AT208761B - Zementmischung zum Abdichten des Ringraumes zwischen Bohrlochwand und Futterrohr oder Förderrohr einer Ölsonde - Google Patents

Zementmischung zum Abdichten des Ringraumes zwischen Bohrlochwand und Futterrohr oder Förderrohr einer Ölsonde

Info

Publication number
AT208761B
AT208761B AT709455A AT709455A AT208761B AT 208761 B AT208761 B AT 208761B AT 709455 A AT709455 A AT 709455A AT 709455 A AT709455 A AT 709455A AT 208761 B AT208761 B AT 208761B
Authority
AT
Austria
Prior art keywords
magnesia
cement
casing
borehole wall
cement mixture
Prior art date
Application number
AT709455A
Other languages
English (en)
Inventor
Monson Fraser Goudge
Original Assignee
Monson Fraser Goudge
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monson Fraser Goudge filed Critical Monson Fraser Goudge
Priority to AT709455A priority Critical patent/AT208761B/de
Application granted granted Critical
Publication of AT208761B publication Critical patent/AT208761B/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/30Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing magnesium cements or similar cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description


   <Desc/Clms Page number 1> 
 
 EMI1.1 
 
 EMI1.2 
 weder vor noch während der Säurebehandlung rissig werden und von der verwendeten
Säure höchstens nur langsam angegriffen werden. Es   soll   vor dem Abbinden leicht an jenen Ort in der Bohrung gepumpt werden können, wo es die einer Säurebehandlung od. dgl. zu unterwerfende Zone abdichten soll. Es soll sich beim Festwerden ausdehnen. Bisher wurde noch kein Material gefunden, das allen diesen Anforderungen gerecht wird. 



   Das bisher für diese Zwecke verwendete Zementmaterial ist insofern nicht einwandfrei, als es in Tiefbohrlöchern zu rasch abbindet und die Abbindezeit in der Bohrung nur schwer kontrolliert werden kann. Es schrumpft etwas beim Abbinden und neigt unter den in Tiefbohrlöchern herrschenden Bedingungen zur Rissbildung, so dass es säuredurchlässig wird. Darüber hinaus verbraucht es wegen seiner Löslichkeit Säure. In der Praxis wurde zumeist Portlandzement ver- wendet. 



   Je tiefer das Bohrloch ist, umso höher ist die Temperatur ; die für das Abbinden des Dichtungsmaterials erforderliche Zeit hängt von der Temperatur ab. Es ist klar, dass das Dichtungsmaterial erst fest werden darf, wenn es vollständig bis zum gewünschten Niveau in den Ringraum eingepumpt worden ist. Wenn das Bohrloch auf diese Weise abgedichtet ist und eine   Säurebehandlung     od.   dgl. durchge-   führt   werden soll, so wird in das Förderrohr oder in das Futterrohr ein Schussgerät eingeführt, mit welchem in der gewünschten Höhe Löcher in die Verrohrung und in die Dichtung geschossen werden. Durch diese Löcher kann die Säure od. dgl. in die Bohrlochwand eindringen. 



   Wie bereits erwähnt wurde, hat die Ringfüllung die Aufgabe, sich sowohl mit der Bohrlochwand als auch mit dem Förderrohr oder dem Futterrohr so zu verbinden, dass eine gute Dichtung erzielt wird. Eine solche Verbindung ist mangelhaft oder neigt dazu, schlecht zu werden, wenn durch das Förderrohr oder das Futterrohr und durch die Ringfüllung Durchtrittsöffnungen durch Ein- 

 <Desc/Clms Page number 2> 

 schiessen von Projektilen mit Hilfe eines   Schussgerätes   oder durch einen Perforator her- gestellt werden, also durch übliche Methoden zur Erzeugung solcher Öffnungen.

   Es wurde gefunden, dass eine solche Bindung ganz oder teilweise schon durch eine Beanspruchung ge- löst wird, wie sie durch die Verwendung eines Schrappers od. dgl. verursacht wird.
Um da'her eine dauerhafte Dichtung herzu- stellen, muss ein Zement verwendet werden, der beim Abbinden etwas expandiert, für den also nicht nur die Adhäsion und das Bin- dungsvermögen allein massgebend sind. Fehlt eine gute Bindung, besonders zwischen Bohr- lochwand und Förderrohr, so wandert Säure od. dgl. auf-oder abwärts, entlang des üb- lichen Dichtungsmaterials von einer Schicht zur andern. Wenn die Ringfüllung säurelös- lich ist, so werden nicht ausgefüllte Zwi- schenräume vergrössert und die Säurewan- derung wird verstärkt. 



