JP2006156590A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP2006156590A
JP2006156590A JP2004342875A JP2004342875A JP2006156590A JP 2006156590 A JP2006156590 A JP 2006156590A JP 2004342875 A JP2004342875 A JP 2004342875A JP 2004342875 A JP2004342875 A JP 2004342875A JP 2006156590 A JP2006156590 A JP 2006156590A
Authority
JP
Japan
Prior art keywords
layer
current diffusion
type
nitride semiconductor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004342875A
Other languages
Japanese (ja)
Inventor
Susumu Hiraoka
晋 平岡
Hiromitsu Kudo
広光 工藤
Hiroaki Okagawa
広明 岡川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2004342875A priority Critical patent/JP2006156590A/en
Publication of JP2006156590A publication Critical patent/JP2006156590A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that, though light emission becomes most intense in the projection area of a metal film in the conventional GaN-based LED provided with an electrode combined with a light-transmissive electrode film and a metal film, the light is prevented from being picked up by the metal film that is located just above, and light emission efficiency is lowered as a result. <P>SOLUTION: The GaN-based LED is provided with a current diffusion layer made of a metallic material, and an electrode combined with a light-transmissive electrode layer. A material for the current diffusion layer and the light transmission electrode layer is selected to match for the conductive type of the nitride semiconductor layer, so that a contact resistance on the boundary between the current diffusion layer and a nitride semiconductor layer may be larger than that on the boundary between the light-transmissive electrode layer and the nitride semiconductor layer. Therefore, current supplied to the nitride semiconductor layer concentrates on a route crossing the boundary between the light-transmissive electrode layer and the nitride semiconductor layer, so that light emission can be prevented in the projection area of the current diffusion area. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は発光ダイオードに関し、特に、n型層およびp型層を含む複数の窒化物半導体層からなる積層体を有する発光ダイオード(以下「GaN系LED」という。)の、発光効率を向上させる技術に関する。   The present invention relates to a light emitting diode, and in particular, a technique for improving the light emission efficiency of a light emitting diode (hereinafter referred to as “GaN-based LED”) having a laminate composed of a plurality of nitride semiconductor layers including an n-type layer and a p-type layer. About.

GaN系LEDは、n型の窒化物半導体層とp型の窒化物半導体層とが接合されたpn接合ダイオード構造を基本構造として有する発光素子であり、発光領域に用いる窒化物半導体の組成を選択することによって、可視〜紫外領域の光を発生させることが可能である。特に、可視短波長(青色)〜近紫外波長の光を発生するGaN系LEDは、照明光源やフルカラー表示装置用の光源に用いられる白色LEDの励起用光源として注目されている。   A GaN-based LED is a light-emitting element having a pn junction diode structure in which an n-type nitride semiconductor layer and a p-type nitride semiconductor layer are bonded as a basic structure, and the composition of the nitride semiconductor used in the light-emitting region is selected. By doing so, it is possible to generate light in the visible to ultraviolet region. In particular, GaN-based LEDs that generate light having a visible short wavelength (blue) to near-ultraviolet wavelengths are attracting attention as excitation light sources for white LEDs used as illumination light sources and light sources for full-color display devices.

窒化物半導体は、一般式AlInGa1−a−bN(0≦a≦1、0≦b≦1、0≦a+b≦1)で表される化合物半導体であって、例えば、二元系のGaN、AlN、InN、三元系のAlGaN、InGaN、InAlN、四元系のAlInGaNなど、任意の組成のものが例示される。ここで、3族元素の一部を、B(ホウ素)、Tl(タリウム)等で置換したものや、N(窒素)の一部をP(リン)、As(ヒ素)、Sb(アンチモン)、Bi(ビスマス)等で置換したものも、窒化物半導体に含まれる。
窒化物半導体は、欠陥として含まれる窒素空孔から電子が供給されるために、アンドープでもn型導電性を示すが、n型として用いる場合には、通常、Si(ケイ素)、Ge(ゲルマニウム)、Se(セレン)、Te(テルル)、C(炭素)などの元素がn型不純物としてドープされる。
p型の窒化物半導体は、Mg(マグネシウム)、Zn(亜鉛)、Be(ベリリウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)などの元素をp型不純物としてドープすることにより得られる。MOVPE(有機金属化合物気相成長)法やHVPE(ハイドライド気相成長)法で窒化物半導体の結晶成長を行う際に、これらのp型不純物をドープする場合には、水素パッシベーションが生じるので、成長後、不活性ガス雰囲気中でアニーリング処理や電子線照射処理を行い、p型不純物を活性化させることが好ましい。
The nitride semiconductor is a compound semiconductor represented by a general formula Al a In b Ga 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1). Examples are ternary GaN, AlN, InN, ternary AlGaN, InGaN, InAlN, quaternary AlInGaN, and the like. Here, a part of the group 3 element is substituted with B (boron), Tl (thallium) or the like, or a part of N (nitrogen) is P (phosphorus), As (arsenic), Sb (antimony), Those substituted with Bi (bismuth) or the like are also included in the nitride semiconductor.
Since nitride semiconductors are supplied with electrons from nitrogen vacancies contained as defects, they exhibit n-type conductivity even when they are undoped, but when used as n-type, they are usually Si (silicon), Ge (germanium) , Se (selenium), Te (tellurium), C (carbon) and the like are doped as n-type impurities.
A p-type nitride semiconductor is obtained by doping elements such as Mg (magnesium), Zn (zinc), Be (beryllium), Ca (calcium), Sr (strontium), Ba (barium) as p-type impurities. It is done. When a nitride semiconductor crystal is grown by the MOVPE (organometallic compound vapor phase epitaxy) method or the HVPE (hydride vapor phase epitaxy) method, if these p-type impurities are doped, hydrogen passivation occurs. Thereafter, it is preferable to activate the p-type impurity by performing an annealing process or an electron beam irradiation process in an inert gas atmosphere.

GaN系LEDは、一般に、MOVPE法、HVPE法、MBE(分子線エピタキシー)法などの気相成長法を用いて、基板上に窒化物半導体からなるn型層、p型層を順次成長して積層体を形成した後、n型層とp型層とに、それぞれn側電極とp側電極を形成することによって作製される。n型層とp型層との間に、これらn型層およびp型層よりもバンドギャップの小さい発光層を挿入すると、ダブルヘテロ構造となり、発光効率が向上する。
n側電極を形成するとき、基板が絶縁性の場合には、p型層側からのドライエッチによりn型層を部分的に露出させ、その露出された表面に形成する。導電性基板を用いた場合には、n側電極を基板の裏面(窒化物半導体層を形成しない側の面)に形成することもできる。
p側電極は、積層体の上面であるp型層の表面を覆うように形成される。光透過性のp側電極が実用化されており、そのようなp側電極を用いたGaN系LEDは、p側電極を通して発光を取り出すことができるので、基板の裏面をマウント面に接着することにより、簡便に実装することができる。
In general, a GaN-based LED is formed by sequentially growing an n-type layer and a p-type layer made of a nitride semiconductor on a substrate by using a vapor phase growth method such as a MOVPE method, an HVPE method, or an MBE (molecular beam epitaxy) method. After the stacked body is formed, an n-side electrode and a p-side electrode are formed on the n-type layer and the p-type layer, respectively. When a light-emitting layer having a band gap smaller than those of the n-type layer and the p-type layer is inserted between the n-type layer and the p-type layer, a double hetero structure is formed and the light emission efficiency is improved.
When forming the n-side electrode, if the substrate is insulative, the n-type layer is partially exposed by dry etching from the p-type layer side and formed on the exposed surface. When a conductive substrate is used, the n-side electrode can be formed on the back surface (the surface on which the nitride semiconductor layer is not formed) of the substrate.
The p-side electrode is formed so as to cover the surface of the p-type layer that is the upper surface of the multilayer body. A light-transmitting p-side electrode has been put into practical use, and a GaN-based LED using such a p-side electrode can take out light emission through the p-side electrode, so that the back surface of the substrate is bonded to the mount surface. Therefore, it can be easily mounted.

