JP2007324220A - Optical semiconductor device - Google Patents

Optical semiconductor device Download PDF

Info

Publication number
JP2007324220A
JP2007324220A JP2006150312A JP2006150312A JP2007324220A JP 2007324220 A JP2007324220 A JP 2007324220A JP 2006150312 A JP2006150312 A JP 2006150312A JP 2006150312 A JP2006150312 A JP 2006150312A JP 2007324220 A JP2007324220 A JP 2007324220A
Authority
JP
Japan
Prior art keywords
light
translucent
emitting element
light emitting
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006150312A
Other languages
Japanese (ja)
Inventor
Tasuku Kusaka
翼 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006150312A priority Critical patent/JP2007324220A/en
Publication of JP2007324220A publication Critical patent/JP2007324220A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical semiconductor device which is capable of realizing an improvement in light extraction efficiency, preventing a decrease in light emission efficiency, and being protected against thermal deterioration. <P>SOLUTION: The semiconductor device 1A is equipped with a wiring substrate 2 with a recess 2a; a light emitting element 3 that is housed in the recess 2a and emits light; and a transparent sealing member 4 which contains a phosphor 4a that is provided in the recess 2a so as to seal up the light emitting element 3 and converts the wavelength of light emitted from the light emitting element 3, and a roughened discharge surface 4b that discharges light emitted from the light emitting element 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発光素子を備える光半導体装置に関する。   The present invention relates to an optical semiconductor device including a light emitting element.

光半導体装置は、照明や表示装置等の様々な装置の光源として広い分野で用いられている。この光半導体装置としては、発光素子により放射された光と、その光により励起された蛍光体により放射された光とを併せて白色光等を得る光半導体装置が提案されている(例えば、特許文献1参照)。   Optical semiconductor devices are used in a wide range of fields as light sources for various devices such as lighting and display devices. As this optical semiconductor device, there has been proposed an optical semiconductor device that obtains white light or the like by combining light emitted by a light emitting element and light emitted by a phosphor excited by the light (for example, a patent) Reference 1).

このような光半導体装置は、発光ダイオード等の発光素子と、その発光素子を収容する凹部を有する配線基板とを備えている。その凹部には、発光素子を封止する透光封止部材が設けられている。この透光封止部材は、粒子状の蛍光体を混合した透光性樹脂材料により形成されている。
特開2005−136006号公報
Such an optical semiconductor device includes a light emitting element such as a light emitting diode, and a wiring board having a recess for accommodating the light emitting element. A translucent sealing member that seals the light emitting element is provided in the recess. This translucent sealing member is formed of a translucent resin material in which particulate phosphors are mixed.
JP 2005-136006 A

しかしながら、前述の光半導体装置では、発光素子により放射された光が透光封止部材から大気に放出される際、例えば、透光封止部材の界面まで達した光の50%が透光封止部材から大気(空気層)に放出されないため、透光封止部材から大気への光の取り出し効率が十分でない。この原因は、透光封止部材と大気との屈折率差によりそれらの界面で光の全反射が発生するためである。   However, in the above-described optical semiconductor device, when the light emitted from the light emitting element is emitted from the translucent sealing member to the atmosphere, for example, 50% of the light reaching the interface of the translucent sealing member is translucent. Since it is not emitted from the stop member to the atmosphere (air layer), the light extraction efficiency from the translucent sealing member to the atmosphere is not sufficient. This is because the total reflection of light occurs at the interface due to the difference in refractive index between the light-transmitting sealing member and the atmosphere.

さらに、大気に放出されなかった光が熱として変換されるため、その熱により光半導体装置の温度が上昇し、発光素子や蛍光体の発光効率が低下してしまう。加えて、透光封止部材の熱劣化も発生してしまう。   Furthermore, since the light that has not been emitted to the atmosphere is converted as heat, the temperature of the optical semiconductor device rises due to the heat, and the light emission efficiency of the light emitting element and phosphor decreases. In addition, thermal degradation of the translucent sealing member also occurs.

本発明は、上記に鑑みてなされたものであり、その目的は、光の取り出し効率の向上を実現し、発光効率の低下及び熱劣化を防止することができる光半導体装置を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to provide an optical semiconductor device capable of realizing improvement in light extraction efficiency and preventing reduction in light emission efficiency and thermal deterioration. .

本発明の実施の形態に係る第1の特徴は、光半導体装置において、凹部を有する配線基板と、凹部に収容され、光を放射する発光素子と、発光素子を封止するように凹部に設けられ、発光素子から放射された光の波長を変換する蛍光体を含有し、発光素子から放射された光を放出する面であって粗面化された放出面を有する透光封止部材とを備えることである。   A first feature according to an embodiment of the present invention is that, in an optical semiconductor device, a wiring board having a recess, a light emitting element housed in the recess and emitting light, and provided in the recess so as to seal the light emitting element. A translucent sealing member containing a phosphor that converts the wavelength of light emitted from the light emitting element and having a roughened emitting surface that emits light emitted from the light emitting element. It is to prepare.

本発明の実施の形態に係る第2の特徴は、光半導体装置において、凹部を有する配線基板と、凹部に収容され、光を放射する発光素子と、発光素子を封止するように凹部に設けられ、発光素子から放射された光の波長を変換する蛍光体を含有し、発光素子から放射された光を放出する放出面を有する透光封止部材と、透光封止部材の放出面上に設けられ、放出面から放出されて入射した光を出射する面であって粗面化された出射面を有する透光部材とを備えることである。   A second feature according to the embodiment of the present invention is that in an optical semiconductor device, a wiring board having a recess, a light emitting element housed in the recess and emitting light, and provided in the recess so as to seal the light emitting element. A translucent sealing member that includes a phosphor that converts the wavelength of light emitted from the light emitting element and has an emission surface that emits light emitted from the light emitting element, and an emission surface of the translucent sealing member And a translucent member having a roughened emission surface that emits incident light emitted from the emission surface.

本発明によれば、光の取り出し効率の向上を実現し、発光効率の低下及び熱劣化を防止することができる。   According to the present invention, it is possible to improve the light extraction efficiency and prevent the light emission efficiency from being lowered and the heat deterioration.

(第1の実施の形態)
本発明の第1の実施の形態について図1及び図2を参照して説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.