   Es wurde nun gefunden, dass Magnesium-   oxychlorid- und Magnesiumoxysu1fatzement    als Dichtungsmittel für die in Rede stehen- den Zwecke gut geeignet sind, wenn die verwendete Magnesia (MgO) das richtige Reaktionsvermögen hat, um bei den am Boden des Bohrloches herrschenden Temperaturen verhältnismässig langsam abzubinden. Der Masse muss ein feinverteiltes, Kalzium enthaltendes Material, wie Kalziumkarbonat oder Dolomit, beigemischt sein, so dass sie beim Abbinden an Ort und Stelle bis zu einem geeigneten Grad expandiert und damit die Bohrung abdichtet. Die Säurelöslichkeit dieses Zementes ist geringer als die des Portlandzementes ; sie kann durch Zusetzen eines feinverteilten Füllmateriales, wie Kieselsäure, Kalk, Schiefer, Baryt u. dgl. noch weiter herabgesetzt werden. 



   Für verschiedene andere Zwecke, wie beispielsweise für die Herstellung von Kunstmagnesit, Steinholz, Sorelzement u. dgl. ist die Verwendung von Zementmischungen aus Magnesia, einer wässerigen Lösung von Magnesiumchlorid oder-sulfat zusammen mit einem kalkhaltigen Material bekannt geworden. Hiefür wurde je nach Verwendungszweck verschieden vorbehandelte, beispielsweise bei verschiedenen Temperaturen kalzinierte. Magnesia angewandt. Keine dieser Mischungen entspricht aber. den oben angegebenen Anforderungen, welche an ein Dichtungsmaterial gestellt werden, welches zum Abdichten des Ringraumes zwischen Bohrlochwand und Futterrohr oder Förderrohr einer Ölsonde verwendet werden soll. 



   Es wurde nun gefunden, dass die   für. einen   derartigen Zweck zu verwendende Magnesia innerhalb eines bestimmten Temperaturbereiches kalziniert werden muss und es ist die für den obigen Zweck geeignete Zement- mischung aus Magnesia, einer   wässerigen.   



    Lösung   von Magnesiumchlorid oder-sulfat und einem kalkhaltigen Material erfindunggemäss im wesentlichen dadurch gekennzeichnet, dass sie bei   1093-1316"C   kalzinierte Magnesia und als feinverteiltes, kalkhaltiges Material Kalziumkarbonat oder Dolomit enthält. Eine derartige Zementmischung entspricht allen bei dem bestimmten Verwendungszweck auftretenden Anforderungen. 



   Zweckmässig setzt man dieser Zementmischung noch feinverteiltes Füllmaterial u. zw. insbesondere fein verteilten Quarzsand 
 EMI2.1 
 



   In den folgenden Beispielen werden erfindungsgemässe Zementmischungen beschrieben. 



  Beispiel 1 :
45 kg feinverteile Magnesia, die bei etwa   1093-1316    C kalziniert wurde und vorzugsweise eine zu 85   "o   unter 19
Maschen/cm liegende Korntfeinheit be- sitzt,
45 kg Dolomit- oder Kalzitpulver mit der oben angegebenen Kornfeinheit,
31, 82 Liter wässerige Magnesiumchlorid-   lösung, Dichte im wesentlichen 220 Bé.   
Diese Mischung erhärtet bei einer Bohrlochtemperatur von 490 C in etwa 4 Stunden   l ?   Minuten und bei einer Bohrlochtemperatur von 660 C beginnt die Abbindung in etwa 3 Stunden. Wichtig ist dabei, dass die verwendete Magnesia bei 1093-13160 C kalziniert wurde. Darauf wird später noch näher eingegangen. 



