JP2002084002A - Light source device - Google Patents

Light source device

Info

Publication number
JP2002084002A
JP2002084002A JP2000270291A JP2000270291A JP2002084002A JP 2002084002 A JP2002084002 A JP 2002084002A JP 2000270291 A JP2000270291 A JP 2000270291A JP 2000270291 A JP2000270291 A JP 2000270291A JP 2002084002 A JP2002084002 A JP 2002084002A
Authority
JP
Japan
Prior art keywords
light
light emitting
source device
light source
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2000270291A
Other languages
Japanese (ja)
Inventor
Motoyoshi Sanki
基至 参木
Osamu Saito
修 齋藤
Toshimichi Nakamura
利道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Leiz Corp
Original Assignee
Nippon Leiz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Leiz Corp filed Critical Nippon Leiz Corp
Priority to JP2000270291A priority Critical patent/JP2002084002A/en
Publication of JP2002084002A publication Critical patent/JP2002084002A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high luminance light by outputting well-balanced mixed lights as parallel lights from an output surface. SOLUTION: A light emitting surface 4 of a semiconductor light emitting element 3 is mounted on the direction opposite to an output surface 5 of a light source device 1. Light is outputted in the direction opposite to the output surface 5. The light is reflected on a reflecting surface 6 which is constituted in arcuately recessed form and positioned opposite to the output surface 5. Wavelength converting part 7 is disposed between the light emitting surface 4 and the reflecting surface 6. A light subjected to wavelength conversion by the wavelength converting part 7 and the original light are present. Lights wherein the lights are mixed are outputted in parallel from the output surface 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体発光素子
の発光面を光源装置の出射面と反対方向に載置し、出射
面と反対に光を出射させ、円弧状にした出射面と反対に
位置する反射面で反射させ、一部はそのまま出射面より
出射し、一部は発光面(出射面)と反射面との間に設け
た波長変換部で波長変換された光を反射面で反射させ出
射したり、反射面で反射された光を波長変換して出射さ
せるとともに出射面からは混合された平行光線を出射す
ることができる光源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device having a light emitting surface mounted thereon in a direction opposite to a light emitting surface of a light source device and emitting light opposite to the light emitting surface. The light is reflected by the reflection surface located, part of the light is emitted from the emission surface, and part of the light is wavelength-converted by the wavelength converter provided between the light emission surface (emission surface) and the reflection surface. The present invention relates to a light source device capable of converting the wavelength of light reflected by a reflecting surface, emitting the light, and emitting mixed parallel rays from the emitting surface.

【0002】[0002]

【従来の技術】従来の光源装置は、一般に砲弾型等が多
く、またディスプレ等に用いる場合には単に半導体発光
素子を発光色が赤色(Red)、青色(Blue)およ
び緑色(Green)の所謂RBGの三つの半導体発光
素子を用いたり、白色光を得るために半導体発光素子を
波長変換材(蛍光材)で被覆したり、波長変換材(蛍光
材)を混入させた透明樹脂等で被覆した光源装置は知ら
れている。
2. Description of the Related Art Conventional light source devices are generally of a shell type or the like, and when used for a display or the like, semiconductor light emitting elements are simply called red (Red), blue (Blue) and green (Green). Three semiconductor light emitting devices of RBG were used, the semiconductor light emitting device was coated with a wavelength conversion material (fluorescent material) to obtain white light, or coated with a transparent resin mixed with a wavelength conversion material (fluorescent material). Light source devices are known.

【0003】さらに、半導体発光素子自身の発光色から
他発光色を得るために、例えば特開平7−99345号
公報に開示されているように、リードフレームのカップ
状に形成した底部上に半導体発光素子を載置し、カップ
内部に半導体発光素子の発光波長を他の波長に変換する
蛍光物質を含有した樹脂で包囲して異なる発光色を得る
発光ダイオードは知られている。
Further, in order to obtain another luminescent color from the luminescent color of the semiconductor light emitting element itself, as disclosed in, for example, Japanese Patent Application Laid-Open No. 7-99345, a semiconductor luminescent device is provided on the bottom of a lead frame formed in a cup shape. 2. Description of the Related Art A light emitting diode that mounts an element and surrounds the inside of a cup with a resin containing a fluorescent substance that converts the emission wavelength of the semiconductor light emitting element to another wavelength to obtain a different emission color is known.

【0004】また、同様に半導体発光素子の発光波長を
他の波長に変換してLEDランプ単体で白色の発光色を
得るために、青色発光の半導体発光素子等を波長変換材
料が含有された樹脂全体でランプ形状に包囲した方法も
知られている。
Similarly, in order to convert the emission wavelength of a semiconductor light emitting device to another wavelength to obtain a white light emission color with an LED lamp alone, a blue light emitting semiconductor light emitting device or the like is made of a resin containing a wavelength conversion material. There is also known a method of enclosing the lamp as a whole.

【0005】[0005]

【発明が解決しようとする課題】従来の光源装置は、一
般に砲弾型等が多く、また白色光を得る場合には単に半
導体発光素子を発光色が赤色(Red)、青色(Blu
e)および緑色(Green)の所謂RBGの三つの半
導体発光素子を用いたり、青色発光の半導体発光素子を
波長変換材(蛍光材)で被覆したり、波長変換材(蛍光
材)を混入させた透明樹脂等で青色発光の半導体発光素
子を被覆したりするので、赤色、青色および緑色発光色
の半導体発光素子を3つ用いたランプを1ユニットとし
て使用している。このため、光源装置が大型化になって
しまう課題がある。また、波長変換材(蛍光材)を半導
体発光素子に直接被覆したりすると、半導体発光素子か
らの微量な紫外線帯に寄った短い波長に依って、半導体
発光素子等の劣化を促進する恐れがあるとともに半導体
発光素子と波長変換材(蛍光材)との距離が短いために
波長変換にばらつきが出てしまう課題がある。
Conventional light source devices are generally of a bombshell type or the like, and when white light is to be obtained, the semiconductor light-emitting elements are simply illuminated in red (Red) or blue (Blue).
e) Three semiconductor light-emitting elements of so-called RBG of green and green are used, a semiconductor light-emitting element of blue light emission is covered with a wavelength conversion material (fluorescent material), or a wavelength conversion material (fluorescent material) is mixed. Since a blue light emitting semiconductor light emitting element is covered with a transparent resin or the like, a lamp using three red, blue and green light emitting semiconductor light emitting elements is used as one unit. For this reason, there is a problem that the light source device becomes large. Further, if the wavelength conversion material (fluorescent material) is directly coated on the semiconductor light emitting device, the deterioration of the semiconductor light emitting device or the like may be promoted due to the short wavelength from the semiconductor light emitting device toward a very small ultraviolet band. In addition, since the distance between the semiconductor light emitting element and the wavelength conversion material (fluorescent material) is short, there is a problem that wavelength conversion varies.

