TW200843144A - Transparent light emitting diodes - Google Patents

Transparent light emitting diodes Download PDF

Info

Publication number
TW200843144A
TW200843144A TW096147272A TW96147272A TW200843144A TW 200843144 A TW200843144 A TW 200843144A TW 096147272 A TW096147272 A TW 096147272A TW 96147272 A TW96147272 A TW 96147272A TW 200843144 A TW200843144 A TW 200843144A
Authority
TW
Taiwan
Prior art keywords
layer
light
layers
led
transparent
Prior art date
Application number
TW096147272A
Other languages
Chinese (zh)
Other versions
TWI460881B (en
Inventor
Shuji Nakamura
Steven P Denbaars
Hirokuni Asamizu
Original Assignee
Univ California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39512046&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW200843144(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Univ California filed Critical Univ California
Publication of TW200843144A publication Critical patent/TW200843144A/en
Application granted granted Critical
Publication of TWI460881B publication Critical patent/TWI460881B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.

Description

200843144 九、發明說明·· 【發明所屬之技術領域】 本發明係關於從發光二極體(led)擷取光。 【先前技術】 (注意··本申請案參考在本說明書全文中所指示的若干 不同公告案。此外,可在下文在標題為"參考文獻"的章節 中找到若干不同公告案的一列表。該些公告案之各公告案 係以引用形式併入本文。) 為了增加來自一發光二極體(LED)之前側之光輸出功 率,所發射光係由一放置於基板之後側上的鏡面來反射或 在接合材料在發射波長上係透明之情況下,即便在基板之 後側上不存在任何鏡面,仍由一塗布在引線框架上的鏡面 來加以反射。然而,因為光子能量與發光物種(例如一 AlInGaN多重量子井(MQW))之帶隙能量幾乎相同,故此反 射光係由發射層(主動層)重新吸收。由於由發射層對光之 此重新吸收,故該等LED之效率或輸出功率會減小。例 如,參見圖1、2及3,下面將更詳細地說明該等圖。還參 見 Jpn_ J· Appl· Phys.,34,L797-99 (1995)與 Jpn· J· Appl. Phys·,43,L180-82 (2004)。 在此項技術中所需的係更有效擷取光之LED結構。本發 明滿足該需求。 【發明内容】 本發明說明一種透明發光二極體。一般而言,本發明說 明一種發光二極體,其包含複數個第m族氮化物層,包括 127501.doc 200843144 一發射光的主動區域,其中除該主動區域外的所有層對於 該光的一發射波長係透明,使得透過所有層並在透過該等 層的多個方向上有效地擷取光。而且,該等第m族氮化物 層之一或多個之表面可粗糙化、紋理化、圖案化或成形以 增強光擷取。 在一具體實施例中,該等第III族氮化物層駐留於一透明 基板或子基板上,其中該等第III族氮化物層係使用一透明 膠水、一透明環氧樹脂或其他透明材料而晶圓接合該透明 基板或子基板’並透過該透明基板或子基板來擷取光。該 透明基板或子基板係導電的,該透明膠水、透明環氧樹脂 或其他透明材料亦係如此。 一引線框架支撐該等第III族氮化物層(以及該透明基板 或子基板)’該等第III族氮化物層係駐留於在該引線框架 内的一透明板上。因而,從該等第ΠΙ族氮化物層所發射之 光透過在該引線框架内的該透明板。 而且,該裝置可包括一或多個透明傳導層,其係定位以 電性連接該等第III族氮化物層以及沈積在該等第m族氮化 物層上的一或多個電流散佈層,其中該等透明傳導層係沈 積在该専電流散佈層上。鏡面或鏡面表面係從該裝置消除 以最小化内反射,以便最小化由該主動區域重新吸收光。 在另一具體實施例中,該等第m族氮化物層係嵌入於一 成形光學元件内或與其組合,且光係在進入該成形光學元 件並隨後掏取之前從該等第ΙΠ族氮化物層之一個以上表面 來擷取。明確而言,進入該成形光學元件之至少一部分光 127501.doc 200843144 位於一臨界角内並被擷取。而且,可粗糖化、紋理化、圖 案化或成形該成形光學元件之一或多個表面以增強光擷 取。此外,該成形光學元件可包括一磷光體層,可將其粗 糙化、紋理化、圖案化或成形以增強光擷取。該成形光學 元件可能係一倒轉圓錐體形狀,其中該等第III族氮化物層 係定位於該倒轉圓錐體形狀内,使得光係由該倒轉圓錐體 形狀之側壁反射。 在另一具體實施例中,部分移除一覆蓋該等第I]tI族氮化 物層之絕緣層,並將一傳導層沈積在該絕緣層之表面内的 一孔或凹陷内以電性接觸該等第ΠΙ族氮化物層。 【實施方式】 在較佳具體實施例之以下說明中,參考形成本發明之一 部分的附圖,並在附圖中藉由例示方式顯示其中可實施本 發明的一特定具體實施例。應明白,可利用其他具體實施 例並可進行結構變化而不脫離本發明之範轉。 概述 在該等圖之下列說明中,未顯示該等LED結構之細節。 僅顯不發射層(通常係A1InGaN MQW)、p型GaN層、η型200843144 IX. OBJECT DESCRIPTION OF THE INVENTION · Technical Field of the Invention The present invention relates to extracting light from a light-emitting diode (LED). [Prior Art] (Note) This application refers to several different announcements as indicated throughout the specification. In addition, a list of several different announcements can be found below in the section titled "References" The bulletins of these announcements are incorporated herein by reference.) In order to increase the light output power from the front side of a light-emitting diode (LED), the emitted light is from a mirror placed on the back side of the substrate. In the case of reflection or in the case where the bonding material is transparent at the emission wavelength, even if there is no mirror on the rear side of the substrate, it is reflected by a mirror coated on the lead frame. However, since the photon energy is almost the same as the band gap energy of the luminescent species (e.g., an AlInGaN multiple quantum well (MQW)), the reflected light is reabsorbed by the emissive layer (active layer). Since the light is reabsorbed by the emissive layer, the efficiency or output power of the LEDs is reduced. For example, referring to Figures 1, 2 and 3, the figures will be explained in more detail below. See also Jpn_J. Appl. Phys., 34, L797-99 (1995) and Jpn J. Appl. Phys., 43, L180-82 (2004). What is needed in this technology is more efficient in capturing the LED structure of light. The present invention satisfies this need. SUMMARY OF THE INVENTION The present invention describes a transparent light emitting diode. In general, the present invention describes a light emitting diode comprising a plurality of m-th nitride layers including 127501.doc 200843144 an active region of light emission, wherein all layers except the active region are for one of the light The emission wavelength is transparent such that light is transmitted through all layers and in multiple directions through the layers. Moreover, the surface of one or more of the m-th nitride layers may be roughened, textured, patterned or shaped to enhance light extraction. In a specific embodiment, the Group III nitride layers reside on a transparent substrate or submount, wherein the Group III nitride layers are formed using a transparent glue, a transparent epoxy or other transparent material. The wafer is bonded to the transparent substrate or sub-substrate ' and the light is extracted through the transparent substrate or sub-substrate. The transparent substrate or submount is electrically conductive, as is the transparent glue, transparent epoxy or other transparent material. A lead frame supports the Group III nitride layers (and the transparent substrate or submount). The Group III nitride layers reside on a transparent plate within the leadframe. Thus, light emitted from the samarium nitride layers is transmitted through the transparent plate within the lead frame. Moreover, the apparatus can include one or more transparent conductive layers positioned to electrically connect the Group III nitride layers and one or more current spreading layers deposited on the Group #n nitride layers, Wherein the transparent conductive layers are deposited on the 専 current spreading layer. The mirror or mirror surface is eliminated from the device to minimize internal reflection to minimize re-absorption of light by the active region. In another embodiment, the m-th nitride layers are embedded in or combined with a shaped optical element, and the light system is from the second-order nitride before entering the shaped optical element and subsequently being drawn. One or more layers of the layer are drawn. Specifically, at least a portion of the light entering the shaped optical element 127501.doc 200843144 is located within a critical angle and is drawn. Moreover, one or more surfaces of the shaped optical element can be coarsened, textured, patterned or shaped to enhance light extraction. Additionally, the shaped optical element can include a phosphor layer that can be roughened, textured, patterned, or shaped to enhance light extraction. The shaped optical element may be in the shape of an inverted cone wherein the Group III nitride layers are positioned within the inverted cone shape such that the light system is reflected by the sidewalls of the inverted cone shape. In another embodiment, an insulating layer covering the first It-TI nitride layer is partially removed, and a conductive layer is deposited in a hole or recess in the surface of the insulating layer for electrical contact. The first bismuth nitride layer. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description of the preferred embodiments, reference to the accompanying drawings It is understood that other specific embodiments may be utilized and structural changes may be made without departing from the scope of the invention. SUMMARY In the following description of the figures, the details of the LED structures are not shown. Only the emission layer (usually A1InGaN MQW), p-type GaN layer, n-type

GaN層及藍寶石基板。當然,在該LED結構内可能存在其 他層,例如一 P-A1GaN電子阻障層、InGaN/GaN超晶格及 其他。在本發明中,最重要的態樣係該LED結構之該等表 為係主要由该專蠢晶晶圓之表面層或條件來決定光 擷取放率。因在匕,在該等圖之所有圖中僅顯示該led之一 些態樣(該等表面層)。 127501-doc 200843144 傳統LED結構 圖1、2及3係傳統LED之示意圖。 在傳統LED中,為了增加來自LED之前側之光輸出功 率’發射光係由在藍寶石基板之後側上的鏡面來加以反射 或即便在藍寶石基板之後側上不存在任何鏡面之情況下且 在接合材料在發射波長上係透明之情況下,由塗布在引線 框架上的鏡面來加以反射。因為光子能量與A1InGaN多重 量子井(MQW)之量子井之帶隙能量幾乎相同,故此反射光 係由發射層(主動層)重新吸收。接著,由於由該發射層重 新吸收,故減小該等LED之效率或輸出功率。 在圖1中,一傳統LED包括一藍寶石基板1〇〇、發射層 1〇2(主動層)及半透明或透明電極1〇4(例如IT〇*Zn〇)。該 led係使用一透光環氧樹脂模製物ι〇8而晶粒接合在一引 線框架106上,在藍寶石基板1〇〇之後側上沒有任何鏡面。 在此情況下,在引線框架1〇6上的該塗布材料或引線框架 106之表面變成一鏡面110。若在基板1〇〇之後側上存在一 鏡面110,則該LED晶片係藉由銀膏來加以晶粒接合。主 動層102向基板1〇〇發射光n2並向該等電極1〇4發射光 114。發射光112係由鏡面110向電極1〇4反射,變成反射光 110 ’该反射光係由電極1〇4透射以逃離該led。該LED係 導線接合118至引線框架106。 在圖2中,除了其係一覆晶LED外,該傳統似於圖 1所不者。該LED包括一藍寶石基板2〇〇與發射層2〇2(主動 層)及一咼反射鏡面204。該LED係晶粒接合206至一引線框 127501.doc 200843144 架208上並嵌入於一透光環氧樹脂模製物21〇内。主動層 202向基板200發射光212並向該高反射鏡面204發射光 214。發射光214係由鏡面204向基板200反射,變成反射光 216 ’該反射光係由基板2〇〇透射以逃離該led。 在圖3中,傳統LED包括一傳導性子基板300、高反射率 鏡面302(其中Ag > 94%反射率(R))、一透明IT〇層3〇4、一 P_GaN層306、一發射或主動層308及一 n-GaN層310。顯示 該LED沒有該環氧樹脂模製物,但可使用類似模製物。發 射層308向鏡面302發射LED發射3 12並向n-GaN層3 10發射 LED發射314。發射層308之發射312係由鏡面302反射,其 中該等反射性光發射3 16係由發射層308重新吸收。該LED 之效率由於此重新吸收而減小。該n—GaN層可粗糙化3 17以 增強LED發射3 14之擷取318。 改良式LED結構 本發明說明一透明led。一般而言,本發明說明一種發 光裝置,其包含複數個第III族氮化物層,包括一發射光的 主動區域,其中除該主動區域外的所有層對於該光的一發 射波長係透明,使得透過所有層並在透過該等層的多個方 向上有效地擷取光。可粗糙化、紋理化、圖案化或成形該 4第in族氮化物層之一或多個之表面以增強光擷取。 圖4 A係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式[ED結構包含一發GaN layer and sapphire substrate. Of course, other layers may be present within the LED structure, such as a P-A1 GaN electron barrier layer, an InGaN/GaN superlattice, and others. In the present invention, the most important aspect of the LED structure is that the surface pick-up rate is determined primarily by the surface layer or condition of the wafer. Because of this, only some of the aspects of the LED (the surface layers) are shown in all of the figures. 127501-doc 200843144 Traditional LED Structure Figures 1, 2 and 3 are schematic diagrams of conventional LEDs. In conventional LEDs, in order to increase the light output power from the front side of the LED 'the emitted light is reflected by the mirror on the back side of the sapphire substrate or even if there is no mirror on the back side of the sapphire substrate and in the bonding material In the case where the emission wavelength is transparent, it is reflected by the mirror surface coated on the lead frame. Since the photon energy is almost the same as the band gap energy of the quantum well of the A1InGaN multiple quantum well (MQW), the reflected light is reabsorbed by the emissive layer (active layer). Then, since it is reabsorbed by the emissive layer, the efficiency or output power of the LEDs is reduced. In Fig. 1, a conventional LED includes a sapphire substrate 1 , an emission layer 1 〇 2 (active layer), and a translucent or transparent electrode 1 〇 4 (for example, IT 〇 * Zn 〇 ). The led system is bonded to a lead frame 106 using a light-transmissive epoxy molding ι 8 without any mirror surface on the back side of the sapphire substrate. In this case, the surface of the coating material or lead frame 106 on the lead frame 1〇6 becomes a mirror surface 110. If a mirror 110 is present on the rear side of the substrate 1 , the LED wafer is die bonded by a silver paste. The active layer 102 emits light n2 to the substrate 1 and emits light 114 to the electrodes 1〇4. The emitted light 112 is reflected by the mirror 110 toward the electrode 1〇4 to become reflected light 110' which is transmitted by the electrode 1〇4 to escape the led. The LED is wire bonded 118 to the leadframe 106. In Fig. 2, the tradition is similar to that of Fig. 1 except that it is a flip chip. The LED includes a sapphire substrate 2 〇〇 and an emissive layer 2 〇 2 (active layer) and a 咼 mirror surface 204. The LED is die bonded 206 to a lead frame 127501.doc 200843144 shelf 208 and embedded in a light transmissive epoxy molding 21 〇. The active layer 202 emits light 212 to the substrate 200 and emits light 214 to the highly reflective mirror 204. The emitted light 214 is reflected by the mirror 204 toward the substrate 200 to become reflected light 216' which is transmitted by the substrate 2 to escape the led. In FIG. 3, a conventional LED includes a conductive sub-substrate 300, a high reflectivity mirror 302 (where Ag > 94% reflectance (R)), a transparent IT layer 3〇4, a P_GaN layer 306, an emission or Active layer 308 and an n-GaN layer 310. It is shown that the LED does not have the epoxy molding, but a similar molding can be used. Emissive layer 308 emits LED emission 3 12 to mirror 302 and LED emission 314 to n-GaN layer 3 10 . The emission 312 of the emissive layer 308 is reflected by the mirror 302, wherein the reflective light emission 3 16 is reabsorbed by the emissive layer 308. The efficiency of this LED is reduced by this resorption. The n-GaN layer can be roughened 3 17 to enhance the LED emission 318 of 318. Improved LED Structure The present invention describes a transparent LED. In general, the present invention features a light emitting device comprising a plurality of Group III nitride layers comprising an active region that emits light, wherein all layers except the active region are transparent to an emission wavelength of the light such that Light is efficiently extracted through all layers and in multiple directions through the layers. The surface of one or more of the 4 in-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction. Figure 4A is a schematic illustration of a particular modified LED structure in accordance with a preferred embodiment of the present invention, wherein the modified version includes one