  Beispiel 2 :
45 kg Magnesia, wie oben,
26, 37 Liter   Magnesiumchloridlösung,   Dichte 
 EMI2.2 
 



   Dieser Zement beginnt bei 490 C in etwa 4 Stunden 20 Minuten hart zu werden. Mit weniger Magnesiumchloridlösung erfolgt das Abbinden schneller, aber immer noch genügend langsam, um den Zement in Bohr-   löchern   verwenden zu   können.   



  Beispiel 3 :
45 kg Magnesia, wie oben,
20, 46 Liter Magnesiumchloridlösung, Dichte
220 Bé. 



   Dieser Zement beginnt bei 490 C in etwa 2 Stunden 25 Minuten hart zu werden. 



  Beispiel 4 :
40 g Magnesia, wie oben,   20 gfeinverteilter Kalzit,   
100 g feinverteilte Kieselsäure unter
40 Maschenlcm,   40 cm3 Magnesiumchloridlösung, Dichte- 22  Be.   

 <Desc/Clms Page number 3> 

 



   Abbindezeit bei   49    C etwa 5 Stunden, bei 540 C etwa 3 Stunden. 



   Das Magnesiumchlorid reagiert nicht mit der Kieselsäure ; diese dient nur als Füllmaterial, sie ist billiger als Magnesia. 



  Beispiel 5 :
45 kg Brucitmagnesia, wie oben,
19, 55 Liter Magnesiumchloridlösung, Dichte
220 Bé. 



   Beginn der Erhärtung bei 490 C nach etwa 2 Stunden 5 Minuten. 



  Beispiel 6 :
45 kg Brucitmagnesia, wie oben,
20, 46 Liter Magnesiumchloridlösung, Dichte
190 Bé. 



   Beginn der Erhärtung bei   49    C in etwa 2 Stunden 5 Minuten. 



  Beispiel 7 :
Ein sehr fester Zement kann durch Zusatz von Füllmaterial erzeugt werden. Er erhärtet bei 490 C in etwa 2 Stunden 40 Minuten. 



  Er kann wie folgt zusammengesetzt sein. 



   100 g Brucitmagnesia, wie oben,
200 g   Kieselsäuremehl,  
500 g feiner Kieselsäuresand,   130 cm3 Magnesiumchloridlösung, Dichte 220 Bé.    



  Beispiel 8 :
100 g Magnesia, wie oben,
100 g feinverteilter Dolomit,
88   cm3   wässerige Magnesiumsulfatlösung,
Dichte 280 Bé. 



   Abbindezeit bei 490 C etwa 4 Stunden. 



   Dieser Magnesiumoxysulfatzement ist nur etwas weniger fest als die erwähnten Ma-   gnesiumoxychloridzemente.   



   Diese beiden Zementtypen können in einer Mischung kombiniert werden, indem ein Teil Magnesiumchlorid durch Magnesiumsulfat oder umgekehrt ersetzt wird. In allen Fällen wurden gute Ergebnisse erhalten. Das Wachsen der Masse beim Abbinden ist dabei hinreichend. 



   Hervorzuheben ist, dass die Konzentration der Bindemittellösung wichtig ist. Wenn die Lösung zu verdünnt ist, so ist der Zement zu wenig fest und schwindet beim Erhärten. Die Dichte der Magnesiumchloridlösung für Bohrlochzemente soll nicht unter 190 Be liegen. Die Magnesiumsulfatlösung soll eine Dichte über 220 Be besitzen, z. B. kann eine Lösung von 300 Bé verwendet werden. 



   Diese Zemente sind so fest, dass sie ohne Schaden zum grösseren Teil aus Füllmaterial bestehen können. Zemente, die nur 20 oxo Magnesia, Rest Füllmittel enthielten, zeigten zufriedenstellende Ergebnisse. 



   Wie bereits erwähnt wurde, muss die verwendete Magnesia ein solches Reaktionsver- mögen besitzen, dass die erforderliche Abbindezeit erzielt werden kann. Dieses Reaktionsvermögen ist von der Kalzinierungstemperatur abhängig. Totgebrannte Magnesia (Periklas) hat eine über 16490 C liegende Kalzinierungstemperatur und ist zumeist völlig inaktiv. Hingegen wird die sehr reaktions-   fähige   kaustische Magnesia durch Kalzinieren bei   399 - 10380   C, üblicherweise bei 538   -10380 C hergestellt. Unter"Kalzinieren"    wird dabei verstanden, dass die Magnesia allmählich auf die gewünschte Temperatur gebracht und auf dieser etwa eine halbe Stunde gehalten wird. Die Kalzinierungstemperatur für die zur Herstellung der Zemente gemäss der Erfindung verwendete Magnesia liegt zwischen 1093 und 13160 C.