特開2000−216431号公報(特許文献1)には、透光性のp側電極として、格子状パターンに形成された金属膜と透明導電層とからなる複合電極を用いた、GaN系LEDが開示されている。このGaN系LEDの断面図を図9に示す。
図9において、1はサファイア基板、2はバッファ層、3はSiドープGaNからなるn型GaNコンタクト層、4はアンドープGaN層とアンドープInGaN層とが交互に積層されたMQW構造のInGaN発光層、5はMgドープAlGaNからなるp型AlGaNクラッド層、6はMgドープGaNからなるp型GaNコンタクト層、P1はn側電極、P2はp側電極である。
p側電極P2は、格子状パターンに形成された金属膜P2Aと、それを覆って形成された透明導電層P2Bとからなる。金属膜P2Aは、p型コンタクト層6とのオーミック性の良好な金属からなり、具体的には、Pd(パラジウム)、Pt(白金)、Ni(ニッケル)などからなる。透明導電層P2Bは、SnO(酸化錫)、ITO(酸化インジウム錫)、MgO(酸化マグネシウム)、ZnO(酸化亜鉛)などの導電性金属酸化物からなる。
n側電極P1およびp側電極P2から電流が供給されることにより、InGaN発光層4で発光が生じる。この発光は、金属膜P2Aの開口部(金属膜P2Aが形成されず、透明導電層P2Bがp型コンタクト層6の表面に接して形成された領域)を通して、素子外部に取り出される。導電性の高い金属膜P2Aを含むために、p側電極P2を流れる電流は横方向(窒化物半導体の積層体の厚さ方向と直交する方向)に十分に拡散し、発光層4の面内における発光の均一性が良好となる。
Japanese Unexamined Patent Publication No. 2000-216431 (Patent Document 1) discloses a GaN-based LED using a composite electrode composed of a metal film formed in a lattice pattern and a transparent conductive layer as a light-transmitting p-side electrode. It is disclosed. A sectional view of this GaN-based LED is shown in FIG.
In FIG. 9, 1 is a sapphire substrate, 2 is a buffer layer, 3 is an n-type GaN contact layer made of Si-doped GaN, 4 is an InGaN light-emitting layer having an MQW structure in which undoped GaN layers and undoped InGaN layers are alternately stacked, 5 is a p-type AlGaN cladding layer made of Mg-doped AlGaN, 6 is a p-type GaN contact layer made of Mg-doped GaN, P1 is an n-side electrode, and P2 is a p-side electrode.
The p-side electrode P2 includes a metal film P2A formed in a lattice pattern and a transparent conductive layer P2B formed so as to cover the metal film P2A. The metal film P2A is made of a metal having a good ohmic property with the p-type contact layer 6, and specifically made of Pd (palladium), Pt (platinum), Ni (nickel), or the like. The transparent conductive layer P2B is made of a conductive metal oxide such as SnO 2 (tin oxide), ITO (indium tin oxide), MgO (magnesium oxide), or ZnO (zinc oxide).
When the current is supplied from the n-side electrode P1 and the p-side electrode P2, the InGaN light emitting layer 4 emits light. This light emission is extracted outside the element through an opening of the metal film P2A (a region where the metal film P2A is not formed and the transparent conductive layer P2B is formed in contact with the surface of the p-type contact layer 6). Since the highly conductive metal film P2A is included, the current flowing through the p-side electrode P2 is sufficiently diffused in the lateral direction (the direction perpendicular to the thickness direction of the nitride semiconductor laminate), and the in-plane of the light emitting layer 4 Uniformity of light emission in is improved.

ところで、特許文献1によれば、Pd、Pt、Niなどからなる金属膜は、p型窒化物半導体との間で、導電性金属酸化物よりも良好なオーミック性接触を形成する。従って、図9のGaN系LEDにおいて、p側電極P2からp型コンタクト層6へと流れる電流は、接触抵抗の低い、金属膜P2Aとp型コンタクト層6との界面を横切る経路に集中することになり、そのために、発光層4における発光は、金属膜P2Aの射影領域において最も強くなる。しかし、該領域での発光は、該領域の直上に位置する金属膜P2Aによって反射され易いことから、外部への取り出しが妨げられ、それによって、LEDの発光効率が低下するという問題がある。   By the way, according to Patent Document 1, a metal film made of Pd, Pt, Ni or the like forms a better ohmic contact with a p-type nitride semiconductor than a conductive metal oxide. Therefore, in the GaN-based LED of FIG. 9, the current flowing from the p-side electrode P2 to the p-type contact layer 6 is concentrated on a path crossing the interface between the metal film P2A and the p-type contact layer 6 having a low contact resistance. Therefore, the light emission in the light emitting layer 4 is the strongest in the projection region of the metal film P2A. However, since light emission in the region is easily reflected by the metal film P2A located immediately above the region, taking out to the outside is hindered, thereby causing a problem that the light emission efficiency of the LED is lowered.

特開2000−216431号公報JP 2000-216431 A 特開2003−60236号公報JP 2003-60236 A 特開2001−210867号公報JP 2001-210867 A 特開2004−179365号公報JP 2004-179365 A 特開2004−266258号公報JP 2004-266258 A 特開2004−6991号公報JP 2004-6991 A

本発明は、光透過性の電極膜と、金属膜とが複合化された電極を備えたGaN系LEDにおける、上記従来技術の問題点を解決し、発光効率の優れたGaN系LEDを提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art in a GaN-based LED having an electrode in which a light-transmissive electrode film and a metal film are combined, and provides a GaN-based LED with excellent luminous efficiency. For the purpose.