射層 400、一 GaN層 402、一 p型 GaN層 404、一第一 ITO 層406、一第二ιτο層408及一玻璃層41〇。n型GaN層402可 127501.doc -10- 200843144 具有粗糙化、紋理化、圖案化或成形之表面412(例如,一 圓錐狀表面),而玻璃層410可具有一粗糙化、紋理化、圖 案化或成形之表面414(例如,一圓錐狀表面)。該LED係經 由接合墊420、422而導線接合416至一引線框架418。圖4B 顯示引線框架418之一俯視圖。 在圖4A中,該LED結構係生長在一藍寶石基板上,該藍 寶石基板係使用一雷射脫層技術來加以移除。其後,將第 一 ITO層406沈積在p型GaN層404上。接著使用一環氧樹脂 作為一膠水將該LED結構附著至玻璃層41 〇,該玻璃層係 由第二ITO層408塗布。接著將該LED結構導線接合416至 引線框架418。 在圖4A中,在該LED之該等前側或後側處不存在任何有 思鏡面。相反’引線框架418係設計以從該LED之兩側有 效地擷取光424,因為框架41 8不阻擋該等表面412及414, 即該LED之後側426以及該LED之前侧428。圖4B顯示框架 418在玻璃層410之該等邊緣處支撐該LED,使玻璃層410 之發射表面及LED不受阻擋。 可將一歐姆接觸放置於在η-GaN層402上的接合塾420下 面,但出於簡化在圖中未予以顯示。 圖5 A係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式led結構包含一 InGaN多重夏子井(MQW)層作為一發射層500、一 η型GaN 層502、一 p型GaN層504、一 ITO或ZnO層506、一透明絕緣 層508及用於將ITO或ZnO層506接合至一透明傳導基板512 127501.doc -11- 200843144 之透明傳導膠水51〇。透明傳導基板512可具有一粗链化、 、文理化目案化或成形之表面514(例如,一圓錐狀表面), 而n GaN層504可具有一粗糙化、紋理化、圖案化或成形之 表面516(例如,—圓錐狀表面)。較佳的係,該等層別、 02 504及506具有大約5微米的一組合厚度518,而基板 及膠水510具有大約4〇〇微米的一組合厚度52〇。最後, 將歐姆電極/接合墊522、524放置於該LED上。 ,紙ED結構可生長在—藍寶石基板上,㈣寶石基板係 使用一雷射脫層技術來加以移除。將IT〇層5〇6沈積在p型 GaN層504上。在沈積ΙΤ〇層5〇6之前,沈積絕緣層作為 一電流散佈層,該絕緣層可包含Si〇2或SiN。在沒有電流 散佈層508之情況下,該LED之發射強度由於不均勻的電 流而變小。該等透明傳導基板512可能係Zn〇、Ga2〇3或在 所需波長上係透明的另一材料,係使用透明傳導膠水5工〇 而晶圓接合或膠附至ITO層506。接著,在該LED結構之兩 側上形成一 n-GaN歐姆電極/接合墊522及一 1^心歐姆電極/ 接合墊524。最後,例如使用一濕式蝕刻(例如尺〇11或hcl) 將η型GaN層502之氮面(N面)粗糙化、紋理化、圖案化或成 形5 16以增強光擷取,以形成一圓錐狀表面516。 圖5B係圖5A之LED之一平面圖,並顯示該LED放置於一 透明板526上,該透明板駐留於一引線框架528上,二者均 工作以從該LED移除熱。該LED之p側(即,具有基板5 12之 側)係附著至透明板526。在η型GaN層502之接合墊524與引 線框架528之間執行導線接合。 127501.doc -12- 200843144 在該LED之前側530或後側532不存在任何有意的鏡面。 相反,引線框架528係設計以從該LED之兩側(即,該LED 之後側532以及該LED之前側530)有效地擷取光。 最後,可將一歐姆接觸放置於在n-GaN層502之接合墊 524下面。然而,出於簡化在圖中未顯不此歐姆接觸。 圖6係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式LED結構包含一 InGaN MQW主動層 600、一 n-GaN層 602、一 p-GaN層 604、 一環氧樹脂層606(其係大約400微米厚608)、一接合墊 610、一歐姆電極/接合墊612及一 ITO或ZnO層614。n-GaN 層602、主動層600及p-GaN層604之組合厚度616係大約5微 米。 圖7係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式LED結構包含一 InGaN MQW主動層 700、一 n-GaN層 702、一 p-GaN層 704、 一環氧樹脂層706(大約400微米厚708)、一窄帶Au連接 710、一接合墊712、一歐姆電極/接合墊714及一 ITO或ZnO 層716。n-GaN 702、主動層700及p-GaN層704之厚度718係 大約5微米。 在圖6及7二者中,使用一較厚環氧樹脂層606、706,而 不是圖4所示之玻璃層410。為了進行電性接觸,部分移除 該等環氧樹脂絕緣層606、706,並將ITO層614(其係一透 明金屬氧化物或一窄帶Au或其他金屬層710)沈積在該等環 氧樹脂層606、706以及在該等環氧樹脂層606、706之表面 127501.doc •13- 200843144 内的一孔或凹陷618、720内,以電性接觸p-GaN層604、 704 〇 此外,圖6及7二者顯示將粗糙化、紋理化、圖案化或成 形表面620、722形成於η型GaN層602、702之氮面(N面) 上。該些粗糙化、紋理化、圖案化或成形表面620、722增 強光擷取。 ' 應注意,若取代一藍寶石基板使用一 GaN基板,則將不 需要雷射脫層,由此將不需要該等子基板606、706。而 I 且,若將該LED結構產生在一 GaN基板上,則將ITO層614 沈積在p型GaN層606上且該GaN基板之後側(其係一 N面 GaN)可使用一濕式蝕刻(例如KOH及HCL)來加以蝕刻,以 便在η型GaN層602、702上形成粗糙化、紋理化、圖案化 或成形的表面620、722。 還應注意,在ITO層614之表面經粗糙化、紋理化、圖案 化或成形之情況下,透過ITO層614來增加光擷取。即便在 p型GaN層604上沒有ITO層614,粗糙化、紋理化、圖案化 或成形之p型GaN層604之表面仍有效地透過P型GaN604層 增加光擷取。 、 最後,可在表面620粗糙化、紋理化、圖案化或成形之η . 型GaN層602之後使用用於η型GaN層612之一歐姆接觸及 ITO或ZnO層614。ITO或ZnO層614具有一類似於GaN之折 射率,由此最小化在ITO、ZnO及GaN之間介面處的光反 射。 圖8A係依據本發明之較佳具體實施例之一特定改良式 127501.doc -14- 200843144The shot layer 400, a GaN layer 402, a p-type GaN layer 404, a first ITO layer 406, a second layer 408, and a glass layer 41 are formed. The n-type GaN layer 402 may have a roughened, textured, patterned or shaped surface 412 (eg, a conical surface), and the glass layer 410 may have a roughened, textured, patterned pattern. The shaped or formed surface 414 (eg, a conical surface). The LEDs are wire bonded 416 to a leadframe 418 via bond pads 420,422. FIG. 4B shows a top view of one of the lead frames 418. In Figure 4A, the LED structure is grown on a sapphire substrate that is removed using a laser delamination technique. Thereafter, a first ITO layer 406 is deposited on the p-type GaN layer 404. The LED structure is then attached to the glass layer 41 by using an epoxy resin as a glue which is coated by the second ITO layer 408. The LED structure wires are then wire bonded 416 to lead frame 418. In Figure 4A, there are no mirrors at the front or back sides of the LED. In contrast, the lead frame 418 is designed to effectively capture light 424 from both sides of the LED because the frame 41 8 does not block the surfaces 412 and 414, i.e., the LED rear side 426 and the LED front side 428. Figure 4B shows frame 418 supporting the LEDs at the edges of glass layer 410 such that the emitting surface of the glass layer 410 and the LEDs are unobstructed. An ohmic contact can be placed under the bond 420 on the η-GaN layer 402, but is not shown in the figures for simplicity. 5A is a schematic view showing a specific modified LED structure according to a preferred embodiment of the present invention, wherein the improved LED structure comprises an InGaN multiple Xiazi well (MQW) layer as an emissive layer 500, an n-type GaN layer 502, a p-type GaN layer 504, an ITO or ZnO layer 506, a transparent insulating layer 508, and a transparent conductive paste for bonding the ITO or ZnO layer 506 to a transparent conductive substrate 512 127501.doc -11- 200843144 51〇. The transparent conductive substrate 512 can have a thickened, textualized or shaped surface 514 (eg, a conical surface), and the n GaN layer 504 can have a roughened, textured, patterned, or formed surface. Surface 516 (eg, a conical surface). Preferably, the layers, 02 504 and 506 have a combined thickness 518 of about 5 microns, and the substrate and glue 510 have a combined thickness of about 52 microns. Finally, ohmic/bond pads 522, 524 are placed on the LED. The paper ED structure can be grown on a sapphire substrate and the (iv) gem substrate is removed using a laser delamination technique. An IT layer 5 〇 6 is deposited on the p-type GaN layer 504. Prior to deposition of the germanium layer 5,6, an insulating layer is deposited as a current spreading layer, which may comprise Si〇2 or SiN. In the absence of current spreading layer 508, the emission intensity of the LED becomes smaller due to uneven current. The transparent conductive substrate 512 may be Zn, Ga2, or another material that is transparent at the desired wavelength, and is bonded or glued to the ITO layer 506 using a transparent conductive glue. Next, an n-GaN ohmic electrode/bonding pad 522 and a ohmic electrode/bonding pad 524 are formed on both sides of the LED structure. Finally, the nitrogen face (N face) of the n-type GaN layer 502 is roughened, textured, patterned or shaped, for example, using a wet etch (eg, ruler 11 or hcl) to enhance light extraction to form a Conical surface 516. Figure 5B is a plan view of one of the LEDs of Figure 5A and shows the LED placed on a transparent plate 526 that resides on a lead frame 528, both of which operate to remove heat from the LED. The p-side of the LED (i.e., the side having the substrate 5 12) is attached to the transparent plate 526. Wire bonding is performed between the bonding pads 524 of the n-type GaN layer 502 and the lead frame 528. 127501.doc -12- 200843144 There are no intentional mirrors on the front side 530 or the back side 532 of the LED. In contrast, lead frame 528 is designed to effectively capture light from both sides of the LED (ie, the LED back side 532 and the LED front side 530). Finally, an ohmic contact can be placed under bond pads 524 of n-GaN layer 502. However, this ohmic contact is not shown in the figure for simplicity. 6 is a schematic diagram showing a specific modified LED structure according to a preferred embodiment of the present invention, wherein the improved LED structure comprises an InGaN MQW active layer 600, an n-GaN layer 602, and a p-GaN layer. 604, an epoxy layer 606 (which is about 400 microns thick 608), a bond pad 610, an ohmic electrode/bond pad 612, and an ITO or ZnO layer 614. The combined thickness 616 of the n-GaN layer 602, the active layer 600, and the p-GaN layer 604 is about 5 microns. 7 is a schematic diagram showing a specific modified LED structure according to a preferred embodiment of the present invention, wherein the improved LED structure comprises an InGaN MQW active layer 700, an n-GaN layer 702, and a p-GaN layer. 704, an epoxy layer 706 (about 400 microns thick 708), a narrow band Au connection 710, a bond pad 712, an ohmic electrode/bond pad 714, and an ITO or ZnO layer 716. The thickness 718 of the n-GaN 702, active layer 700, and p-GaN layer 704 is about 5 microns. In both Figures 6 and 7, a thicker epoxy layer 606, 706 is used instead of the glass layer 410 shown in Figure 4. For electrical contact, the epoxy insulating layers 606, 706 are partially removed, and an ITO layer 614 (which is a transparent metal oxide or a narrow band Au or other metal layer 710) is deposited on the epoxy Layers 606, 706 and a hole or recess 618, 720 in the surface 127501.doc • 13- 200843144 of the epoxy layers 606, 706 to electrically contact the p-GaN layer 604, 704 〇 Both 6 and 7 show that roughened, textured, patterned or shaped surfaces 620, 722 are formed on the nitrogen side (N side) of the n-type GaN layers 602, 702. The roughened, textured, patterned or shaped surfaces 620, 722 enhance light extraction. It should be noted that if a GaN substrate is used in place of a sapphire substrate, laser delamination will not be required, and thus the sub-substrates 606, 706 will not be required. And I, if the LED structure is formed on a GaN substrate, the ITO layer 614 is deposited on the p-type GaN layer 606 and the back side of the GaN substrate (which is an N-face GaN) can be wet etched ( For example, KOH and HCL) are etched to form roughened, textured, patterned or formed surfaces 620, 722 on the n-type GaN layers 602, 702. It should also be noted that in the case where the surface of the ITO layer 614 is roughened, textured, patterned or formed, the ITO layer 614 is passed through to increase the light extraction. Even if the ITO layer 614 is absent on the p-type GaN layer 604, the surface of the roughened, textured, patterned or formed p-type GaN layer 604 is effectively transmitted through the P-type GaN 604 layer to increase optical pickup. Finally, an ohmic contact for the n-type GaN layer 612 and an ITO or ZnO layer 614 may be used after the surface 620 is roughened, textured, patterned, or shaped. The ITO or ZnO layer 614 has a refractive index similar to that of GaN, thereby minimizing light reflection at the interface between ITO, ZnO, and GaN. Figure 8A is a modified version of a preferred embodiment of the present invention 127501.doc -14- 200843144

LED結構之一示意圖,其中該改良式led結構包含一發射 層 800、一 !!型 〇.層 802、一 p型 GaN層 8〇4、一第一 IT〇層 806、一第二itq層8〇8及一玻璃層810。η型GaN層8 02具有 一粗經化、紋理化、圖案化或成形之表面812(例如,一圓 錐體形狀表面),而玻璃層8 10具有一粗糙化、紋理化、圖 案化或成形之表面814(例如,一圓錐體形狀表面)。該]LED 係使用该等接合墊820、822而導線接合8 16至一引線框架 或子基板8 1 8。 該LED可嵌入有或包含於形成(例如)一透鏡的一模製物 或成形光學元件824内,例如一由環氧樹脂或玻璃製成之 球體。成形光學元件824可能(例如)在成形光學元件824之 一外表面上包含一粗糙化、紋理化、圖案化或成形之磷光 體層826,其可能遠離該LED。在此具體實施例中,發射 層800向該等表面812及814發射光828,其中可擷取光 830 〇 在此具體實施例中,因為成形光學元件824係一球體, 可將该LED結構視為一較小點光源,因為所有發射自該 LED之光之方向係實質上垂直於在空氣與球體824之間的 介面,從而透過在空氣與球體824之間的介面將來自該處 之光有效地擷取至空氣。 此外,若將磷光體層826放置於該成形光學元件之外表 面上或附近,則由於降低由磷光體層826背散射光828降低 重新吸收光828而增加(例如)從藍光至白光之轉換效率。而 且,若粗糙化、紋理化、圖案化或成形磷光體層826之表 127501.doc -15- 200843144 面834,則再次增加光擷取。 表後,圖8B係圖8A中梦番. U Λ T表置之一俯視圖,其說明引線框 架 818。 圖9係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式led結構包含一 InGaN MQW發射層900、一 n型GaN層9〇2、一卩型以㈣ 904、一 ITO層906,其具有一粗糙化、紋理化、圖案化或 成形之表面908、一接合墊91〇、一歐姆接觸/接合墊912、 η型GaN層902之一粗糙化、紋理化、圖案化或成形之表面 914、及一環氧樹脂層916,其係沈積在908上。該LED可 嵌入有或包含於形成(例如)一透鏡的一模製物或成形光學 元件918内,例如一由環氧樹脂或玻璃製成之球體。成形 光學元件918可(例如)在成形光學元件918之一外表面上包 含一粗糙化、紋理化、圖案化或成形之碟光體層920,其 可能遠離該LED。 在圖9中,ITO或ZnO層906係粗糙化、紋理化、圖案化 或成形以透過IT0或ZnO層906改良光擷取。此外,底部固 定環氧樹脂918。否則,圖9之結構與圖6至8所示的相同。 圖10A係說明依據本發明之較佳具體實施例之一特定改 良式LED結構之一示意圖,其中該改良式LED結構包含一A schematic diagram of an LED structure, wherein the improved LED structure comprises an emissive layer 800, a layer 802, a p-type GaN layer 〇4, a first IT layer 806, and a second itq layer 8. 〇8 and a glass layer 810. The n-type GaN layer 822 has a roughened, textured, patterned or shaped surface 812 (eg, a cone-shaped surface), and the glass layer 810 has a roughened, textured, patterned, or formed surface. Surface 814 (eg, a cone shaped surface). The LEDs are wire bonded 8 16 to a lead frame or submount 8 1 8 using the pads 820, 822. The LED can be embedded or contained within a molded or formed optical component 824 that forms, for example, a lens, such as a sphere of epoxy or glass. The shaped optical element 824 may, for example, comprise a roughened, textured, patterned or shaped phosphor layer 826 on an outer surface of the shaped optical element 824 that may be remote from the LED. In this embodiment, the emissive layer 800 emits light 828 to the surfaces 812 and 814, wherein the light 830 can be extracted. In this embodiment, since the shaped optical element 824 is a sphere, the LED structure can be viewed. Is a smaller point source because all directions of light emitted from the LED are substantially perpendicular to the interface between the air and the sphere 824, thereby effectively illuminating light therethrough through the interface between the air and the sphere 824. The ground is taken to the air. Moreover, if the phosphor layer 826 is placed on or near the surface of the shaped optical element, the conversion efficiency from, for example, blue light to white light is increased by reducing the re-absorption of light 828 by the backscattered light 828 of the phosphor layer 826. Moreover, if the surface 127501.doc -15-200843144 face 834 of the phosphor layer 826 is roughened, textured, patterned or formed, the optical extraction is again increased. After the table, Fig. 8B is a top plan view of the dream panel. U Λ T of Fig. 8A, which illustrates the lead frame 818. 9 is a schematic diagram showing a specific modified LED structure according to a preferred embodiment of the present invention, wherein the improved LED structure comprises an InGaN MQW emissive layer 900, an n-type GaN layer, and a germanium type. (4) 904, an ITO layer 906 having a roughened, textured, patterned or formed surface 908, a bonding pad 91, an ohmic contact/bonding pad 912, and a roughened one of the n-type GaN layer 902, A textured, patterned or formed surface 914, and an epoxy layer 916 are deposited on 908. The LED can be embedded or contained within a molding or forming optical component 918 that forms, for example, a lens, such as a sphere of epoxy or glass. Forming optical element 918 can, for example, include a roughened, textured, patterned or formed disc layer 920 on one of the outer surfaces of shaped optical element 918 that may be remote from the LED. In Figure 9, the ITO or ZnO layer 906 is roughened, textured, patterned, or shaped to improve light extraction through the IT0 or ZnO layer 906. Further, the epoxy resin 918 is fixed at the bottom. Otherwise, the structure of Fig. 9 is the same as that shown in Figs. Figure 10A is a schematic view showing a structure of a specially modified LED according to a preferred embodiment of the present invention, wherein the improved LED structure comprises a

InGaN MQW發射層 1000、一 η型 GaN層 1002、一 p型 GaN層 1004、一 ITO層1006,一接合墊1008、一歐姆接觸/接合塾 1010、ITO層1006之一粗韆化、紋理化、圖案化或成形之 表面1012、η型GaN層1002之一粗糙化、紋理化、圖案化 127501.doc -16- 200843144 或成形之表面1014、及一環氧樹脂層1〇16,其係沈積在表 面1012上。 該LED可嵌入有或包含於形成(例如)一透鏡的一模製物 或成形光學元件1018内,例如一由環氧樹脂或玻璃製成之 球體。成形光學元件101 8可(例如)在成形光學元件丨〇丨8之 一外表面上包含一粗糙化、紋理化、圖案化或成形之磷光 體層1020,其可能遠離該LED。 該LED還可包括一電流散佈層1〇22,其可包含(例 如)SiN、Si〇2或一些其他絕緣材料,在ITC^Zn〇層1〇〇6之 前沈積以將電流均勻地流過ρ型GaN層1〇〇4。 最後’將該LED導線接合1024至一引線框架1026。圖 10B顯示引線框架1〇26之一俯視圖。 圖11係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式led結構包含一InGaN MQW emissive layer 1000, an n-type GaN layer 1002, a p-type GaN layer 1004, an ITO layer 1006, a bonding pad 1008, an ohmic contact/bonding layer 1010, and an ITO layer 1006 are coarsened, textured, One of the patterned or formed surface 1012, one of the n-type GaN layer 1002 is roughened, textured, patterned 127501.doc -16-200843144 or formed surface 1014, and an epoxy layer 1〇16 is deposited On the surface 1012. The LED can be embedded or contained within a molded or formed optical component 1018 forming, for example, a lens, such as a sphere of epoxy or glass. The shaped optical element 101 8 can, for example, comprise a roughened, textured, patterned or shaped phosphor layer 1020 on one of the outer surfaces of the shaped optical element 丨〇丨8, which may be remote from the LED. The LED may further include a current spreading layer 1 〇 22, which may include, for example, SiN, Si 〇 2 or some other insulating material, deposited before the ITC Zn 〇 layer 1 〇〇 6 to uniformly flow current through ρ The type GaN layer is 1〇〇4. Finally, the LED wire is bonded 1024 to a lead frame 1026. Fig. 10B shows a top view of one of the lead frames 1 〇 26. Figure 11 is a schematic illustration of a particular modified LED structure in accordance with a preferred embodiment of the present invention, wherein the improved LED structure comprises a

InGaN MQW發射層 1100、一 n型 GaN層 1102、一 p型 GaN層 1104、一 ITO層1106’ 一接合塾11〇8、一歐姆接觸/接合塾 1110、ITO層1106之一粗糙化、紋理化、圖案化或成形之 表面1112、ρ型GaN層1102的一粗糙化、紋理化、圖案化 或成形之表面1114、及一環氧樹脂層11丨6,其係沈積在表 面1112上。 δ亥LED可喪入有或包含於形成(例如)一透鏡的一模;物 或成形光學元件1118内,例如一由環氧樹脂或玻璃製成之 球體。成形光學元件1118可(例如)在成形光學元件丨丨18之 一外表面上包含一粗糙化、紋理化、圖案化或成形之鱗光 127501.doc -17· 200843144 體層1120,其可能遠離該led。 該LED還可包括一電流散佈層n22,其可包含(例 如)SiN、Si〇2或一些其他絕緣材料,在ITC^ZnC^ 11〇6之 前沈積以將電流均勻地流過ρ型GaN層1104。 最後’將該LED導線接合1124至一引線框架1126。圖 11B顯示引線框架1126之一俯視圖。 在圖11之具體實施例中,將一鏡面1128放置於成形光學 元件1118之外部,以便從該裝置之一前側113〇獲得更多 光。該鏡面之形狀係設計以防止反射光到達該led,以便 降低由該LED重新吸收光。 圖12 A係說明依據本發明之較佳具體實施例之一特定改 良式LED結構之一示意圖,其中該改良式led結構包含一 發射層 1200、一 η 型 GaN層 1202、一 ρ 型 GaN層 1204、一 ITO或ZnO層1206、及·基板1208 ’其可能係^一平直寶 石基板或一圖案化藍寶石基板(PSS)。該LED係導線接合 1210至一引線框架1212,並嵌入於形成(例如)透鏡的模製 物或成形光學元件1214、1216内或與其組合,例如由環氧 樹脂或玻璃所製成之倒轉圓錐體形狀。在此具體實施例 中’该專成开> 光學元件1214、1216係形成於相對侧上,例 如該LED之頂部/前側及底部/後側,其中發射層12〇〇發射 從該LED之頂部/前側及底部/後侧擷取的光1222。 該LED係經由接合墊1224、1226而電性連接至引線框架 m8。將接合墊I224沈積在ITO或ZnC^ 12〇6上,並在藉 由一透過ρ型GaN層1204之選擇性蝕刻來曝露η型GaN 12〇2 127501.doc -18 - 200843144 層之後將歐姆接觸/接合墊1226沈積在η型GaN層1202上。 如上所述,該LED可組合環氧樹脂或玻璃並模製成一倒 轉圓錐體形狀1214、12 16用於前側121 8及後側1220二者, 其申該倒轉圓錐體模製形狀1214、1216提供增強光擷取。 明確而言,進入該等倒轉圓錐體形狀1214、1216之大多數 光位於一臨界角内並被擷取。該光係由倒轉圓錐體形狀 12 14之該等側壁反射至倒轉圓錐體形狀1214之一頂部或發 射表面以透過倒轉圓錐體形狀1214之頂部表面來發射,且 類似地’該光係由倒轉圓錐體形狀1216之該等側壁反射至 倒轉圓錐體形狀1216之一底部或發射表面以透過倒轉圓錐 體形狀12 14之底部表面來發射。 最後,應注意,一圖案化藍寶石基板(PSS)12〇8改良透 過η-GaN層1202與基板1208之間介面1228之光擷取效率。 此外,可粗糙化、紋理化、圖案化或成形藍寶石基板12〇8 之後侧1230(例如,一圓錐狀表面)以增加光擷取效率。 圖12B顯示引線框架1212之一俯視圖。 圖13係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式led結構包含一發InGaN MQW emissive layer 1100, an n-type GaN layer 1102, a p-type GaN layer 1104, an ITO layer 1106', a bonding layer 11〇8, an ohmic contact/bonding layer 1110, and an ITO layer 1106 roughened and textured A patterned, patterned surface 1212, a roughened, textured, patterned or formed surface 1114 of the p-type GaN layer 1102, and an epoxy layer 11丨6 are deposited on the surface 1112. The delta LED can be incorporated into or contained within a mold or shaped optical component 1118, such as a sphere of epoxy or glass. The shaped optical element 1118 can comprise, for example, a roughened, textured, patterned or shaped scale layer 127501.doc -17· 200843144 body layer 1120 on one of the outer surfaces of the shaped optical element 丨丨18, which may be remote from the led . The LED may further include a current spreading layer n22, which may include, for example, SiN, Si〇2, or some other insulating material, deposited before ITC^ZnC^11〇6 to uniformly flow current through the p-type GaN layer 1104. . Finally, the LED wire is bonded 1124 to a lead frame 1126. Figure 11B shows a top view of one of the lead frames 1126. In the particular embodiment of Figure 11, a mirror 1128 is placed outside of the forming optics 1118 to obtain more light from the front side 113 of the device. The shape of the mirror is designed to prevent reflected light from reaching the led to reduce the reabsorption of light by the LED. 12A is a schematic view showing a specific modified LED structure according to a preferred embodiment of the present invention, wherein the improved LED structure includes an emissive layer 1200, an n-type GaN layer 1202, and a p-type GaN layer 1204. An ITO or ZnO layer 1206, and a substrate 1208' may be a flat gemstone substrate or a patterned sapphire substrate (PSS). The LED is wire bonded 1210 to a leadframe 1212 and embedded in or formed in a molded or formed optical component 1214, 1216 forming, for example, a lens, such as an inverted cone of epoxy or glass. shape. In this embodiment, 'this specialization' optical elements 1214, 1216 are formed on opposite sides, such as the top/front side and bottom/back side of the LED, wherein the emissive layer 12 is emitted from the top of the LED Light 1222 taken from the front side and the bottom/back side. The LED is electrically connected to the lead frame m8 via bond pads 1224, 1226. Bonding pad I224 is deposited on ITO or ZnC^12〇6, and ohmic contact is exposed after selective etching of n-type GaN 12〇2 127501.doc -18 - 200843144 by a selective etching through p-type GaN layer 1204 The bonding pad 1226 is deposited on the n-type GaN layer 1202. As described above, the LED can be combined with epoxy or glass and molded into an inverted cone shape 1214, 12 16 for both the front side 121 8 and the back side 1220, which is intended to have an inverted cone molded shape 1214, 1216 Provide enhanced light extraction. Specifically, most of the light entering the inverted cone shapes 1214, 1216 is within a critical angle and is drawn. The light system is reflected by the side walls of the inverted cone shape 12 14 to the top of the inverted cone shape 1214 or the emitting surface to transmit through the top surface of the inverted cone shape 1214, and similarly 'the light system is inverted cone The sidewalls of the body shape 1216 are reflected to the bottom or the emitting surface of the inverted cone shape 1216 for transmission through the bottom surface of the inverted cone shape 12 14 . Finally, it should be noted that a patterned sapphire substrate (PSS) 12〇8 improves the light extraction efficiency through the interface 1228 between the η-GaN layer 1202 and the substrate 1208. Additionally, the sapphire substrate 12A8 rear side 1230 (eg, a conical surface) may be roughened, textured, patterned, or shaped to increase light extraction efficiency. FIG. 12B shows a top view of one of the lead frames 1212. Figure 13 is a schematic illustration of a particular modified LED structure in accordance with a preferred embodiment of the present invention, wherein the improved LED structure comprises a hair