図1及び図2に示すように、本発明の第1の実施の形態に係る光半導体装置1Aは、凹部2aを有する配線基板2と、凹部2aに収容され、光を放射する発光素子3と、その発光素子3を封止するように凹部2aに設けられ、発光素子3から放射された光の波長を変換する蛍光体4aを含有し、発光素子3から放射された光を放出する面であって粗面化された放出面4bを有する透光封止部材4と、凹部2aの底面から外部まで伸びるように形成され、発光素子3にそれぞれ接続された一対のリード部5、6とを備えている。   As shown in FIGS. 1 and 2, an optical semiconductor device 1A according to the first embodiment of the present invention includes a wiring board 2 having a recess 2a, and a light emitting element 3 that is accommodated in the recess 2a and emits light. The phosphor 2a is provided in the recess 2a so as to seal the light emitting element 3 and converts the wavelength of the light emitted from the light emitting element 3, and emits the light emitted from the light emitting element 3. A transparent sealing member 4 having a roughened emission surface 4b, and a pair of lead portions 5 and 6 formed so as to extend from the bottom surface of the recess 2a to the outside and connected to the light emitting element 3, respectively. I have.

配線基板2は、その略中央に位置付けて設けられた凹部2aと、その凹部2aの側面から外部まで貫通する貫通部2bとを有している。凹部2aは、例えばカップ形状、すなわち逆円錐台形状に形成されており、その内部に発光素子3を収容する収容部である。この凹部2aの側面は、凹部2aの底面から外部に向かって傾斜しており、発光素子3により放射された光を透光封止部材4の放出面4bに向けて反射する反射面として機能する。また、貫通部2bは、凹部2aの底面に略平行に形成されており、リード部5、6を引き出すための貫通孔である。この貫通部2bには、リード部5、6が挿入されて設けられている。このような配線基板2は、例えば熱可塑性樹脂等のモールド樹脂により形成されている。   The wiring board 2 has a concave portion 2a provided at the approximate center thereof, and a through portion 2b penetrating from the side surface of the concave portion 2a to the outside. The concave portion 2a is formed in, for example, a cup shape, that is, an inverted truncated cone shape, and is a housing portion that houses the light emitting element 3 therein. The side surface of the recess 2 a is inclined outward from the bottom surface of the recess 2 a and functions as a reflection surface that reflects the light emitted by the light emitting element 3 toward the emission surface 4 b of the translucent sealing member 4. . The through portion 2b is a through hole that is formed substantially parallel to the bottom surface of the concave portion 2a and leads out the lead portions 5 and 6. Lead portions 5 and 6 are inserted into the penetrating portion 2b. Such a wiring board 2 is formed of a mold resin such as a thermoplastic resin.

発光素子3は、凹部2aの底面の略中央に位置付けられてリード部5上に設けられている。この発光素子3の底面電極(図2中の下面)は、例えば銀ペースト等の接合部材7(図2参照)によりリード部5に接合されて電気的に接続されている。また、発光素子3の表面電極(図2中の上面)は、例えば金ワイヤ等の接続部材8によりリード部6に電気的に接続されている。なお、発光素子3としては、例えば発光ダイオード(LED)等を用いる。   The light emitting element 3 is provided on the lead portion 5 so as to be positioned substantially at the center of the bottom surface of the recess 2a. The bottom electrode (the lower surface in FIG. 2) of the light emitting element 3 is joined and electrically connected to the lead part 5 by a joining member 7 (see FIG. 2) such as a silver paste. Moreover, the surface electrode (upper surface in FIG. 2) of the light emitting element 3 is electrically connected to the lead portion 6 by a connecting member 8 such as a gold wire. For example, a light emitting diode (LED) is used as the light emitting element 3.

透光封止部材4は、凹部2aに設けられて発光素子3を封止する封止部材であり、粒子状の蛍光体4aを複数有している。この透光封止部材4は、例えば粒子状の蛍光体4aを混合した蛍光体混合樹脂等の透光性樹脂材料により形成されている。透光性樹脂材料としては、例えば、熱硬化性シリコーン樹脂等を用いる。蛍光体4aは、発光素子3の光の波長よりも長い波長を有する光を放出する。この蛍光体4aとしては、例えば青色の光を放射する発光素子3を用いた場合、黄色の蛍光体を用いたり、黄色の蛍光体及び赤色の蛍光体の両方を用いたりする。   The translucent sealing member 4 is a sealing member that is provided in the recess 2a and seals the light emitting element 3, and includes a plurality of particulate phosphors 4a. The translucent sealing member 4 is formed of a translucent resin material such as a phosphor mixed resin in which particulate phosphors 4a are mixed. As the translucent resin material, for example, a thermosetting silicone resin or the like is used. The phosphor 4 a emits light having a wavelength longer than the wavelength of light of the light emitting element 3. As the phosphor 4a, for example, when the light-emitting element 3 that emits blue light is used, a yellow phosphor or both a yellow phosphor and a red phosphor are used.

透光封止部材4の放出面4bは、大気に接する露出面であり、発光素子3から放射された光を放出する光取り出し面である。この放出面4bは、粗面化処理により透光封止部材4の表面に不揃い(ランダム)に凹凸を設けることによって粗面化されている。この凹凸は、例えば断面三角形状に形成されている。このような放出面4bの粗さ(Rz:最大高さ)は1μm以上である。これは、放出面4bの粗さを可視光の波長(約380nm〜約780nm)より大きく、すなわち1μm以上にする必要があるためである。   The emission surface 4 b of the translucent sealing member 4 is an exposed surface that comes into contact with the atmosphere, and is a light extraction surface that emits light emitted from the light emitting element 3. The emission surface 4b is roughened by providing unevenness (randomness) on the surface of the translucent sealing member 4 by roughening treatment. This unevenness is formed, for example, in a triangular cross section. The roughness (Rz: maximum height) of the emission surface 4b is 1 μm or more. This is because the roughness of the emission surface 4b needs to be larger than the wavelength of visible light (about 380 nm to about 780 nm), that is, 1 μm or more.

ここで、粗面化処理としては、例えば、透光封止部材4の表面に対してサンドブラストを行うサンドブラスト加工処理、粗面を有する型枠に材料を流し込み硬化させる型枠加工処理、半硬化状態の材料の表面に対して粗面を有する型を押し当てて粗面形状を転写する転写加工処理及び透光封止部材4の表面に対してゾル状樹脂を噴き付ける噴付加工処理等を用いる。   Here, as the roughening process, for example, a sandblasting process for performing sandblasting on the surface of the translucent sealing member 4, a moldworking process for pouring and curing a material into a mold having a rough surface, a semi-cured state For example, a transfer processing process for transferring a rough surface shape by pressing a mold having a rough surface against the surface of the material and a spray processing process for spraying a sol-like resin to the surface of the light-transmitting sealing member 4 are used. .