【0006】さらに、半導体発光素子自身の発光色から
他発光色を得るために、例えば特開平7−99345号
公報に開示されているように、リードフレームのカップ
状に形成した底部上に半導体発光素子を載置し、カップ
内部に半導体発光素子の発光波長を他の波長に変換する
蛍光物質を含有した樹脂で包囲して異なる発光色を得る
発光ダイオードでは、半導体発光素子と波長変換材(蛍
光材)との距離が短いために波長変換にばらつきが出て
しまう課題がある。
Further, in order to obtain another emission color from the emission color of the semiconductor light emitting element itself, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-99345, a semiconductor light emitting device is provided on a bottom formed in a cup-like shape of a lead frame. In a light-emitting diode in which a device is mounted and surrounded by a resin containing a fluorescent substance for converting the emission wavelength of the semiconductor light-emitting device into another wavelength inside the cup to obtain different emission colors, a semiconductor light-emitting device and a wavelength conversion material (fluorescent However, there is a problem that the wavelength conversion varies due to the short distance to the material.

【0007】また、同様に半導体発光素子の発光波長を
他の波長に変換してLEDランプ単体で白色の発光色を
得るために、青色発光の半導体発光素子等を波長変換材
料が含有された樹脂全体でランプ形状に包囲した方法で
は、波長変換材料の使用量が多くなってしまうとともに
波長変換材料の分散分布の安定性や輝度の低下に課題が
ある。
Similarly, in order to convert the emission wavelength of the semiconductor light emitting element to another wavelength to obtain a white light emission color with the LED lamp alone, a blue light emitting semiconductor light emitting element or the like is made of a resin containing a wavelength conversion material. The method of enclosing the lamp in the shape of a lamp as a whole increases the amount of the wavelength conversion material used, and has problems in the stability of the dispersion distribution of the wavelength conversion material and the decrease in luminance.

【0008】本発明は、このような課題を解決するため
になされたもので、半導体発光素子の発光面を光源装置
の出射面と反対方向に載置し、出射面と反対に光を出射
させ、円弧状にした出射面と反対に位置する反射面で反
射させ、一部はそのまま出射面より出射し、一部は発光
面(出射面)と反射面との間に設けた波長変換部で波長
変換された光を反射面で反射させ出射したり、反射面で
反射された光を波長変換して出射させるとともに出射面
からは混合された平行光線を出射することができる光源
装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and has a light-emitting surface of a semiconductor light-emitting element placed in a direction opposite to a light-emitting surface of a light source device to emit light opposite to the light-emitting surface. The light is reflected by a reflecting surface positioned opposite to the arc-shaped emitting surface, a part of the light is emitted from the emitting surface as it is, and a part is converted by a wavelength converter provided between the light emitting surface (emitting surface) and the reflecting surface. Provided is a light source device capable of reflecting wavelength-converted light on a reflecting surface and emitting the light, or converting the wavelength of light reflected on the reflecting surface to emit the light and emitting mixed parallel rays from the emitting surface. It is in.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に請求項1に係る光源装置は、半導体発光素子の発光面
が光源装置から光を出射する出射面と逆方向および出射
面と平行に位置し、出射面の反対に位置する反射面を円
弧状凹型にするとともに反射面と出射面の裏側面との間
または反射面と発光面との間に波長変換部を設け、発光
面からの出射光を反射面で平行性または集光性な単色光
と波長変換部で波長変換された単色光とを出射させるこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a light source device in which a light emitting surface of a semiconductor light emitting element is arranged in a direction opposite to a light emitting surface for emitting light from the light source device and in parallel with the light emitting surface. Position, the reflection surface located opposite to the emission surface is formed into an arcuate concave shape, and a wavelength conversion unit is provided between the reflection surface and the back surface of the emission surface or between the reflection surface and the light emission surface, and from the light emission surface. It is characterized in that the emitted light emits monochromatic light that is parallel or convergent on the reflecting surface and monochromatic light that has been wavelength-converted by the wavelength converter.

【0010】請求項1に係る光源装置は、半導体発光素
子の発光面が光源装置から光を出射する出射面と逆方向
および出射面と平行に位置し、出射面の反対に位置する
反射面を円弧状凹型にするとともに反射面と出射面の裏
側面との間または反射面と発光面との間に波長変換部を
設け、発光面からの出射光を反射面で平行性または集光
性な単色光と波長変換部で波長変換された単色光とを出
射させるので、出射面からの光線が平行光線であるとと
もに調和のとれた混合色光を得ることができる。
[0010] In the light source device according to the first aspect, the light emitting surface of the semiconductor light emitting element is located in a direction opposite to and parallel to the emission surface for emitting light from the light source device, and has a reflection surface located opposite to the emission surface. In addition to the arcuate concave shape, a wavelength converter is provided between the reflection surface and the back surface of the emission surface or between the reflection surface and the light emission surface, and the light emitted from the light emission surface is parallel or condensed by the reflection surface. Since the monochromatic light and the monochromatic light whose wavelength has been converted by the wavelength converter are emitted, it is possible to obtain a mixed color light in which the rays from the emission surface are parallel rays and are in harmony.

【0011】また、請求項2に係る光源装置は、反射面
が鏡面状または微細凸凹面状またはハイブリットレンズ
形状の円弧状凸をなし、表面部側に反射材が設けられる
ことを特徴とする。
The light source device according to the second aspect is characterized in that the reflecting surface has a mirror-like shape, a fine convex-concave shape, or an arc-shaped convex shape of a hybrid lens shape, and a reflecting material is provided on the surface portion side.

【0012】請求項2に係る光源装置は、反射面が鏡面
状または微細凸凹面状またはハイブリットレンズ形状の
円弧状凸をなし、表面部側に反射材が設けられるので、
半導体発光素子からの発光する光を無駄無く有効に反射
し、出射面から遠くまで明るく投射することができる。
[0012] In the light source device according to the second aspect, the reflecting surface is formed in a mirror-like shape, a fine concave-convex shape, or an arc-like convex shape of a hybrid lens shape, and the reflecting material is provided on the surface portion side.
The light emitted from the semiconductor light emitting element can be effectively reflected without waste, and can be brightly projected far from the emission surface.

【0013】さらに、請求項3に係る光源装置は、出射
面が鏡面状または格子状突起または微細凸凹面状または
フレネルレンズ状の形状をなすことを特徴とする。
Further, the light source device according to the third aspect is characterized in that the light emitting surface has a mirror-like or lattice-like projection, a fine uneven surface or a Fresnel lens shape.

【0014】請求項3に係る光源装置は、出射面が鏡面
状または格子状突起または微細凸凹面状またはフレネル
レンズ状の形状をなすので、反射面からの光線をより遠
くに放射したり、波長変換部で波長変換された単色光と
変換されない単色光とを効率よく混合し、輝度を均一に
できる。
According to the third aspect of the present invention, since the light emitting surface has a mirror-like or grid-like projection, a finely concave or convex shape, or a Fresnel lens-like shape, the light from the reflecting surface can be radiated farther, or the wavelength can be increased. The monochromatic light whose wavelength has been converted by the conversion unit and the monochromatic light that is not converted can be efficiently mixed, and the luminance can be made uniform.

【0015】また、請求項4に係る光源装置は、波長変
換部がイットリウム・アルミニウム・ガーネット系材料
からなり、当該材料が微細な面積を有するドット形状で
均一に設けられるかまたは出射面の周辺部と対向する部
分にドットが多く設けられることを特徴とする。
According to a fourth aspect of the present invention, in the light source device, the wavelength conversion portion is made of an yttrium-aluminum-garnet-based material, and the material is uniformly provided in a dot shape having a small area, or a peripheral portion of the emission surface. , A large number of dots are provided in a portion opposed to.