射層 1300、一 η型 GaN層 1302、一 p型 GaN層 1304、一;[TO 或ZnO層1306、及一基板1308,其可能係一平直藍寶石美 板或一圖案化藍寶石基板(PSS)。該LED係導線接合131〇至 一引線框架1312,並嵌入於形成(例如)透鏡的模製物或成 形光學元件13 14、13 16内或與其組合,例如由環氧樹脂或 玻璃所製成之倒轉圓錐體形狀。在此具體實施例中,該等 127501.doc -19- 200843144 成形光學元件1314、1316係形成於相對側上,例如該led 之頂部/前側及底部/後側,其中發射層13〇〇發射從該led 之頂部/前側及底部/後側擷取的光丨322。 該LED係經由接合墊1324、1326而電性連接至引線框架 13 18。將接合墊1324沈積在汀〇或211〇層13〇6上,並在藉 由一透過P型GaN層1304之選擇性蝕刻來曝露11型〇&1^ 13〇2 層之後,將歐姆接觸/接合墊1326沈積在η型GaN層1302 上。 如上所述’違led可組合環氧樹脂或玻璃並模製成一倒 轉圓錐體形狀1314、1316用於前側1318及後側1320,其中 該倒轉圓錐體模製形狀1314、1316提供增強光擷取。明確 而言,進入該等圓錐體形狀13 14、13 16之大多數光位於一 臨界角内並被擷取。該光係由倒轉圓錐體形狀1314之該等 側壁反射至倒轉圓錐體形狀1314之一頂部或發射表面以透 過倒轉圓錐體形狀1314之頂部表面來發射,且類似地,該 光係由倒轉圓錐體形狀丨3丨6之該等側壁反射至倒轉圓錐體 形狀13 16之一底部或發射表面以透過倒轉圓錐體形狀1314 之底部表面來發射。而且,可粗糙化、紋理化、圖案化或 成形該等成形光學元件1314之頂部/前表面1328以及成形 光學元件1316之底部/後表面133〇以透過該等元件1314、 13 16增加光擷取。 圖14係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式LED結構1400包括 一發射層1402與一基板1404(以及其他層),且基板1404係 127501.doc •20- 200843144 一平直或圖案化藍寶石基板。該LED 1400係導線接人14〇6 至一引線框架1408,並喪入於形成(例如)透鏡的模製物戋 成形光學元件1410、1412内或與其組合,例如由環氧樹脂 或玻璃所製成的倒轉圓錐體形狀。在此具體實施例中,該 等成形光學元件1410、1412係形成於相對側上,例如led 1400之頂部/前側1414及底部/後侧1416,其中發射層14〇2 發射從LED 1400之頂部/前側1414及底部/後側1416擷取的 光 1418。 在圖14中,可將磷光體層1420放置於成形光學元件141〇 之頂部/前表面1422以及成形光學元件1412之底部/後表面 1424附近。較佳的係,磷光體層1420應儘可能遠離led 1400而定位。在此情況下,由於降低由該等填光體層142〇 背散射光至LED 1400而降低由LED 1400重新吸收發射 光’故增加藍光至白光之轉換效率。而且,可粗鏠化、紋 理化、圖案化或成形該等磷光體層1420之該等表面1426以 改良光擷取。 圖1 5 A係說明依據本發明之較佳具體實施例之一特定改 良式LED結構之一示意圖,其中該改良式LED結構1500包 含一發射層 1502、一 η型 GaN層 1504、一 p型 GaN層 1506、 一 ITO或ZnO層1508、及一基板1510,其可能係一平直藍 寶石基板或一圖案化藍寶石基板(PSS)。 LED 15〇0係導線接合1512至一引線框架1514,其中圖 15B係一顯示引線框架1514之俯視圖的示意圖。 在此具體實施例中,LED 1500係嵌入於形成(例如)透鏡 127501.doc -21 - 200843144 的模製物或成形光學元件1 5 1 6、1 5 1 8内或與其組合,例如 由環氧樹脂或玻璃所製成之倒轉圓錐體形狀。該等成形光 學元件1516、1518係形成於相對側上,例如led 1500之頂 部/前側1520及底部/後側1522,其中發射層15〇2發射從 LED 1500之頂部/前側152〇及底部/後側1522擷取的光 1524。 一鏡面1526可放置於成形光學元件1518内部以增加至 LED 1500之前側1528的光輸出。而且,鏡面1526之形狀係 設計以防止從LED 1500所發射之光153〇之反射被LED 15 00重新吸收,從而將會降低該lEd之輸出功率或效率。 相反,鏡面1526將反射光1530從LED 1500引走。 此外’鏡面1526僅部分附著(或根本不附著)至led 1500 或基板1510。此不同於傳統LED,其中(例如)鏡面係附著 至該LED之整個表面,如圖1至3所示。 圖16係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式led結構包含一發a shot layer 1300, an n-type GaN layer 1302, a p-type GaN layer 1304, a; [TO or ZnO layer 1306, and a substrate 1308, which may be a flat sapphire sheet or a patterned sapphire substrate (PSS) . The LED is wire bonded to a lead frame 1312 and embedded in or formed in a molded or formed optical component 13 14 , 13 16 forming, for example, a lens, such as epoxy or glass. Reverse the shape of the cone. In this embodiment, the 127501.doc -19-200843144 shaped optical elements 1314, 1316 are formed on opposite sides, such as the top/front side and bottom/back side of the led, wherein the emissive layer 13 is emitted from The top/front side of the led and the bottom/back side of the aperture 322. The LEDs are electrically connected to leadframe 13 18 via bond pads 1324, 1326. The bonding pad 1324 is deposited on the Ting or 211 layer 13〇6, and the ohmic contact is exposed after exposing the 11-type 〇&1^13〇2 layer by selective etching through the P-type GaN layer 1304. The bonding pad 1326 is deposited on the n-type GaN layer 1302. As described above, the epoxy or glass may be combined and molded into an inverted cone shape 1314, 1316 for the front side 1318 and the back side 1320, wherein the inverted cone molding shapes 1314, 1316 provide enhanced light extraction . Specifically, most of the light entering the cone shapes 13 14 , 13 16 is within a critical angle and is drawn. The light system is reflected by the side walls of the inverted cone shape 1314 to the top of one of the inverted cone shapes 1314 or the emitting surface to transmit through the top surface of the inverted cone shape 1314, and similarly, the light system is inverted cone The side walls of the shape 丨3丨6 are reflected to the bottom of one of the inverted cone shapes 13 16 or the emitting surface to transmit through the bottom surface of the inverted cone shape 1314. Moreover, the top/front surface 1328 of the shaped optical element 1314 and the bottom/back surface 133 of the shaped optical element 1316 can be roughened, textured, patterned, or shaped to increase light extraction through the elements 1314, 13 16 . 14 is a schematic diagram showing a specific modified LED structure according to a preferred embodiment of the present invention, wherein the improved LED structure 1400 includes an emissive layer 1402 and a substrate 1404 (and other layers), and the substrate 1404 is 127501.doc •20- 200843144 A flat or patterned sapphire substrate. The LED 1400 series wire is connected to a lead frame 1408 and is immersed in, for example, a molded object 戋 forming optical element 1410, 1412 forming a lens, for example, made of epoxy or glass. Inverted cone shape. In this embodiment, the shaped optical elements 1410, 1412 are formed on opposite sides, such as the top/front side 1414 and the bottom/back side 1416 of the LED 1400, with the emissive layer 14〇2 emitting from the top of the LED 1400/ Light 1418 is captured by front side 1414 and bottom/back side 1416. In Figure 14, a phosphor layer 1420 can be placed adjacent the top/front surface 1422 of the shaped optical element 141A and the bottom/back surface 1424 of the shaped optical element 1412. Preferably, the phosphor layer 1420 should be positioned as far as possible from the led 1400. In this case, the conversion efficiency of blue to white light is increased by reducing the backscattered light by the light-filling layer 142 to the LED 1400 and reducing the absorption of light by the LED 1400. Moreover, the surfaces 1426 of the phosphor layers 1420 can be roughened, textured, patterned or shaped to improve light extraction. 1A is a schematic view showing a specific modified LED structure according to a preferred embodiment of the present invention, wherein the improved LED structure 1500 comprises an emissive layer 1502, an n-type GaN layer 1504, and a p-type GaN. A layer 1506, an ITO or ZnO layer 1508, and a substrate 1510, which may be a flat sapphire substrate or a patterned sapphire substrate (PSS). The LED 15〇0 is a wire bond 1512 to a lead frame 1514, wherein Fig. 15B is a schematic view showing a top view of the lead frame 1514. In this particular embodiment, the LED 1500 is embedded in or combined with a molding or forming optical element 1 5 16 , 1 5 1 8 forming, for example, a lens 127501.doc -21 - 200843144, such as an epoxy Inverted cone shape made of resin or glass. The shaped optical elements 1516, 1518 are formed on opposite sides, such as the top/front side 1520 and the bottom/back side 1522 of the LED 1500, wherein the emissive layer 15〇2 is emitted from the top/front side 152 of the LED 1500 and the bottom/back Light 1524 is captured by side 1522. A mirror 1526 can be placed inside the shaped optical element 1518 to increase the light output to the front side 1528 of the LED 1500. Moreover, the shape of the mirror surface 1526 is designed to prevent the reflection of the light 153 发射 emitted from the LED 1500 from being reabsorbed by the LED 1500, thereby reducing the output power or efficiency of the ED. Instead, mirror 1526 directs reflected light 1530 away from LED 1500. Further, the mirror 1526 is only partially attached (or not attached at all) to the led 1500 or substrate 1510. This differs from conventional LEDs in which, for example, a mirror is attached to the entire surface of the LED, as shown in Figures 1-3. Figure 16 is a schematic illustration of a particular modified LED structure in accordance with a preferred embodiment of the present invention, wherein the improved LED structure comprises a hair