一対のリード部5、6は、発光素子3に外部から電力を供給するためのリードフレームである。これらのリード部5、6は、配線基板2の貫通部2bに挿入されて配線基板2に設けられており、凹部2aの底面から外部までそれぞれ引き出されている。このような一対のリード部5、6は、例えば銅等の金属材料により形成されている。   The pair of lead portions 5 and 6 are lead frames for supplying electric power to the light emitting element 3 from the outside. These lead parts 5 and 6 are inserted in the penetration part 2b of the wiring board 2 and provided in the wiring board 2, and are respectively drawn out from the bottom surface of the recess 2a to the outside. Such a pair of lead portions 5 and 6 is formed of a metal material such as copper, for example.

次いで、光半導体装置1Aの製造工程について説明する。   Next, a manufacturing process of the optical semiconductor device 1A will be described.

最初に、例えばインジェクションモールド法を用いて、熱可塑性樹脂材料により一対のリード部5、6の一部を囲み凹部2aを形成するように配線基板2を成型する。次に、凹部2aの底面に位置するリード部5の表面に例えば銀ペースト等の接合部材7を塗布し、その上に発光素子3を載置して約150℃で2時間加熱する。次いで、例えば直径25μm程度の金ワイヤ等の接続部材8により、発光素子3の上面電極とリード部6とを電気的に接続する。その後、蛍光体4aを例えば0.3mg程度含んだ熱硬化性シリコーン樹脂を凹部2aの内部に充填し、約150℃で2時間加熱し硬化させ、透光封止部材4を形成する。最後に、例えばサンドブラスト処理により、透光封止部材4の表面である放出面4bを粗面化する。これにより、光半導体装置1Aが完成する。   First, for example, by using an injection molding method, the wiring substrate 2 is molded so as to surround a part of the pair of lead portions 5 and 6 and to form the concave portion 2a with a thermoplastic resin material. Next, a bonding member 7 such as silver paste is applied to the surface of the lead portion 5 located on the bottom surface of the recess 2a, and the light emitting element 3 is placed thereon and heated at about 150 ° C. for 2 hours. Next, the upper surface electrode of the light emitting element 3 and the lead portion 6 are electrically connected by a connecting member 8 such as a gold wire having a diameter of about 25 μm, for example. Thereafter, a thermosetting silicone resin containing, for example, about 0.3 mg of the phosphor 4a is filled in the recess 2a and cured by heating at about 150 ° C. for 2 hours to form the light-transmitting sealing member 4. Finally, the emission surface 4b which is the surface of the translucent sealing member 4 is roughened by, for example, sandblasting. Thereby, the optical semiconductor device 1A is completed.

ここで、一対のリード部5、6としては、例えば、表面に厚さ2μmの銀メッキを施した厚さ150μmのリード部5、6を用いる。また、発光素子3としては、例えば正方形の発光面の一辺が300μmであり、代表波長が460nmである青色の発光ダイオードを用いる。さらに、蛍光体4aとしては、例えば、青色光を代表波長570μmの黄色光に変換する黄色の蛍光体を用いる。また、配線基板2の凹部2aの深さは、例えば0.6mmであり、その凹部2aの側面の傾斜角度は60度である。透光封止部材4の放出面4bの表面粗さは、例えば約30μmである。   Here, as the pair of lead portions 5 and 6, for example, lead portions 5 and 6 having a thickness of 150 μm and having a surface plated with silver of 2 μm are used. As the light emitting element 3, for example, a blue light emitting diode having a square light emitting surface with a side of 300 μm and a representative wavelength of 460 nm is used. Furthermore, as the phosphor 4a, for example, a yellow phosphor that converts blue light into yellow light having a representative wavelength of 570 μm is used. Moreover, the depth of the recessed part 2a of the wiring board 2 is 0.6 mm, for example, and the inclination angle of the side surface of the recessed part 2a is 60 degrees. The surface roughness of the emission surface 4b of the translucent sealing member 4 is, for example, about 30 μm.

次に、このような光半導体装置1Aの発光動作について説明する。   Next, the light emission operation of the optical semiconductor device 1A will be described.

一対のリード部5、6に電圧が印加され、発光素子3に電力が供給されると、発光素子3は光を放射する。その光の一部は、透光封止部材4を通過してその放出面4bから放出され、他の一部は、凹部2aの側面により反射されて放出面4bから放出される。このとき、光の一部が蛍光体4aに入射する。これにより、蛍光体4aは励起されて光を放射する。その光の一部も、透光封止部材4を通過してその放出面4bから放出され、他の一部も凹部2aの側面により反射されて放出面4bから放出される。   When a voltage is applied to the pair of lead portions 5 and 6 and power is supplied to the light emitting element 3, the light emitting element 3 emits light. Part of the light passes through the translucent sealing member 4 and is emitted from the emission surface 4b, and the other part is reflected by the side surface of the recess 2a and emitted from the emission surface 4b. At this time, a part of the light enters the phosphor 4a. Thereby, the phosphor 4a is excited and emits light. Part of the light also passes through the translucent sealing member 4 and is emitted from the emission surface 4b, and the other part is reflected by the side surface of the recess 2a and emitted from the emission surface 4b.

このようにして、発光素子3により放射された光と、その光により励起された蛍光体4aにより放射された光とが混合されて、透光封止部材4の放出面4bから放出される。このとき、透光封止部材4の放出面4bが粗面化されているので、その放出面4bの凹凸により、放出面4bと空気層との界面での全反射の発生が抑えられる。これにより、光の取り出し効率が向上する。   In this way, the light emitted by the light emitting element 3 and the light emitted by the phosphor 4 a excited by the light are mixed and emitted from the emission surface 4 b of the translucent sealing member 4. At this time, since the emission surface 4b of the translucent sealing member 4 is roughened, the unevenness of the emission surface 4b suppresses the occurrence of total reflection at the interface between the emission surface 4b and the air layer. Thereby, the light extraction efficiency is improved.

ここで、例えば150mAの駆動電流を発光素子3に供給すると、光半導体装置1Aの全光束は約22ルーメンとなる。この全光束は、放出面4bが平坦である光半導体装置に比べて10%程度向上している。   Here, for example, when a driving current of 150 mA is supplied to the light emitting element 3, the total luminous flux of the optical semiconductor device 1A is about 22 lumens. This total luminous flux is improved by about 10% compared to the optical semiconductor device having a flat emission surface 4b.