【0016】請求項4に係る光源装置は、波長変換部が
イットリウム・アルミニウム・ガーネット系材料からな
り、当該材料が微細な面積を有するドット形状で均一に
設けられるかまたは出射面の周辺部と対向する部分にド
ットが多く設けられるので、輝度の高い混合色光を均一
に出射することができる。
According to a fourth aspect of the present invention, in the light source device, the wavelength conversion portion is made of an yttrium-aluminum-garnet-based material, and the material is uniformly provided in a dot shape having a fine area, or faces the periphery of the emission surface. Since a large number of dots are provided in the portion where the light is mixed, it is possible to uniformly emit mixed color light having high luminance.

【0017】さらに、請求項5に係る光源装置は、反射
面に被着された反射材が反射率の高い金属材料または円
弧状凹型の部分に設けられる屈折率の小さい透明樹脂材
料からなることを特徴とする。
Further, in the light source device according to the fifth aspect, the reflecting material adhered to the reflecting surface is made of a metal material having a high reflectivity or a transparent resin material having a small refractive index provided in an arcuate concave portion. Features.

【0018】請求項5に係る光源装置は、反射材が反射
面に被着された反射率の高い金属材料または円弧状凹型
の部分に設けられる屈折率の小さい透明樹脂材料からな
るので、半導体発光素子の発光面からの光線を反射面で
効率良く反射することができる。
In the light source device according to the fifth aspect, since the reflecting material is made of a metal material having a high reflectance applied to the reflecting surface or a transparent resin material having a low refractive index provided in the arc-shaped concave portion, the semiconductor light emitting device is provided. Light rays from the light emitting surface of the element can be efficiently reflected by the reflecting surface.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて説明する。なお、本発明は、半導体発光
素子の発光面を光源装置の出射面とは反対方向に載置
し、発光面に対向する部分に円弧状の反射面を設けると
ともに発光面と反射面との間に波長変換部を設けて、単
色の発光色を得るとともに出射面から均一で明るい平行
光を出射する光源装置を提供するものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that, in the present invention, the light emitting surface of the semiconductor light emitting element is placed in a direction opposite to the light emitting surface of the light source device, and an arc-shaped reflecting surface is provided at a portion facing the light emitting surface, and the light emitting surface and the reflecting surface are interposed. The present invention provides a light source device that is provided with a wavelength conversion section to obtain a monochromatic emission color and emits uniform and bright parallel light from an emission surface.

【0020】図1(a)は本発明に係る光源装置の外観
を示す斜視図、図1(b)は同光源装置の断面図、図2
は本発明に係る光源装置の他の例を示す断面図、図3〜
図6は本発明に係る光源装置の他の例を示す部分断面
図、図7は本発明に係る光源装置を複数用いてユニット
化した集合光源装置の斜視図である。
FIG. 1A is a perspective view showing the appearance of a light source device according to the present invention, FIG. 1B is a sectional view of the light source device, and FIG.
Is a sectional view showing another example of the light source device according to the present invention, and FIGS.
FIG. 6 is a partial cross-sectional view showing another example of the light source device according to the present invention, and FIG. 7 is a perspective view of a collective light source device unitized by using a plurality of light source devices according to the present invention.

【0021】図1(a),(b)に示すように、本発明
に係る光源装置1は、円筒形状の外観をなし、モールド
ケース2、半導体発光素子3、半導体発光素子発光面
4、出射面5、反射面6、波長変換部7、リードワイヤ
8およびリード端子9を有している。なお、図示した本
例の光源装置1は、円筒形状の外観をなしているが、矩
形状等の他の形状であってもよい。
As shown in FIGS. 1 (a) and 1 (b), a light source device 1 according to the present invention has a cylindrical appearance, and includes a mold case 2, a semiconductor light emitting element 3, a semiconductor light emitting element light emitting surface 4, and an emission surface. It has a surface 5, a reflection surface 6, a wavelength converter 7, a lead wire 8, and a lead terminal 9. Although the illustrated light source device 1 of this example has a cylindrical appearance, it may have another shape such as a rectangular shape.

【0022】モールドケース2は、変成ポリアミド、ポ
リブチレンテレフタレート、ナイロン46や芳香族系ポ
リエステル等からなる液晶ポリマなどの絶縁性の有る材
料に、光の反射性を良くするためにチタン酸バリウム等
の白色粉体を混入させたものを、加熱し圧力を加えて射
出成型により形成される。
The mold case 2 is made of an insulating material such as a liquid crystal polymer made of modified polyamide, polybutylene terephthalate, nylon 46, aromatic polyester, or the like. The mixture containing white powder is formed by injection molding by heating and applying pressure.

【0023】また、モールドケース2には、光源装置1
の最終出射光となる出射面5からリード端子9のある方
向に向かって円弧状凹型の開口部が成形されており、こ
の円弧状凹型の開口部の表面が反射面6を形成してい
る。
The light source device 1 is provided in the mold case 2.
An arc-shaped concave opening is formed in the direction from the emission surface 5 that is the final emission light of the lead terminal 9 to a certain direction, and the surface of the arc-shaped concave opening forms the reflection surface 6.

【0024】半導体発光素子3は、InGaAlPやI
nGaAlNおよびInGaN系の半導体発光素子等が
用いられる。特にInGaAlNおよびInGaN系の
半導体発光素子等を半導体発光素子3として用いれば、
青色発光の発光色が得られる。
The semiconductor light emitting element 3 is made of InGaAlP or IGa.
An nGaAlN or InGaN-based semiconductor light emitting device or the like is used. In particular, if an InGaAlN or InGaN-based semiconductor light emitting device or the like is used as the semiconductor light emitting device 3,
A blue light emission color is obtained.

【0025】また、半導体発光素子3は、素子のチップ
の発光面4をモールドケース2の出射面5とは反対方向
の反射面6方向に出射面5と平行に載置(後側)し、リ
ードワイヤ8を光源装置1の後方にあるリード端子9に
電気的に接続する。
In the semiconductor light emitting device 3, the light emitting surface 4 of the chip of the device is placed (rear side) in the direction of the reflecting surface 6 opposite to the light emitting surface 5 of the mold case 2 in parallel with the light emitting surface 5. The lead wire 8 is electrically connected to a lead terminal 9 located behind the light source device 1.