射層 1600、一 η型 GaN層 1602、一 p型 GaN層 1604、一 ITO 或ZnO層1606、及一基板1608,其可能係一平直藍寶石基 板或一圖案化藍寶石基板(PSS)。該LED係導線接合161〇至 一引線框架1612。 在此具體實施例中,該LED係嵌入於形成(例如)透鏡的 模製物或成形光學元件1614、1616内或與其組合,例如由 環氧樹脂或玻璃所製成之倒轉圓錐體形狀。該等成形光學 元件1614、1616係形成於相對側上,例如該led之頂部/前 127501.doc -22- 200843144 側1618及底部/後側1620,其中發射層1602發射從該LED之 頂部/前側161 8及底部/後側1620二者擷取的光1622。 一鏡面1624可放置於成形光學元件1616内部以增加至該 LED之前側1626的光輸出。而且,鏡面1624之形狀係設計 以防止從該LED所發射之光1628之反射被該LED重新吸 收,從而將會降低該LED之輸出功率或效率。相反,鏡面 16M將反射光1628從該LED引導開。 此外,鏡面1624僅部分附著(或根本不附著)至該LED或 基板1608。此不同於傳統LED,其中(例如)鏡面係附著至 該LED之整個表面,如圖1至3所示。 最後,將成形光學元件1614之頂部/前表面1630粗縫 化、紋理化、圖案化或成形以改良光擷取效率。 圖17係說明依據本發明之較佳具體實施例之一特定改良 式LED結構之一示意圖,其中該改良式LED結構1700包括 一發射層1702與一基板1704(以及其他層),且基板17〇4係 一平直或圖案化藍寶石基板。該LED 1700係導線接合17〇6 至一引線框架1708,並嵌入於形成(例如)透鏡的模製物或 成形光學元件1710、1712内或與其組合,例如由環氧樹脂 或玻璃所製成之倒轉圓錐體形狀。在此具體實施例中,該 等成形光學元件1710、1712係形成於相對側上,例如led 1700之頂部/前側17 14及底部/後側1716,其中發射層17〇2 發射從LED 1700之頂部/前側1714及底部/後側1716二者擷 取光1718。 在圖Π中,一鏡面1720可放置於成形光學元件1712内部 127501.doc -23- 200843144 以增加引導至LED 1700之前側1720的光輸出。而且,可將 一磷光體層1722放置於成形光學元件1710之頂部表面1724 附近。較佳的係,磷光體層1722係儘可能遠離LED 1700而 定位。在此情況下,由於降低由磷光體層1722背散射而降 低重新吸收從LED 1700所發射之光1718,故增加藍光至白 光之轉換效率。此外,可粗糙化、紋理化、圖案化或成形 磷光體層1722之表面1726以改良透過磷光體層1722之光擷 取。 圖1 8 A係說明依據本發明之較佳具體實施例之一特定改 良式LED結構之一示意圖,其中該改良式LED結構1800包 括一發射層1802與一基板1804(以及其他層)。LED 1800係 導線接合1806至一引線框架1808,其中圖18B係一顯示引 線框架1808之俯視圖的圖解。 在此具體實施例中,LED 1800係嵌入於形成(例如)透鏡 的核製物或成形光學元件1 8 1 0内或與其組合,例如由環氧 樹脂或玻璃所製成之倒轉圓錐體形狀。由發射層1802所發 射之光1812係由定位於成形光學元件181〇内之鏡面1814向 成形光學元件1810之前側1816來反射,遠離成形光學元件 1810之後側1818,其中從成形光學元件181〇輸出反射光 1820 〇 圖19 A係說明依據本發明之較佳具體實施例之一特定改 良式LED結構之一示意圖,其中該改良式led結構1900包 括一發射層1902與一基板19〇4(以及其他層)。led 1900係 導線接合1906至一引線框架19〇8,其中圖19B係一顯示引 127501.doc -24- 200843144 線框架1908之俯視圖的圖解。 在此具體實施例中,LED 1900係嵌入於形成(例如)透鏡 的模製物或成形光學元件19 1 〇内或與其組合,例如由環氧 樹脂或玻璃所製成之倒轉圓錐體形狀。由發射層19〇2所發 射之光1912係由成形光學元件191〇之該等側壁1914向成形 光學元件1910之前側1916反射,其中從成形光學元件191〇 輸出反射光1918,並遠離成形光學元件191〇之後侧 1920 , 。 較佳的係’ LED 1900係定位於成形光學元件191〇内,使 得由该LED所發射之光1912係由該等側壁1914之鏡面表面 1922反射’其中該等鏡面表面1922係沈積或附著至該等側 壁1914。該等側壁1914相對於成形光學元件191〇之基底 1920之角度1924係一臨界角,其將&LED 19〇〇所發射之光 1912向成形光學元件1910之前側1916反射。例如,環氧樹 脂之折射率係〜勺」,空氣之折射率係⑴引,因此反射臨 界角係811^(1/1.5)。因此,該等側壁1914之角度1924應超 過siiT^l/l^)。此導致在由1926所標注之方向上從該成形 光學元件之頂部表面1928有效地擷取來自LED 19〇〇之反射 光1912 〇 圖20A係說明依據本發明之較佳具體實施例之一特定改 良式LED結構之一示意圖,其中該改良式LED結構包括一 t射層2000與一基板2〇〇2(以及其他層)。該LED係導線接 合2004至一引線框架2006 ,其中圖2〇B係引線框架2〇〇6之 一俯視圖。 127501.doc -25- 200843144 在此具體實施例中,該LED係嵌入於形成(例如)透鏡的 一模製物或成形光學元件2008内或與其組合,例如環氧樹 脂或玻璃所製成之倒轉圓錐體形狀。由發射層2〇〇2所發射 之光2010係由成形光學元件2008之該等側壁2012向成形光 學元件2008之前側2014反射,其中從成形光學元件2008輸 出反射光20 16,並遠離成形光學元件2〇〇8之後側201 8。 較佳地係’該LED係定位於成形光學元件2008内,使得 由該LED所發射之光2010係由該等側壁2012反射。而且, 將成形光學元件2008之前表面或頂部表面2020粗糙化、紋 理化、圖案化或成形以增加光擷取。 該等側壁2012相對於成形光學元件2〇〇8之基底2018之角 度2022係一臨界角,其將從該LED所發射之2010向成形光 學元件2008之前側2014反射。例如,環氧樹脂之折射率係 η2=1·5 ’空氣之折射率係ni = l,因此反射臨界角係sin-i (1/1.5)。因此,該等側壁2〇12之角度2〇22應超過sin-i (1/1·5)。此導致從成形光學元件2〇〇8之前表面2〇2〇有效地 擷取來自該LED之反射光2010。 圖2 1A係說明依據本發明之較佳具體實施例之一特定改 良式LED結構之一示意圖,其中該改良式led結構2100包 括一發射層2102與一基板2104(以及其他層)。該LED 2100 係導線接合2106至一引線框架2108,其中圖21B顯示引線 框架2108之一俯視圖。 在此具體實施例中,LED 2 100係嵌入於形成(例如)透鏡 的模製物或成形光學元件211〇内或與其組合,例如由環氧 127501.doc -26 - 200843144 樹脂或玻璃所製成之倒轉圓錐體形狀。較佳地係,LED 2100係定位於成形光學元件211〇内,使得由該LED所發射 之光2112係由成形光學元件211〇之該等側壁2114向成形光 學元件2110之前側2116反射,其中從成形光學元件211〇輸 出反射光2118,並遠離成形光學元件之後側2120。 可將一磷光體層2122放置於成形光學元件211〇之前表面 或頂部表面2124上或附近。較佳的係,儘可能遠離LEd ^ 2 100地放置磷光體層2122。在此範例下,由於降低由磷光 … 體層2122背散射而降低由LED 21 00重新吸收光2112,故增 加藍光至白光之轉換效率。此外,可粗鏠化、紋理化、圖 案化或成形構光體層2122之表面2126以增加光擷取。 圖22A係說明依據本發明之較佳具體實施例之一特定改 良式LED結構之一示意圖,其中該改良式LED結構22〇〇包 括一發射層2202與一基板2204(以及其他層)。LED 22〇〇係 導線接合2206至一引線框架2208,其中圖22B顯示引線框 架2208之一俯視圖。 LED 2200係嵌入於形成(例如)透鏡的模製物或成形光學 元件2210、22 12内或與其組合,例如由環氧樹脂或玻璃所 1 製成之倒轉圓錐體形狀。在此具體實施例中,該等成形光 學元件2210、2212係形成於相對側上,例如led 2200之頂 部/前側2214及底部/後側2216,其中發射層22〇〇發射從 LED 2200之頂部/前側2214及底部/後側22 16二者擷取的光 2218 〇 引線框架2208包括一透明板2220,其中LED 2200係使用 127501.doc -27- 200843144 一透明/透光環氧樹脂2222作為一晶粒接合材料而接合至 透明板2220。透明板2220可包含玻璃、石英、藍寶石、金 剛石或其他對所需發射波長透明的材料,其中透明玻璃板 2220將LED 2200所發射之光2218有效地擷取至成形光學元 件2212 。 優點及改良 本發明之一優點在於,除了該發射層外,該LED之所有 層均對發射波長透明,使得透過所有層有效地擷取光。 而且,藉由避免與該LED—起使用有意的鏡面,最小化 由該LED重新吸收光,增加光擷取效率,從而增加光輸出 功率。 組合一透明電極與粗糙化、紋理化、圖案化或成形表 面,同時將該LED嵌入於一成形光學元件或透鏡内,導致 增加光擷取。 參考文獻 下列參考文獻係以引用形式併入本文: 1. Appl. Phys. Lett·,56,737-39 (1990) 〇 2. Appl· Phys. Lett.,64,2839-41 (1994)。 3. Appl. Phys. Lett·,81,3152-54 (2002)。 4. Jpn. J. Appl. Phys.,43,L1275-77 (2004)。 5. Jpn. J. Appl_ Phys.,45,L1084-L1086 (2006)。 6. Jpn. J. Appl· Phys.,34,L797-99 (1995)。 7. Jpn. J. Appl· Phys.,43,L180-82 (2004)。 8. Fujii T.、Gao Y.、Sharma R.、Hu E.L.、DenBaars 127501.doc -28 - 200843144 S-P·、Nakamura S·,”經由表面粗糙化增加以GaN為主的發 光一極體之擷取效率”,Applied Physics Letters,第84 卷’第6號,2004年2月9日,第855-7頁。 結論 此總結本發明之較佳具體實施例之說明。出於例示及說 明目的’已呈現本發明之一或多個具體實施例之前述說 明。不希望其詳盡無遺或要將本發明限於所揭示的精確形 式。根據以上教導,可進行許多修改及變更。 【圖式簡單說明】 已參考該等圖式,各圖式中相同參考數字全文代表對應 零件: 圖1、2及3係傳統LED之斷面示意圖。 圖4A及4B分別係依據本發明之較佳具體實施例之一改 良式LED結構之示意圖及平面圖。 圖5A及5B分別係依據本發明之較佳具體實施例之一改 良式LED結構之示意圖及平面圖。 圖6係依據本發明之較佳具體實施例之一改良式lED結 構之一示意圖。 圖7係依據本發明之較佳具體實施例之一改良式led結 構之一不意圖。 圖8A及8B分別係依據本發明之較佳具體實施例之一改 良式LED結構之示意圖及平面圖。 圖9係依據本發明之勒^ & 触每 ,& 、 k ΛΙ <苹又佳具體實施例之一改良式led結 構之一示意圖。 127501.doc -29- 200843144 圖10A及1 〇B分別係依據本發明之較佳具體實施例之一 改良式LED結構之示意圖及平面圖。 圖11係依據本發明之較佳具體實施例之一改良式led結 構之一示意圖。 圖12A及12B分別係依據本發明之較佳具體實施例之一 改良式LED結構之示意圖及平面圖。 圖13係依據本發明之較佳具體實施例之一改良式led結 構之一示意圖。 圖14係依據本發明之較佳具體實施例之一改良式led結 構之一示意圖。 圖15A及15B分別係依據本發明之較佳具體實施例之一 改良式LED結構之示意圖及平面圖。 圖16係依據本發明之較伟且辦告 π心罕乂住具體κ施例之一改良式LED結 構之一示意圖。 圖17係依據本發明之敕传且㈣者 κ罕乂住具體κ施例之一改良式lED結 構之一示意圖。 圖18A及18B分別係依據本發明之較佳具體實施例之一 改良式LED結構之示意圖及平面圖。 圖19A及19B分別係依據本發明之較佳具體實施例之一 改良式LED結構之示意圖及平面圖。 圖20A及20B分別係依據本發明之較佳具體實施例之一 改良式LED結構之示意圖及平面圖。 圖21A及21B分別係依據本發明 十私1爻旱父佳具體實施例之一 改良式LED結構之示意圖及平面圖。 127501.doc -30- 200843144 圖22A及22B分別係依據本發明之較佳具體實施例之一 改良式LED結構之示意圖及平面圖。 【主要元件符號說明】 100 藍寶石基板 102 發射層/主動層 104 半透明或透明電極 106 引線框架 108 透光環氧樹脂模製物 110 鏡面 112 光 114 光 116 光 118 導線接合 200 藍寶石基板 202 發射層/主動層 204 南反射鏡面 206 晶粒接合 208 引線框架 210 透光環氧樹脂模製物 212 光 214 光 216 光 300 傳導性子基板 302 高反射率鏡面 127501.doc •31 - 200843144 304 透明ITO層 306 p-GaN 層 308 發射或主動層 310 n-GaN 層 312 LED發射 314 LED發射 316 反射性光發射 317 粗糙化 318 擷取 400 發射層 402 η型GaN層 404 ρ型GaN層 406 第一 ITO層 408 第二ITO層 410 玻璃層 412 表面 414 表面 416 導線接合 418 引線框架 420 接合墊 422 接合墊 424 光 426 後側 428 前側 -32- 127501.doc 200843144 Γ·The shot layer 1600, an n-type GaN layer 1602, a p-type GaN layer 1604, an ITO or ZnO layer 1606, and a substrate 1608, which may be a flat sapphire substrate or a patterned sapphire substrate (PSS). The LED is wire bonded to a lead frame 1612. In this particular embodiment, the LED is embedded in or formed in a molded or formed optical component 1614, 1616 forming, for example, a lens, such as an inverted cone shape made of epoxy or glass. The shaped optical elements 1614, 1616 are formed on opposite sides, such as the top/front 127501.doc -22-200843144 side 1618 and the bottom/back side 1620 of the led, wherein the emissive layer 1602 is emitted from the top/front side of the LED Light 1622 is captured by both the 161 8 and the bottom/back side 1620. A mirror 1624 can be placed inside the shaped optical element 1616 to increase the light output to the front side 1626 of the LED. Moreover, the mirror 1624 is shaped to prevent reflections of light 1628 emitted from the LED from being reabsorbed by the LED, thereby reducing the output power or efficiency of the LED. Instead, mirror 16M directs reflected light 1628 from the LED. In addition, mirror 1624 is only partially attached (or not attached at all) to the LED or substrate 1608. This is different from conventional LEDs in which, for example, a mirror is attached to the entire surface of the LED, as shown in Figures 1-3. Finally, the top/front surface 1630 of the shaped optical component 1614 is roughened, textured, patterned, or shaped to improve light extraction efficiency. Figure 17 is a schematic illustration of a particular modified LED structure in accordance with a preferred embodiment of the present invention, wherein the improved LED structure 1700 includes an emissive layer 1702 and a substrate 1704 (and other layers), and the substrate 17 4 series of a flat or patterned sapphire substrate. The LED 1700 is wire bonded 17〇6 to a lead frame 1708 and embedded in or formed in a molded or formed optical component 1710, 1712 forming, for example, a lens, such as epoxy or glass. Reverse the shape of the cone. In this embodiment, the shaped optical elements 1710, 1712 are formed on opposite sides, such as the top/front side 17 14 and the bottom/back side 1716 of the led 1700, wherein the emissive layer 17〇2 is emitted from the top of the LED 1700 Both the front side 1714 and the bottom/back side 1716 draw light 1718. In the figure, a mirror 1720 can be placed inside the shaped optical component 1712 127501.doc -23-200843144 to increase the light output directed to the front side 1720 of the LED 1700. Moreover, a phosphor layer 1722 can be placed adjacent the top surface 1724 of the shaped optical component 1710. Preferably, the phosphor layer 1722 is positioned as far as possible from the LED 1700. In this case, the conversion efficiency of the blue to white light is increased by reducing the backscattering of the phosphor layer 1722 to reduce the re-absorption of the light 1718 emitted from the LED 1700. Additionally, the surface 1726 of the phosphor layer 1722 can be roughened, textured, patterned, or shaped to improve light extraction through the phosphor layer 1722. Figure 1A is a schematic illustration of a particular modified LED structure in accordance with a preferred embodiment of the present invention, wherein the improved LED structure 1800 includes an emissive layer 1802 and a substrate 1804 (and other layers). The LED 1800 is a wire bond 1806 to a lead frame 1808, with Figure 18B being an illustration of a top view of the lead frame 1808. In this embodiment, the LED 1800 is embedded in or combined with a core or shaped optical element 1810 that forms, for example, a lens, such as an inverted cone shape made of epoxy or glass. The light 1812 emitted by the emissive layer 1802 is reflected by the mirror 1814 positioned within the shaped optical element 181 to the front side 1816 of the shaped optical element 1810, away from the rear side 1818 of the shaped optical element 1810, where it is output from the shaped optical element 181 Reflected Light 1820 FIG. 19A is a schematic illustration of a particular modified LED structure in accordance with a preferred embodiment of the present invention, wherein the improved LED structure 1900 includes an emissive layer 1902 and a substrate 19〇4 (and others) Floor). The led 1900 series wire bond 1906 to a lead frame 19A8, wherein Fig. 19B is a diagram showing a top view of the line frame 1908 of the reference 127501.doc -24-200843144. In this particular embodiment, the LED 1900 is embedded in or combined with a molded or formed optical element 19 1 , for example, a lens, such as an inverted cone shape made of epoxy or glass. The light 1912 emitted by the emissive layer 19A is reflected by the side walls 1914 of the shaped optical element 191 to the front side 1916 of the shaped optical element 1910, wherein the reflected light 1918 is output from the shaped optical element 191, and away from the shaped optical element. 191 〇 behind the side 1920, . Preferably, the LED 1900 is positioned within the shaped optical element 191, such that the light 1912 emitted by the LED is reflected by the mirrored surface 1922 of the sidewall 1914, wherein the mirrored surface 1922 is deposited or attached thereto. The side wall 1914. The sidewalls 1914 are at a critical angle relative to the angle 1924 of the base 1920 of the shaped optical element 191, which reflects the light 1912 emitted by the & LED 19 turns toward the front side 1916 of the shaped optical element 1910. For example, the refractive index of the epoxy resin is "spoon", and the refractive index of air is (1), so the reflection critical angle is 811^(1/1.5). Therefore, the angle 1924 of the side walls 1914 should exceed siiT^l/l^). This results in the effective extraction of reflected light 1912 from the LED 19〇〇 from the top surface 1928 of the shaped optical element in the direction indicated by 1926. FIG. 20A illustrates a particular improvement in accordance with a preferred embodiment of the present invention. A schematic diagram of a LED structure, wherein the improved LED structure includes a t-layer 2000 and a substrate 2 (and other layers). The LED-based wire is bonded to 2004 to a lead frame 2006, wherein FIG. 2B is a top view of the lead frame 2〇〇6. 127501.doc -25- 200843144 In this embodiment, the LED is embedded in or formed by a molding or forming optical element 2008 forming, for example, a lens, such as an epoxy or glass. Cone shape. The light 2010 emitted by the emissive layer 2〇〇2 is reflected by the side walls 2012 of the shaped optical element 2008 towards the front side 2014 of the shaped optical element 2008, wherein the reflected light 2016 is output from the shaped optical element 2008 and away from the shaped optical element 2〇〇8 rear side 201 8. Preferably, the LED is positioned within the shaped optical element 2008 such that the light 2010 emitted by the LED is reflected by the sidewalls 2012. Moreover, the front or top surface 2020 of the shaped optical element 2008 is roughened, textured, patterned or shaped to increase light extraction. The side walls 2012 are at a critical angle with respect to the angle 2022 of the base 2018 of the shaped optical element 2〇〇8, which will reflect from the 2010 emitted by the LED to the front side 2014 of the shaped optical element 2008. For example, the refractive index of the epoxy resin is η2 = 1·5 ', and the refractive index of air is ni = l, so the critical angle of reflection is sin-i (1/1.5). Therefore, the angle 2〇22 of the side walls 2〇12 should exceed sin-i (1/1·5). This results in the effective extraction of the reflected light 2010 from the LED from the front surface 2〇2 of the shaping optical element 2〇〇8. 2A is a schematic illustration of a particular modified LED structure in accordance with a preferred embodiment of the present invention, wherein the improved LED structure 2100 includes an emissive layer 2102 and a substrate 2104 (and other layers). The LED 2100 is wire bonded 2106 to a lead frame 2108, wherein Figure 21B shows a top view of the lead frame 2108. In this particular embodiment, the LED 2 100 is embedded in or combined with a molding or forming optical element 211 that forms, for example, a lens, such as epoxy 127501.doc -26 - 200843144 resin or glass. Reverse the shape of the cone. Preferably, the LED 2100 is positioned within the shaped optical element 211, such that the light 2112 emitted by the LED is reflected by the sidewall 2114 of the shaped optical element 211 to the front side 2116 of the shaped optical element 2110, wherein The shaped optical element 211 〇 outputs reflected light 2118 away from the shaped optical element back side 2120. A phosphor layer 2122 can be placed on or near the front or top surface 2124 of the shaped optical element 211. Preferably, the phosphor layer 2122 is placed as far as possible from the LEd ^ 2 100. In this example, the conversion efficiency of blue to white light is increased by reducing the backscattering of the phosphor 2 00 by the phosphor 21 layer 2122. In addition, the surface 2126 of the illuminant layer 2122 can be roughened, textured, patterned or shaped to increase light extraction. Figure 22A is a schematic illustration of a particular modified LED structure in accordance with a preferred embodiment of the present invention, wherein the improved LED structure 22 includes an emissive layer 2202 and a substrate 2204 (and other layers). The LED 22 is a wire bond 2206 to a lead frame 2208, wherein Figure 22B shows a top view of the lead frame 2208. The LED 2200 is embedded in or formed in a molding or forming optical element 2210, 22 12 forming, for example, a lens, such as an inverted cone shape made of epoxy or glass. In this embodiment, the shaped optical elements 2210, 2212 are formed on opposite sides, such as the top/front side 2214 and the bottom/back side 2216 of the led 2200, wherein the emissive layer 22 is emitted from the top of the LED 2200 / The light 2218 〇 lead frame 2208 of both the front side 2214 and the bottom/back side 22 16 includes a transparent plate 2220, wherein the LED 2200 uses 127501.doc -27- 200843144 a transparent/transparent epoxy resin 2222 as a crystal. The grain bonding material is bonded to the transparent plate 2220. The transparent plate 2220 can comprise glass, quartz, sapphire, diamond or other material that is transparent to the desired emission wavelength, wherein the transparent glass plate 2220 effectively captures the light 2218 emitted by the LED 2200 to the shaped optical element 2212. Advantages and Improvements An advantage of the present invention is that, in addition to the emissive layer, all of the layers of the LED are transparent to the emission wavelength such that light is effectively extracted through all of the layers. Moreover, by avoiding the use of an intentional mirror with the LED, it is minimized that light is reabsorbed by the LED, increasing light extraction efficiency, thereby increasing light output power. Combining a transparent electrode with a roughened, textured, patterned or shaped surface while embedding the LED in a shaped optical element or lens results in increased light extraction. REFERENCES The following references are hereby incorporated by reference: 1. Appl. Phys. Lett., 56, 737-39 (1990) 〇 2. Appl. Phys. Lett., 64, 2839-41 (1994). 3. Appl. Phys. Lett., 81, 3152-54 (2002). 4. Jpn. J. Appl. Phys., 43, L1275-77 (2004). 5. Jpn. J. Appl_ Phys., 45, L1084-L1086 (2006). 6. Jpn. J. Appl. Phys., 34, L797-99 (1995). 7. Jpn. J. Appl. Phys., 43, L180-82 (2004). 8. Fujii T., Gao Y., Sharma R., Hu EL, DenBaars 127501.doc -28 - 200843144 SP·, Nakamura S·, “Adding GaN-based light-emitting diodes through surface roughening Efficiency," Applied Physics Letters, Vol. 84, No. 6, February 9, 2004, pp. 855-7. Conclusion This concludes the description of a preferred embodiment of the invention. The foregoing description of one or more embodiments of the invention has been in It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching. BRIEF DESCRIPTION OF THE DRAWINGS The drawings have been referred to, and the same reference numerals throughout the drawings represent the corresponding parts: Figures 1, 2 and 3 are schematic cross-sectional views of conventional LEDs. 4A and 4B are schematic and plan views, respectively, of a modified LED structure in accordance with a preferred embodiment of the present invention. 5A and 5B are schematic and plan views, respectively, of a modified LED structure in accordance with a preferred embodiment of the present invention. Figure 6 is a schematic illustration of an improved lED structure in accordance with a preferred embodiment of the present invention. Figure 7 is a schematic illustration of an improved LED structure in accordance with a preferred embodiment of the present invention. 8A and 8B are schematic and plan views, respectively, of a modified LED structure in accordance with a preferred embodiment of the present invention. Figure 9 is a schematic illustration of an improved LED structure in accordance with one embodiment of the present invention, <&touch;& k, < 127501.doc -29- 200843144 Figures 10A and 1B are schematic and plan views, respectively, of an improved LED structure in accordance with one of the preferred embodiments of the present invention. Figure 11 is a schematic illustration of an improved LED structure in accordance with a preferred embodiment of the present invention. 12A and 12B are schematic and plan views, respectively, of an improved LED structure in accordance with a preferred embodiment of the present invention. Figure 13 is a schematic illustration of an improved LED structure in accordance with a preferred embodiment of the present invention. Figure 14 is a schematic illustration of an improved LED structure in accordance with a preferred embodiment of the present invention. 15A and 15B are schematic and plan views, respectively, of an improved LED structure in accordance with a preferred embodiment of the present invention. Figure 16 is a schematic illustration of one of the improved LED structures in accordance with one embodiment of the present invention which is more versatile and has a specific κ embodiment. Figure 17 is a schematic illustration of a modified lED structure in accordance with one embodiment of the present invention and which has one of the specific κ embodiments. 18A and 18B are schematic and plan views, respectively, of an improved LED structure in accordance with a preferred embodiment of the present invention. 19A and 19B are schematic and plan views, respectively, of an improved LED structure in accordance with a preferred embodiment of the present invention. 20A and 20B are schematic and plan views, respectively, of an improved LED structure in accordance with a preferred embodiment of the present invention. 21A and 21B are respectively a schematic view and a plan view of an improved LED structure according to one embodiment of the tenth embodiment of the invention. 127501.doc -30- 200843144 Figures 22A and 22B are schematic and plan views, respectively, of an improved LED structure in accordance with one of the preferred embodiments of the present invention. [Main component symbol description] 100 Sapphire substrate 102 Emissive layer/active layer 104 Translucent or transparent electrode 106 Lead frame 108 Light-transmissive epoxy molding 110 Mirror 112 Light 114 Light 116 Light 118 Wire bonding 200 Sapphire substrate 202 Emissive layer /active layer 204 south mirror surface 206 die bond 208 lead frame 210 light transmissive epoxy molding 212 light 214 light 216 light 300 conductive sub-substrate 302 high reflectivity mirror 127501.doc • 31 - 200843144 304 transparent ITO layer 306 p-GaN layer 308 emission or active layer 310 n-GaN layer 312 LED emission 314 LED emission 316 reflective light emission 317 roughening 318 extraction 400 emission layer 402 n-type GaN layer 404 p-type GaN layer 406 first ITO layer 408 Second ITO layer 410 Glass layer 412 Surface 414 Surface 416 Wire bond 418 Lead frame 420 Bond pad 422 Bond pad 424 Light 426 Back side 428 Front side -32- 127501.doc 200843144 Γ·

500 發射層 502 η型GaN層 504 p型GaN層 506 ITO或ZnO層 508 透明絕緣層/電流散佈層 510 透明傳導膠水 512 透明傳導基板 514 表面 516 表面 522 歐姆電極/接合墊 524 歐姆電極/接合墊 526 透明板 528 引線框架 530 前側 532 後側 600 InGaN MQW主動層 602 η-GaN 層 604 p-GaN 層 606 環氧樹脂層/子基板 610 接合墊 612 歐姆電極/接合墊 614 ITO或ZnO層 618 孔或凹陷 620 表面 127501.doc -33- 200843144 700 InGaN MQW主動層 702 n-GaN 層 704 p_GaN 層 706 環氧樹脂層/子基板 710 窄帶Au連接/金屬層 712 接合墊 714 歐姆電極/接合塾 716 ITO或ZnO層 720 孔或凹陷 722 表面 800 發射層 802 η型GaN層 804 p型GaN層 806 第一 ITO層 808 第二ITO層 810 玻璃層 812 表面 814 表面 816 導線接合 818 引線框架或子基板 820 接合墊 822 接合墊 824 成形光學元件/球體 826 磷光體層 127501.doc -34- 200843144500 Emissive layer 502 n-type GaN layer 504 p-type GaN layer 506 ITO or ZnO layer 508 transparent insulating layer / current spreading layer 510 transparent conductive glue 512 transparent conductive substrate 514 surface 516 surface 522 ohmic electrode / bonding pad 524 ohmic electrode / bonding pad 526 transparent plate 528 lead frame 530 front side 532 rear side 600 InGaN MQW active layer 602 n-GaN layer 604 p-GaN layer 606 epoxy layer/sub-substrate 610 bond pad 612 ohmic electrode/bond pad 614 ITO or ZnO layer 618 hole Or recess 620 surface 127501.doc -33- 200843144 700 InGaN MQW active layer 702 n-GaN layer 704 p_GaN layer 706 epoxy layer / sub-substrate 710 narrow band Au connection / metal layer 712 bond pad 714 ohmic electrode / junction 塾 716 ITO Or ZnO layer 720 holes or recesses 722 Surface 800 Emissive layer 802 n-type GaN layer 804 p-type GaN layer 806 first ITO layer 808 second ITO layer 810 glass layer 812 surface 814 surface 816 wire bond 818 lead frame or sub-substrate 820 bonding Pad 822 Bonding Pad 824 Forming Optics/Sphere 826 Phosphor Layer 127501.doc -34- 200843144

828 光 830 光 834 表面 900 InGaN MQW發射層 902 η型GaN層 904 p型GaN層 906 ITO或ZnO層 908 表面 910 接合墊 912 歐姆接觸/接合墊 914 表面 916 環氧樹脂層 918 成形光學元件/環氧樹脂 920 磷光體層 1000 InGaN MQW發射層 1002 η型GaN層 1004 p型GaN層 1006 ITO或ZnO層 1008 接合墊 1010 歐姆接觸/接合墊 1012 表面 1014 表面 1016 環氧樹脂層 1018 成形光學元件 -35- 127501.doc 200843144828 Light 830 Light 834 Surface 900 InGaN MQW Emissive Layer 902 n-Type GaN Layer 904 p-Type GaN Layer 906 ITO or ZnO Layer 908 Surface 910 Bond Pad 912 Ohmic Contact/Joint Pad 914 Surface 916 Epoxy Layer 918 Forming Optics/Ring Oxy Resin 920 Phosphor Layer 1000 InGaN MQW Emissive Layer 1002 n-Type GaN Layer 1004 p-Type GaN Layer 1006 ITO or ZnO Layer 1008 Bond Pad 1010 Ohmic Contact/Join Pad 1012 Surface 1014 Surface 1016 Epoxy Layer 1018 Forming Optics - 35- 127501.doc 200843144