上記目的を達成するために、本発明に係るGaN系LEDは、以下の特徴を有する。
(1)基板と、上記基板の上に形成された、n型層およびp型層を含む複数の窒化物半導体層からなる積層体と、上記積層体の上面に部分的に形成された、金属からなる電流拡散層と、上記電流拡散層が形成されていない領域に露出した上記積層体の上面に、上記電流拡散層と電気的に接続されるように形成された透光性電極層とを有し、上記積層体と上記電流拡散層との界面の接触抵抗が、上記積層体と上記透光性電極層との界面の接触抵抗よりも大きいことを特徴とする発光ダイオード。
(2)上記積層体の最上層がn型窒化物半導体からなり、上記電流拡散層がAg、Rh、PdまたはPtからなり、かつ、上記透光性電極層が導電性金属酸化物からなる、上記(1)に記載の発光ダイオード。
(3)トンネル接合構造を有する、上記(2)に記載の発光ダイオード。
(4)上記最上層が、膜厚1μm未満のn型窒化物半導体層であるか、または、電子濃度1×1018cm−3未満のn型窒化物半導体層である、上記(2)に記載の発光ダイオード。
(5)上記積層体の最上層がp型窒化物半導体からなり、上記電流拡散層がAlからなり、かつ、上記透光性電極層が導電性金属酸化物からなる、上記(1)に記載の発光ダイオード。
(6)上記積層体の最上層がp型窒化物半導体からなり、上記電流拡散層がAlからなり、かつ、上記透光性電極層がAlよりも仕事関数の大きな金属からなる、上記(1)に記載の発光ダイオード。
(7)上記透光性電極層が、Ni、Pd、Rh、Au、IrまたはPtからなる、上記(6)に記載の発光ダイオード。
(8)上記導電性金属酸化物からなる透光性電極層の厚さが200nm以下である、上記(2)〜(5)のいずれかに記載の発光ダイオード。
(9)上記透光性電極層が上記電流拡散層の上を覆って形成され、それによって、上記電流拡散層が形成されていない領域に露出した上記積層体の上面に、上記透光性電極層が形成された構成となっている、上記(1)〜(8)のいずれかに記載の発光ダイオード。
(10)更に、上記透光性電極層の上に形成されたボンディング用のパッド電極と、少なくともその一部が上記パッド電極の射影領域内に入るように、上記積層体の上面に形成された電流阻止層とを有し、上記電流阻止層は、上記電流拡散層と同じ材料からなるとともに、上記電流拡散層と実質的に同じ膜厚を有し、かつ、上記積層体の上面における、上記パッド電極の射影領域の50%以上が、上記電流阻止層により覆われている、上記(1)〜(9)のいずれかに記載の発光ダイオード。
In order to achieve the above object, the GaN-based LED according to the present invention has the following characteristics.
(1) A substrate, a laminate formed on the substrate and including a plurality of nitride semiconductor layers including an n-type layer and a p-type layer, and a metal partially formed on the upper surface of the laminate A transparent electrode layer formed so as to be electrically connected to the current diffusion layer on the upper surface of the stacked body exposed in the region where the current diffusion layer is not formed. And a contact resistance at an interface between the laminate and the current diffusion layer is larger than a contact resistance at an interface between the laminate and the translucent electrode layer.
(2) The uppermost layer of the laminate is made of an n-type nitride semiconductor, the current diffusion layer is made of Ag, Rh, Pd, or Pt, and the translucent electrode layer is made of a conductive metal oxide. The light emitting diode as described in said (1).
(3) The light-emitting diode according to (2), which has a tunnel junction structure.
(4) In the above (2), the uppermost layer is an n-type nitride semiconductor layer having a thickness of less than 1 μm or an n-type nitride semiconductor layer having an electron concentration of less than 1 × 10 18 cm −3. The light emitting diode as described.
(5) The uppermost layer of the laminate is made of a p-type nitride semiconductor, the current diffusion layer is made of Al, and the translucent electrode layer is made of a conductive metal oxide. Light emitting diode.
(6) The uppermost layer of the laminate is made of a p-type nitride semiconductor, the current diffusion layer is made of Al, and the translucent electrode layer is made of a metal having a work function larger than that of Al. ).
(7) The light-emitting diode according to (6), wherein the translucent electrode layer is made of Ni, Pd, Rh, Au, Ir, or Pt.
(8) The light-emitting diode according to any one of (2) to (5), wherein the translucent electrode layer made of the conductive metal oxide has a thickness of 200 nm or less.
(9) The translucent electrode layer is formed so as to cover the current diffusion layer, and thereby the translucent electrode is formed on the upper surface of the laminate exposed in a region where the current diffusion layer is not formed. The light emitting diode according to any one of (1) to (8), wherein a layer is formed.
(10) Further, a bonding pad electrode formed on the translucent electrode layer, and at least a part of the bonding pad electrode is formed on the upper surface of the laminate so as to fall within the projected region of the pad electrode. A current blocking layer, and the current blocking layer is made of the same material as the current diffusion layer, has substantially the same film thickness as the current diffusion layer, and the upper surface of the stacked body, The light emitting diode according to any one of (1) to (9), wherein 50% or more of the projected area of the pad electrode is covered with the current blocking layer.

本発明に係るGaN系LEDは、n型層およびp型層を含む複数の窒化物半導体層からなる積層体(以下、これを単に「積層体」ともいう)の上面に形成された、電流拡散層と透光性電極層とを備える。この電流拡散層が、透光性電極層に電気的に接続されて、透光性電極層における横方向の電流拡散を補助するために、発光領域に電流が均一性よく供給されるようになり、素子面内での発光の均一性が良好となる。
また、本発明に係るGaN系LEDでは、電流拡散層と積層体との界面の接触抵抗が、透光性電極層と積層体との界面の接触抵抗よりも高くなるように、積層体の最上層をなす窒化物半導体層の伝導型に合わせて、電流拡散層および透光性電極層の材料が選択される。そのために、透光性電極層から積層体に供給される電流は、殆どが透光性電極層と積層体との界面を横切る電流経路を流れることになる。その結果、発光層において、電流拡散層の射影領域での発光が抑制される一方、透光性電極層と積層体とが界面を形成した領域の射影領域での発光が促進される。後者の領域での発光は、直上に影となる電流拡散層が存在しないために、透光性電極層を通して効率的に素子の外部に取り出されるので、LEDの発光効率が改善される。
The GaN-based LED according to the present invention has a current diffusion formed on the upper surface of a multilayer body (hereinafter, also simply referred to as “laminate body”) composed of a plurality of nitride semiconductor layers including an n-type layer and a p-type layer. A layer and a translucent electrode layer. This current spreading layer is electrically connected to the translucent electrode layer, and in order to assist lateral current spreading in the translucent electrode layer, current is supplied to the light emitting region with good uniformity. In addition, the uniformity of light emission in the element plane is improved.
In addition, in the GaN-based LED according to the present invention, the maximum resistance of the laminate is such that the contact resistance at the interface between the current diffusion layer and the laminate is higher than the contact resistance at the interface between the translucent electrode layer and the laminate. The materials for the current diffusion layer and the translucent electrode layer are selected in accordance with the conductivity type of the upper nitride semiconductor layer. For this reason, most of the current supplied from the translucent electrode layer to the laminated body flows through a current path crossing the interface between the translucent electrode layer and the laminated body. As a result, in the light emitting layer, light emission in the projected region of the current diffusion layer is suppressed, while light emission in the projected region of the region where the translucent electrode layer and the laminate form an interface is promoted. The light emission in the latter region is efficiently taken out of the device through the translucent electrode layer because there is no shadowed current diffusion layer directly above, so that the light emission efficiency of the LED is improved.