【0026】出射面5は、モールドケース2の反射面6
側の垂直な一端面をなし、図3に示すような鏡面状、図
4に示すような微細凸凹面状5a、図5に示すようなフ
レネルレンズ状の形状5c、図6に示すような格子状突
起5bが施されている。そして、例えば図5に示すよう
に半導体発光素子3の発光面4からの光線を反射面6で
反射し、そのまま出射面5方向に進む光と、発光面4か
らの光線を波長変換部7で波長変換された光を反射面6
で反射し、出射面5方向に進む光と、発光面4からの光
線を反射面6で反射し、出射面5方向に進む間に波長変
換部7で波長変換された光とを鏡面状の出射面5によっ
てそのまま出射させることができる。
The light exit surface 5 is a reflection surface 6 of the mold case 2.
A vertical end surface on the side, a mirror surface shape as shown in FIG. 3, a fine uneven surface shape 5a as shown in FIG. 4, a Fresnel lens shape shape 5c as shown in FIG. 5, a grating as shown in FIG. A projection 5b is provided. For example, as shown in FIG. 5, the light from the light emitting surface 4 of the semiconductor light emitting element 3 is reflected by the reflecting surface 6, and the light traveling in the direction of the light emitting surface 5 and the light from the light emitting surface 4 are converted by the wavelength converter 7. The wavelength-converted light is reflected on the reflection surface 6.
The light reflected from the light emitting surface 4 and traveling in the direction of the emitting surface 5 and the light from the light emitting surface 4 reflected by the reflecting surface 6 and the light wavelength-converted by the wavelength converter 7 while traveling in the direction of the emitting surface 5 are mirror-like. The light can be emitted by the emission surface 5 as it is.

【0027】同様に出射面5を格子状突起や微細凸凹面
状にすることによって、全体としての光束が広がらない
ようにしながら格子状突起や微細凸凹面状の各部分での
レンズ効果を利用して光束を遠くに達するようにするこ
とができる。
Similarly, by making the exit surface 5 a lattice-like projection or a fine uneven surface, the lens effect is utilized at each part of the lattice-like projection or the fine uneven surface while preventing the entire light beam from spreading. The luminous flux can reach far.

【0028】さらに、同様に出射面5をフレネルレンズ
状の形状にすることによって、光線の全体を平行に遠く
まで達するようにすることができる。
Further, similarly, by forming the exit surface 5 in the shape of a Fresnel lens, it is possible to make the entire light beam reach parallel and far.

【0029】反射面6は、モールドケース2の出射面5
と反対の位置に円弧状凹型に成形され、その表面が図4
または図6に示すような鏡面状や図5に示すような微細
凸凹面状6bまたは図3に示すようなハイブリットレン
ズ形状の円弧状凸6aをなしている。なお、図示しない
が、反射面6の表面部に反射率の高い例えばAl,C
o,Cr等の金属からなる反射材で被着したり、円弧状
凹型の部分に屈折率の小さい透明樹脂材料(例えば屈折
率n=1.5程度(具体的にはn=1.547、1.5
03)のエポキシ樹脂や屈折率n=1.7程度のアクリ
ル樹脂)を被着または充填して設けるようにしてもよ
い。これにより、半導体発光素子3からの光線を効率良
く出射面5方向へ反射するとともに微細凸凹面状やハイ
ブリットレンズ形状の円弧状凸によりある程度の散乱を
させて波長変換部7に当たる確率を高くさせる。なお、
上記屈折率の小さい透明樹脂材料としてアクリル樹脂
(屈折率n=1.7程度)とエポキシ樹脂(屈折率n=
1.503)を用いた場合、両者の角度の差としては
5.6度程度である。
The reflection surface 6 is provided on the light exit surface 5 of the mold case 2.
4 is formed into an arcuate concave shape at a position opposite to that of FIG.
Alternatively, it has a mirror-like shape as shown in FIG. 6, a finely concave-convex shape 6b as shown in FIG. 5, or a hybrid lens-shaped arc-shaped protrusion 6a as shown in FIG. Although not shown, for example, Al, C having a high reflectance
A transparent resin material having a small refractive index (for example, a refractive index of about n = 1.5 (specifically, n = 1.547, 1.5
03), an epoxy resin or an acrylic resin having a refractive index of about n = 1.7). Thereby, the light from the semiconductor light emitting element 3 is efficiently reflected in the direction of the emission surface 5 and, to a certain extent, is scattered by the fine convex and concave shape or the convex shape of the hybrid lens to increase the probability of hitting the wavelength conversion unit 7. In addition,
Acrylic resin (refractive index n = about 1.7) and epoxy resin (refractive index n =
When 1.503) is used, the difference between the two angles is about 5.6 degrees.

【0030】波長変換部7は、無機系の蛍光顔料や有機
系の蛍光染料等からなり、これら蛍光材料等を図3に示
すようなドット状(格子状)に無色透明なシートに印刷
した物や、図4に示すような無色透明なエポキシ樹脂や
シリコーン樹脂等に混合分散させた物を半導体発光素子
3の発光面4と反射面6との間や光源装置1の出射面5
の裏側面と反射面6との間に設ける。また、波長変換部
7は、図2に示すように、出射面5と反射面6との間
で、かつ半導体発光素子3の発光面4と出射面5との間
に設けるようにしてもよい。
The wavelength conversion section 7 is made of an inorganic fluorescent pigment, an organic fluorescent dye, or the like. These fluorescent materials and the like are printed on a colorless and transparent sheet in a dot shape (lattice shape) as shown in FIG. Alternatively, a material obtained by mixing and dispersing a colorless and transparent epoxy resin or silicone resin as shown in FIG. 4 between the light emitting surface 4 of the semiconductor light emitting element 3 and the reflecting surface 6 or the light emitting surface 5 of the light source device 1
Is provided between the rear side surface and the reflection surface 6. Further, as shown in FIG. 2, the wavelength converter 7 may be provided between the light emitting surface 5 and the reflecting surface 6 and between the light emitting surface 4 and the light emitting surface 5 of the semiconductor light emitting element 3. .

【0031】また、波長変換部7は、微細な面積を有す
るドット形状を均一に設けるようにすれば、色のバラツ
キをなくすことができる。この他、波長変換部7は、上
記ドット形状を出射面5の周辺部と対向する部分に多く
設けてもよい。この場合、反射面6と出射面5との距離
が、出射面5の周辺部ほど近くなるので、光のエネルギ
ーが強いことと、波長変換部7よりも外側での反射光
(反射面)が有る(この光はLEDの横方向からの漏光
(例えば青色光))ために、出射面5直前の周辺部での
光を他より黄色がかった光にし、最終的に調和させるこ
とができる。
If the wavelength conversion section 7 is provided with a uniform dot shape having a fine area, it is possible to eliminate color variations. In addition, the wavelength converter 7 may be provided with a large number of the dot shapes in a portion facing the peripheral portion of the emission surface 5. In this case, since the distance between the reflection surface 6 and the emission surface 5 becomes closer to the periphery of the emission surface 5, there is strong light energy and reflected light (reflection surface) outside the wavelength converter 7. (Because this light leaks from the lateral direction of the LED (for example, blue light)), the light at the peripheral portion immediately before the emission surface 5 can be made more yellowish than others, and finally can be harmonized.

【0032】波長変換部7は、半導体発光素子3の発光
色を他の異なる色に変換し、例えば緑色発光の半導体発
光素子3からの光を赤色蛍光顔料や赤色蛍光染料を用い
た波長変換部7に投射すると黄色系の光が得られる。
The wavelength conversion section 7 converts the light emission color of the semiconductor light emitting element 3 into another different color, and converts the light emitted from the green light emitting semiconductor light emitting element 3 into a wavelength conversion section using a red fluorescent pigment or a red fluorescent dye. When projected on 7, yellow light is obtained.