1020 磷光體層 1022 電流散佈層 1024 導線接合 1026 引線框架 1100 InGaN MQW發射層 1102 η型GaN層 1104 p型GaN層 1106 ITO或ZnO層 1108 接合墊 1110 歐姆接觸/接合墊 1112 表面 1114 表面 1116 環氧樹脂層 1118 成形光學元件 1120 磷光體層 1122 電流散佈層 1124 導線接合 1126 引線框架 1128 鏡面 1200 發射層 1202 η型GaN層 1204 p型GaN層 1206 ITO或ZnO層 1208 圖案化藍寶石基板(PSS) 127501.doc -36- 1210200843144 1212 1214 1216 1218 1220 1222 1224 1226 1228 1230 1300 1302 1304 1306 1308 1310 1312 1314 1316 1318 1320 1322 導線接合 引線框架 成形光學元件/倒轉圓錐體形狀 成形光學元件/倒轉圓錐體形狀 引線框架/前側 後側 光 接合墊 歐姆接觸/接合墊 介面 後側 發射層 η型GaN層 ρ型GaN層 ITO或ZnO層 基板 導線接合 引線框架 成形光學元件/倒轉圓錐體形狀 成形光學元件/倒轉圓錐體形狀 引線框架/前側 後側 光 接合墊 127501.doc -37- 1324 200843144 1326 歐姆接觸/接合墊 1328 頂部/前表面 1330 底部/後表面 1400 改良式LED結構 1402 發射層 1404 基板 1406 導線接合 1408 引線框架 1410 成形光學元件 1412 成形光學元件 1414 頂部/前側 1416 底部/後側 1418 光 1420 磷光體層 1422 頂部/前表面 1424 底部/後表面 1426 表面 1500 改良式LED結構 1502 發射層 1504 η型GaN層 1506 p型GaN層 1508 ITO或ZnO層 1510 基板 1512 導線接合 127501.doc -38- 200843144 1514 引線框架 1516 成形光學元件 1518 成形光學元件 1520 頂部/前側 1522 底部/後側 1524 光 1526 鏡面 1528 前側 1530 光 1600 發射層 1602 η型GaN層 1604 p型GaN層 1606 ITO或ZnO層 1608 基板 1610 導線接合 1612 引線框架 1614 成形光學元件 1616 成形光學元件 1618 頂部/前側 1620 底部/後側 1622 光 1624 鏡面 1626 前側 1628 光 127501.doc -39- 2008431441020 Phosphor layer 1022 Current spreading layer 1024 Wire bonding 1026 Lead frame 1100 InGaN MQW emissive layer 1102 n-type GaN layer 1104 p-type GaN layer 1106 ITO or ZnO layer 1108 bond pad 1110 ohmic contact/bond pad 1112 surface 1114 surface 1116 epoxy Layer 1118 Forming Optics 1120 Phosphor Layer 1122 Current Dispersion Layer 1124 Wire Bonding 1126 Lead Frame 1128 Mirror 1200 Emitting Layer 1202 n-Type GaN Layer 1204 p-Type GaN Layer 1206 ITO or ZnO Layer 1208 Patterned Sapphire Substrate (PSS) 127501.doc - 36- 1210200843144 1212 1214 1216 1218 1220 1222 1224 1226 1228 1230 1300 1302 1304 1306 1308 1310 1312 1314 1316 1318 1320 1322 Wire Bonding Lead Frame Forming Optical Element / Inverted Cone Shape Forming Optical Element / Inverted Cone Shape Lead Frame / Front Side Side light bond pad ohmic contact/bond pad interface back side emission layer n-type GaN layer p-type GaN layer ITO or ZnO layer substrate wire bond lead frame forming optical element / inverted cone shape forming optical element / inverted cone shape lead frame / Front side back side light bonding Pad 127501.doc -37- 1324 200843144 1326 ohmic contact/bond pad 1328 top/front surface 1330 bottom/back surface 1400 modified LED structure 1402 emissive layer 1404 substrate 1406 wire bond 1408 lead frame 1410 shaped optical element 1412 shaped optical element 1414 Top/Front Side 1416 Bottom/Back Side 1418 Light 1420 Phosphor Layer 1422 Top/Front Surface 1424 Bottom/Back Surface 1426 Surface 1500 Modified LED Structure 1502 Emissive Layer 1504 n-Type GaN Layer 1506 p-Type GaN Layer 1508 ITO or ZnO Layer 1510 Substrate 1512 Wire Bonding 127501.doc -38- 200843144 1514 Lead Frame 1516 Forming Optics 1518 Forming Optics 1520 Top/Front Side 1522 Bottom/Back Side 1524 Light 1526 Mirror 1528 Front Side 1530 Light 1600 Emitting Layer 1602 n-Type GaN Layer 1604 p-Type GaN Layer 1606 ITO or ZnO layer 1608 substrate 1610 wire bond 1612 lead frame 1614 shaped optic 1616 shaped optic 1618 top / front side 1620 bottom / back side 1622 light 1624 mirror 1626 front side 1628 light 127501.doc -39- 200843144

C 1630 頂部/前表面 1700 改良式LED結構 1702 發射層 1704 基板 1706 導線接合 1708 引線框架 1710 成形光學元件 1712 成形光學元件 1714 頂部/前側 1716 底部/後側 1718 光 1720 鏡面 1722 磷光體層 1724 頂部表面 1726 表面 1800 改良式LED結構 1802 發射層 1804 基板 1806 導線接合 1808 引線框架 1810 成形光學元件 1812 光 1814 鏡面 1816 前側 127501.doc -40- 200843144 1818 後側 1820 光 1900 改良式LED結構 1902 發射層 1904 基板 1906 導線接合 1908 引線框架 1910 成形光學元件 1912 光 1914 側壁 1916 前側 1918 光 1920 後側/基底 1922 鏡面表面 1928 頂部表面 2000 發射層 2002 基板 2004 導線接合 2006 引線框架 2008 成形光學元件 2010 光 2012 側壁 2014 前側 2016 光 127501.doc -41 - 200843144 2018 後側/基底 2020 前表面或頂部表面 2100 改良式LED結構 2102 發射層 2104 基板 2106 導線接合 2108 引線框架 2110 成形光學元件 2112 光 2114 側壁 2116 前側 2118 光 2120 後側 2122 磷光體層 2124 前表面或頂部表面 2126 表面 2200 改良式LED結構 2202 發射層 2204 基板 2206 導線接合 2208 引線框架 2210 成形光學元件 2212 成形光學元件 2214 頂部/前側 -42- 127501.doc 200843144 2216 底部/後側 2218 光 2220 透明板 2222 透明/透光環氧樹脂 127501.doc 43-C 1630 Top/Front Surface 1700 Modified LED Structure 1702 Emitting Layer 1704 Substrate 1706 Wire Bonding 1708 Lead Frame 1710 Forming Optics 1712 Forming Optics 1714 Top/Front Side 1716 Bottom/Back Side 1718 Light 1720 Mirror 1722 Phosphor Layer 1724 Top Surface 1726 Surface 1800 Modified LED Structure 1802 Emissive Layer 1804 Substrate 1806 Wire Bonded 1808 Lead Frame 1810 Formed Optics 1812 Light 1814 Mirror 1816 Front Side 127501.doc -40- 200843144 1818 Rear Side 1820 Light 1900 Modified LED Structure 1902 Emissive Layer 1904 Substrate 1906 Wire Bonding 1908 Lead Frame 1910 Forming Optics 1912 Light 1914 Sidewall 1916 Front Side 1918 Light 1920 Back Side / Substrate 1922 Mirror Surface 1928 Top Surface 2000 Emitting Layer 2002 Substrate 2004 Wire Bonding 2006 Lead Frame 2008 Forming Optics 2010 Light 2012 Sidewall 2014 Front Side 2016 Light 127501.doc -41 - 200843144 2018 Rear Side / Substrate 2020 Front Surface or Top Surface 2100 Improved LED Structure 2102 Emissive Layer 2104 Substrate 2106 Wire Bonding 2108 Frame 2110 Forming Optics 2112 Light 2114 Sidewall 2116 Front Side 2118 Light 2120 Back Side 2122 Phosphor Layer 2124 Front Surface or Top Surface 2126 Surface 2200 Improved LED Structure 2202 Emissive Layer 2204 Substrate 2206 Wire Bonding 2208 Lead Frame 2210 Forming Optics 2212 Forming Optics Component 2214 Top/Front Side-42-127501.doc 200843144 2216 Bottom/Back Side 2218 Light 2220 Transparent Plate 2222 Transparent/Translucent Epoxy 127501.doc 43-

Claims (1)

200843144 十、申請專利範圍: 1· 一種發光裝置,其包含: 複數個第III族氮化物層,其包括一發射光的主動區 域其中除該主動區域外的所有層對於該光的一發射波 長係透明,使得透過所有層並在透過該等層的多個方向 上有效地操取光。 2·如印求項1之裝置,其中一或多個透明傳導層係定位以 電性連接該等第III族氮化物層。 3·如印求項1之裝置,其中一或多個電流散佈層係沈積在 该等第III族氮化物層上,且該等透明傳導層係沈積在該 4電流散佈層上。 4·如喷求項1之裝置,其中鏡面或鏡面表面係從該層消除 以最小化内反射,以便最小化由該主動區域重新吸收 光。 5·如請求項1之裝置,其中該等第ΙΠ族氮化物層之一或多 個之一表面係粗糙化、紋理化、圖案化或成形以增強光 擷取。 6·如晴求項1之裝置,其中一引線框架支撐該等第ΠΙ族氮 化物層’該等第ΠΙ族氮化物層駐留於在該引線框架内的 一透明板上,且從該等第III族氮化物層所發射之光透過 在該引線框架内的該透明板透射。 Ί.如請求項1之裝置,其中該等第ΠΙ族氮化物層係嵌入於 一成形光學元件内或與其組合,且光係在進入該成形光 學元件並隨後擷取之前從該等第III族氮化物層之一或多 127501.doc 200843144 個表面來加以擷取。 8·如請求項7之裝置,其中進入該成形光學元件之該光之 至少一部分位於一臨界角内並加以擷取。 9·如請求項7之裝置,其中該成形光學元件之一或多個表 面係粗糙化、紋理化、圖案化或成形以增強光擷取。 10·如請求項7之裝置,其中該成形光學元件包括一磷光體 層。 11·如請求項10之裝置,其中該磷光體層之一或多個表面係 粗縫化、紋理化、圖案化或成形以增強光擷取。 12·如請求項7之裝置,其中該成形光學元件係一倒轉圓錐 體形狀。 13·如請求項12之裝置,其中該等第m族氮化物層係定位於 〆"N轉圓錐體形狀内,使得該光係由該倒轉圓錐體形狀 之側壁反射。 ·, 14·如請求項1之裝置,其中一覆蓋該等第III族氮化物層之 絕緣層係部分移除,且一傳導層係沈積於在該絕緣層之 表面内的一孔或凹陷内以電性接觸該等第III族氮化物 層。 15·如明求項1之裝置,其中該等第ΠΙ族氮化物層駐留於一 透明基板或子基板上。 16·如請求項15之裝置,其中該第ΠΙ族氮化物層係晶圓接合 至忒透明基板或子基板且光係透過該透明基板或子基板 來加以擷取。 如喷求項16之裝置,其中該透明基板或子基板係導電 127501.doc 200843144 的。 18·如請求項17之裝置’其中該等第職氮化物層係使用一 透月膠水 透明環氧樹脂或其他透明材料而晶圓接合 該透明基板。 19.如請求項18之裝置,其中該透明膠水、透明環氧樹脂或 其他透明材料係導電的。 2〇· —種製造一發光裝置之方法,其包含: 形成複數個第III族氮化物層,其包括一發射光的主動 區域,其中除該主動區域外的所有層對於該光的一發射 波長係透明,使得透過所有層並在透過該等層的多個方 向上有效地擷取光。 127501.doc200843144 X. Patent Application Range: 1. A light-emitting device comprising: a plurality of Group III nitride layers comprising an active region emitting light, wherein all layers except the active region have an emission wavelength for the light Transparent, allowing light to be efficiently transmitted through all layers and in multiple directions through the layers. 2. The device of claim 1, wherein one or more transparent conductive layers are positioned to electrically connect the Group III nitride layers. 3. The device of claim 1, wherein one or more current spreading layers are deposited on the group III nitride layers, and the transparent conductive layers are deposited on the fourth current spreading layer. 4. Apparatus according to claim 1, wherein the specular or specular surface is removed from the layer to minimize internal reflection to minimize re-absorption of light by the active area. 5. The device of claim 1, wherein one or more of the surfaces of the first cerium nitride layers are roughened, textured, patterned or shaped to enhance light extraction. 6. The apparatus of claim 1, wherein a lead frame supports the samarium nitride layers, the samarium nitride layers reside on a transparent plate within the lead frame, and from the Light emitted by the Group III nitride layer is transmitted through the transparent plate within the lead frame. The device of claim 1, wherein the Dioxon nitride layer is embedded in or combined with a shaped optical element, and the light system is from the Group III before entering the shaped optical element and subsequently drawing One of the nitride layers or more than 127501.doc 200843144 surfaces are taken. 8. The device of claim 7, wherein at least a portion of the light entering the shaped optical element is within a critical angle and is drawn. 9. The device of claim 7, wherein one or more of the shaped optical elements are roughened, textured, patterned, or shaped to enhance light extraction. 10. The device of claim 7, wherein the shaped optical element comprises a phosphor layer. 11. The device of claim 10, wherein one or more of the phosphor layers are roughed, textured, patterned or shaped to enhance light extraction. 12. The device of claim 7, wherein the shaped optical element is in the shape of an inverted cone. 13. The device of claim 12, wherein the m-th nitride layer is positioned within a 〆"N-turn cone shape such that the light system is reflected by the sidewall of the inverted cone shape. 14. The device of claim 1, wherein an insulating layer covering the group III nitride layers is partially removed, and a conductive layer is deposited in a hole or recess in the surface of the insulating layer Electrically contacting the Group III nitride layers. The device of claim 1, wherein the samarium nitride layer resides on a transparent substrate or submount. 16. The device of claim 15 wherein the Di-N-nitride layer wafer is bonded to a transparent substrate or sub-substrate and the light is transmitted through the transparent substrate or sub-substrate. The device of claim 16, wherein the transparent substrate or sub-substrate is electrically conductive 127501.doc 200843144. 18. The device of claim 17 wherein the first nitride layer is wafer bonded to the transparent substrate using a moon-transparent transparent epoxy or other transparent material. 19. The device of claim 18, wherein the transparent glue, transparent epoxy or other transparent material is electrically conductive. A method of fabricating a light-emitting device, comprising: forming a plurality of Group III nitride layers comprising an active region that emits light, wherein all layers other than the active region have an emission wavelength for the light It is transparent so that light is transmitted through all layers and in multiple directions through the layers. 127501.doc
TW096147272A 2006-12-11 2007-12-11 Transparent light emitting diodes TWI460881B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86944706P 2006-12-11 2006-12-11

Publications (2)

Publication Number Publication Date
TW200843144A true TW200843144A (en) 2008-11-01
TWI460881B TWI460881B (en) 2014-11-11

Family

ID=39512046

Family Applications (2)

Application Number Title Priority Date Filing Date
TW096147272A TWI460881B (en) 2006-12-11 2007-12-11 Transparent light emitting diodes
TW103130484A TW201448263A (en) 2006-12-11 2007-12-11 Transparent light emitting diodes

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW103130484A TW201448263A (en) 2006-12-11 2007-12-11 Transparent light emitting diodes

Country Status (4)

Country Link
US (8) US8294166B2 (en)
JP (1) JP2010512662A (en)
TW (2) TWI460881B (en)
WO (1) WO2008073400A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10454010B1 (en) 2006-12-11 2019-10-22 The Regents Of The University Of California Transparent light emitting diodes

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000461B2 (en) * 2003-07-04 2015-04-07 Epistar Corporation Optoelectronic element and manufacturing method thereof
US10586787B2 (en) 2007-01-22 2020-03-10 Cree, Inc. Illumination devices using externally interconnected arrays of light emitting devices, and methods of fabricating same
US9484499B2 (en) * 2007-04-20 2016-11-01 Cree, Inc. Transparent ohmic contacts on light emitting diodes with carrier substrates
EP2174351A1 (en) 2007-07-26 2010-04-14 The Regents of the University of California Light emitting diodes with a p-type surface
US8368100B2 (en) 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
US20090309127A1 (en) * 2008-06-13 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US20090321775A1 (en) * 2008-06-26 2009-12-31 Ghulam Hasnain LED with Reduced Electrode Area
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8143148B1 (en) 2008-07-14 2012-03-27 Soraa, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8259769B1 (en) 2008-07-14 2012-09-04 Soraa, Inc. Integrated total internal reflectors for high-gain laser diodes with high quality cleaved facets on nonpolar/semipolar GaN substrates
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
EP2319086A4 (en) * 2008-08-04 2014-08-27 Soraa Inc White light devices using non-polar or semipolar gallium containing materials and phosphors
US8853712B2 (en) 2008-11-18 2014-10-07 Cree, Inc. High efficacy semiconductor light emitting devices employing remote phosphor configurations
US8004172B2 (en) 2008-11-18 2011-08-23 Cree, Inc. Semiconductor light emitting apparatus including elongated hollow wavelength conversion tubes and methods of assembling same
US9052416B2 (en) 2008-11-18 2015-06-09 Cree, Inc. Ultra-high efficacy semiconductor light emitting devices
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
WO2010120819A1 (en) * 2009-04-13 2010-10-21 Kaai, Inc. Optical device structure using gan substrates for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US8207547B2 (en) * 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
WO2011056867A1 (en) 2009-11-03 2011-05-12 The Regents Of The University Of California High brightness light emitting diode covered by zinc oxide layers on multiple surfaces grown in low temperature aqueous solution
US9261632B2 (en) 2010-01-05 2016-02-16 Hewlett Packard Enterprise Development Lp Light emitting diode device
US20110215348A1 (en) * 2010-02-03 2011-09-08 Soraa, Inc. Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US9558954B2 (en) * 2010-04-22 2017-01-31 Luminus Devices, Inc. Selective wet etching and textured surface planarization processes
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
CN102130271A (en) * 2010-09-28 2011-07-20 映瑞光电科技(上海)有限公司 LED (light-emitting diode) chip packaging structure and white light LED light-emitting device
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US8314566B2 (en) 2011-02-22 2012-11-20 Quarkstar Llc Solid state lamp using light emitting strips
KR101843501B1 (en) * 2011-03-30 2018-03-29 서울반도체 주식회사 Lighting apparatus
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
TWI466323B (en) 2011-11-07 2014-12-21 Ind Tech Res Inst Light emitting diode
US11160148B2 (en) 2017-06-13 2021-10-26 Ideal Industries Lighting Llc Adaptive area lamp
US11792898B2 (en) 2012-07-01 2023-10-17 Ideal Industries Lighting Llc Enhanced fixtures for area lighting
WO2014203123A1 (en) 2013-06-19 2014-12-24 Koninklijke Philips N.V. Led with patterned surface features based on emission field patterns
DE102013106502A1 (en) * 2013-06-21 2014-12-24 Osram Opto Semiconductors Gmbh Optoelectronic component, method for producing an optoelectronic component and mirror device
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9564736B1 (en) 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US9570712B2 (en) * 2014-07-31 2017-02-14 Industrial Technology Research Institute Organic light-emitting module
US9634187B2 (en) * 2014-09-29 2017-04-25 Bridgelux, Inc. Flip chip light emitting diode having trnsparent material with surface features
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
USD826871S1 (en) 2014-12-11 2018-08-28 Cree, Inc. Light emitting diode device
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
TWI628483B (en) * 2015-03-24 2018-07-01 美商山姆科技公司 Optical block with textured surface
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
KR20180087302A (en) * 2015-11-20 2018-08-01 루미리즈 홀딩 비.브이. Contact etch and metallization for improved LED device performance and reliability
US10529696B2 (en) 2016-04-12 2020-01-07 Cree, Inc. High density pixelated LED and devices and methods thereof
US10734363B2 (en) 2017-08-03 2020-08-04 Cree, Inc. High density pixelated-LED chips and chip array devices
WO2019028314A1 (en) 2017-08-03 2019-02-07 Cree, Inc. High density pixelated-led chips and chip array devices, and fabrication methods
TWI666792B (en) * 2017-09-27 2019-07-21 致伸科技股份有限公司 Light source module and manufacturing method therefor
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10529773B2 (en) 2018-02-14 2020-01-07 Cree, Inc. Solid state lighting devices with opposing emission directions
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
KR102664394B1 (en) 2018-06-01 2024-05-08 삼성전자주식회사 Superlattice structure including two-dimensional material and device including the superlattice structure
CN110767786A (en) * 2018-07-25 2020-02-07 隆达电子股份有限公司 Light emitting diode device
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US10903265B2 (en) 2018-12-21 2021-01-26 Cree, Inc. Pixelated-LED chips and chip array devices, and fabrication methods
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US11817526B2 (en) 2019-10-29 2023-11-14 Creeled, Inc. Texturing for high density pixelated-LED chips and chip array devices
CN212257440U (en) * 2020-04-30 2020-12-29 漳州冠誉灯饰有限公司 LED packaging structure with high side brightness and lamp decoration
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11549680B2 (en) 2020-07-08 2023-01-10 Feit Electric Company, Inc. Mirror with light emitting elements and stand
US20230268462A1 (en) * 2020-07-09 2023-08-24 The Regents Of The University Of California Fully transparent ultraviolet or far-ultraviolet light-emitting diodes
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device
US11437548B2 (en) 2020-10-23 2022-09-06 Creeled, Inc. Pixelated-LED chips with inter-pixel underfill materials, and fabrication methods
US20240104557A1 (en) * 2022-09-23 2024-03-28 Parameta Corp. Method for transmitting specific data whose data format is unknown at relay from first blockchain network to second blockchain network and relay using the same