以上説明したように、本発明の第1の実施の形態によれば、透光封止部材4の放出面4bを粗面化することによって、放出面4bと空気層との界面での全反射の発生が抑えられるので、光の取り出し効率を向上させることができ、その結果として、発光効率の低下及び熱劣化を防止することができる。   As described above, according to the first embodiment of the present invention, the total reflection at the interface between the emission surface 4b and the air layer is achieved by roughening the emission surface 4b of the translucent sealing member 4. Since generation | occurrence | production of this is suppressed, the extraction efficiency of light can be improved, As a result, the fall of luminous efficiency and thermal degradation can be prevented.

また、放出面4bの粗さ(Rz:最大高さ)が1μm以上であることから、その粗さが可視光の波長(約380nm〜約780nm)より大きくなるので、可視光の取り出し効率を確実に向上させることができる。   Moreover, since the roughness (Rz: maximum height) of the emission surface 4b is 1 μm or more, the roughness becomes larger than the wavelength of visible light (about 380 nm to about 780 nm), so that the extraction efficiency of visible light is ensured. Can be improved.

(第2の実施の形態)
本発明の第2の実施の形態について図3及び図4を参照して説明する。本発明の第2の実施の形態では、第1の実施の形態と異なる部分について説明する。なお、第2の実施の形態においては、第1の実施の形態で説明した部分と同一部分は同一符号で示し、その説明は省略する。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. In the second embodiment of the present invention, only parts different from the first embodiment will be described. In the second embodiment, the same parts as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図3及び図4に示すように、本発明の第2の実施の形態に係る光半導体装置1Bでは、透光封止部材4の放出面4bが平坦に形成されている。加えて、透光封止部材4の放出面4b上には、その放出面4bから放出されて入射した光を出射する面であって粗面化された出射面11aを有する透光部材11が設けられている。   As shown in FIGS. 3 and 4, in the optical semiconductor device 1B according to the second embodiment of the present invention, the emission surface 4b of the translucent sealing member 4 is formed flat. In addition, on the emission surface 4 b of the translucent sealing member 4, there is a translucent member 11 having a roughened emission surface 11 a that is a surface that emits incident light emitted from the emission surface 4 b. Is provided.

透光部材11は、透光封止部材4の放出面4bを覆うようにその放出面4b上に接着用の透光接着部材12により接合されている。この透光部材11は、例えば熱硬化性シリコーン樹脂や熱硬化性エポキシ樹脂等の透光性樹脂材料により形成されている。   The translucent member 11 is bonded to the emission surface 4b by the translucent adhesive member 12 for bonding so as to cover the emission surface 4b of the translucent sealing member 4. The translucent member 11 is formed of a translucent resin material such as a thermosetting silicone resin or a thermosetting epoxy resin.

透光接着部材12は、透光封止部材4の放出面4bと透光部材11との間に設けられている。これにより、透光封止部材4と透光部材11との接着度が増加するので、光半導体装置1Bの機械強度を向上させることができる。なお、透光接着部材12は、例えば透光性樹脂材料により形成されている。この透光性樹脂材料としては、透光部材11の屈折率≦透光接着部材12の屈折率≦透光封止部材4の屈折率という関係式が成り立つような透光性樹脂材料を用いる。   The translucent adhesive member 12 is provided between the emission surface 4 b of the translucent sealing member 4 and the translucent member 11. Thereby, since the adhesiveness of the translucent sealing member 4 and the translucent member 11 increases, the mechanical strength of the optical semiconductor device 1B can be improved. The translucent adhesive member 12 is made of, for example, a translucent resin material. As the translucent resin material, a translucent resin material that satisfies the relational expression of refractive index of translucent member 11 ≦ refractive index of translucent adhesive member 12 ≦ refractive index of translucent sealing member 4 is used.

透光部材11の出射面11aは、大気に接する表面であり、透光封止部材4の放出面4bから放出されて入射した光を出射する光取り出し面である。この出射面11aは、粗面化処理により透光部材11の表面に不揃い(ランダム)に凹凸を設けることによって粗面化されている。この凹凸は、例えば断面三角形状に形成されている。このような出射面11aの粗さ(Rz:最大高さ)は1μm以上である。これは、出射面11aの粗さを可視光の波長(約380nm〜約780nm)より大きく、すなわち1μm以上にする必要があるためである。   The light emission surface 11 a of the translucent member 11 is a surface in contact with the atmosphere, and is a light extraction surface that emits incident light emitted from the emission surface 4 b of the translucent sealing member 4. The emission surface 11a is roughened by providing unevenness (random) irregularities on the surface of the translucent member 11 by a roughening process. This unevenness is formed, for example, in a triangular cross section. The roughness (Rz: maximum height) of the emission surface 11a is 1 μm or more. This is because the roughness of the emission surface 11a needs to be larger than the wavelength of visible light (about 380 nm to about 780 nm), that is, 1 μm or more.

ここで、粗面化処理としては、例えば、透光部材11の表面に対してサンドブラストを行うサンドブラスト加工処理、粗面を有する型枠に材料を流し込み硬化させる型枠加工処理、半硬化状態の材料の表面に対して粗面を有する型を押し当てて粗面形状を転写する転写加工処理及び透光部材11の表面に対してゾル状樹脂を噴き付ける噴付加工処理等を用いる。   Here, as the roughening process, for example, a sandblasting process in which sandblasting is performed on the surface of the translucent member 11, a moldworking process in which a material is poured into a mold having a rough surface and cured, and a semi-cured material For example, a transfer processing process for transferring a rough surface shape by pressing a mold having a rough surface against the surface, and a spray processing process for spraying a sol-like resin onto the surface of the light transmitting member 11 are used.

透光部材11の屈折率は、大気の屈折率以上であって透光封止部材4の屈折率以下である。すなわち、透光部材11は、大気の屈折率≦透光部材11の屈折率≦透光封止部材4の屈折率≦発光素子3の屈折率という関係式が成り立つように形成されている。なお、大気の屈折率は1.0であり、発光素子3の屈折率(素子基板の屈折率)は約2.5である。   The refractive index of the translucent member 11 is not less than the refractive index of the atmosphere and not more than the refractive index of the translucent sealing member 4. That is, the translucent member 11 is formed so that the relational expression of the refractive index of the air ≦ the refractive index of the translucent member 11 ≦ the refractive index of the translucent sealing member 4 ≦ the refractive index of the light emitting element 3 is satisfied. Note that the refractive index of the atmosphere is 1.0, and the refractive index of the light emitting element 3 (the refractive index of the element substrate) is about 2.5.