【0033】さらに、青色発光の半導体発光素子3から
の光を緑色蛍光顔料や緑色蛍光染料を用いた波長変換部
7に投射すると青緑色系の光が得られる。
Further, when the light from the blue light emitting semiconductor light emitting element 3 is projected on the wavelength conversion section 7 using a green fluorescent pigment or a green fluorescent dye, blue-green light is obtained.

【0034】なお、波長変換部7を構成する蛍光顔料と
しては、例えば赤色蛍光顔料にはY 2 3 :EuやY
(P,V)O4 :Eu等、緑色蛍光顔料にはZn2 Si
4 :Mn等、また橙色蛍光顔料にはCaSiO3 :P
b,MnやY3 Al5 12 系等が用いられる。
The fluorescent pigment constituting the wavelength conversion section 7 is
For example, for a red fluorescent pigment, Y TwoOThree: Eu or Y
(P, V) OFour: Zn for green fluorescent pigments such as EuTwoSi
OFour: Mn, etc., and CaSiO for the orange fluorescent pigmentThree: P
b, Mn or YThreeAlFiveO12 A system or the like is used.

【0035】さらに、波長変換部7は、半導体発光素子
3等の発光した光の吸収により励起され、エネルギ準位
の低い基底状態からエネルギ準位の高い励起状態に遷移
し、基底状態に戻る時に電子エネルギを振動や回転等の
熱エネルギに変化することなく発光して放出する物であ
り、一般にストークスの法則の様に、半導体発光素子3
の発光波長よりも波長変換材料からの発光波長のほうが
長い発光や2段階的な電子励起が励起過程に含まれ、反
ストークスな半導体発光素子3の発光波長よりも波長変
換材料からの発光波長のほうが短い発光をも含まれる。
Further, the wavelength converter 7 is excited by the absorption of light emitted from the semiconductor light emitting element 3 or the like, transitions from a ground state having a low energy level to an excited state having a high energy level, and returns to the ground state. A substance that emits light by emitting electron energy without changing it into heat energy such as vibration or rotation. In general, the semiconductor light emitting device 3 is used in accordance with Stokes' law.
In the excitation process, light emission whose emission wavelength is longer than that of the wavelength conversion material and two-step electronic excitation are included in the excitation process, and the emission wavelength of the wavelength conversion material is smaller than that of the anti-Stokes semiconductor light emitting element 3. Shorter luminescence is included.

【0036】また、波長変換部7は、ドット状(格子
状)に無色透明なシートに印刷するための蛍光材料と印
刷用(インク)樹脂との混合分散する比率および蛍光材
料と無色透明なエポキシ樹脂やシリコーン樹脂等に混合
分散する比率によって、蛍光材料が存在しない部分を透
過した半導体発光素子3本来の色調と波長変換部7の蛍
光材料で波長変換された色調との混合によって色度図等
に示される色調が得られる。
The wavelength conversion section 7 has a mixing ratio of a fluorescent material and a printing (ink) resin for printing on a colorless and transparent sheet in a dot shape (lattice shape), and a fluorescent material and a colorless and transparent epoxy. The chromaticity diagram or the like is obtained by mixing the original color tone of the semiconductor light emitting element 3 transmitted through the portion where no fluorescent material is present and the color tone converted by the fluorescent material of the wavelength conversion unit 7 depending on the ratio of mixing and dispersion in the resin or silicone resin. Are obtained.

【0037】例えば青色発光の半導体発光素子3からの
光を橙色蛍光顔料や橙色蛍光染料を混入した波長変換部
7に投射すると、青色光と橙色光との混合によって白色
光が得られる。この場合、蛍光材料が多ければ橙色の色
調が濃い光が得られ、蛍光材料が少なければ青色の色調
の濃い光が得られる。
For example, when light from the blue light emitting semiconductor light emitting element 3 is projected onto the wavelength conversion section 7 in which an orange fluorescent pigment or an orange fluorescent dye is mixed, white light is obtained by mixing the blue light and the orange light. In this case, if the amount of the fluorescent material is large, light with a deep orange color tone is obtained, and if the amount of the fluorescent material is small, light with a deep blue color tone is obtained.

【0038】なお、波長変換部7は、変換材料と非変換
部(無色)の面積比を、色の変換効率が悪い場合を考慮
して0.4〜0.7:1に設定することができる。単純
には、50:50(青色50:黄色50)で良いが、こ
の比率は濃度が100%の変換材料を使用した事にな
り、実際は接着材等で薄くなるとともに、完全に100
%の変換材料では光が透過しないので、例えば印刷によ
り薄く塗る。
The wavelength conversion section 7 may set the area ratio between the conversion material and the non-conversion section (colorless) to 0.4 to 0.7: 1 in consideration of the case where the color conversion efficiency is poor. it can. Simply, 50:50 (blue 50: yellow 50) may be used. However, this ratio means that a conversion material having a concentration of 100% is used.
Since the conversion material of% does not transmit light, it is applied thinly by, for example, printing.

【0039】リードワイヤ8は、金属等の導電性の良い
金属線などからなり、半導体発光素子3等のアノード電
極およびカソード電極をボンダによって電気的接続をす
る。また、同様な目的で細いリードフレームを用いてリ
ードフレームを直接リード端子9に電気的接続しても良
い。
The lead wire 8 is made of a metal wire having good conductivity such as a metal, and electrically connects an anode electrode and a cathode electrode of the semiconductor light emitting element 3 and the like by a bonder. Further, the lead frame may be directly electrically connected to the lead terminal 9 using a thin lead frame for the same purpose.

【0040】リード端子9は、導電性および弾性力のあ
る燐青銅等の銅合金材またはアルミニウム等からなり、
リードワイヤ8と電気的に接続される。なお、半導体発
光素子3をリードフレームにダイボンディングして設
け、リード端子9を上記リードフレームからモールドケ
ース2より直接取り出しても良い。
The lead terminal 9 is made of a conductive or elastic copper alloy material such as phosphor bronze or aluminum.
It is electrically connected to the lead wire 8. Note that the semiconductor light emitting element 3 may be provided by die bonding on a lead frame, and the lead terminal 9 may be directly taken out of the mold case 2 from the lead frame.

【0041】尚、モールドケース2に設けた円弧状凹部
の開口部の空間には、エポキシ樹脂やシリコーン樹脂を
充填し、光の損失を減少させるようにすることができ
る。
Incidentally, the space of the opening of the arc-shaped concave portion provided in the mold case 2 can be filled with an epoxy resin or a silicone resin to reduce light loss.

【0042】また、波長変換部7部分や半導体発光素子
3等のみをエポキシ樹脂やシリコーン樹脂等で固定し、
円弧状凹型の開口部の空間に樹脂等を充填しないエアギ
ャップタイプの場合には、円弧状凹型の開口部の内部に
真空、空気、ガス充填等をして放熱や半導体発光素子3
の劣化を防ぐことも可能である。
Further, only the wavelength conversion section 7 and the semiconductor light emitting element 3 are fixed with an epoxy resin or a silicone resin.
In the case of an air gap type in which the space of the arc-shaped concave opening is not filled with resin or the like, the inside of the arc-shaped concave opening is filled with vacuum, air, gas, or the like to radiate heat or the semiconductor light emitting element 3.
Can be prevented from deteriorating.