Family Cites Families (502)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607463A (en) 1968-08-02 1971-09-21 Varian Associates Method for growing tin-doped n-type epitaxial gallium arsenide from the liquid state
US3938177A (en) 1973-06-25 1976-02-10 Amp Incorporated Narrow lead contact for automatic face down bonding of electronic chips
US3999280A (en) 1973-06-25 1976-12-28 Amp Incorporated Narrow lead contact for automatic face down bonding of electronic chips
US3871067A (en) 1973-06-29 1975-03-18 Ibm Method of manufacturing a semiconductor device
US4026692A (en) 1975-12-15 1977-05-31 Corning Glass Works Press molding optical articles from acid hydrated glasses
JPS592193B2 (en) 1976-08-19 1984-01-17 岡谷電機産業株式会社 How to make a pilot lamp
JPS5722581Y2 (en) 1979-08-21 1982-05-17
US4497974A (en) 1982-11-22 1985-02-05 Exxon Research & Engineering Co. Realization of a thin film solar cell with a detached reflector
US6331356B1 (en) 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
US5087949A (en) 1989-06-27 1992-02-11 Hewlett-Packard Company Light-emitting diode with diagonal faces
US5376580A (en) 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
US5416870A (en) 1993-12-03 1995-05-16 Motorola, Inc. Optoelectronic interface device and method with reflective surface
JPH07254732A (en) 1994-03-15 1995-10-03 Toshiba Corp Semiconductor light emitting device
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
US5932048A (en) 1995-04-06 1999-08-03 Komatsu Electronic Metals Co., Ltd. Method of fabricating direct-bonded semiconductor wafers
JPH0918057A (en) 1995-06-27 1997-01-17 Atsuden Kk Chip-arrangement structure for light-emitting diode
CA2225734C (en) 1995-06-29 2006-11-14 Lynn Wiese Localized illumination using tir technology
JPH0927642A (en) 1995-07-13 1997-01-28 Clarion Co Ltd Lighting device
JPH0955540A (en) * 1995-08-11 1997-02-25 Iwasaki Electric Co Ltd Light emitting apparatus
US5780867A (en) 1996-03-07 1998-07-14 Sandia Corporation Broadband light-emitting diode
US5779924A (en) * 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
US5705834A (en) 1996-04-23 1998-01-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Increased efficiency LED
US5905275A (en) * 1996-06-17 1999-05-18 Kabushiki Kaisha Toshiba Gallium nitride compound semiconductor light-emitting device
US5708280A (en) * 1996-06-21 1998-01-13 Motorola Integrated electro-optical package and method of fabrication
CN1534802B (en) 1996-06-26 2010-05-26 奥斯兰姆奥普托半导体股份有限两合公司 Luminous semiconductor device possessing luminous alteration element
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP3434658B2 (en) 1997-01-14 2003-08-11 サンケン電気株式会社 Semiconductor light emitting device
JP4203132B2 (en) 1997-03-31 2008-12-24 シャープ株式会社 Light emitting device and manufacturing method thereof
US6229160B1 (en) 1997-06-03 2001-05-08 Lumileds Lighting, U.S., Llc Light extraction from a semiconductor light-emitting device via chip shaping
US6784463B2 (en) 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
JP3083783B2 (en) 1997-06-25 2000-09-04 株式会社東芝 Gallium nitride based semiconductor light emitting device and light emitting device
US6022760A (en) 1997-07-30 2000-02-08 Motorola, Inc. Integrated electro-optical package and method of fabrication
US6569544B1 (en) 1997-07-31 2003-05-27 Ecole Polytechnique Federale De Lausanne Electroluminescent device
US6015719A (en) 1997-10-24 2000-01-18 Hewlett-Packard Company Transparent substrate light emitting diodes with directed light output
US5952681A (en) * 1997-11-24 1999-09-14 Chen; Hsing Light emitting diode emitting red, green and blue light
TW408497B (en) 1997-11-25 2000-10-11 Matsushita Electric Works Ltd LED illuminating apparatus
JP3285345B2 (en) 1997-11-25 2002-05-27 松下電工株式会社 Charging device
US6294800B1 (en) 1998-02-06 2001-09-25 General Electric Company Phosphors for white light generation from UV emitting diodes
GB9826406D0 (en) 1998-12-02 1999-01-27 South Bank Univ Entpr Ltd Quinolates
US6091085A (en) 1998-02-19 2000-07-18 Agilent Technologies, Inc. GaN LEDs with improved output coupling efficiency
US6329925B1 (en) 1999-11-24 2001-12-11 Donnelly Corporation Rearview mirror assembly with added feature modular display
US6936859B1 (en) 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US6504180B1 (en) 1998-07-28 2003-01-07 Imec Vzw And Vrije Universiteit Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom
JP3785820B2 (en) * 1998-08-03 2006-06-14 豊田合成株式会社 Light emitting device
US6335548B1 (en) 1999-03-15 2002-01-01 Gentex Corporation Semiconductor radiation emitter package
US6376851B1 (en) 1998-09-21 2002-04-23 Eugene Robert Worley Opto-coupler applications suitable for low efficiency silicon based LEDs
EP1042775A2 (en) 1998-09-22 2000-10-11 Fed Corporation Inorganic-based color conversion matrix element for organic color display devices and method of fabrication
US6373188B1 (en) 1998-12-22 2002-04-16 Honeywell International Inc. Efficient solid-state light emitting device with excited phosphors for producing a visible light output
RU2142661C1 (en) 1998-12-29 1999-12-10 Швейкин Василий Иванович Injection non-coherent light source
US6155699A (en) 1999-03-15 2000-12-05 Agilent Technologies, Inc. Efficient phosphor-conversion led structure
US6521916B2 (en) 1999-03-15 2003-02-18 Gentex Corporation Radiation emitter device having an encapsulant with different zones of thermal conductivity
JP2000277808A (en) 1999-03-23 2000-10-06 Sanyo Electric Co Ltd Light source device and its manufacture
TW455908B (en) 1999-04-20 2001-09-21 Koninkl Philips Electronics Nv Lighting system
DE19918370B4 (en) 1999-04-22 2006-06-08 Osram Opto Semiconductors Gmbh LED white light source with lens
US7288420B1 (en) 1999-06-04 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US6133589A (en) * 1999-06-08 2000-10-17 Lumileds Lighting, U.S., Llc AlGaInN-based LED having thick epitaxial layer for improved light extraction
KR100425566B1 (en) * 1999-06-23 2004-04-01 가부시키가이샤 시티즌 덴시 Light emitting diode
JP2001024223A (en) * 1999-07-09 2001-01-26 Nichia Chem Ind Ltd Nitride semiconductor light emitting diode
JP2001044491A (en) 1999-07-13 2001-02-16 Korai Kagi Kofun Yugenkoshi Led and manufacturing method therefor
DE60043546D1 (en) 1999-07-26 2010-01-28 Labosphere Inst LENS, LIGHT-EMITTING BODY, LIGHTING BODY AND OPTICAL INFORMATION SYSTEM
JP3300778B2 (en) * 1999-10-05 2002-07-08 ラボ・スフィア株式会社 Luminous body
US6396082B1 (en) 1999-07-29 2002-05-28 Citizen Electronics Co., Ltd. Light-emitting diode
US6550953B1 (en) 1999-08-20 2003-04-22 Toyoda Gosei Co. Ltd. Light emitting diode lamp device
JP4313478B2 (en) * 1999-08-30 2009-08-12 昭和電工株式会社 AlGaInP light emitting diode
US6504301B1 (en) 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
DE19943406C2 (en) 1999-09-10 2001-07-19 Osram Opto Semiconductors Gmbh Light emitting diode with surface structuring
DE19947030A1 (en) 1999-09-30 2001-04-19 Osram Opto Semiconductors Gmbh Surface-structured light emission diode with improved current coupling
GB9924515D0 (en) 1999-10-15 1999-12-15 Cambridge Display Tech Ltd Light-emitting devices
JP3172947B2 (en) 1999-10-22 2001-06-04 ラボ・スフィア株式会社 Lighting device using luminous body
US7202506B1 (en) 1999-11-19 2007-04-10 Cree, Inc. Multi element, multi color solid state LED/laser
KR100840637B1 (en) 1999-12-01 2008-06-24 더 트러스티즈 오브 프린스턴 유니버시티 Complexes of form l2mx as phosphorescent dopants for organic leds
US6357889B1 (en) 1999-12-01 2002-03-19 General Electric Company Color tunable light source
US6514782B1 (en) 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
US6486499B1 (en) * 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6573537B1 (en) 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
US6903376B2 (en) 1999-12-22 2005-06-07 Lumileds Lighting U.S., Llc Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
DE19964252A1 (en) 1999-12-30 2002-06-06 Osram Opto Semiconductors Gmbh Surface mount component for an LED white light source
DE10006738C2 (en) * 2000-02-15 2002-01-17 Osram Opto Semiconductors Gmbh Light-emitting component with improved light decoupling and method for its production
DE10008583A1 (en) 2000-02-24 2001-09-13 Osram Opto Semiconductors Gmbh Production of an optically transparent substrate comprises epitaxially growing a substrate layer on a substrate, connecting the substrate layer to the side with an optically transparent layer, and removing the substrate
US6729746B2 (en) 2000-03-14 2004-05-04 Toyoda Gosei Co., Ltd. Light source device
US6777871B2 (en) 2000-03-31 2004-08-17 General Electric Company Organic electroluminescent devices with enhanced light extraction
US6483196B1 (en) 2000-04-03 2002-11-19 General Electric Company Flip chip led apparatus
DE10019665A1 (en) 2000-04-19 2001-10-31 Osram Opto Semiconductors Gmbh Luminescent diode chip and method for its production
AU756072B2 (en) 2000-06-15 2003-01-02 Lednium Technology Pty Limited Led lamp
US6452217B1 (en) 2000-06-30 2002-09-17 General Electric Company High power LED lamp structure using phase change cooling enhancements for LED lighting products
DE10032838B4 (en) 2000-07-06 2015-08-20 Osram Opto Semiconductors Gmbh Radiation emitting semiconductor chip and method for its production
ES2168071B1 (en) 2000-07-12 2003-07-16 Barros Alejandro Rodriguez MODULAR REAR VIEW MIRROR WITH INTERCHANGEABLE MULTIPLE SIGNALS FOR VEHICLES OF 2, 3, 4 OR MORE WHEELS.
US6420736B1 (en) 2000-07-26 2002-07-16 Axt, Inc. Window for gallium nitride light emitting diode
TW459403B (en) 2000-07-28 2001-10-11 Lee Jeong Hoon White light-emitting diode
JP2002064224A (en) 2000-08-18 2002-02-28 Agilent Technologies Japan Ltd Light-emitting diode and its manufacturing method
JP2002084002A (en) 2000-09-06 2002-03-22 Nippon Leiz Co Ltd Light source device
US6525464B1 (en) 2000-09-08 2003-02-25 Unity Opto Technology Co., Ltd. Stacked light-mixing LED
JP2002141556A (en) 2000-09-12 2002-05-17 Lumileds Lighting Us Llc Light emitting diode with improved light extraction efficiency
US7064355B2 (en) 2000-09-12 2006-06-20 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
US7053419B1 (en) * 2000-09-12 2006-05-30 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
US6998281B2 (en) 2000-10-12 2006-02-14 General Electric Company Solid state lighting device with reduced form factor including LED with directional emission and package with microoptics
US6525335B1 (en) 2000-11-06 2003-02-25 Lumileds Lighting, U.S., Llc Light emitting semiconductor devices including wafer bonded heterostructures
TW474034B (en) 2000-11-07 2002-01-21 United Epitaxy Co Ltd LED and the manufacturing method thereof
JP2002176202A (en) 2000-12-11 2002-06-21 Rohm Co Ltd Optical device, photointerrupter provided therewith and method for manufacturing the same
US6547423B2 (en) 2000-12-22 2003-04-15 Koninklijke Phillips Electronics N.V. LED collimation optics with improved performance and reduced size
JP3738824B2 (en) 2000-12-26 2006-01-25 セイコーエプソン株式会社 OPTICAL DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
AT410266B (en) 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT
US20020084745A1 (en) 2000-12-29 2002-07-04 Airma Optoelectronics Corporation Light emitting diode with light conversion by dielectric phosphor powder
SG100618A1 (en) 2001-01-03 2003-12-26 Labosphere Inst Bulky lens, light emitting unit, and lighting instrument
JP3831614B2 (en) * 2001-01-10 2006-10-11 三洋電機株式会社 Method for manufacturing light emitting or receiving device
JP4545956B2 (en) 2001-01-12 2010-09-15 ローム株式会社 Semiconductor device and manufacturing method thereof
DE10101554A1 (en) 2001-01-15 2002-08-01 Osram Opto Semiconductors Gmbh emitting diode
US6940704B2 (en) 2001-01-24 2005-09-06 Gelcore, Llc Semiconductor light emitting device
JP2002232020A (en) 2001-01-31 2002-08-16 Matsushita Electric Ind Co Ltd Led, and display, illuminator, liquid display back light device using the led, and light source device for projector
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6573530B1 (en) 2001-02-09 2003-06-03 Nortel Networks Limited Multiple quantum well optoelectronic devices
GB2372632A (en) 2001-02-23 2002-08-28 Sharp Kk A method of growing an InGaN semiconductor layer
DE10109787A1 (en) * 2001-02-28 2002-10-02 Infineon Technologies Ag Digital camera with a light-sensitive sensor
US6699770B2 (en) 2001-03-01 2004-03-02 John Tarje Torvik Method of making a hybride substrate having a thin silicon carbide membrane layer
DE10111501B4 (en) 2001-03-09 2019-03-21 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component and method for its production
US6980710B2 (en) * 2001-03-09 2005-12-27 Waveguide Solutions Inc Process for efficient light extraction from light emitting chips
JP2002280614A (en) 2001-03-14 2002-09-27 Citizen Electronics Co Ltd Light emitting diode
US6661167B2 (en) 2001-03-14 2003-12-09 Gelcore Llc LED devices
TW525278B (en) 2001-03-15 2003-03-21 Opto Tech Corp Package structure of high-efficiency electro-optical device and the forming method thereof
US6445007B1 (en) 2001-03-19 2002-09-03 Uni Light Technology Inc. Light emitting diodes with spreading and improving light emitting area
US6987613B2 (en) * 2001-03-30 2006-01-17 Lumileds Lighting U.S., Llc Forming an optical element on the surface of a light emitting device for improved light extraction
US6417019B1 (en) 2001-04-04 2002-07-09 Lumileds Lighting, U.S., Llc Phosphor converted light emitting diode
CN1212676C (en) 2001-04-12 2005-07-27 松下电工株式会社 Light source device using LED, and method of producing same
KR100828351B1 (en) 2001-04-17 2008-05-08 삼성전자주식회사 Light-emitting diode and display device applying it
EP1398839B1 (en) 2001-04-23 2012-03-28 Panasonic Corporation Light emitting device comprising light emitting diode chip
WO2002090825A1 (en) 2001-04-23 2002-11-14 Lab. Sphere Corporation Lighting device using light-emitting diode
JP2002319708A (en) 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Led chip and led device
US6686676B2 (en) 2001-04-30 2004-02-03 General Electric Company UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same
US6607286B2 (en) * 2001-05-04 2003-08-19 Lumileds Lighting, U.S., Llc Lens and lens cap with sawtooth portion for light emitting diode
TW524841B (en) 2001-05-08 2003-03-21 Chi Mei Optoelectronics Corp Organic electro-luminescent (OEL) compound
US6657767B2 (en) 2001-05-21 2003-12-02 Gentex Corporation Rearview mirror assembly construction
US6674096B2 (en) * 2001-06-08 2004-01-06 Gelcore Llc Light-emitting diode (LED) package and packaging method for shaping the external light intensity distribution
US6576488B2 (en) 2001-06-11 2003-06-10 Lumileds Lighting U.S., Llc Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
US6798136B2 (en) 2001-06-19 2004-09-28 Gelcore Llc Phosphor embedded die epoxy and lead frame modifications
TW541710B (en) 2001-06-27 2003-07-11 Epistar Corp LED having transparent substrate and the manufacturing method thereof
JP2003011417A (en) 2001-06-29 2003-01-15 Kyocera Corp Optical print head
JP4674418B2 (en) 2001-06-29 2011-04-20 パナソニック株式会社 Lighting equipment
US6787435B2 (en) * 2001-07-05 2004-09-07 Gelcore Llc GaN LED with solderable backside metal
JP2003029654A (en) * 2001-07-11 2003-01-31 Sony Corp Display device
TW543128B (en) 2001-07-12 2003-07-21 Highlink Technology Corp Surface mounted and flip chip type LED package
US7067849B2 (en) 2001-07-17 2006-06-27 Lg Electronics Inc. Diode having high brightness and method thereof
JP4055503B2 (en) 2001-07-24 2008-03-05 日亜化学工業株式会社 Semiconductor light emitting device
JP3891400B2 (en) 2001-07-25 2007-03-14 シチズン電子株式会社 Light emitting diode
TW552726B (en) 2001-07-26 2003-09-11 Matsushita Electric Works Ltd Light emitting device in use of LED
JP3659407B2 (en) * 2001-08-03 2005-06-15 ソニー株式会社 Light emitting device
DE10140991C2 (en) 2001-08-21 2003-08-21 Osram Opto Semiconductors Gmbh Organic light-emitting diode with energy supply, manufacturing process therefor and applications
US6719446B2 (en) * 2001-08-24 2004-04-13 Densen Cao Semiconductor light source for providing visible light to illuminate a physical space
JP4945865B2 (en) * 2001-08-27 2012-06-06 ソニー株式会社 Multilayer wiring structure or electrode extraction structure, electric circuit device, and manufacturing method thereof
JP2003086839A (en) 2001-09-07 2003-03-20 Sharp Corp Nitride semiconductor light emitting device and method for manufacturing the same
US7105865B2 (en) * 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
DE20115914U1 (en) 2001-09-27 2003-02-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
US7119271B2 (en) 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US6903379B2 (en) * 2001-11-16 2005-06-07 Gelcore Llc GaN based LED lighting extraction efficiency using digital diffractive phase grating
TW569476B (en) 2001-11-16 2004-01-01 Toyoda Gosei Kk Light emitting diode, LED lighting module, and lamp apparatus
JP4055405B2 (en) 2001-12-03 2008-03-05 ソニー株式会社 Electronic component and manufacturing method thereof
EP1461645A4 (en) 2001-12-14 2006-09-06 Digital Optics Internat Corp Uniform illumination system
US6515308B1 (en) * 2001-12-21 2003-02-04 Xerox Corporation Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
DE10201102A1 (en) 2002-01-09 2003-07-24 Infineon Technologies Ag Semiconductor laser device has monitor diode optically coupled to rear side of optical resonator of laser diode
US20030215766A1 (en) 2002-01-11 2003-11-20 Ultradent Products, Inc. Light emitting systems and kits that include a light emitting device and one or more removable lenses
JP3782357B2 (en) 2002-01-18 2006-06-07 株式会社東芝 Manufacturing method of semiconductor light emitting device
EP2262007B1 (en) * 2002-01-28 2016-11-23 Nichia Corporation Nitride semiconductor element with supporting substrate
JP3973082B2 (en) 2002-01-31 2007-09-05 シチズン電子株式会社 Double-sided LED package
KR20030065957A (en) 2002-02-02 2003-08-09 한국전자통신연구원 Dye-sensitized solar cells including polymer electrolyte gel containing poly(vinylidene fluoride)
JP2003234509A (en) 2002-02-08 2003-08-22 Citizen Electronics Co Ltd Light emitting diode
US20050040410A1 (en) * 2002-02-12 2005-02-24 Nl-Nanosemiconductor Gmbh Tilted cavity semiconductor optoelectronic device and method of making same
JP2003249692A (en) * 2002-02-25 2003-09-05 Stanley Electric Co Ltd Semiconductor light emitting device
JP3801931B2 (en) 2002-03-05 2006-07-26 ローム株式会社 Structure and manufacturing method of light emitting device using LED chip
JP2003264317A (en) 2002-03-08 2003-09-19 Asahi Matsushita Electric Works Ltd Beam light emitting element and its manufacturing method
JP4307113B2 (en) * 2002-03-19 2009-08-05 宣彦 澤木 Semiconductor light emitting device and manufacturing method thereof
TW558804B (en) 2002-04-16 2003-10-21 Yuan Lin Flexible light emitting device and the manufacturing method thereof
US6791116B2 (en) 2002-04-30 2004-09-14 Toyoda Gosei Co., Ltd. Light emitting diode
US6635902B1 (en) 2002-05-24 2003-10-21 Para Light Electronics Co., Ltd. Serial connection structure of light emitting diode chip
US20060175625A1 (en) 2002-05-28 2006-08-10 Ryoji Yokotani Light emitting element, lighting device and surface emission illuminating device using it
US6870311B2 (en) 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
US7048412B2 (en) 2002-06-10 2006-05-23 Lumileds Lighting U.S., Llc Axial LED source
JP3870848B2 (en) * 2002-06-10 2007-01-24 セイコーエプソン株式会社 Semiconductor integrated circuit, electro-optical device, electronic apparatus, and method of manufacturing semiconductor integrated circuit
TW573372B (en) 2002-11-06 2004-01-21 Super Nova Optoelectronics Cor GaN-based III-V group compound semiconductor light-emitting diode and the manufacturing method thereof
JP2005530349A (en) 2002-06-13 2005-10-06 クリー インコーポレイテッド Emitter package with saturation conversion material
JP2004022901A (en) * 2002-06-18 2004-01-22 Seiko Epson Corp Optical interconnection integrated circuit, method for manufacturing optical interconnection integrated circuit, electro-optical device, and electronic apparatus
JP2004031508A (en) 2002-06-24 2004-01-29 Nec Corp Optoelectric composite module and light inputting/outputting device with its module as configuring element
JP3874701B2 (en) 2002-06-26 2007-01-31 株式会社東芝 Semiconductor light emitting device and semiconductor light emitting device
US6955985B2 (en) 2002-06-28 2005-10-18 Kopin Corporation Domain epitaxy for thin film growth
JP4240276B2 (en) 2002-07-05 2009-03-18 株式会社半導体エネルギー研究所 Light emitting device
JP2004047748A (en) 2002-07-12 2004-02-12 Stanley Electric Co Ltd Light-emitting diode
TW567618B (en) 2002-07-15 2003-12-21 Epistar Corp Light emitting diode with adhesive reflection layer and manufacturing method thereof
US7129635B2 (en) 2002-08-06 2006-10-31 Rohm Co., Ltd. Organic EL display device with plural electrode segments
US6719936B2 (en) 2002-08-23 2004-04-13 Eastman Kodak Company Method of making a solid compacted pellet of organic material for vacuum deposition of OLED displays
DE10239045A1 (en) 2002-08-26 2004-03-11 Osram Opto Semiconductors Gmbh Method for producing an electromagnetic radiation-emitting semiconductor chip and electromagnetic radiation-emitting semiconductor chip
JP4787496B2 (en) 2002-08-28 2011-10-05 モクストロニクス,インコーポレイテッド Hybrid beam deposition system and method and semiconductor device made thereby
US7479662B2 (en) * 2002-08-30 2009-01-20 Lumination Llc Coated LED with improved efficiency
US7264378B2 (en) 2002-09-04 2007-09-04 Cree, Inc. Power surface mount light emitting die package
DE10245932B3 (en) 2002-09-30 2004-02-05 Siemens Ag Light-emitting diode illumination device has spaces provided between side edges of adjacent light-emitting diodes for output of emitted light
JP3910517B2 (en) 2002-10-07 2007-04-25 シャープ株式会社 LED device
US7112916B2 (en) 2002-10-09 2006-09-26 Kee Siang Goh Light emitting diode based light source emitting collimated light
US6784460B2 (en) 2002-10-10 2004-08-31 Agilent Technologies, Inc. Chip shaping for flip-chip light emitting diode
TW563264B (en) 2002-10-11 2003-11-21 Highlink Technology Corp Base of optoelectronic device
JP2005035864A (en) 2002-10-15 2005-02-10 Kenichiro Miyahara Substrate for mounting luminous element
US7122734B2 (en) 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US6730940B1 (en) 2002-10-29 2004-05-04 Lumileds Lighting U.S., Llc Enhanced brightness light emitting device spot emitter
JP2004158557A (en) 2002-11-05 2004-06-03 Shurai Kagi Kofun Yugenkoshi Similar flip chip type light emitting diode device package
TW200414572A (en) 2002-11-07 2004-08-01 Matsushita Electric Ind Co Ltd LED lamp
US6717362B1 (en) 2002-11-14 2004-04-06 Agilent Technologies, Inc. Light emitting diode with gradient index layering
DE10258193B4 (en) 2002-12-12 2014-04-10 Osram Opto Semiconductors Gmbh Method for producing light-emitting diode light sources with luminescence conversion element
JP2004192969A (en) 2002-12-12 2004-07-08 Hitachi Displays Ltd Organic el display device
US7078261B2 (en) 2002-12-16 2006-07-18 The Regents Of The University Of California Increased mobility from organic semiconducting polymers field-effect transistors
EP1576671A4 (en) 2002-12-16 2006-10-25 Univ California Growth of planar, non-polar a-plane gallium nitride by hydride vapor phase epitaxy
US7427555B2 (en) 2002-12-16 2008-09-23 The Regents Of The University Of California Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
US6608333B1 (en) 2002-12-19 2003-08-19 Ritdisplay Corporation Organic light emitting diode device
US6917057B2 (en) * 2002-12-31 2005-07-12 Gelcore Llc Layered phosphor coatings for LED devices
US6871982B2 (en) 2003-01-24 2005-03-29 Digital Optics International Corporation High-density illumination system
CN101819984B (en) 2003-01-24 2014-04-30 株式会社半导体能源研究所 Electronic book
US7091653B2 (en) 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a non-planar long pass reflector
US7091661B2 (en) 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a reflective polarizer
JP2004241194A (en) 2003-02-04 2004-08-26 Chi Mei Electronics Corp Image display device
US20040155565A1 (en) * 2003-02-06 2004-08-12 Holder Ronald G. Method and apparatus for the efficient collection and distribution of light for illumination
JP4564234B2 (en) 2003-02-17 2010-10-20 株式会社東芝 Semiconductor light emitting device
JP4254266B2 (en) 2003-02-20 2009-04-15 豊田合成株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
US6841934B2 (en) 2003-02-26 2005-01-11 Harvatek Corporation White light source from light emitting diode
DE10308866A1 (en) 2003-02-28 2004-09-09 Osram Opto Semiconductors Gmbh Lighting module and method for its production
JP2004265986A (en) 2003-02-28 2004-09-24 Citizen Electronics Co Ltd High luminance light emitting element, and method for manufacturing the same and light emitting device using the same
US6835960B2 (en) 2003-03-03 2004-12-28 Opto Tech Corporation Light emitting diode package structure
JP3941713B2 (en) * 2003-03-11 2007-07-04 セイコーエプソン株式会社 Semiconductor integrated circuit provided with surface emitting laser, semiconductor integrated circuit manufacturing method, and electronic apparatus
CN100420048C (en) 2003-03-14 2008-09-17 住友电气工业株式会社 Semiconductor device
US7053355B2 (en) * 2003-03-18 2006-05-30 Brion Technologies, Inc. System and method for lithography process monitoring and control
TWI235504B (en) 2003-03-19 2005-07-01 Chung Shan Inst Of Science The structure and fabrication method of infrared quantum dot light emitting diode
JP2004288799A (en) * 2003-03-20 2004-10-14 Sony Corp Semiconductor light-emitting element, integrated semiconductor light-emitting device, image display device, lighting apparatus, and manufacturing methods of all
US7078735B2 (en) 2003-03-27 2006-07-18 Sanyo Electric Co., Ltd. Light-emitting device and illuminator
JP2004296999A (en) 2003-03-28 2004-10-21 Okaya Electric Ind Co Ltd Light emitting diode
US20040188696A1 (en) 2003-03-28 2004-09-30 Gelcore, Llc LED power package
US6936761B2 (en) * 2003-03-29 2005-08-30 Nanosolar, Inc. Transparent electrode, optoelectronic apparatus and devices
US7061065B2 (en) 2003-03-31 2006-06-13 National Chung-Hsing University Light emitting diode and method for producing the same
CN102290409B (en) 2003-04-01 2014-01-15 夏普株式会社 Light-emitting apparatus
JP4526776B2 (en) 2003-04-02 2010-08-18 株式会社半導体エネルギー研究所 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
CN100446212C (en) * 2003-04-02 2008-12-24 皇家飞利浦电子股份有限公司 Method of manufacturing a flexible electronic device and flexible device
KR20050119685A (en) 2003-04-08 2005-12-21 코닌클리케 필립스 일렉트로닉스 엔.브이. Two sided light emitting device
US7358539B2 (en) 2003-04-09 2008-04-15 Lumination Llc Flip-chip light emitting diode with indium-tin-oxide based reflecting contacts
JP4614633B2 (en) 2003-04-09 2011-01-19 株式会社半導体エネルギー研究所 Electronics
US7098589B2 (en) 2003-04-15 2006-08-29 Luminus Devices, Inc. Light emitting devices with high light collimation
US6903381B2 (en) 2003-04-24 2005-06-07 Opto Tech Corporation Light-emitting diode with cavity containing a filler
KR20040092512A (en) 2003-04-24 2004-11-04 (주)그래픽테크노재팬 A semiconductor light emitting device with reflectors having a cooling function
JP4335621B2 (en) 2003-04-25 2009-09-30 スタンレー電気株式会社 Vehicle lighting
TW586096B (en) 2003-04-25 2004-05-01 Ind Tech Res Inst Dual-screen organic electroluminescent display
KR100609830B1 (en) 2003-04-25 2006-08-09 럭스피아 주식회사 White Semiconductor Light Emitted Device using Green-emitting and Red emitting Phosphor
EP1620902B1 (en) 2003-05-02 2010-07-14 University College Cork-National University of Ireland, Cork Light emitting mesa structures with high aspect ratio and near-parabolic sidewalls and the manufacture thereof
US7157745B2 (en) 2004-04-09 2007-01-02 Blonder Greg E Illumination devices comprising white light emitting diodes and diode arrays and method and apparatus for making them
US6869812B1 (en) 2003-05-13 2005-03-22 Heng Liu High power AllnGaN based multi-chip light emitting diode
US20040239611A1 (en) 2003-06-02 2004-12-02 Huang Kuo Jui Double-sided light emitting backlight module
US6969874B1 (en) 2003-06-12 2005-11-29 Sandia Corporation Flip-chip light emitting diode with resonant optical microcavity
US6803607B1 (en) 2003-06-13 2004-10-12 Cotco Holdings Limited Surface mountable light emitting device
US7026261B2 (en) 2003-06-16 2006-04-11 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device
CN100511732C (en) 2003-06-18 2009-07-08 丰田合成株式会社 Light emitting device
JP4339028B2 (en) 2003-06-19 2009-10-07 株式会社小糸製作所 Lamp unit and vehicle headlamp
US20040263064A1 (en) 2003-06-24 2004-12-30 Cheng-Wen Huang Integrated double-sided organic light-emitting display
US7172909B2 (en) 2003-07-04 2007-02-06 Epistar Corporation Light emitting diode having an adhesive layer and a reflective layer and manufacturing method thereof
JP2003347586A (en) 2003-07-08 2003-12-05 Toshiba Corp Semiconductor light-emitting device
US7391153B2 (en) 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
TWI312582B (en) 2003-07-24 2009-07-21 Epistar Corporatio Led device, flip-chip led package and light reflecting structure
US7009213B2 (en) 2003-07-31 2006-03-07 Lumileds Lighting U.S., Llc Light emitting devices with improved light extraction efficiency
JP3839799B2 (en) 2003-08-06 2006-11-01 ローム株式会社 Semiconductor light emitting device
JP3773525B2 (en) 2003-08-07 2006-05-10 松下電器産業株式会社 LED lighting source
JP2005056941A (en) 2003-08-07 2005-03-03 Citizen Electronics Co Ltd Light emitting diode