ここで、透光封止部材4の透光性樹脂材料としては、例えば、屈折率が約1.4である熱硬化性シリコーン樹脂又は屈折率が約1.5であるフェニル基を含有しない熱硬化性エポキシ樹脂を用いる場合がある。この場合、透光部材11の透光性樹脂材料としては、1.0≦透光部材11の屈折率≦1.4(または1.5)≦2.5という関係式が成り立つような透光性樹脂材料を用いる。例えば、透光部材11の透光性樹脂材料としては、前述の熱硬化性シリコーン樹脂又は前述の熱硬化性エポキシ樹脂に含まれるC−H結合における水素原子の一部をフッ素原子で置換して、低屈折率化させた透光性樹脂を用いる。   Here, the translucent resin material of the translucent sealing member 4 is, for example, a thermosetting silicone resin having a refractive index of about 1.4 or a heat containing no phenyl group having a refractive index of about 1.5. A curable epoxy resin may be used. In this case, the translucent resin material of the translucent member 11 is a translucent material that satisfies the relational expression of 1.0 ≦ the refractive index of the translucent member ≦ 1.4 (or 1.5) ≦ 2.5. A functional resin material is used. For example, as the translucent resin material of the translucent member 11, a part of hydrogen atoms in the C—H bond contained in the above-mentioned thermosetting silicone resin or the above-mentioned thermosetting epoxy resin is substituted with fluorine atoms. A translucent resin having a low refractive index is used.

また、透光部材11の透光性樹脂材料としては、例えば、屈折率が約1.4である熱硬化性シリコーン樹脂、又は屈折率が約1.5であるフェニル基を含有しない熱硬化性エポキシ樹脂を用いる場合がある。この場合、透光封止部材4の透光性樹脂材料としては、1.0≦1.4≦透光封止部材4の屈折率≦2.5の関係式が成り立つような透光性樹脂材料を用いる。例えば、透光封止部材4の透光性樹脂材料としては、前述の熱硬化性シリコーン樹脂又は前述の熱硬化性エポキシ樹脂に含まれるC−H結合における水素原子の一部をフッ素原子以外のハロゲン元素(塩素、臭素、要素)もしくはイオウで置換して、高屈折率化させた透光性樹脂を用いる。   Further, as the translucent resin material of the translucent member 11, for example, a thermosetting silicone resin having a refractive index of about 1.4, or a thermosetting that does not contain a phenyl group having a refractive index of about 1.5. Epoxy resin may be used. In this case, the translucent resin material of the translucent sealing member 4 is a translucent resin that satisfies the relational expression of 1.0 ≦ 1.4 ≦ the refractive index of the translucent sealing member 4 ≦ 2.5. Use materials. For example, as the translucent resin material of the translucent sealing member 4, a part of hydrogen atoms in the C—H bond contained in the above thermosetting silicone resin or the above thermosetting epoxy resin may be other than fluorine atoms. A translucent resin that is substituted with a halogen element (chlorine, bromine, element) or sulfur to increase the refractive index is used.

次いで、光半導体装置1Bの製造工程について説明する。   Next, a manufacturing process of the optical semiconductor device 1B will be described.

最初に、例えばインジェクションモールド法を用いて、熱可塑性樹脂材料により一対のリード部5、6の一部を囲み凹部2aを形成するように配線基板2を成型する。次に、凹部2aの底面に位置するリード部5の表面に例えば銀ペースト等の接合部材7を塗布し、その上に発光素子3を載置して約150℃で2時間加熱する。次いで、例えば直径25μm程度の金ワイヤ等の接続部材8により、発光素子3の上面電極とリード部6とを電気的に接続する。その後、蛍光体4aを例えば0.3mg程度含んだ熱硬化性シリコーン樹脂を凹部2aの内部に充填し、約100℃で1時間加熱し半硬化させ、透光封止部材4を形成する。   First, for example, by using an injection molding method, the wiring substrate 2 is molded so as to surround a part of the pair of lead portions 5 and 6 and to form the concave portion 2a with a thermoplastic resin material. Next, a bonding member 7 such as silver paste is applied to the surface of the lead portion 5 located on the bottom surface of the recess 2a, and the light emitting element 3 is placed thereon and heated at about 150 ° C. for 2 hours. Next, the upper surface electrode of the light emitting element 3 and the lead portion 6 are electrically connected by a connecting member 8 such as a gold wire having a diameter of about 25 μm, for example. Thereafter, a thermosetting silicone resin containing, for example, about 0.3 mg of the phosphor 4a is filled in the recess 2a, and is heated and semi-cured at about 100 ° C. for 1 hour to form the translucent sealing member 4.

最後に、透光封止部材4の放出面4b上に透光接着部材12を塗布し、透光部材11を搭載して、約150℃で2時間加熱し透光封止部材4を本硬化させるとともに、透光部材11と透光封止部材4とを接着する。これにより、光半導体装置1Bが完成する。なお、透光封止部材4は予めモールド成型されており、例えばサンドブラスト処理によりその片面である出射面11aが粗面化されている。   Finally, the translucent adhesive member 12 is applied onto the emission surface 4b of the translucent sealing member 4, the translucent member 11 is mounted, and the translucent sealing member 4 is fully cured by heating at about 150 ° C. for 2 hours. In addition, the translucent member 11 and the translucent sealing member 4 are bonded. Thereby, the optical semiconductor device 1B is completed. The translucent sealing member 4 is molded in advance, and the emission surface 11a which is one surface thereof is roughened by, for example, sandblasting.

ここで、一対のリード部5、6としては、例えば、表面に厚さ2μmの銀メッキを施した厚さ150μmのリード部5、6を用いる。また、発光素子3としては、例えば正方形の発光面の一辺が300μmであり、代表波長が460nmである青色の発光ダイオードを用いる。さらに、蛍光体4aとしては、例えば、青色光を代表波長570μmの黄色光に変換する黄色の蛍光体を用いる。また、配線基板2の凹部2aの深さは、例えば0.6mmであり、その凹部2aの側面の傾斜角度は60度である。透光部材11の寸法は、例えば、直径2.5mmであり、厚さ0.5mmであり、透光部材11の出射面11aの表面粗さは、例えば約30μmである。   Here, as the pair of lead portions 5 and 6, for example, lead portions 5 and 6 having a thickness of 150 μm and having a surface plated with silver of 2 μm are used. As the light emitting element 3, for example, a blue light emitting diode having a square light emitting surface with a side of 300 μm and a representative wavelength of 460 nm is used. Furthermore, as the phosphor 4a, for example, a yellow phosphor that converts blue light into yellow light having a representative wavelength of 570 μm is used. Moreover, the depth of the recessed part 2a of the wiring board 2 is 0.6 mm, for example, and the inclination angle of the side surface of the recessed part 2a is 60 degrees. The dimensions of the translucent member 11 are, for example, a diameter of 2.5 mm and a thickness of 0.5 mm, and the surface roughness of the emission surface 11a of the translucent member 11 is, for example, about 30 μm.