(第1の実施形態)
図1〜図3は、本発明の第1の実施形態に係るGaN系LED100の素子構成図であり、図1は平面図、図2は図1のA−B線における断面図、図3は図1のC−D線における断面図である。
図1〜図3において、101はサファイア基板、102は窒化物半導体材料からなる低温成長バッファ層、103はSiドープGaN(電子濃度約5×1018cm−3)からなる膜厚3μmのn型GaNクラッド層、104はInGaN層を井戸層として含むMQW構造のInGaN発光層、105はMgドープAlGaNからなる膜厚50nmのp型AlGaNクラッド層、106はMgドープGaN(Mg濃度約1×1020cm−3)からなる膜厚150nmの高ドープp型GaN層、107はSiドープGaN(電子濃度約1×1020cm−3)からなる膜厚5nmのn型GaNコンタクト層、P101は膜厚30nmのTi層の上に膜厚100nmのAl層を積層したn側電極、P102はAg(銀)からなる膜厚40nmの電流拡散層、P103はITOからなる膜厚100nmの透光性電極層、P104とP105は、それぞれ、膜厚30nmのTi層の上に膜厚300nmのAu層を積層した、n側およびp側のボンディング用パッド電極、P106はAgからなる膜厚40nmの電流阻止層である。
(First embodiment)
1 to 3 are device configuration diagrams of a GaN-based LED 100 according to the first embodiment of the present invention, FIG. 1 is a plan view, FIG. 2 is a cross-sectional view taken along line AB in FIG. 1, and FIG. It is sectional drawing in the CD line of FIG.
1-3, 101 is a sapphire substrate, 102 is a low-temperature growth buffer layer made of a nitride semiconductor material, 103 is an n-type film having a film thickness of 3 μm made of Si-doped GaN (electron concentration of about 5 × 10 18 cm −3 ). GaN cladding layer, 104 is an InGaN light emitting layer having an MQW structure including an InGaN layer as a well layer, 105 is a p-type AlGaN cladding layer made of Mg-doped AlGaN, and has a thickness of 50 nm, and 106 is Mg-doped GaN (Mg concentration is about 1 × 10 20 150 cm thick highly doped p-type GaN layer composed of cm −3 ), 107 represents a 5 nm thick n-type GaN contact layer composed of Si doped GaN (electron concentration of about 1 × 10 20 cm −3 ), and P 101 represents a film thickness. An n-side electrode in which an Al layer having a thickness of 100 nm is laminated on a Ti layer having a thickness of 30 nm, P102 has a thickness of 40 made of Ag (silver) m current spreading layer, P103 is a 100 nm thick transparent electrode layer made of ITO, and P104 and P105 are respectively a n-side and a 300 nm thick Au layer laminated on a 30 nm thick Ti layer. The p-side bonding pad electrode P106 is a 40 nm thick current blocking layer made of Ag.

GaN系LED100において、発光に係るpn接合はn型GaNクラッド層103とp型AlGaNクラッド層105との間に形成され、n型GaNコンタクト層107と高ドープp型GaN層106との接合部は発光に関与しない。このようなGaN系LEDの構成は、特開2003−60236号公報(特許文献2)などに開示されており、n型不純物が高濃度にドープされたn型層とp型不純物が高濃度にドープされたp型層との界面にトンネル接合構造が形成されることを利用して、p側のコンタクト層をn型層とすることができ、それによって、p側電極の接触抵抗を低下させることができる。
後述するように、GaN系LED100では、n型GaNコンタクト層107が、InGaN発光層104の後に成長されるが、n型GaNコンタクト層107を成長する際の熱によって、InGaN発光層104が劣化し、発光効率が低下することを防ぐために、n型GaNコンタクト層107は薄く形成することが望ましい。そのために、n型GaNコンタクト層107に十分な横方向の電流拡散性を持たせることは難しい。
In the GaN-based LED 100, a pn junction related to light emission is formed between the n-type GaN cladding layer 103 and the p-type AlGaN cladding layer 105, and the junction between the n-type GaN contact layer 107 and the highly doped p-type GaN layer 106 is Not involved in luminescence. The configuration of such a GaN-based LED is disclosed in Japanese Patent Application Laid-Open No. 2003-60236 (Patent Document 2) and the like, and an n-type layer doped with an n-type impurity at a high concentration and a p-type impurity at a high concentration. Utilizing the fact that a tunnel junction structure is formed at the interface with the doped p-type layer, the p-side contact layer can be made an n-type layer, thereby reducing the contact resistance of the p-side electrode. be able to.
As will be described later, in the GaN-based LED 100, the n-type GaN contact layer 107 is grown after the InGaN light-emitting layer 104. However, the InGaN light-emitting layer 104 deteriorates due to heat generated when the n-type GaN contact layer 107 is grown. In order to prevent the light emission efficiency from being lowered, it is desirable to form the n-type GaN contact layer 107 thin. Therefore, it is difficult to make the n-type GaN contact layer 107 have sufficient lateral current diffusibility.

GaN系LED100の、n側、p側の各パッド電極P104、P105に通電すると、p側では、電流拡散層P102と透光性電極層P103とによって、電流が横方向に広げられる。
ここで、ITOやZnOなどの導電性金属酸化物の抵抗率は、最も導電性の良好なもので、10−4Ωcmのオーダーであるのに対し、金属の抵抗率は10−6〜10−5Ωcmのオーダーであることから、同程度の厚さに形成した金属薄膜と導電性金属酸化物薄膜とでは、前者の電流拡散能力が後者の10〜100倍にもなる。従って、透光性電極層P103に、その1/10以上の膜厚を有する電流拡散層P102を複合化することによって、透光性電極層P103の電流拡散性を十分に補うことができる。
ITOやZnOなどの導電性金属酸化物と金属材料との接触抵抗は一般的に低いので、電流拡散層P102と透光性電極層P103は、相互に接するように形成すれば、電気的に接続することができる。また、電流拡散層P102と透光性電極層P103とを形成した後に熱処理を行うことによって、両層間の接触抵抗を低下させることができる。
When the n-side and p-side pad electrodes P104 and P105 of the GaN-based LED 100 are energized, the current is spread laterally by the current diffusion layer P102 and the translucent electrode layer P103 on the p-side.
Here, the resistivity of the conductive metal oxide such as ITO or ZnO has the best conductivity and is on the order of 10 −4 Ωcm, whereas the resistivity of the metal is 10 −6 to 10 −. Since the thickness is on the order of 5 Ωcm, the current diffusion capability of the former is 10 to 100 times that of the latter in the metal thin film and the conductive metal oxide thin film formed to the same thickness. Therefore, the current diffusibility of the translucent electrode layer P103 can be sufficiently supplemented by compositing the translucent electrode layer P103 with the current diffusion layer P102 having a thickness of 1/10 or more.
Since the contact resistance between a conductive metal oxide such as ITO or ZnO and a metal material is generally low, the current diffusion layer P102 and the translucent electrode layer P103 are electrically connected if formed so as to be in contact with each other. can do. Further, the contact resistance between the two layers can be reduced by performing heat treatment after forming the current diffusion layer P102 and the translucent electrode layer P103.

ITOなどの導電性金属酸化物は、可視〜近紫波長域において高い透過率を有するが、全く吸収が無いというわけではなく、特に可視短波長領域から紫外にかけての波長領域では、バンド間遷移による吸収の影響も現れて、透過率が低くなる傾向がある。また、屈折率が約2であるITOからなる透光性電極層P103と、素子外部を取り巻く媒体(SiO2からなるパッシベーション膜、封止樹脂、空気等)との界面では、屈折率差によって、発光が再び素子内部に向かって反射され易いために、発光の一部は透光性電極層P103を何度も横切ることになる。従って、透光性電極層P103を薄く形成して光透過性を向上させることにより、LEDの発光効率を改善することができる。
例えば、特開2001−210867号公報(特許文献3)には、膜厚約0.5μmのITO電極を用いたGaN系LEDが開示されているが、これに対して、GaN系LED100では、ITOの数十倍の導電率を有するAgで電流拡散層P102を形成し、透光性電極層P103の電流拡散性を補う構成とするので、この透光性電極層P103の厚さを従来の半分以下とすることができる。
本発明に係るGaN系LEDでは、透光性電極層を導電性金属酸化物で形成する場合の好ましい厚さは200nm以下であり、より好ましくは100nm以下である。
Conductive metal oxides such as ITO have high transmittance in the visible to near-violet wavelength range, but are not completely absorbed, especially in the wavelength range from the visible short wavelength region to the ultraviolet region due to interband transition. The influence of absorption also appears and the transmittance tends to be low. Further, at the interface between the translucent electrode layer P103 made of ITO having a refractive index of about 2 and the medium surrounding the outside of the device (passivation film made of SiO2, sealing resin, air, etc.), light is emitted due to the difference in refractive index. Is likely to be reflected again toward the inside of the element, and part of the light emission crosses the translucent electrode layer P103 many times. Therefore, the light emission efficiency of the LED can be improved by forming the light-transmitting electrode layer P103 thin to improve the light transmittance.
For example, Japanese Patent Laid-Open No. 2001-210867 (Patent Document 3) discloses a GaN-based LED using an ITO electrode having a film thickness of about 0.5 μm. The current diffusion layer P102 is formed of Ag having a conductivity several tens of times higher than that of the translucent electrode layer P103, so that the current diffusibility of the translucent electrode layer P103 is compensated. It can be as follows.
In the GaN-based LED according to the present invention, a preferable thickness when the translucent electrode layer is formed of a conductive metal oxide is 200 nm or less, and more preferably 100 nm or less.