【0043】また、図7に示すように、光源装置1を多
数集合させたような大光量の光源とすることができる。
この場合、個々の光源装置1をモールドケース2を1つ
のケース10に挿入し、ケース10内部で電気的接続を
行う。
Further, as shown in FIG. 7, it is possible to provide a light source having a large light amount as if a large number of light source devices 1 were assembled.
In this case, the individual light source devices 1 are inserted into the mold case 2 in one case 10, and an electrical connection is made inside the case 10.

【0044】また別の構成として、最初から大きな1つ
の光源装置1をモールドケース2に円弧状凹型の空間を
多数形成し、これら各々円弧凹型に反射面6を成形する
とともに各々円弧状凹型に波長変換部7および半導体発
光素子3等を設けてケース10内部で電気的接続を行
う。
As another configuration, a large light source device 1 is formed from the beginning with a large number of arcuate concave spaces formed in a mold case 2, and the reflecting surfaces 6 are formed into the respective arcuate concave shapes, and the wavelengths are formed into the respective arcuate concave shapes. The conversion unit 7 and the semiconductor light emitting element 3 are provided to make electrical connection inside the case 10.

【0045】尚、この場合には各々円弧状凹型に異なる
半導体発光素子3や異なる波長変換部7等を用いたり、
波長変換部7のみ色々の蛍光材等を用いることによりマ
ルチカラに対応することも可能である。
In this case, different semiconductor light emitting elements 3 and different wavelength converters 7 each having an arcuate concave shape are used,
By using various fluorescent materials or the like only for the wavelength conversion section 7, it is possible to cope with multicolor.

【0046】[0046]

【実施例】本発明に係る光源装置の実施例について説明
する。YAG(イットリウム・アルミニウム・ガーネッ
ト)系の蛍光顔料である(Y,Gd)3 (Al,Ga)
5 12:Ceの(Y,Gd)3 (Al,Ga)5 12
Ceとの原子量比を各種変え、この比率が1:4の時
に、さらに蛍光顔料の平均粒度を8μm程度にした物を
無色透明なエポキシ樹脂と重量比1:1に調整した波長
変換材料混入樹脂を無色透明なシートにドット状(格子
状)に印刷した波長変換部7をモールドケース2に設け
た円弧状凹型の反射面6と出射面5の後方に出射面5と
平行に載置した青色発光の半導体発光素子3との間に設
けて光源装置を作製した。これにより、半導体発光素子
3からの青色発光色の一部が波長変換部7の蛍光材に当
たり橙色に変換した光線と青色発光色のそのままの光線
とが反射面6で反射して再度、青色発光色の一部が波長
変換部7の蛍光材に当たり橙色に変換した光線とそのま
まの青色発光色の光線とが、これら反射面6と出射面5
との間で混合し、白色の光を得ることができた。
An embodiment of the light source device according to the present invention will be described. (Y, Gd) 3 (Al, Ga) which is a fluorescent pigment based on YAG (yttrium aluminum garnet)
5 O 12: changing (Y, Gd) 3 (Al , Ga) 5 O 12 and various atomic weight ratio of Ce to Ce, the ratio is 1: when the 4 and further the average particle size of the fluorescent pigment to about 8μm An arc-shaped concave type in which a wavelength conversion portion 7 in which a wavelength conversion material mixed with a colorless and transparent epoxy resin adjusted to a weight ratio of 1: 1 and printed on a colorless and transparent sheet in a dot shape (lattice shape) is provided in a mold case 2. Between the reflecting surface 6 and the blue light emitting semiconductor light emitting element 3 placed parallel to the emitting surface 5 behind the emitting surface 5 to produce a light source device. As a result, a part of the blue light emitted from the semiconductor light emitting element 3 hits the fluorescent material of the wavelength conversion unit 7 and the light converted to orange and the light of the blue light are reflected by the reflecting surface 6 and again emitted blue light. A part of the color hits the fluorescent material of the wavelength conversion part 7 and the light converted to orange and the light of the blue emission color as it is are reflected on the reflection surface 6 and the emission surface 5.
And white light could be obtained.

【0047】なお、この実施例に青色発光の半導体発光
素子は豊田合成(株)のE1C00−1BA01を用い
た。
The blue light emitting semiconductor light emitting device used in this example was E1C00-1BA01 manufactured by Toyoda Gosei Co., Ltd.

【0048】このように、本発明に係る光源装置は、半
導体発光素子3の発光面4を光源装置1の出射面5と反
対方向に載置し、出射面5と反対に光を出射させ、円弧
状凹型にした出射面5と反対に位置する反射面6で光を
反射させるとともに発光面4と反射面6との間に波長変
換部7を設けて、一部はそのままの光と一部は波長変換
部7で波長変換された光とによって混合された光を出射
面5から平行に出射することができる。
As described above, in the light source device according to the present invention, the light emitting surface 4 of the semiconductor light emitting element 3 is placed in the direction opposite to the light emitting surface 5 of the light source device 1, and the light is emitted opposite to the light emitting surface 5. Light is reflected by a reflecting surface 6 located opposite to the arc-shaped concave emitting surface 5 and a wavelength conversion portion 7 is provided between the light emitting surface 4 and the reflecting surface 6, and a part of the light is converted to the light as it is. Can emit light mixed with the light whose wavelength has been converted by the wavelength conversion unit 7 from the emission surface 5 in parallel.

【0049】[0049]

【発明の効果】以上のように、請求項1に係る光源装置
は、半導体発光素子の発光面が光源装置から光を出射す
る出射面と逆方向および出射面と平行に位置し、出射面
の反対に位置する反射面を円弧状凹型にするとともに反
射面と出射面の裏側面との間または反射面と発光面との
間に波長変換部を設け、発光面からの出射光を反射面で
平行性または集光性な単色光と波長変換部で波長変換さ
れた単色光とを出射させるので、出射面からの光線が平
行光線であるとともに調和のとれた混合色光を得ること
ができ、しかも各色彩の光とともに輝度の高い光を得る
ことができる。
As described above, in the light source device according to the first aspect, the light emitting surface of the semiconductor light emitting element is located in a direction opposite to and parallel to the light emitting surface for emitting light from the light source device. The reflecting surface located on the opposite side is formed into an arcuate concave shape, and a wavelength converter is provided between the reflecting surface and the back side of the emitting surface or between the reflecting surface and the emitting surface, and the light emitted from the emitting surface is reflected by the reflecting surface. Since the monochromatic light having the parallel or condensing properties and the monochromatic light whose wavelength has been converted by the wavelength conversion section are emitted, it is possible to obtain a mixed color light in which the light from the emission surface is parallel and harmonious, and High-luminance light can be obtained together with light of each color.

【0050】また、請求項2に係る光源装置は、反射面
が鏡面状または微細凸凹面状またはハイブリットレンズ
形状の円弧状凸をなし、表面部側に反射材が設けられる
ので、半導体発光素子からの発光する光を無駄無く有効
に反射し、出射面から遠くまで明るく投射することがで
きるとともに少ない数の半導体発光素子で輝度を高くす
ることができ、省エネに対応できる。
Further, in the light source device according to the second aspect, since the reflecting surface is formed in a mirror-like shape, a fine concave-convex shape or an arc-like convex shape of a hybrid lens shape, and the reflecting material is provided on the surface side, the semiconductor light-emitting device can be used. The light emitted from the light-emitting device can be effectively reflected without waste, and can be brightly projected far from the emission surface. In addition, the brightness can be increased with a small number of semiconductor light-emitting elements, and energy saving can be achieved.