次に、このような光半導体装置1Bの発光動作について説明する。   Next, the light emission operation of such an optical semiconductor device 1B will be described.

一対のリード部5、6に電圧が印加され、発光素子3に電力が供給されると、発光素子3は光を放射する。その光の一部は、透光封止部材4を通過してその放出面4bから放出され、他の一部は、凹部2aの側面により反射されてその放出面4bから放出される。このとき、光の一部が蛍光体4aに入射する。これにより、蛍光体4aは励起されて光を放射する。その光の一部も、透光封止部材4を通過してその放出面4bから放出され、他の一部も凹部2aの側面により反射されて放出面4bから放出される。   When a voltage is applied to the pair of lead portions 5 and 6 and power is supplied to the light emitting element 3, the light emitting element 3 emits light. Part of the light passes through the translucent sealing member 4 and is emitted from the emission surface 4b, and the other part is reflected by the side surface of the recess 2a and emitted from the emission surface 4b. At this time, a part of the light enters the phosphor 4a. Thereby, the phosphor 4a is excited and emits light. Part of the light also passes through the translucent sealing member 4 and is emitted from the emission surface 4b, and the other part is reflected by the side surface of the recess 2a and emitted from the emission surface 4b.

このようにして、発光素子3により放射された光と、その光により励起された蛍光体4aにより放射された光とが混合されて、透光封止部材4の放出面4bから放出される。この放出面4bから放出された光は、透光部材11に入射してその内部を通過し、透光部材11の出射面11aから出射される。このとき、透光部材11の出射面11aが粗面化されているので、その出射面11aの凹凸により、出射面11aと空気層との界面での全反射の発生が抑えられる。これにより、光の取り出し効率が向上する。   In this way, the light emitted by the light emitting element 3 and the light emitted by the phosphor 4 a excited by the light are mixed and emitted from the emission surface 4 b of the translucent sealing member 4. The light emitted from the emission surface 4 b enters the light transmissive member 11, passes through the inside thereof, and is emitted from the light emission surface 11 a of the light transmissive member 11. At this time, since the exit surface 11a of the translucent member 11 is roughened, the occurrence of total reflection at the interface between the exit surface 11a and the air layer is suppressed by the unevenness of the exit surface 11a. Thereby, the light extraction efficiency is improved.

ここで、例えば150mAの駆動電流を発光素子3に供給すると、光半導体装置1Bの全光束は約22ルーメンとなる。この全光束は、放出面4bが平坦であって透光部材11を備えていない光半導体装置に比べて10%程度向上している。   Here, for example, when a driving current of 150 mA is supplied to the light emitting element 3, the total luminous flux of the optical semiconductor device 1B becomes about 22 lumens. This total luminous flux is improved by about 10% as compared with the optical semiconductor device in which the emission surface 4b is flat and the translucent member 11 is not provided.

以上説明したように、本発明の第2の実施の形態によれば、透光部材11の出射面11aを粗面化することによって、その出射面11aと空気層との界面での全反射の発生が抑えられるので、光の取り出し効率を向上させることができ、その結果として、発光効率の低下及び熱劣化を防止することができる。さらに、透光部材11の出射面11aを粗面化すればよく、透光封止部材4上に透光部材11を載置する前に、透光部材11の出射面11aを粗面化する粗面化処理を行うことが可能である。これにより、粗面化処理を容易に行うことができ、特に、光半導体装置1Bを製造する工程と別工程で行うことができる。   As described above, according to the second embodiment of the present invention, by roughening the exit surface 11a of the translucent member 11, total reflection at the interface between the exit surface 11a and the air layer is achieved. Since generation | occurrence | production is suppressed, the extraction efficiency of light can be improved, As a result, the fall of luminous efficiency and thermal degradation can be prevented. Furthermore, the exit surface 11a of the translucent member 11 may be roughened, and before the translucent member 11 is placed on the translucent sealing member 4, the exit surface 11a of the translucent member 11 is roughened. A roughening treatment can be performed. Thereby, a roughening process can be performed easily and can be performed by the process different from the process of manufacturing the optical semiconductor device 1B especially.

また、出射面11aの粗さ(Rz:最大高さ)が1μm以上であることから、その粗さが可視光の波長(約380nm〜約780nm)より大きくなるので、可視光の取り出し効率を確実に向上させることができる。   Moreover, since the roughness (Rz: maximum height) of the emission surface 11a is 1 μm or more, the roughness becomes larger than the wavelength of visible light (about 380 nm to about 780 nm), so that the extraction efficiency of visible light is ensured. Can be improved.

さらに、透光部材11の屈折率が大気の屈折率以上であって透光封止部材4の屈折率以下であることから、大気及び透光封止部材4に対する透光部材11の屈折率差が大気と透光封止部材4との屈折率差より大きくなることを抑えることが可能になるので、透光部材11を設けることによる全反射の発生頻度の上昇を防止することができる。さらに、透光部材11の屈折率を大気の屈折率より大きく透光封止部材4の屈折率より小さくすることによって、透光部材11により急激な屈折率の変化を抑えることが可能になる。これにより、透光部材11を備えていない光半導体装置、すなわち光が透光封止部材4の放出面4bから直接大気中に放出される場合に比べ、全反射の発生がさらに抑えられるので、確実に光の取り出し効率を向上させることができる。   Further, since the refractive index of the translucent member 11 is equal to or higher than the refractive index of the atmosphere and equal to or lower than the refractive index of the translucent sealing member 4, the refractive index difference of the translucent member 11 with respect to the atmosphere and the translucent sealing member 4. Can be prevented from becoming larger than the difference in refractive index between the atmosphere and the translucent sealing member 4, so that the frequency of occurrence of total reflection due to the provision of the translucent member 11 can be prevented. Furthermore, by making the refractive index of the translucent member 11 larger than the refractive index of the atmosphere and smaller than the refractive index of the translucent sealing member 4, it is possible to suppress a sudden change in the refractive index by the translucent member 11. Thereby, compared with the optical semiconductor device that does not include the translucent member 11, that is, when light is emitted directly from the emission surface 4b of the translucent sealing member 4 into the atmosphere, the occurrence of total reflection is further suppressed. The light extraction efficiency can be reliably improved.

(他の実施の形態)
なお、本発明は、前述の実施の形態に限るものではなく、その要旨を逸脱しない範囲において種々変更可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

例えば、前述の実施の形態においては、各種の数値を挙げているが、それらの数値は例示であり、限定されるものではない。   For example, in the above-described embodiment, various numerical values are given, but these numerical values are examples and are not limited.