GaN系LED100における電流拡散層P102の効果は、LEDチップのサイズが大きくなるにつれ、顕著となる。これまで、GaN系LEDのチップサイズは、300〜400μm角が標準的であったが、特に、照明装置の用途においては、小さなチップを多数実装するよりも、大型のチップを少数実装する方が製造上有利となるために、チップサイズが1mm角以上のGaN系LEDの開発が行われている。このような、大サイズのチップにおいては、横方向の電流拡散性の確保が重要となるために、電流拡散層によって横方向の電流拡散を補助する本発明の構成が、特に有用となる。   The effect of the current diffusion layer P102 in the GaN-based LED 100 becomes more prominent as the size of the LED chip increases. Up to now, the standard chip size of GaN-based LEDs has been 300 to 400 μm square, but especially in the application of lighting devices, it is better to mount a small number of large chips than to mount a large number of small chips. In order to be advantageous in manufacturing, GaN-based LEDs having a chip size of 1 mm square or more have been developed. In such a large-sized chip, since it is important to secure current diffusibility in the lateral direction, the configuration of the present invention that assists current diffusion in the lateral direction by the current diffusion layer is particularly useful.

電流拡散層P102の材料であるAgは、n型窒化物半導体とは良好なオーミック性接触を形成しないことが知られており、n型窒化物半導体用のオーミック電極の材料とし得ることが知られているITOやZnOよりも、n型窒化物半導体との接触抵抗が大きくなる。従って、n型GaNコンタクト層107に供給される電流は、透光性電極層P103とn型コンタクト層107との界面を横切る経路に集中し、電流拡散層P102とn型GaNコンタクト層107との界面を横切って流れる電流は僅かとなる。そして、膜厚の小さいn型GaNコンタクト層107、膜厚が小さく、かつ導電率も低い高ドープp型GaN層106およびp型AlGaNクラッド層105の内部では、電流が横方向に殆ど拡散しないので、InGaN発光層104において発光が生じるのは、実質的に、n型GaNコンタクト層107と透光性電極層P103とが界面を形成した領域の、射影領域のみとなる。該領域で発生する光は、該領域直上に電流拡散層P102が存在しないために、透光性電極層P103を通して効率良く素子外に取り出される。   It is known that Ag, which is the material of the current diffusion layer P102, does not form a good ohmic contact with the n-type nitride semiconductor, and can be used as an ohmic electrode material for the n-type nitride semiconductor. The contact resistance with the n-type nitride semiconductor is larger than that of ITO or ZnO. Therefore, the current supplied to the n-type GaN contact layer 107 is concentrated on a path crossing the interface between the translucent electrode layer P103 and the n-type contact layer 107, and the current diffusion layer P102 and the n-type GaN contact layer 107 There is little current flowing across the interface. In the n-type GaN contact layer 107 having a small thickness, the highly doped p-type GaN layer 106 and the p-type AlGaN cladding layer 105 having a small thickness and low conductivity, current hardly diffuses in the lateral direction. The InGaN light emitting layer 104 emits light substantially only in the projected region in the region where the n-type GaN contact layer 107 and the translucent electrode layer P103 form an interface. Light generated in the region is efficiently extracted out of the element through the translucent electrode layer P103 because the current diffusion layer P102 does not exist immediately above the region.

電流拡散層P102の材料として好適な、n型窒化物半導体と良好なオーミック性接触を形成しない金属としては、Agの他に、Rh(ロジウム)、Pt、Pdなどが挙げられる。中でも、Ag、Rhは、光反射性が特に優れているため、Ag、Rhで電流拡散層P102を形成すると、電流拡散層P102による光吸収が小さくなり、LEDの発光効率を向上させるうえで好ましい。   In addition to Ag, Rh (rhodium), Pt, Pd, and the like are preferable as the metal that does not form a good ohmic contact with the n-type nitride semiconductor and is suitable as a material for the current diffusion layer P102. Among them, Ag and Rh are particularly excellent in light reflectivity. Therefore, when the current diffusion layer P102 is formed of Ag and Rh, light absorption by the current diffusion layer P102 is reduced, which is preferable in improving the light emission efficiency of the LED. .

電流拡散層P102は、光透過性が生じる厚さに形成してもよく、それによって、発光の取り出し性が向上する。一般に、金属膜は厚さ20nm程度以下に形成すると光透過性を示すようになる。光透過性とする場合の金属膜の膜厚は、導電性を確保するために、3nm以上とすることが好ましい。   The current diffusion layer P102 may be formed to a thickness that allows light transmission, thereby improving the light emission extraction property. Generally, when a metal film is formed to a thickness of about 20 nm or less, it shows light transmittance. The film thickness of the metal film in the case of light transmission is preferably 3 nm or more in order to ensure conductivity.

電流拡散層P102のパターン(チップを上方から見たときのパターン)は特に限定されず、透光性電極層P103における横方向の電流拡散を補うことのできるパターンであればよい。図1、図4〜図6に、電流拡散層P102のパターンの一例を示す。これらの図において、点線で表しているのが、電流拡散層P102と、後述する電流阻止層P106の輪郭線である。点線で表示したのは、これらの層が、透光性電極層P103の下に形成された層であるからである。   The pattern of the current diffusion layer P102 (pattern when the chip is viewed from above) is not particularly limited as long as it can compensate the current diffusion in the lateral direction in the translucent electrode layer P103. 1 and 4 to 6 show an example of a pattern of the current diffusion layer P102. In these figures, the dotted lines represent the contour lines of the current diffusion layer P102 and the current blocking layer P106 described later. The reason why the layers are indicated by dotted lines is that these layers are formed under the translucent electrode layer P103.

図1の例は、線状の電流拡散層P102を、複数、n型GaNコンタクト層107の表面に、相互に離間して形成したものである。
図4の例は、複数の線状の電流拡散層P202を、放射状のパターンに形成し、更に、線状部分の一端で電流素子層P206と一体化したものである。
図5の例は、線状の電流拡散層P302を円環状に形成したものである。
図6の例は、複数の線状の電流拡散層P402を、井桁状のパターンに形成したものである。このパターンは格子状パターンの一種と見ることもできる。
電流拡散層のパターンは、これらの図に例示したパターンを変形したり、相互に組み合わせたパターンとしてもよい。また、図示しないが、電流拡散層は、n型GaNコンタクト層107の上面に広がった、ネット状、樹枝状、櫛状などのパターンに形成することもできる。
In the example of FIG. 1, a plurality of linear current diffusion layers P102 are formed on the surface of the n-type GaN contact layer 107 so as to be separated from each other.
In the example of FIG. 4, a plurality of linear current diffusion layers P202 are formed in a radial pattern, and further integrated with the current element layer P206 at one end of the linear portion.
In the example of FIG. 5, the linear current diffusion layer P302 is formed in an annular shape.
In the example of FIG. 6, a plurality of linear current diffusion layers P <b> 402 are formed in a grid pattern. This pattern can also be viewed as a kind of lattice pattern.
The pattern of the current spreading layer may be a pattern obtained by modifying the patterns illustrated in these drawings or combining them. Although not shown, the current diffusion layer can be formed in a net-like, dendritic, comb-like pattern or the like spreading on the upper surface of the n-type GaN contact layer 107.