【0051】さらに、請求項3に係る光源装置は、出射
面が鏡面状または格子状突起または微細凸凹面状または
フレネルレンズ状の形状をなすので、反射面からの光線
をより遠くに放射したり、波長変換部で波長変換された
単色光と変換されない単色光とを効率よく混合し、輝度
を均一にでき、消費電力の低減等コストパフォーマンス
にすぐれる。
Further, in the light source device according to the third aspect, since the light emitting surface has a mirror-like or lattice-like protrusion, a finely concave-convex surface or a Fresnel lens-like shape, the light from the reflecting surface can be radiated farther. In addition, the monochromatic light whose wavelength has been converted by the wavelength conversion unit and the monochromatic light that has not been converted can be efficiently mixed, the luminance can be made uniform, and excellent cost performance such as reduction in power consumption can be achieved.

【0052】また、請求項4に係る光源装置は、波長変
換部がイットリウム・アルミニウム・ガーネット系材料
からなり、当該材料が微細な面積を有するドット形状で
均一に設けられるかまたは出射面の周辺部と対向する部
分にドットが多く設けられるので、輝度の高い混合色光
を均一に出射することができ、少ない数の半導体発光素
子で白色光を得ることができる。
According to a fourth aspect of the present invention, in the light source device, the wavelength conversion portion is made of an yttrium-aluminum-garnet-based material, and the material is provided uniformly in a dot shape having a small area, or a portion around the emission surface. Since a large number of dots are provided in a portion opposed to the above, mixed color light with high luminance can be uniformly emitted, and white light can be obtained with a small number of semiconductor light emitting elements.

【0053】さらに、請求項5に係る光源装置は、反射
材が反射面に被着された反射率の高い金属材料または円
弧状凹型の部分に設けられる屈折率の小さい透明樹脂材
料からなるので、半導体発光素子の発光面からの光線を
反射面で効率良く反射することができ、しかも少ない数
の半導体発光素子で輝度を高くすることができるので、
省エネに対応できる。
Further, in the light source device according to the fifth aspect, since the reflecting material is made of a metal material having a high reflectance applied to the reflecting surface or a transparent resin material having a low refractive index provided in the arc-shaped concave portion, Since the light from the light emitting surface of the semiconductor light emitting device can be efficiently reflected by the reflecting surface, and the luminance can be increased with a small number of semiconductor light emitting devices.
Can cope with energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明に係る光源装置の外観を示す斜視
図 (b)同光源装置の断面図
FIG. 1A is a perspective view showing an appearance of a light source device according to the present invention. FIG. 1B is a sectional view of the light source device.

【図2】本発明に係る光源装置の他の例を示す断面図FIG. 2 is a cross-sectional view showing another example of the light source device according to the present invention.

【図3】本発明に係る光源装置の他の例を示す部分断面
FIG. 3 is a partial sectional view showing another example of the light source device according to the present invention.

【図4】本発明に係る光源装置の他の例を示す部分断面
FIG. 4 is a partial sectional view showing another example of the light source device according to the present invention.

【図5】本発明に係る光源装置の他の例を示す部分断面
FIG. 5 is a partial sectional view showing another example of the light source device according to the present invention.

【図6】本発明に係る光源装置の他の例を示す部分断面
FIG. 6 is a partial sectional view showing another example of the light source device according to the present invention.

【図7】本発明に係る光源装置を複数用いてユニット化
した集合光源装置の斜視図
FIG. 7 is a perspective view of a collective light source device unitized by using a plurality of light source devices according to the present invention.

【符号の説明】[Explanation of symbols]

1…光源装置、2…モールドケース、3…半導体発光素
子、4…発光面、5…出射面、5a…微細凸凹面状、5
b…格子状突起、5c…フレネルレンズ状、6…反射
面、6a…ハイブリットレンズ形状の円弧状凸、6b…
微細凸凹面状、7…波長変換部、8…リードワイヤ、9
…リード端子、10…ケース。
DESCRIPTION OF SYMBOLS 1 ... Light source device, 2 ... Mold case, 3 ... Semiconductor light emitting element, 4 ... Light emitting surface, 5 ... Outgoing surface, 5a ...
b: Lattice projection, 5c: Fresnel lens shape, 6: Reflection surface, 6a: Arc-shaped convex of hybrid lens shape, 6b ...
Fine uneven surface shape, 7: wavelength converter, 8: lead wire, 9
... lead terminals, 10 ... cases.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 利道 東京都多摩市永山6−22−6 日本デンヨ ー株式会社内 Fターム(参考) 5F041 AA11 DA16 DA25 DA26 DA43 DA56 DA58 EE17 EE23 EE25 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshimichi Nakamura 6-22-6 Nagayama, Tama-shi, Tokyo F-term (reference) in Nippon Denyo Co., Ltd. 5F041 AA11 DA16 DA25 DA26 DA43 DA56 DA58 EE17 EE23 EE25

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リードフレーム上に設けた半導体発光素
子と、当該半導体発光素子を樹脂で被覆して成形モール
ドしてなる光源装置において、 前記光源装置は、前記半導体発光素子の発光面が前記光
源装置から光を出射する出射面と逆方向および前記出射
面と平行に位置し、前記出射面の反対に位置する反射面
を円弧状凹型にするとともに前記反射面と前記出射面の
裏側面との間または前記反射面と前記発光面との間に波
長変換部を設け、前記発光面からの出射光を前記反射面
で平行性または集光性な単色光と前記波長変換部で波長
変換された単色光とを出射させることを特徴とする光源
装置。
1. A light source device comprising: a semiconductor light emitting element provided on a lead frame; and a semiconductor light emitting element coated with a resin and molded and molded. The light exits from the device in a direction opposite to the light exit surface and in parallel with the light exit surface, and the reflection surface located opposite to the light exit surface is formed into an arcuate concave shape, and the reflection surface and the back side surface of the light exit surface. A wavelength converter is provided between or between the reflective surface and the light emitting surface, and the light emitted from the light emitting surface is converted in wavelength by the parallel or condensing monochromatic light and the wavelength converter on the reflective surface. A light source device for emitting monochromatic light.
【請求項2】 前記反射面は、鏡面状または微細凸凹面
状またはハイブリットレンズ形状の円弧状凸をなし、表
面部側に反射材が設けられることを特徴とする請求項1
記載の光源装置。
2. The reflector according to claim 1, wherein the reflecting surface has a mirror-like shape, a finely convex-concave surface shape, or a hybrid lens-shaped arc-shaped convexity, and a reflective material is provided on a surface side.
The light source device according to claim 1.
【請求項3】 前記出射面は、鏡面状または格子状突起
または微細凸凹面状またはフレネルレンズ状の形状をな
すことを特徴とする請求項1又は2記載の光源装置。
3. The light source device according to claim 1, wherein the emission surface has a shape of a mirror surface, a grid-like protrusion, a fine uneven surface, or a Fresnel lens.
【請求項4】 前記波長変換部は、イットリウム・アル
ミニウム・ガーネット系材料からなり、当該材料が微細
な面積を有するドット形状で均一に設けられるかまたは
前記出射面の周辺部と対向する部分に前記ドットが多く
設けられることを特徴とする請求項1〜3のいずれかに
記載の光源装置。
4. The wavelength conversion section is made of an yttrium-aluminum-garnet-based material, and the material is uniformly provided in a dot shape having a fine area, or the wavelength conversion section is provided at a portion facing a peripheral portion of the emission surface. The light source device according to claim 1, wherein a large number of dots are provided.
【請求項5】 前記反射材は、前記反射面に被着された
反射率の高い金属材料または前記円弧状凹型の部分に設
けられる屈折率の小さい透明樹脂材料からなることを特
徴とする請求項2〜4のいずれかに記載の光源装置。
5. The reflection material is made of a metal material having a high reflectance applied to the reflection surface or a transparent resin material having a low refractive index provided on the arc-shaped concave portion. The light source device according to any one of claims 2 to 4.
JP2000270291A 2000-09-06 2000-09-06 Light source device Abandoned JP2002084002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270291A JP2002084002A (en) 2000-09-06 2000-09-06 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270291A JP2002084002A (en) 2000-09-06 2000-09-06 Light source device