また、前述の第1の実施の形態においては、透光封止部材4の放出面4bに設ける凹凸を断面三角形状に形成しているが、これに限るものではなく、例えば、断面半円形状や断面四角形状に形成するようにしてもよい。   In the first embodiment described above, the projections and depressions provided on the emission surface 4b of the translucent sealing member 4 are formed in a triangular cross section. However, the present invention is not limited to this. Alternatively, it may be formed in a quadrangular cross section.

また、前述の第2の実施の形態においては、透光部材11の出射面11aに設ける凹凸を断面三角形状に形成しているが、これに限るものではなく、例えば、断面半円形状や断面四角形状に形成するようにしてもよい。   In the second embodiment described above, the projections and depressions provided on the emission surface 11a of the translucent member 11 are formed in a triangular cross section. However, the present invention is not limited to this. You may make it form in square shape.

最後に、前述の第2の実施の形態においては、透光封止部材4の放出面4bの上に透光接着部材12により透光部材11を接合しているが、これに限るものではなく、例えば、透光接着部材12を用いずに、透光封止部材4及び透光部材11を予めそれぞれ仮硬化させておき、透光封止部材4上に透光部材11を載置し、その後、加熱接着及び本硬化させることにより、透光封止部材4の放出面4bの上に透光部材11を接合するようにしてもよい。   Finally, in the second embodiment described above, the translucent member 11 is joined to the emission surface 4b of the translucent sealing member 4 by the translucent adhesive member 12. However, the present invention is not limited to this. For example, without using the translucent adhesive member 12, the translucent sealing member 4 and the translucent member 11 are preliminarily cured in advance, and the translucent member 11 is placed on the translucent sealing member 4, Then, you may make it join the translucent member 11 on the discharge | release surface 4b of the translucent sealing member 4 by carrying out heat adhesion and this hardening.

本発明の第1の実施の形態に係る光半導体装置の概略構成を示す斜視図である。1 is a perspective view showing a schematic configuration of an optical semiconductor device according to a first embodiment of the present invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 本発明の第2の実施の形態に係る光半導体装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the optical semiconductor device which concerns on the 2nd Embodiment of this invention. 図3のB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3.

符号の説明Explanation of symbols

1A,1B…光半導体装置、2…配線基板、2a…凹部、3…発光素子、4…透光封止部材、4a…蛍光体、4b…放出面、11…透光部材、11a…出射面   DESCRIPTION OF SYMBOLS 1A, 1B ... Optical semiconductor device, 2 ... Wiring board, 2a ... Recessed part, 3 ... Light emitting element, 4 ... Translucent sealing member, 4a ... Phosphor, 4b ... Emission surface, 11 ... Translucent member, 11a ... Emission surface

Claims (5)

凹部を有する配線基板と、
前記凹部に収容され、光を放射する発光素子と、
前記発光素子を封止するように前記凹部に設けられ、前記発光素子から放射された前記光の波長を変換する蛍光体を含有し、前記発光素子から放射された前記光を放出する面であって粗面化された放出面を有する透光封止部材と、
を備えることを特徴とする光半導体装置。
A wiring board having a recess;
A light emitting element that is housed in the recess and emits light;
A surface that is provided in the recess to seal the light emitting element, contains a phosphor that converts the wavelength of the light emitted from the light emitting element, and emits the light emitted from the light emitting element. A light-transmitting sealing member having a roughened emission surface;
An optical semiconductor device comprising:
前記放出面の粗さは1μm以上であることを特徴とする請求項1記載の光半導体装置。   The optical semiconductor device according to claim 1, wherein the emission surface has a roughness of 1 μm or more. 凹部を有する配線基板と、
前記凹部に収容され、光を放射する発光素子と、
前記発光素子を封止するように前記凹部に設けられ、前記発光素子から放射された前記光の波長を変換する蛍光体を含有し、前記発光素子から放射された前記光を放出する放出面を有する透光封止部材と、
前記透光封止部材の前記放出面上に設けられ、前記放出面から放出されて入射した前記光を出射する面であって粗面化された出射面を有する透光部材と、
を備えることを特徴とする光半導体装置。
A wiring board having a recess;
A light emitting element that is housed in the recess and emits light;
An emission surface that is provided in the recess so as to seal the light emitting element, contains a phosphor that converts the wavelength of the light emitted from the light emitting element, and emits the light emitted from the light emitting element. A translucent sealing member having,
A translucent member that is provided on the emission surface of the translucent sealing member and that has a roughened emission surface that emits the light emitted from the emission surface and incident;
An optical semiconductor device comprising:
前記出射面の粗さは1μm以上であることを特徴とする請求項3記載の光半導体装置。   The optical semiconductor device according to claim 3, wherein a roughness of the emission surface is 1 μm or more. 前記透光部材の屈折率は、大気の屈折率以上であって前記透光封止部材の屈折率以下であることを特徴とする請求項3又は4記載の光半導体装置。   5. The optical semiconductor device according to claim 3, wherein a refractive index of the light transmissive member is equal to or higher than a refractive index of the atmosphere and equal to or lower than a refractive index of the light transmissive sealing member.
JP2006150312A 2006-05-30 2006-05-30 Optical semiconductor device Pending JP2007324220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150312A JP2007324220A (en) 2006-05-30 2006-05-30 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150312A JP2007324220A (en) 2006-05-30 2006-05-30 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2007324220A true JP2007324220A (en) 2007-12-13