FR2858859A1 (en) 2003-08-14 2005-02-18 Thomson Licensing Sa Lighting panel for displaying image, has light extractors, each with light input section that is optically coupled to electroluminescent organic layer, where zone of organic layer is optically coupled with extractors
US6958494B2 (en) * 2003-08-14 2005-10-25 Dicon Fiberoptics, Inc. Light emitting diodes with current spreading layer
US6921927B2 (en) 2003-08-28 2005-07-26 Agilent Technologies, Inc. System and method for enhanced LED thermal conductivity
WO2005024873A1 (en) 2003-09-08 2005-03-17 Koninklijke Philips Electronics N.V. A body and an electronic device
JP2005093102A (en) 2003-09-12 2005-04-07 Yachiyo Industry Co Ltd El sheet, and glass capable of double-sided light emission using sheet
US20050173724A1 (en) * 2004-02-11 2005-08-11 Heng Liu Group III-nitride based LED having a transparent current spreading layer
MY130919A (en) * 2003-09-19 2007-07-31 Mattel Inc Multidirectional light emitting diode unit
JP2005096144A (en) 2003-09-22 2005-04-14 Fuji Photo Film Co Ltd Optical fixing device
JP4166136B2 (en) 2003-09-24 2008-10-15 ローム株式会社 Chip type LED
US7397177B2 (en) 2003-09-25 2008-07-08 Matsushita Electric Industrial Co., Ltd. LED lamp and method for manufacturing the same
US8610145B2 (en) 2003-09-30 2013-12-17 Kabushiki Kaisha Toshiba Light emitting device
US6942360B2 (en) 2003-10-01 2005-09-13 Enertron, Inc. Methods and apparatus for an LED light engine
TWI234295B (en) 2003-10-08 2005-06-11 Epistar Corp High-efficiency nitride-based light-emitting device
JP4211559B2 (en) 2003-10-08 2009-01-21 セイコーエプソン株式会社 Light source device and projector
US20050082562A1 (en) 2003-10-15 2005-04-21 Epistar Corporation High efficiency nitride based light emitting device
JP3976063B2 (en) * 2003-10-31 2007-09-12 豊田合成株式会社 Light emitting device
JP4590905B2 (en) 2003-10-31 2010-12-01 豊田合成株式会社 Light emitting element and light emitting device
JP2005159296A (en) 2003-11-06 2005-06-16 Sharp Corp Package structure of optodevice
JP4124102B2 (en) 2003-11-12 2008-07-23 松下電工株式会社 Light emitting device having multiple antireflection structure and method of manufacturing
JP2005158795A (en) 2003-11-20 2005-06-16 Sumitomo Electric Ind Ltd Light-emitting diode and semiconductor light-emitting device
WO2005053041A1 (en) 2003-11-25 2005-06-09 Matsushita Electric Works, Ltd. Light emitting device using light emitting diode chip
JP2005191530A (en) * 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd Light emitting device
DE60341314C5 (en) 2003-12-09 2023-03-23 The Regents Of The University Of California HIGH EFFICIENCY GALLIUM NITRIDE BASED GALLIUM NITRIDE LIGHT Emitting Emitters With roughened surface
US7281818B2 (en) 2003-12-11 2007-10-16 Dialight Corporation Light reflector device for light emitting diode (LED) array
KR100576856B1 (en) 2003-12-23 2006-05-10 삼성전기주식회사 Nitride semiconductor light emitting diode and method of manufactruing the same
JP3881653B2 (en) 2003-12-25 2007-02-14 京セラ株式会社 Light emitting device
US8174036B2 (en) 2003-12-30 2012-05-08 Osram Opto Semiconductors Gmbh Lighting device
DE10361801A1 (en) 2003-12-30 2005-08-04 Osram Opto Semiconductors Gmbh Radiation emitting and/or radiation receiving semiconductor element with a semiconductor chip useful in LED technology, and in reaction-flow processes and surface mounting technology (SMT)
KR100540848B1 (en) 2004-01-02 2006-01-11 주식회사 메디아나전자 White LED device comprising dual-mold and manufacturing method for the same
CN100470855C (en) 2004-01-07 2009-03-18 松下电器产业株式会社 LED lighting light source
US20050156510A1 (en) 2004-01-21 2005-07-21 Chua Janet B.Y. Device and method for emitting output light using group IIB element selenide-based and group IIA element gallium sulfide-based phosphor materials
US20050161779A1 (en) 2004-01-26 2005-07-28 Hui Peng Flip chip assemblies and lamps of high power GaN LEDs, wafer level flip chip package process, and method of fabricating the same
DE602004021430D1 (en) 2004-02-09 2009-07-16 Toyota Ind Corp TRANSLECTIVE DISPLAY WITH A COLOR OLED BACKLIGHT
US7132677B2 (en) * 2004-02-13 2006-11-07 Dongguk University Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same
EP1716218B1 (en) 2004-02-20 2009-12-02 Philips Intellectual Property & Standards GmbH Illumination system comprising a radiation source and a fluorescent material
JP2005277372A (en) 2004-02-25 2005-10-06 Sanken Electric Co Ltd Semiconductor light emitting device and its manufacturing method
US20050189551A1 (en) 2004-02-26 2005-09-01 Hui Peng High power and high brightness white LED assemblies and method for mass production of the same
TW200529465A (en) 2004-02-27 2005-09-01 Opto Tech Corp Light-emitting device with power supply substrate having reflective layer
JP4020092B2 (en) 2004-03-16 2007-12-12 住友電気工業株式会社 Semiconductor light emitting device
JP4002949B2 (en) 2004-03-17 2007-11-07 独立行政法人科学技術振興機構 Double-sided organic EL panel
TWI227063B (en) 2004-03-19 2005-01-21 Ind Tech Res Inst Light emitting diode and fabrication method thereof
US7808011B2 (en) 2004-03-19 2010-10-05 Koninklijke Philips Electronics N.V. Semiconductor light emitting devices including in-plane light emitting layers
TWI260795B (en) 2004-03-22 2006-08-21 South Epitaxy Corp Flip chip type- light emitting diode package
JP2006066868A (en) 2004-03-23 2006-03-09 Toyoda Gosei Co Ltd Solid-state component and solid-state component device
US7615798B2 (en) 2004-03-29 2009-11-10 Nichia Corporation Semiconductor light emitting device having an electrode made of a conductive oxide
DE102005014144A1 (en) 2004-03-29 2005-11-24 Stanley Electric Co. Ltd. led
US7355284B2 (en) 2004-03-29 2008-04-08 Cree, Inc. Semiconductor light emitting devices including flexible film having therein an optical element
TWI319914B (en) 2004-04-02 2010-01-21 Led and backlight system adapting the led
US6989555B2 (en) 2004-04-21 2006-01-24 Lumileds Lighting U.S., Llc Strain-controlled III-nitride light emitting device
US7250728B2 (en) 2004-04-21 2007-07-31 Au Optronics Bottom and top emission OLED pixel structure
US7380962B2 (en) * 2004-04-23 2008-06-03 Light Prescriptions Innovators, Llc Optical manifold for light-emitting diodes
JP2007535149A (en) 2004-04-23 2007-11-29 ライト プレスクリプションズ イノベーターズ エルエルシー Optical manifold for light-emitting diodes
KR100643582B1 (en) 2004-04-26 2006-11-10 루미마이크로 주식회사 Light Emitting Diode package
GB2413698B (en) 2004-04-27 2006-04-05 Lingsen Precision Ind Ltd Led package and the process making the same
KR101085144B1 (en) 2004-04-29 2011-11-21 엘지디스플레이 주식회사 Led lamp unit
DE102004025610A1 (en) 2004-04-30 2005-11-17 Osram Opto Semiconductors Gmbh Optoelectronic component with several current spreading layers and method for its production
KR100576865B1 (en) 2004-05-03 2006-05-10 삼성전기주식회사 Light emitting diode array module and backlight unit using the same
KR101256919B1 (en) 2004-05-05 2013-04-25 렌슬러 폴리테크닉 인스티튜트 High efficiency light source using solid-state emitter and down-conversion material
US7315119B2 (en) 2004-05-07 2008-01-01 Avago Technologies Ip (Singapore) Pte Ltd Light-emitting device having a phosphor particle layer with specific thickness
EP1766703A1 (en) 2004-05-17 2007-03-28 THOMSON Licensing Organic light-emitting diode (oled) with improved light extraction and corresponding display unit
JP2005326757A (en) 2004-05-17 2005-11-24 Sony Corp Dual light-emitting organic electroluminescence display apparatus and imaging apparatus
US7791061B2 (en) * 2004-05-18 2010-09-07 Cree, Inc. External extraction light emitting diode based upon crystallographic faceted surfaces
US7064353B2 (en) 2004-05-26 2006-06-20 Philips Lumileds Lighting Company, Llc LED chip with integrated fast switching diode for ESD protection
JP3994094B2 (en) 2004-05-27 2007-10-17 ローム株式会社 Light emitting diode lamp
EP1759145A1 (en) 2004-05-28 2007-03-07 Tir Systems Ltd. Luminance enhancement apparatus and method
CN100454598C (en) 2004-06-01 2009-01-21 皇家飞利浦电子股份有限公司 Light- emitting diode
US7977694B2 (en) 2006-11-15 2011-07-12 The Regents Of The University Of California High light extraction efficiency light emitting diode (LED) with emitters within structured materials
US7781789B2 (en) 2006-11-15 2010-08-24 The Regents Of The University Of California Transparent mirrorless light emitting diode
US7582910B2 (en) 2005-02-28 2009-09-01 The Regents Of The University Of California High efficiency light emitting diode (LED) with optimized photonic crystal extractor
US7768024B2 (en) 2005-12-02 2010-08-03 The Regents Of The University Of California Horizontal emitting, vertical emitting, beam shaped, distributed feedback (DFB) lasers fabricated by growth over a patterned substrate with multiple overgrowth
US7345298B2 (en) 2005-02-28 2008-03-18 The Regents Of The University Of California Horizontal emitting, vertical emitting, beam shaped, distributed feedback (DFB) lasers by growth over a patterned substrate
US7994527B2 (en) 2005-11-04 2011-08-09 The Regents Of The University Of California High light extraction efficiency light emitting diode (LED)
US20080149949A1 (en) 2006-12-11 2008-06-26 The Regents Of The University Of California Lead frame for transparent and mirrorless light emitting diodes
US7768023B2 (en) 2005-10-14 2010-08-03 The Regents Of The University Of California Photonic structures for efficient light extraction and conversion in multi-color light emitting devices
US8227820B2 (en) 2005-02-09 2012-07-24 The Regents Of The University Of California Semiconductor light-emitting device
TWM258416U (en) 2004-06-04 2005-03-01 Lite On Technology Corp Power LED package module
JP4857596B2 (en) * 2004-06-24 2012-01-18 豊田合成株式会社 Method for manufacturing light emitting device
JP3908240B2 (en) 2004-06-07 2007-04-25 統寶光電股▲分▼有限公司 Light emitting diode structure
US7560294B2 (en) * 2004-06-07 2009-07-14 Toyoda Gosei Co., Ltd. Light emitting element and method of making same
DE102004028143B4 (en) 2004-06-10 2006-12-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for digitizing film material
JP2005353816A (en) 2004-06-10 2005-12-22 Olympus Corp Light emitting device, method for manufacturing the same, illuminant using the same, and projector
US20050274970A1 (en) 2004-06-14 2005-12-15 Lumileds Lighting U.S., Llc Light emitting device with transparent substrate having backside vias
US8227689B2 (en) 2004-06-15 2012-07-24 The Boeing Company Solar cells having a transparent composition-graded buffer layer
JP2006012916A (en) 2004-06-22 2006-01-12 Toyoda Gosei Co Ltd Light emitting device
US20060001035A1 (en) 2004-06-22 2006-01-05 Toyoda Gosei Co., Ltd. Light emitting element and method of making same
JP2006073618A (en) 2004-08-31 2006-03-16 Toyoda Gosei Co Ltd Optical element and manufacturing method thereof
US7018859B2 (en) 2004-06-28 2006-03-28 Epistar Corporation Method of fabricating AlGaInP light-emitting diode and structure thereof
KR100619441B1 (en) 2004-06-30 2006-09-08 서울옵토디바이스주식회사 Growth method of easy remove Sudstate
TWI263008B (en) 2004-06-30 2006-10-01 Ind Tech Res Inst LED lamp
US8324640B2 (en) * 2004-07-02 2012-12-04 GE Lighting Solutions, LLC LED-based edge lit illumination system
KR101244754B1 (en) 2004-07-06 2013-03-18 더 리전트 오브 더 유니버시티 오브 캘리포니아 Method for wafer bonding (AlN, InN, GaN, AlInN, AlGaN, InGaN, or AlInGaN) and (ZnS, ZnSe, or ZnSSe) for optoelectronic applications
JP2006024616A (en) 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2006024615A (en) 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Led lighting source and manufacturing method thereof
CN100388517C (en) 2004-07-08 2008-05-14 夏普株式会社 Nitride-based compound semiconductor light emitting device and fabricating method thereof
WO2006023149A2 (en) 2004-07-08 2006-03-02 Color Kinetics Incorporated Led package methods and systems
JP4932144B2 (en) 2004-07-12 2012-05-16 株式会社朝日ラバー LED lamp
US20060017055A1 (en) * 2004-07-23 2006-01-26 Eastman Kodak Company Method for manufacturing a display device with low temperature diamond coatings
KR20060012959A (en) 2004-08-05 2006-02-09 삼성전자주식회사 Back light for display device
JP4858867B2 (en) * 2004-08-09 2012-01-18 スタンレー電気株式会社 LED and manufacturing method thereof
EP1850731A2 (en) 2004-08-12 2007-11-07 Elop Electro-Optical Industries Ltd. Integrated retinal imager and method
US7305163B2 (en) 2004-08-17 2007-12-04 Lumitex, Inc. Fiber optic phototherapy devices including LED light sources
JP4593201B2 (en) 2004-08-20 2010-12-08 日立化成工業株式会社 Chip component type light emitting device and wiring board therefor
JP2006066449A (en) * 2004-08-24 2006-03-09 Toshiba Corp Semiconductor light emitting device
JP4659414B2 (en) 2004-09-01 2011-03-30 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド Light emitting diode and light emission control system using the same
US7223998B2 (en) 2004-09-10 2007-05-29 The Regents Of The University Of California White, single or multi-color light emitting diodes by recycling guided modes
DE102004044145B3 (en) 2004-09-13 2006-04-13 Robert Bosch Gmbh Reflector module for a photometric gas sensor
US7509012B2 (en) 2004-09-22 2009-03-24 Luxtaltek Corporation Light emitting diode structures
US7352006B2 (en) 2004-09-28 2008-04-01 Goldeneye, Inc. Light emitting diodes exhibiting both high reflectivity and high light extraction
JP4289332B2 (en) 2004-09-30 2009-07-01 セイコーエプソン株式会社 EL display device, method for manufacturing EL display device, and electronic apparatus
US20060081859A1 (en) 2004-10-15 2006-04-20 Shyi-Ming Pan Light emitting semiconductor bonding structure and method of manufacturing the same
JP2006128227A (en) 2004-10-26 2006-05-18 Mitsubishi Cable Ind Ltd Nitride semiconductor light emitting element
US8134292B2 (en) 2004-10-29 2012-03-13 Ledengin, Inc. Light emitting device with a thermal insulating and refractive index matching material
US7670872B2 (en) 2004-10-29 2010-03-02 LED Engin, Inc. (Cayman) Method of manufacturing ceramic LED packages
US7329982B2 (en) 2004-10-29 2008-02-12 3M Innovative Properties Company LED package with non-bonded optical element
KR100664988B1 (en) 2004-11-04 2007-01-09 삼성전기주식회사 Light extraction efficiency-improved semiconductor light emitting device
KR100700004B1 (en) 2004-11-10 2007-03-26 삼성에스디아이 주식회사 Both-sides emitting organic electroluminescence display device and fabricating Method of the same
US7452737B2 (en) 2004-11-15 2008-11-18 Philips Lumileds Lighting Company, Llc Molded lens over LED die
US7344902B2 (en) 2004-11-15 2008-03-18 Philips Lumileds Lighting Company, Llc Overmolded lens over LED die
CN100468792C (en) 2004-11-24 2009-03-11 杨秋忠 Integrated light emitting diode and production thereof
JP2006156590A (en) * 2004-11-26 2006-06-15 Mitsubishi Cable Ind Ltd Light emitting diode
JP3852465B2 (en) 2004-11-29 2006-11-29 日亜化学工業株式会社 Light emitting device and method for forming the same
JP4615981B2 (en) * 2004-12-08 2011-01-19 スタンレー電気株式会社 Light emitting diode and manufacturing method thereof
DE112005003841B4 (en) 2004-12-14 2016-03-03 Seoul Viosys Co., Ltd. Light emitting device with a plurality of light emitting cells
US20060125385A1 (en) * 2004-12-14 2006-06-15 Chun-Chung Lu Active matrix organic electro-luminescence device array and fabricating process thereof
TWI268732B (en) 2004-12-16 2006-12-11 Au Optronics Corp Organic light emitting device
KR100646093B1 (en) 2004-12-17 2006-11-15 엘지이노텍 주식회사 Light emitting device package
KR100638666B1 (en) 2005-01-03 2006-10-30 삼성전기주식회사 Nitride based semiconductor light emitting device
US7413918B2 (en) * 2005-01-11 2008-08-19 Semileds Corporation Method of making a light emitting diode
US20060171152A1 (en) 2005-01-20 2006-08-03 Toyoda Gosei Co., Ltd. Light emitting device and method of making the same
US7170100B2 (en) * 2005-01-21 2007-01-30 Luminus Devices, Inc. Packaging designs for LEDs
US7335920B2 (en) * 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
JP5255745B2 (en) 2005-01-31 2013-08-07 三菱化学株式会社 Nitride semiconductor light emitting device
DE102005004419A1 (en) 2005-01-31 2006-08-03 Sick Ag Optoelectronic sensor
JP2006222288A (en) * 2005-02-10 2006-08-24 Toshiba Corp White led and manufacturing method therefor
TWI521748B (en) 2005-02-18 2016-02-11 日亞化學工業股份有限公司 Light emitting device provided with lens for controlling light distribution characteristic
KR100631904B1 (en) 2005-02-18 2006-10-11 삼성전기주식회사 Direct type backlight unit with light guiding function
US7932111B2 (en) 2005-02-23 2011-04-26 Cree, Inc. Substrate removal process for high light extraction LEDs
US7602118B2 (en) 2005-02-24 2009-10-13 Eastman Kodak Company OLED device having improved light output
JP2006237264A (en) 2005-02-24 2006-09-07 Kyocera Corp Light emitting device and lighting apparatus
JP4143074B2 (en) 2005-02-25 2008-09-03 トキコーポレーション株式会社 Light emitting diode
US7291864B2 (en) 2005-02-28 2007-11-06 The Regents Of The University Of California Single or multi-color high efficiency light emitting diode (LED) by growth over a patterned substrate
JP2006253298A (en) * 2005-03-09 2006-09-21 Toshiba Corp Semiconductor light emitting element and device therefor
KR100593933B1 (en) 2005-03-18 2006-06-30 삼성전기주식회사 Side-emitting led package having scattering area and backlight apparatus incorporating the led lens
US8269410B2 (en) * 2005-03-18 2012-09-18 Mitsubishi Chemical Corporation Light-emitting device, white light-emitting device, illuminator, and image display
KR100593935B1 (en) 2005-03-24 2006-06-30 삼성전기주식회사 Light emitting diode package and method for manufacturing the same
JP2006287113A (en) 2005-04-04 2006-10-19 Toyoda Gosei Co Ltd Light emitting element and light emitting device using the same
JP2006294907A (en) 2005-04-12 2006-10-26 Showa Denko Kk Nitride gallium based compound semiconductor luminous element
TW200703462A (en) 2005-04-13 2007-01-16 Univ California Wafer separation technique for the fabrication of free-standing (Al, In, Ga)N wafers
JP2008538055A (en) 2005-04-13 2008-10-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Etching technology for producing (Al, In, Ga) N thin layers
JP2006303258A (en) * 2005-04-22 2006-11-02 Ishikawajima Harima Heavy Ind Co Ltd Method for growing p-type nitride semiconductor
JP4244953B2 (en) * 2005-04-26 2009-03-25 住友電気工業株式会社 Light emitting device and manufacturing method thereof
TW200638559A (en) 2005-04-29 2006-11-01 Hon Hai Prec Ind Co Ltd Light emitting chip and light emitting diode
DE102005024830B4 (en) 2005-05-27 2009-07-02 Noctron S.A.R.L. Light emitting diode array
KR101093324B1 (en) 2005-05-30 2011-12-14 엘지이노텍 주식회사 Back light unit having light emitting diode
KR100691177B1 (en) * 2005-05-31 2007-03-09 삼성전기주식회사 White light emitting device
JP4670489B2 (en) * 2005-06-06 2011-04-13 日立電線株式会社 Light emitting diode and manufacturing method thereof
EP1908125A2 (en) 2005-06-17 2008-04-09 The Regents of the University of California (AI,Ga,In)N AND ZnO DIRECT WAFER BONDED STRUCTURE FOR OPTOELECTRONIC APPLICATION AND ITS FABRICATION METHOD
US7319246B2 (en) 2005-06-23 2008-01-15 Lumination Llc Luminescent sheet covering for LEDs
US20080191191A1 (en) 2005-06-27 2008-08-14 Seoul Opto Device Co., Ltd. Light Emitting Diode of a Nanorod Array Structure Having a Nitride-Based Multi Quantum Well
US20060289892A1 (en) * 2005-06-27 2006-12-28 Lee Jae S Method for preparing light emitting diode device having heat dissipation rate enhancement
US20070001591A1 (en) 2005-06-29 2007-01-04 Jun Tanaka Organic electroluminescence display and manufacturing method thereof
US20070001185A1 (en) 2005-06-29 2007-01-04 Lu Ying T LED backlight module
JP4584785B2 (en) 2005-06-30 2010-11-24 シャープ株式会社 Manufacturing method of semiconductor light emitting device
KR100665216B1 (en) 2005-07-04 2007-01-09 삼성전기주식회사 Side-view light emitting diode having improved side-wall reflection structure
US7759690B2 (en) * 2005-07-04 2010-07-20 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
KR100665219B1 (en) 2005-07-14 2007-01-09 삼성전기주식회사 Wavelengt-converted light emitting diode package
JP4640248B2 (en) * 2005-07-25 2011-03-02 豊田合成株式会社 Light source device
TWI271883B (en) 2005-08-04 2007-01-21 Jung-Chieh Su Light-emitting devices with high extraction efficiency
US7847302B2 (en) 2005-08-26 2010-12-07 Koninklijke Philips Electronics, N.V. Blue LED with phosphor layer for producing white light and different phosphor in outer lens for reducing color temperature
US7719182B2 (en) 2005-09-22 2010-05-18 Global Oled Technology Llc OLED device having improved light output
KR200403690Y1 (en) 2005-09-26 2005-12-12 웬-쿵 숭 Structure of omnidirectional LED
US8334155B2 (en) 2005-09-27 2012-12-18 Philips Lumileds Lighting Company Llc Substrate for growing a III-V light emitting device
DE102006023685A1 (en) 2005-09-29 2007-04-05 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip for emitting electromagnetic radiation, has support substrate comprising material from group of transparent conducting oxides, where substrate mechanically supports semiconductor layered construction
CN1331245C (en) 2005-09-30 2007-08-08 晶能光电(江西)有限公司 InGaAlN luminescent device
JP4950999B2 (en) 2005-10-07 2012-06-13 オスラム シルヴェニア インコーポレイテッド LED with translucent heat sink
US7638754B2 (en) 2005-10-07 2009-12-29 Sharp Kabushiki Kaisha Backlight device, display apparatus including backlight device, method for driving backlight device, and method for adjusting backlight device
TWI344314B (en) 2005-10-14 2011-06-21 Hon Hai Prec Ind Co Ltd Light-emitting element, plane light source and direct-type backlight module
FR2892594B1 (en) 2005-10-21 2007-12-07 Saint Gobain LIGHT STRUCTURE COMPRISING AT LEAST ONE ELECTROLUMINESCENT DIODE, ITS MANUFACTURE AND ITS APPLICATIONS
DE102005050947A1 (en) 2005-10-22 2007-04-26 Noctron S.A.R.L. Luminous element with at least one luminescent chip crystal
KR100626365B1 (en) * 2005-10-28 2006-09-20 한국에너지기술연구원 Light emitting diode with reflective structure
CN100592190C (en) 2005-11-23 2010-02-24 鸿富锦精密工业(深圳)有限公司 Illuminating module
TWM293524U (en) 2005-11-30 2006-07-01 Formosa Epitaxy Inc Light emitting diode package
KR20080077259A (en) 2005-12-08 2008-08-21 더 리전츠 오브 더 유니버시티 오브 캘리포니아 High efficiency light emitting diode(led)
US7306351B2 (en) 2005-12-14 2007-12-11 Chung Yuan Christian University Lens for side emitting LED device
JP2007165811A (en) 2005-12-16 2007-06-28 Nichia Chem Ind Ltd Light emitting device
US7545042B2 (en) 2005-12-22 2009-06-09 Princo Corp. Structure combining an IC integrated substrate and a carrier, and method of manufacturing such structure
WO2007073001A1 (en) 2005-12-22 2007-06-28 Showa Denko K.K. Light-emitting diode and method for fabricant thereof
US20070147072A1 (en) 2005-12-23 2007-06-28 General Electric Company Optical structures that provide directionally enhanced luminance
RU2315135C2 (en) 2006-02-06 2008-01-20 Владимир Семенович Абрамов Method of growing nonpolar epitaxial heterostructures based on group iii element nitrides
US7581854B2 (en) 2006-02-10 2009-09-01 The Flewelling Ford Family Trust Light emitting and receiving device
EP1984545A4 (en) 2006-02-17 2013-05-15 Univ California Method for growth of semipolar (al,in,ga,b)n optoelectronic devices
KR100786798B1 (en) 2006-02-28 2007-12-18 한국광기술원 LED lighting module
KR100796670B1 (en) 2006-04-27 2008-01-22 (주)루멘스 Light Emitting Diode and Method for manufacturing thereof
US20070257271A1 (en) 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with encapsulated converging optical element
US7390117B2 (en) * 2006-05-02 2008-06-24 3M Innovative Properties Company LED package with compound converging optical element
US7525126B2 (en) 2006-05-02 2009-04-28 3M Innovative Properties Company LED package with converging optical element
US7423297B2 (en) 2006-05-03 2008-09-09 3M Innovative Properties Company LED extractor composed of high index glass
JP3863174B2 (en) 2006-05-08 2006-12-27 東芝電子エンジニアリング株式会社 Light emitting device
TWI349146B (en) 2006-05-15 2011-09-21 Epistar Corp A light-mixing type light-emitting device
JP2006229259A (en) 2006-05-30 2006-08-31 Kyocera Corp Light emitting device
JP2007324220A (en) * 2006-05-30 2007-12-13 Toshiba Corp Optical semiconductor device
US7952110B2 (en) 2006-06-12 2011-05-31 3M Innovative Properties Company LED device with re-emitting semiconductor construction and converging optical element
EP2033234A4 (en) 2006-06-12 2013-11-06 3M Innovative Properties Co Led device with re-emitting semiconductor construction and converging optical element
JP4854566B2 (en) * 2006-06-15 2012-01-18 シャープ株式会社 Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device
US20080012034A1 (en) 2006-07-17 2008-01-17 3M Innovative Properties Company Led package with converging extractor
US20080030974A1 (en) 2006-08-02 2008-02-07 Abu-Ageel Nayef M LED-Based Illumination System
KR100828174B1 (en) 2006-08-03 2008-05-08 주식회사 이츠웰 Lamp having surface mounted light emitting diode and manufacturing method of the same
US7408204B2 (en) 2006-08-08 2008-08-05 Huga Optotech Inc. Flip-chip packaging structure for light emitting diode and method thereof
SG140473A1 (en) 2006-08-16 2008-03-28 Tinggi Tech Private Ltd Improvements in external light efficiency of light emitting diodes
US7633092B2 (en) 2006-08-25 2009-12-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Omni-directional LED light source
US7646146B2 (en) 2006-08-30 2010-01-12 Eastman Kodak Company OLED display with planar contrast-enhancement element
US7766508B2 (en) 2006-09-12 2010-08-03 Cree, Inc. LED lighting fixture
US20080101086A1 (en) 2006-10-26 2008-05-01 K Laser Technology, Inc. Led backlight with bare chip led
WO2008060584A2 (en) 2006-11-15 2008-05-22 The Regents Of The University Of California High light extraction efficiency sphere led
WO2008060586A2 (en) 2006-11-15 2008-05-22 The Regents Of The University Of California Textured phosphor conversion layer light emitting diode
US20090121250A1 (en) 2006-11-15 2009-05-14 Denbaars Steven P High light extraction efficiency light emitting diode (led) using glass packaging
WO2008060594A2 (en) 2006-11-15 2008-05-22 The Regents Of The University Of California High light extraction efficiency light emitting diode (led) through multiple extractors
WO2008060585A2 (en) 2006-11-15 2008-05-22 The Regents Of University Of California Standing transparent mirrorless light emitting diode
WO2008060530A1 (en) 2006-11-15 2008-05-22 The Regents Of The University Of California Ion beam treatment for the structural integrity of air-gap iii-nitride devices produced by photoelectrochemical (pec) etching
TWI460881B (en) * 2006-12-11 2014-11-11 Univ California Transparent light emitting diodes
JP4264109B2 (en) * 2007-01-16 2009-05-13 株式会社東芝 Light emitting device
US8212262B2 (en) 2007-02-09 2012-07-03 Cree, Inc. Transparent LED chip
KR101129519B1 (en) * 2007-05-17 2012-03-29 쇼와 덴코 가부시키가이샤 Semiconductor light-emitting device
KR101623422B1 (en) 2007-06-27 2016-05-23 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Optical designs for high-efficacy white-light emitting diodes
EP2174351A1 (en) 2007-07-26 2010-04-14 The Regents of the University of California Light emitting diodes with a p-type surface
CN101874307B (en) 2007-11-30 2014-06-18 加利福尼亚大学董事会 High light extraction efficiency nitride based light emitting diode by surface roughening
US20090315055A1 (en) 2008-05-12 2009-12-24 The Regents Of The University Of California PHOTOELECTROCHEMICAL ROUGHENING OF P-SIDE-UP GaN-BASED LIGHT EMITTING DIODES
US8569085B2 (en) 2008-10-09 2013-10-29 The Regents Of The University Of California Photoelectrochemical etching for chip shaping of light emitting diodes
US7952106B2 (en) 2009-04-10 2011-05-31 Everlight Electronics Co., Ltd. Light emitting diode device having uniform current distribution and method for forming the same
US20110012147A1 (en) * 2009-07-15 2011-01-20 Koninklijke Philips Electronics N.V. Wavelength-converted semiconductor light emitting device including a filter and a scattering structure
TWI396310B (en) 2009-10-02 2013-05-11 Everlight Electronics Co Ltd Light-emitting diode structure
JP5383611B2 (en) 2010-01-29 2014-01-08 株式会社東芝 LED package
KR100969100B1 (en) 2010-02-12 2010-07-09 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
US8723201B2 (en) * 2010-08-20 2014-05-13 Invenlux Corporation Light-emitting devices with substrate coated with optically denser material
US8610161B2 (en) 2010-10-28 2013-12-17 Tsmc Solid State Lighting Ltd. Light emitting diode optical emitter with transparent electrical connectors
JP2012142426A (en) 2010-12-28 2012-07-26 Toshiba Corp Led package and method for manufacturing the same
JP3172947U (en) 2011-08-12 2012-01-19 政幸 福田 Eight mark card
JP5719090B2 (en) * 2012-10-12 2015-05-13 旭化成イーマテリアルズ株式会社 Optical substrate, semiconductor light emitting device, and manufacturing method thereof
TWI520383B (en) * 2013-10-14 2016-02-01 新世紀光電股份有限公司 Light emitting diode package structure
KR102315124B1 (en) 2015-07-02 2021-10-20 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device package
KR102430500B1 (en) 2017-05-30 2022-08-08 삼성전자주식회사 Semiconductor light emitting device and led module using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10454010B1 (en) 2006-12-11 2019-10-22 The Regents Of The University Of California Transparent light emitting diodes
US10593854B1 (en) 2006-12-11 2020-03-17 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
US10644213B1 (en) 2006-12-11 2020-05-05 The Regents Of The University Of California Filament LED light bulb
US10658557B1 (en) 2006-12-11 2020-05-19 The Regents Of The University Of California Transparent light emitting device with light emitting diodes

