
| DE19506690A1 (de) | Anordnung zur Gaszufuhr für Hochtemperatur-Bauelemente | |
| WO1997033329A1 (de) | Elektrisch isolierende schicht zum verbinden von elektrisch leitenden bauelementen einer hochtemperatur-brennstoffzelle | |
| DE4322431A1 (de) | Kühlstruktur und Verfahren zu ihrer Herstellung | |
| DE102012006864A1 (de) | Hochtemperaturdichtung umfassend Glaslot sowie Verfahren zur Herstellung derselben | |
| EP1261051A2 (de) | Dichtung | |
| DE112020002597T5 (de) | Verfahren zur Herstellung von Hohlglas, und Hohlglas | |
| DE3908206A1 (de) | Isolierung fuer eine hochtemperatur-heizeinrichtung und verwendung derselben | |
| EP1596454A2 (de) | Kontaktelement für einen Brennstoffzellenstapel |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM01 | Lapse because of not paying annual fees |
Effective date: 20170215 |