   Die genaue Kalzinierungstemperatur für die Erzielung des erforderlichen Reaktionsvermögens hängt davon ab, wieviel Kieselsäure, Eisenoxyd und Aluminiumoxyd das als Rohmaterial für die Gewinnung der Magnesia verwendete Karbonat oder Hydroxyd enthält. Wenn der Gehall an diesen Verbindungen, insbesondere an Eisenoxyd, etwa über   2, 5 o/o liegt,   so müssen niedrigere   Kalzicierungstemperaturen   verwendet werden. Liegt hingegen der Gesamtgehalt dieser Verbindungen zwischen etwa 0, 5 und   1,5 solo,   so sind für die Gewinnung von Ma- gnesia mit dem gewünschten Reaktionsvermögen höhere Temperaturen erforderlich. Die exakte Kalzinierungstemperatur für ein bestimmtes Material, das einen Zement ergeben soll, welcher bei gegebener Temperatur innerhalb einer bestimmten Zeit, z.

   B. nach   21/, Stunden,   fest werden soll, kann nur durch Versuche genau bestimmt werden. Es ist jedoch leicht, das Reaktionsvermögen eines innerhalb des speziellen Temperaturbereiches kalzinierten Materials gegenüber einer Chlorid'-oder Sulfatlösung bei einer bestimmten Temperatur genau festzustellen. 



   Für die Herstellung eines Zementes gemäss der Erfindung ist die von Wakefield, Canada, erzeugte Magnesia besonders geeignet. Die dabei eingehaltenen Herstellungsmethoden sind in den kanadischen Patentschriften Nr. 



    388. 635, 455. 537   und 491. 242 beschrieben. 



  Wenn im Bereich von 1149 bis 12040 C kalzinierte Magnesia verwendet wird, so ergibt sich ein Zement der bei 490 C in   etwa 141/2   Stunden oder bei 660 C in etwa 3 Stunden hart wird, sobald er zu einer flüssigen Mischung angerührt wurde, die in das Bohrloch gepumpt werden kann. 



   Die hier beschriebenen Magnesiumoxychlorid- und Magnesiumoxysulfatzemente unterscheiden sich durchaus von den für Fussböden u. dgl. allgemein verwendeten Magnesiumoxychloridzementen und von den zur Bindung von Holz verwendeten Oxysulfatzementen. Diese bekannten Zemente binden 

 <Desc/Clms Page number 4> 

 bei höheren Temperaturen rasch ab und ihre Expansion ist unbeachtlich. Sie sind daher als Dichtung in Bohrlöchern od. dgl. nicht verwendbar. Ausserdem sind sie so wenig flüssig,   dass   sie nicht an Ort und Stelle gepumpt werden können, ohne vorher schon zu erhärten. 



   PATENTANSPRÜCHE : 
1.   Zementmischung   aus Magnesia, einer wässerigen Lösung aus Magnesiumchlorid oder - sulfat und einem kalkhaltigen Material, wel-   che   in flüssiger Form zum Abdichten des Ringraumes zwischen Bohrlochwand und Futterrohr. oder Förderrohr einer Olsonde dient, dadurch gekennzeichnet, dass sie bei   1093-13160 C   kalzinierte Magnesia und als feinverteiltes kalkhaltiges Material Kalziumkarbonat oder Dolomit enthält.