InGaN発光層104のうち、電流拡散層P102の射影領域は発光が弱くなる(もしくは、発光しない)ことから、n型GaNコンタクト層107の上面のうち、電流拡散層P102により覆われた領域の面積は、電流拡散性が著しく低下しない範囲で、小さくすることが望ましい。金属材料は上述のように抵抗率が低いので、電流拡散層P102は比較的幅の狭い線状部分からなるパターンとすることができる。例えば、上記例示した各パターンに含まれる線状部分の線幅は、0.5μm〜10μmとすることが好ましい。   In the InGaN light emitting layer 104, the projected region of the current diffusion layer P102 emits light weakly (or does not emit light), so that the area of the region covered by the current diffusion layer P102 on the upper surface of the n-type GaN contact layer 107 Is preferably as small as possible in a range where the current diffusibility does not significantly decrease. Since the resistivity of the metal material is low as described above, the current diffusion layer P102 can be formed into a pattern composed of a relatively narrow linear portion. For example, the line width of the linear portion included in each of the exemplified patterns is preferably 0.5 μm to 10 μm.

p側のボンディング用パッド電極P105の下方には、電流阻止層P106を形成してもよい。InGaN発光層104の、パッド電極P105の下方に位置する領域での発光は、その殆どが大きなパッド電極P105により遮られて素子外部に取り出されないので、損失となる。電流阻止層P106は、パッド電極P105の射影領域における、透光性電極層P103から窒化物半導体層への電流供給を阻止することによって、このような損失の発生を抑制するための層である。
電流阻止層P106は、図1の例のように、n型GaNコンタクト層107の表面におけるパッド電極P105の射影領域を、完全に覆うように形成することが最も好ましいが、該射影領域の50%以上を覆うように形成すれば、損失を軽減する効果が得られる。この場合、該射影領域の中心に近い部分を、電流阻止層P106で覆う方が効果的である。
製造効率の点から、電流阻止層P106は、電流拡散層P102と同じ材料から、同時に形成することが好ましい。図4に示すように、電流拡散層P202と電流阻止層P206をパターンのうえで一体化させることもできる。電流阻止層P106を電流拡散層P102と同じ材料で形成すると、電流素子層P106が導電性となるので、p側のパッド電極P105と電流阻止層P106との間の透光性電極層P103を省略し、p側のパッド電極P105を電流阻止層P106の表面上に直接形成することもできる。
電流阻止層は、電流拡散層と異なる材料で形成することも妨げられない。例えば、各種の絶縁性材料を用いることもできる。
A current blocking layer P106 may be formed below the p-side bonding pad electrode P105. Light emission in the region of the InGaN light emitting layer 104 located below the pad electrode P105 is lost because most of it is blocked by the large pad electrode P105 and is not extracted outside the device. The current blocking layer P106 is a layer for suppressing the occurrence of such loss by blocking current supply from the translucent electrode layer P103 to the nitride semiconductor layer in the projection region of the pad electrode P105.
The current blocking layer P106 is most preferably formed so as to completely cover the projection region of the pad electrode P105 on the surface of the n-type GaN contact layer 107 as in the example of FIG. 1, but 50% of the projection region If formed so as to cover the above, an effect of reducing loss can be obtained. In this case, it is more effective to cover the portion near the center of the projection region with the current blocking layer P106.
From the viewpoint of manufacturing efficiency, the current blocking layer P106 is preferably formed simultaneously from the same material as the current diffusion layer P102. As shown in FIG. 4, the current spreading layer P202 and the current blocking layer P206 can be integrated on a pattern. If the current blocking layer P106 is formed of the same material as that of the current diffusion layer P102, the current element layer P106 becomes conductive. Therefore, the transparent electrode layer P103 between the p-side pad electrode P105 and the current blocking layer P106 is omitted. The p-side pad electrode P105 can also be formed directly on the surface of the current blocking layer P106.
The current blocking layer is not prevented from being formed of a material different from that of the current spreading layer. For example, various insulating materials can be used.

GaN系LED100は、次の方法で作製することができる。
まず、サファイア基板101をMOVPE装置にセットし、水素気流中で加熱することにより表面のサーマルエッチングを行う。次に、有機金属原料とアンモニアを供給して、300〜700℃で低温成長バッファ層102を形成した後、基板温度を約1000℃に上げて、n型GaNクラッド層103、InGaN発光層104、p型AlGaNクラッド層105、高ドープp型GaN層106、n型GaNコンタクト層107を、順次、所定の厚さに成長し、窒化物半導体の積層体を形成する。なお、InGaN発光層104を成長するときの基板温度は、約800℃とする。
The GaN-based LED 100 can be manufactured by the following method.
First, the sapphire substrate 101 is set in a MOVPE apparatus, and the surface is thermally etched by heating in a hydrogen stream. Next, after supplying the organometallic raw material and ammonia to form the low-temperature growth buffer layer 102 at 300 to 700 ° C., the substrate temperature is raised to about 1000 ° C., and the n-type GaN cladding layer 103, the InGaN light emitting layer 104, A p-type AlGaN cladding layer 105, a highly doped p-type GaN layer 106, and an n-type GaN contact layer 107 are sequentially grown to a predetermined thickness to form a nitride semiconductor multilayer body. The substrate temperature for growing the InGaN light emitting layer 104 is about 800 ° C.

次に、反応性イオンエッチング(RIE)により、n型GaNコンタクト層107の表面から、n型GaNクラッド層103に達する深さのエッチングを行い、InGaN発光層104、p型AlGaNクラッド層105、高ドープp型GaN層106、n型GaNコンタクト層107の一部を除去して、n型GaNクラッド層103を露出させる。   Next, etching is performed to a depth reaching the n-type GaN cladding layer 103 from the surface of the n-type GaN contact layer 107 by reactive ion etching (RIE), so that the InGaN light-emitting layer 104, the p-type AlGaN cladding layer 105, Part of the doped p-type GaN layer 106 and the n-type GaN contact layer 107 is removed to expose the n-type GaN cladding layer 103.

次に、上記露出させたn型GaNクラッド層103の表面に、真空蒸着、スパッタリング等の方法を用いて、Ti膜およびAl膜を順次積層することにより、n側電極P101を形成する。
なお、n側電極は、透光性電極層と同じ導電性金属酸化物で形成することもできる。その場合は、工程の順序を変更し、n側電極と透光性電極層とを同時に形成することが好ましい。
Next, an n-side electrode P101 is formed by sequentially laminating a Ti film and an Al film on the exposed surface of the n-type GaN clad layer 103 by using a method such as vacuum deposition or sputtering.
Note that the n-side electrode can be formed using the same conductive metal oxide as the light-transmitting electrode layer. In that case, it is preferable to change the order of the steps and simultaneously form the n-side electrode and the translucent electrode layer.