Also Published As

Publication number Publication date
US20080149959A1 (en) 2008-06-26
US10454010B1 (en) 2019-10-22
US8294166B2 (en) 2012-10-23
US20190273194A1 (en) 2019-09-05
WO2008073400A1 (en) 2008-06-19
US8835959B2 (en) 2014-09-16
TWI460881B (en) 2014-11-11
US10644213B1 (en) 2020-05-05
US10658557B1 (en) 2020-05-19
US20140353707A1 (en) 2014-12-04
TW201448263A (en) 2014-12-16
US10593854B1 (en) 2020-03-17
US10217916B2 (en) 2019-02-26
JP2010512662A (en) 2010-04-22
US20130020602A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
TWI460881B (en) Transparent light emitting diodes
TWI446569B (en) Standing transparent mirrorless light emitting diode
US7781789B2 (en) Transparent mirrorless light emitting diode
JP5372766B2 (en) Spherical LED with high light extraction efficiency
US7067340B1 (en) Flip-chip light emitting diode and fabricating method thereof
US7294866B2 (en) Flip-chip light-emitting device with micro-reflector
JP5032017B2 (en) Semiconductor light emitting device, method for manufacturing the same, and semiconductor light emitting device
US20160133790A1 (en) Textured phosphor conversion layer light emitting diode
US20080149949A1 (en) Lead frame for transparent and mirrorless light emitting diodes
JPH08102549A (en) Semiconductor light emitting element
JP2007173534A (en) Light emitting diode
JP2009059969A (en) Semiconductor light-emitting element, light-emitting device, luminaire, display unit, and method for fabricating semiconductor light-emitting element
JP2008066442A (en) Light emitting diode
JP2005347700A (en) Light emitting device and its manufacturing method
JP2009245970A (en) Semiconductor light emitting device and method of manufacturing the same