Claims (1)

  1. 2. Zementmischung nach Anspruch 1, gekennzeichnet durch einen Zusatz an fein verteiltem Füllmaterial.
    3. Zementmischung nach Anspruch 2, dadurch gekennzeichnet, dass das Füllmaterial von feinem Quarzsand gebildet ist.
AT709455A 1955-12-22 1955-12-22 Zementmischung zum Abdichten des Ringraumes zwischen Bohrlochwand und Futterrohr oder Förderrohr einer Ölsonde AT208761B (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT709455A AT208761B (de) 1955-12-22 1955-12-22 Zementmischung zum Abdichten des Ringraumes zwischen Bohrlochwand und Futterrohr oder Förderrohr einer Ölsonde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT709455A AT208761B (de) 1955-12-22 1955-12-22 Zementmischung zum Abdichten des Ringraumes zwischen Bohrlochwand und Futterrohr oder Förderrohr einer Ölsonde

Publications (1)

Publication Number Publication Date
AT208761B true AT208761B (de) 1960-04-25

Family

ID=3592647

Family Applications (1)

Application Number Title Priority Date Filing Date
AT709455A AT208761B (de) 1955-12-22 1955-12-22 Zementmischung zum Abdichten des Ringraumes zwischen Bohrlochwand und Futterrohr oder Förderrohr einer Ölsonde

Country Status (1)

Country Link
AT (1) AT208761B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206159A1 (de) * 2021-12-30 2023-07-05 Halliburton Energy Services, Inc. Hydrophobiermittel für sorelzement in horizontalen bohrlochanwendungen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206159A1 (de) * 2021-12-30 2023-07-05 Halliburton Energy Services, Inc. Hydrophobiermittel für sorelzement in horizontalen bohrlochanwendungen

Similar Documents

Publication Publication Date Title
AT392637B (de) Verfahren zur herstellung eines bindemittels zur verwendung in dick- bzw. rohschlamm, moertel oder beton
DE3225490C2 (de)
DE19603805C2 (de) Hüttensandfreie Dichtwandmassen und Verfahren zu deren Herstellung
DE1646878A1 (de) Hochtemperaturzement-Zusammensetzungen
DE2619790A1 (de) Verfahren zur herstellung von ausbreitungsfaehigen zementkonglomeraten von hohem widerstand
EP0239740A2 (de) Dichtwandmasse, Trockenmischung und Verfahren zu ihrer Herstellung
DE202012011152U1 (de) Katalysatorzusammensetzung zur Verwendung bei Puzzolanzusammensetzungen
AT208761B (de) Zementmischung zum Abdichten des Ringraumes zwischen Bohrlochwand und Futterrohr oder Förderrohr einer Ölsonde
DE19737583C2 (de) Füllstoff zum Auffüllen von Hohlräumen im Salinar und Verfahren zu seiner Herstellung
DE3049003A1 (de) Hydraulische anorganische masse
EP0755992B1 (de) Injektionsmittel sowie unter Verwendung des Injektionsmittels hergestellte Injektionssuspensionen
DE2622086A1 (de) Verfahren zur stabilisierung von organische verbindungen enthaltendem boden
DE10132818B4 (de) Verwendungen von Holzfasern in einem Baustoffgemenge
DE2953652C1 (de) Hydraulische anorganische Masse
DE2203446A1 (de) Zementzusammensetzungen und -Verfahren zum Zementieren von Bohrloechern
DE1539749B1 (de) Verfahren zum Einspritzen von fluessigen oder schlammigen radioaktiven Abfallstoffen in den Erdboden
DE19758682C2 (de) Füllstoff zum Auffüllen von Hohlräumen im Salinar
AT136398B (de) Verfahren zur Verbesserung von Zement, Zementmörtel und Beton unter Zusatz von Protein.
DE4130658A1 (de) Querschnittsabdichtungen im salz
DE626828C (de) Verfahren zum Loeschen von Kalk, Dolomit oder sonstigen kalkreichen Stoffen
DE2625067C3 (de) Verfullmasse auf Zementbasis mit hohen Wasser-Bindemittelwerten
CH94177A (de) Verfahren, um Mörtel-, Zement- und Betonmassen vollkommene Wasserundurchlässigkeit, ein beträchtlich gesteigertes Haftvermögen und die Eigenschaft ausserordentlich raschen Abbindens zu erteilen.
DE1539749C (de) Verfahren zum Einspritzen von flussigen oder schlammigen radioaktiven Abfall stoffen in den Erdboden
DE2517675C3 (de) Gemisch zum Zementieren von Tiefbohrlöchern
AT223106B (de) Verfahren zur Herstellung steinartig erhärtender Massen