次に、n型GaNコンタクト層107の表面に、真空蒸着、スパッタリング等の方法を用いて、Agからなる電流拡散層P102および電流阻止層P106を、所定の位置に形成する。このとき、Ag単体を用いてもよいが、Ag単体と比べて化学的安定性が改良されたAg合金を用いることもできる。電流拡散層P102をRh、Pt、Pdなどで形成する場合も、材料はこれらの金属の単体に限定されず、合金を用いることができる。   Next, a current diffusion layer P102 and a current blocking layer P106 made of Ag are formed at predetermined positions on the surface of the n-type GaN contact layer 107 by using a method such as vacuum deposition or sputtering. At this time, Ag alone may be used, but an Ag alloy having improved chemical stability as compared with Ag alone may also be used. Even when the current spreading layer P102 is formed of Rh, Pt, Pd, or the like, the material is not limited to a simple substance of these metals, and an alloy can be used.

次に、上記形成した電流拡散層P102を覆って、n型GaNコンタクト層107の表面に、ITOからなる透光性電極層P103を形成する。透光性電極層P103の形成には、CVD法(熱CVD、プラズマCVD、MOCVD、光CVD)、スプレー法、スパッタリング法、真空蒸着法、クラスタービーム蒸着法、パルスレーザ蒸着法、イオンプレーティング法、ゾルゲル法、レーザアブレーション法、その他、公知のITO薄膜の形成方法を適宜用いることができる。
透光性電極層は、ZnO、SnOなど、ITO以外の導電性金属酸化物で形成してもよいが、その場合も、上記方法を使用することができる。
Next, a transparent electrode layer P103 made of ITO is formed on the surface of the n-type GaN contact layer 107 so as to cover the formed current diffusion layer P102. The translucent electrode layer P103 is formed by CVD (thermal CVD, plasma CVD, MOCVD, photo CVD), spray method, sputtering method, vacuum deposition method, cluster beam deposition method, pulse laser deposition method, ion plating method. Sol-gel method, laser ablation method, and other known ITO thin film forming methods can be used as appropriate.
The translucent electrode layer may be formed of a conductive metal oxide other than ITO, such as ZnO or SnO 2 , but in this case, the above method can be used.

次に、n側電極P101および透光性電極層P103の上の所定の位置に、真空蒸着、スパッタリング等の方法で、Ti膜、Au膜を順次積層することにより、n側およびp側のボンディング用パッド電極P104、P105を形成する。p側のパッド電極P105は、先に形成した電流阻止層P106の上に形成する。これら2つのパッド電極の形成は、同時に行うことができる。   Next, by sequentially laminating a Ti film and an Au film at predetermined positions on the n-side electrode P101 and the translucent electrode layer P103 by a method such as vacuum deposition and sputtering, bonding on the n-side and the p-side is performed. Pad electrodes P104 and P105 for forming are formed. The p-side pad electrode P105 is formed on the previously formed current blocking layer P106. These two pad electrodes can be formed simultaneously.

(第2の実施形態)
図7および図8は、本発明の第2の実施形態に係るGaN系LED500の素子構成図であり、図7は平面図、図8は図7のE−F線における断面図である。
図7および図8において、501はサファイア基板、502は窒化物半導体材料からなる低温成長バッファ層、503はSiドープGaN(電子濃度約5×1018cm−3)からなる膜厚3μmのn型GaNクラッド層、504はInGaN層を井戸層として含むMQW構造のInGaN発光層、505はMgドープAlGaNからなる膜厚50nmのp型AlGaNクラッド層、506はMgドープGaN(Mg濃度約1×1020cm−3)からなる膜厚150nmのp型GaNコンタクト層、P501は膜厚30nmのTi層の上に膜厚300nmのAu層を積層したn側電極、P502はAl(アルミニウム)からなる膜厚40nmの電流拡散層、P503はITOからなる膜厚100nmの透光性電極層、P505は、膜厚30nmのTi層の上に膜厚300nmのAu層を積層したp側のボンディング用パッド電極、P506はAlからなる膜厚40nmの電流阻止層である。
(Second Embodiment)
7 and 8 are device configuration diagrams of a GaN-based LED 500 according to the second embodiment of the present invention. FIG. 7 is a plan view, and FIG. 8 is a cross-sectional view taken along line EF in FIG.
7 and 8, 501 is a sapphire substrate, 502 is a low-temperature growth buffer layer made of a nitride semiconductor material, 503 is an n-type film having a thickness of 3 μm made of Si-doped GaN (electron concentration of about 5 × 10 18 cm −3 ). GaN cladding layer, 504 is an InGaN light-emitting layer having an MQW structure including an InGaN layer as a well layer, 505 is a p-type AlGaN cladding layer made of Mg-doped AlGaN, and has a thickness of 50 nm, and 506 is Mg-doped GaN (Mg concentration is about 1 × 10 20 cm- 3 ) p-type GaN contact layer having a thickness of 150 nm, P501 is an n-side electrode in which a 300 nm-thickness Au layer is laminated on a 30 nm-thickness Ti layer, and P502 is a thickness of Al (aluminum). 40 nm current spreading layer, P503 is a 100 nm thick transparent electrode layer made of ITO, P505 is a film thickness p-side bonding pad electrode formed by laminating an Au layer having a thickness of 300nm on the Ti layer of 0 nm, P506 is a current blocking layer having a thickness of 40nm made of Al.

GaN系LED500の特徴的な構成は、p型GaNコンタクト層506の表面に形成された、Alからなる電流拡散層P502と、それを覆って形成された、ITOからなる透光性電極層P503である。
Alは10−6Ωcmのオーダーの抵抗率を有するのに対し、ITOの抵抗率は10−4Ωcmのオーダーであるから、電流拡散層P502は透光性電極層P503の電流拡散を十分に補うことができる。
また、Alはp型の窒化物半導体と良好なオーミック性接触を形成しないことが知られており、p型窒化物半導体用のオーミック電極の材料にも用いられるITOやZnOなどの導電性金属酸化物と比べ、p型窒化物半導体との接触抵抗が大きい。従って、p型GaNコンタクト層506に供給される電流は、透光性電極層P503とp型GaNコンタクト層506との界面を横切る経路に集中し、電流拡散層P502とp型GaNコンタクト層506との界面を横切って流れる電流は僅かとなる。従って、InGaN発光層504において発光が生じるのは、実質的に、p型GaNコンタクト層106と透光性電極層P503とが界面を形成する領域の、射影領域のみとなる。該領域で発生する光は、該領域の直上に電流拡散層P502が存在しないために、透光性電極層P503を通して効率良く素子外に取り出される。
A characteristic configuration of the GaN-based LED 500 is a current diffusion layer P502 made of Al formed on the surface of the p-type GaN contact layer 506 and a translucent electrode layer P503 made of ITO formed so as to cover it. is there.
Since Al has a resistivity on the order of 10 −6 Ωcm, while ITO has a resistivity on the order of 10 −4 Ωcm, the current diffusion layer P502 sufficiently supplements the current diffusion of the translucent electrode layer P503. be able to.
In addition, Al is known not to form good ohmic contact with p-type nitride semiconductors, and conductive metal oxides such as ITO and ZnO that are also used as ohmic electrode materials for p-type nitride semiconductors. The contact resistance with a p-type nitride semiconductor is large compared with a thing. Accordingly, the current supplied to the p-type GaN contact layer 506 is concentrated on a path crossing the interface between the translucent electrode layer P503 and the p-type GaN contact layer 506, and the current diffusion layer P502, the p-type GaN contact layer 506, The current flowing across the interface is small. Therefore, light emission occurs in the InGaN light emitting layer 504 substantially only in the projected region in the region where the p-type GaN contact layer 106 and the translucent electrode layer P503 form an interface. The light generated in the region is efficiently extracted out of the element through the translucent electrode layer P503 because the current diffusion layer P502 does not exist immediately above the region.