Family

ID=38856775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150312A Pending JP2007324220A (en) 2006-05-30 2006-05-30 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2007324220A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119739A (en) * 2009-12-03 2011-06-16 Lg Innotek Co Ltd Light-emitting apparatus, and method of manufacturing the same
CN102142504A (en) * 2010-01-29 2011-08-03 株式会社东芝 LED package, method for manufacturing LED package, and packing member for LED package
JP2011171769A (en) * 2011-06-06 2011-09-01 Toshiba Corp Packing member for led-package
JP2011222434A (en) * 2010-04-14 2011-11-04 Koito Mfg Co Ltd Light emitting module and optical wavelength converting member
KR20110138966A (en) * 2010-06-22 2011-12-28 엘지디스플레이 주식회사 Light emitting diode and method of fabricating the same
CN101661984B (en) * 2009-09-18 2012-04-04 厦门市三安光电科技有限公司 Manufacturing method of light emitting diode (LED) based on inversed roughened surface Gan-base vertical structure
JP2012182484A (en) * 2012-05-21 2012-09-20 Toshiba Corp Led package
JP2013004734A (en) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd Light-emitting device
JP2013135169A (en) * 2011-12-27 2013-07-08 Jsr Corp Semiconductor light-emitting device
US20140353707A1 (en) * 2004-06-03 2014-12-04 The Regents Of The University Of California Transparent light emitting diodes
WO2014199975A1 (en) * 2013-06-12 2014-12-18 日本碍子株式会社 Window material for ultraviolet-ray-emitting element and method for producing same
EP3252835A1 (en) 2016-05-31 2017-12-06 Nichia Corporation Light-emitting device and method for manufacturing the same
JP2019009429A (en) * 2017-06-28 2019-01-17 日亜化学工業株式会社 Light-emitting device
US10276757B2 (en) 2016-12-27 2019-04-30 Nichia Corporation Light emitting device and method for manufacturing the same
US11329203B2 (en) 2017-06-28 2022-05-10 Nichia Corporation Light emitting device including covering member and optical member
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217916B2 (en) * 2004-06-03 2019-02-26 The Regents Of The University Of California Transparent light emitting diodes
US20140353707A1 (en) * 2004-06-03 2014-12-04 The Regents Of The University Of California Transparent light emitting diodes
US10454010B1 (en) 2006-12-11 2019-10-22 The Regents Of The University Of California Transparent light emitting diodes
US10593854B1 (en) 2006-12-11 2020-03-17 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
US10644213B1 (en) 2006-12-11 2020-05-05 The Regents Of The University Of California Filament LED light bulb
US10658557B1 (en) 2006-12-11 2020-05-19 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
CN101661984B (en) * 2009-09-18 2012-04-04 厦门市三安光电科技有限公司 Manufacturing method of light emitting diode (LED) based on inversed roughened surface Gan-base vertical structure
CN102163681A (en) * 2009-12-03 2011-08-24 Lg伊诺特有限公司 Light emitting apparatus, method of manufacturing the same, and lighting system
JP2011119739A (en) * 2009-12-03 2011-06-16 Lg Innotek Co Ltd Light-emitting apparatus, and method of manufacturing the same
CN102142504A (en) * 2010-01-29 2011-08-03 株式会社东芝 LED package, method for manufacturing LED package, and packing member for LED package
JP2011159768A (en) * 2010-01-29 2011-08-18 Toshiba Corp Led package and method for manufacturing the led package
US8525202B2 (en) 2010-01-29 2013-09-03 Kabushiki Kaisha Toshiba LED package, method for manufacturing LED package, and packing member for LED package
US8801234B2 (en) 2010-04-14 2014-08-12 Koito Manufacturing Co., Ltd. Light emitting module and optical wavelength converting member
JP2011222434A (en) * 2010-04-14 2011-11-04 Koito Mfg Co Ltd Light emitting module and optical wavelength converting member
KR101668262B1 (en) 2010-06-22 2016-10-21 엘지디스플레이 주식회사 Light emitting diode and method of fabricating the same
KR20110138966A (en) * 2010-06-22 2011-12-28 엘지디스플레이 주식회사 Light emitting diode and method of fabricating the same
JP2011171769A (en) * 2011-06-06 2011-09-01 Toshiba Corp Packing member for led-package
JP2013004734A (en) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd Light-emitting device
JP2013135169A (en) * 2011-12-27 2013-07-08 Jsr Corp Semiconductor light-emitting device
JP2012182484A (en) * 2012-05-21 2012-09-20 Toshiba Corp Led package
JPWO2014199975A1 (en) * 2013-06-12 2017-02-23 日本碍子株式会社 Window material for ultraviolet light emitting element and method for manufacturing the same
WO2014199975A1 (en) * 2013-06-12 2014-12-18 日本碍子株式会社 Window material for ultraviolet-ray-emitting element and method for producing same
KR20170135689A (en) 2016-05-31 2017-12-08 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and method for manufacturing the same
EP3252835A1 (en) 2016-05-31 2017-12-06 Nichia Corporation Light-emitting device and method for manufacturing the same
US10418533B2 (en) 2016-05-31 2019-09-17 Nichia Corporation Light-emitting device having a light-transmissive member including particles of at least one first filler and method for manufacturing the same
US11430928B2 (en) 2016-05-31 2022-08-30 Nichia Corporation Light-emitting device with exposed filter particles
US10276757B2 (en) 2016-12-27 2019-04-30 Nichia Corporation Light emitting device and method for manufacturing the same
US10741733B2 (en) 2016-12-27 2020-08-11 Nichia Corporation Light emitting device
JP2019009429A (en) * 2017-06-28 2019-01-17 日亜化学工業株式会社 Light-emitting device
US11329203B2 (en) 2017-06-28 2022-05-10 Nichia Corporation Light emitting device including covering member and optical member
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11796163B2 (en) 2020-05-12 2023-10-24 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Similar Documents

Publication Publication Date Title
JP2007324220A (en) Optical semiconductor device
JP4846498B2 (en) Optical semiconductor device and method for manufacturing optical semiconductor device
TW200541110A (en) Semiconductor light emitting devices including flexible film having therein an optical element, and methods of assembling same
JP2009141322A (en) Led light source having improved resistance to thermal cycling
JP6065408B2 (en) Light emitting device and manufacturing method thereof
JP2007088472A (en) Light emitting diode package and method for manufacture it
JP2005223216A (en) Light emitting light source, illuminator, and display unit
JP2009027129A (en) Super-thin side-view light emitting diode (led) package, and manufacturing method thereof
JP2014532986A (en) Light emitting diode package and manufacturing method thereof
JP2010251805A (en) Illumination device
JP5085665B2 (en) Light emitting diode package structure and method of manufacturing the same
JP2014049764A (en) Side emission type light-emitting diode package and manufacturing method therefor
JP6681139B2 (en) Light emitting device
JP2007123576A (en) Light emitting device and illumination apparatus
KR101111985B1 (en) Light emitting device package
TW201409779A (en) Wiring board, light-emitting device and method for manufacturing wiring board
JP2008072043A (en) Optical semiconductor device
JP2015225910A (en) Light-emitting module and illumination device
JP2007235104A (en) Light emitting device and manufacturing method thereof
TW201251122A (en) Lighting device and illuminating device
JP4884074B2 (en) Semiconductor light emitting device
JP2011171693A (en) Light emitting device and method of manufacturing the same
KR101047795B1 (en) Semiconductor light emitting device
JP2015018847A (en) Led module and illumination device including the same
TWI425672B (en) Method for producing packaged led