Publications (1)

Publication Number Publication Date
JP2002084002A true JP2002084002A (en) 2002-03-22

Family

ID=18756753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270291A Abandoned JP2002084002A (en) 2000-09-06 2000-09-06 Light source device

Country Status (1)

Country Link
JP (1) JP2002084002A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092430A (en) * 2001-09-19 2003-03-28 Stanley Electric Co Ltd Light emitting device
WO2003081685A1 (en) * 2002-03-26 2003-10-02 Shin-Etsu Handotai Co.,Ltd. Visible light emitting device
JP2006524351A (en) * 2003-04-24 2006-10-26 カール ツアイス エスエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング Inspection equipment for objects such as masks for microlithography in particular
JP2009206428A (en) * 2008-02-29 2009-09-10 Stanley Electric Co Ltd Semiconductor light emitting device
US10593854B1 (en) 2006-12-11 2020-03-17 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348368U (en) * 1989-09-19 1991-05-09
JPH0955540A (en) * 1995-08-11 1997-02-25 Iwasaki Electric Co Ltd Light emitting apparatus
WO1998005078A1 (en) * 1996-07-29 1998-02-05 Nichia Chemical Industries, Ltd. Light emitting device and display device
JPH1097200A (en) * 1997-05-20 1998-04-14 Nichia Chem Ind Ltd Light source
JPH10150222A (en) * 1996-11-19 1998-06-02 Iwasaki Electric Co Ltd Reflective-type light emitting diode and light emitting diode array
JPH1126813A (en) * 1997-06-30 1999-01-29 Toyoda Gosei Co Ltd Light emitting diode lamp
JPH11266035A (en) * 1998-03-17 1999-09-28 Sanyo Electric Co Ltd Light source device
JP2000077723A (en) * 1998-09-01 2000-03-14 Hewlett Packard Co <Hp> Semiconductor device provided with light-emitting semiconductor
JP2000081847A (en) * 1999-09-27 2000-03-21 Toshiba Corp Picture display device and light emitting device
JP2001230451A (en) * 2000-02-15 2001-08-24 Sharp Corp Light emitting diode

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348368U (en) * 1989-09-19 1991-05-09
JPH0955540A (en) * 1995-08-11 1997-02-25 Iwasaki Electric Co Ltd Light emitting apparatus
WO1998005078A1 (en) * 1996-07-29 1998-02-05 Nichia Chemical Industries, Ltd. Light emitting device and display device
JPH10150222A (en) * 1996-11-19 1998-06-02 Iwasaki Electric Co Ltd Reflective-type light emitting diode and light emitting diode array
JPH1097200A (en) * 1997-05-20 1998-04-14 Nichia Chem Ind Ltd Light source
JPH1126813A (en) * 1997-06-30 1999-01-29 Toyoda Gosei Co Ltd Light emitting diode lamp
JPH11266035A (en) * 1998-03-17 1999-09-28 Sanyo Electric Co Ltd Light source device
JP2000077723A (en) * 1998-09-01 2000-03-14 Hewlett Packard Co <Hp> Semiconductor device provided with light-emitting semiconductor
JP2000081847A (en) * 1999-09-27 2000-03-21 Toshiba Corp Picture display device and light emitting device
JP2001230451A (en) * 2000-02-15 2001-08-24 Sharp Corp Light emitting diode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092430A (en) * 2001-09-19 2003-03-28 Stanley Electric Co Ltd Light emitting device
WO2003081685A1 (en) * 2002-03-26 2003-10-02 Shin-Etsu Handotai Co.,Ltd. Visible light emitting device
JP2003282944A (en) * 2002-03-26 2003-10-03 Shin Etsu Handotai Co Ltd Visible light emitting device
JP4818099B2 (en) * 2003-04-24 2011-11-16 カール ツァイス エスエムエス ゲーエムベーハー Inspection equipment for objects such as masks for microlithography in particular
JP2011199302A (en) * 2003-04-24 2011-10-06 Carl Zeiss Sms Gmbh Apparatus for inspecting object, especially mask in microlithography
JP2006524351A (en) * 2003-04-24 2006-10-26 カール ツアイス エスエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング Inspection equipment for objects such as masks for microlithography in particular
US10593854B1 (en) 2006-12-11 2020-03-17 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
US10644213B1 (en) 2006-12-11 2020-05-05 The Regents Of The University Of California Filament LED light bulb
US10658557B1 (en) 2006-12-11 2020-05-19 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
JP2009206428A (en) * 2008-02-29 2009-09-10 Stanley Electric Co Ltd Semiconductor light emitting device
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11796163B2 (en) 2020-05-12 2023-10-24 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Similar Documents

Publication Publication Date Title
JP3910517B2 (en) LED device
JP4077170B2 (en) Semiconductor light emitting device
KR100891810B1 (en) White light emitting device
JP4045189B2 (en) Light emitting device
JP3640153B2 (en) Illumination light source
JP5810301B2 (en) Lighting device
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2004056075A (en) Light-emitting device and method of manufacturing the same
JP2003110146A (en) Light-emitting device
KR20010099729A (en) A light emitting diode device that emits white light
EP2565947A2 (en) Light-emitting device and illumination device using same
JP2005136006A (en) Light-emitting device and producing device using it
JP2007116133A (en) Light emitting device
JP2011511445A (en) Illumination device for backlighting display and display equipped with the illumination device
JP2007116117A (en) Light emitting device
JP2002133925A (en) Fluorescent cover and semiconductor light emitting device
JP3409666B2 (en) Surface light emitting device and display device using the same
JP2002084002A (en) Light source device
KR100868204B1 (en) Light emitting diode using light diffusion material and method for fabricating the same
WO2024016697A1 (en) Light source, light source module and display device
JP2007173733A (en) Light emitting device
KR20050089490A (en) White color light emitting diode using violet light emitting diode
JP2001230451A (en) Light emitting diode
JP3806301B2 (en) Light source device
JP2011071349A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100730