Alは、光反射性に優れていること、導電率が高いこと、化学的に安定であることから、p型GaNコンタクト層506上に形成する電流拡散層P502の材料として最適である。
電極の熱処理工程や、素子表面にパッシベーション膜を形成する工程における熱変形を抑制するために、AlにSi(ケイ素)、Ti(チタン)、Cu(銅)、Nd(ネオジム)等の元素を添加して耐熱性を向上させたAl合金を用いることもできる。なお、Al合金膜は、合金スパッタリングや多元蒸着などによる他、Al単体からなる層と、添加しようとする金属元素からなる層を積層した多層膜を形成し、Alの融点以下の温度で熱処理を行うことによっても、得ることができる。
Al is optimal as a material for the current diffusion layer P502 formed on the p-type GaN contact layer 506 because it is excellent in light reflectivity, has high electrical conductivity, and is chemically stable.
Add elements such as Si (silicon), Ti (titanium), Cu (copper), Nd (neodymium) to Al to suppress thermal deformation in the electrode heat treatment process and the passivation film formation process on the element surface Thus, an Al alloy with improved heat resistance can also be used. The Al alloy film is formed by alloy sputtering, multi-source deposition, etc., or a multilayer film in which a layer made of Al alone and a layer made of a metal element to be added are laminated, and heat treatment is performed at a temperature below the melting point of Al. It can also be obtained by doing.

GaN系LED500では、図7に示すように、電流拡散層P502を格子状パターンに形成し、その一部に連続した電流素子層P506を設けている。これは、電流拡散層P502のパターンの一例であり、本第2の実施形態においても、電流拡散層を、前記第1の実施形態の説明中で例示した各種のパターンに形成することができる。   In the GaN-based LED 500, as shown in FIG. 7, a current diffusion layer P502 is formed in a lattice pattern, and a continuous current element layer P506 is provided in a part thereof. This is an example of the pattern of the current diffusion layer P502. Also in the second embodiment, the current diffusion layer can be formed in various patterns exemplified in the description of the first embodiment.

透光性電極層の材料としては、ITOの他に、ZnO、SnOなどの導電性金属酸化物を用いることもできる。
導電性金属酸化物とp型窒化物半導体との接触抵抗を低減するために、次の方法を用いてもよい。
(a)導電性金属酸化物に、p型窒化物半導体にドープされたp型不純物と同じp型不純物をドープする。詳細は、特開2004−179365号公報(特許文献4)などを参照することができる。
(b)p型窒化物半導体層の表面に、一層目として、スパッタリング法以外の方法、例えば、真空蒸着法、レーザーアブレーション法、ゾルゲル法などによって、膜厚100オングストローム以上の導電性金属酸化物層を形成し、その後、厚膜化する。詳細は、前記特許文献3などを参照することができる。
(c)導電性金属酸化物がZnOの場合に、Ga(ガリウム)またはB(ホウ素)をドープする。詳細は、特開2004−266258号公報(特許文献5)などを参照することができる。
As a material for the translucent electrode layer, in addition to ITO, a conductive metal oxide such as ZnO or SnO 2 can also be used.
In order to reduce the contact resistance between the conductive metal oxide and the p-type nitride semiconductor, the following method may be used.
(A) The conductive metal oxide is doped with the same p-type impurity as the p-type impurity doped in the p-type nitride semiconductor. For details, JP-A-2004-179365 (Patent Document 4) and the like can be referred to.
(B) On the surface of the p-type nitride semiconductor layer, as a first layer, a conductive metal oxide layer having a thickness of 100 Å or more by a method other than sputtering, for example, vacuum deposition, laser ablation, sol-gel, or the like After that, the film is thickened. For details, the above-mentioned Patent Document 3 can be referred to.
(C) When the conductive metal oxide is ZnO, Ga (gallium) or B (boron) is doped. For details, JP-A-2004-266258 (Patent Document 5) and the like can be referred to.

透光性電極層として、光透過性が生じる厚さに形成した金属膜を用いることもできる。
p型の窒化物半導体は大きな仕事関数(p型GaNで約7eVといわれる)を有するために、どのような金属を電極に用いた場合も、接合部にショットキー型の障壁が形成される。従って、電極材料とする金属の仕事関数が大きい程、障壁の高さが低くなり、接触抵抗が低くなる。
そこで、Alよりも仕事関数の大きな金属で透光性電極層P503を形成すれば、電流拡散層P502とp型GaNコンタクト層506との接触抵抗を、透光性電極層P503とp型GaNコンタクト層506との接触抵抗よりも大きくすることができる。そのような金属として、Ni、Pd、Rh、Au(金)、Ir(イリジウム)、Pt等、およびこれらの合金が、好適に用い得る。これらの金属は、p型窒化物半導体用のオーミック電極に用い得ることが知られているものであり、中でも、Ni−Au系の薄膜は、低接触抵抗の光透過性電極として汎用されている。
As the light-transmitting electrode layer, a metal film formed to a thickness that generates light transmittance can also be used.
Since a p-type nitride semiconductor has a large work function (referred to as about 7 eV in p-type GaN), a Schottky barrier is formed at the junction when any metal is used for an electrode. Therefore, the higher the work function of the metal used as the electrode material, the lower the barrier height and the lower the contact resistance.
Therefore, if the translucent electrode layer P503 is formed of a metal having a work function larger than that of Al, the contact resistance between the current diffusion layer P502 and the p-type GaN contact layer 506 is reduced, and the translucent electrode layer P503 and the p-type GaN contact are formed. The contact resistance with the layer 506 can be larger. As such a metal, Ni, Pd, Rh, Au (gold), Ir (iridium), Pt, and the like, and alloys thereof can be suitably used. These metals are known to be used for ohmic electrodes for p-type nitride semiconductors, and among these, Ni—Au-based thin films are widely used as light transmissive electrodes with low contact resistance. .

以上、本発明の第1の実施形態および第2の実施形態について説明したが、本発明は、これらの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。   Although the first embodiment and the second embodiment of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. Is possible.

上記第1の実施形態として、トンネル接合構造を含むGaN系LEDを例に、n型窒化物半導体層上に電流拡散層および透光性電極層を形成する態様を説明したが、この態様は、トンネル接合構造を含むGaN系LEDに限定されるものではない。
特開2004−6991号公報(特許文献6)には、サファイア基板上に、窒化物半導体からなるn型層、発光層、p型層を順に積層した積層体を形成した後、p型層の表面にオーミック電極を介して、別途用意した導電性の支持基板を接合し、続いて、研磨やレーザリフトオフによってサファイア基板を除去してn型層を露出させ、露出させたn型層の表面にn側電極を形成するGaN系LEDの製造方法が記載されている。この方法で製造されるGaN系LEDは、支持基板上に接合形成された積層体の最上層がn型窒化物半導体層となるので、その表面に、上記第1の実施形態と同様の、電流拡散層および透明電極層を形成することができる。
As an example of the first embodiment, a GaN-based LED including a tunnel junction structure is taken as an example, and an embodiment in which a current diffusion layer and a translucent electrode layer are formed on an n-type nitride semiconductor layer has been described. It is not limited to GaN-based LEDs including a tunnel junction structure.
In JP 2004-6991 A (Patent Document 6), after forming a stacked body in which an n-type layer made of a nitride semiconductor, a light emitting layer, and a p-type layer are sequentially stacked on a sapphire substrate, A separately prepared conductive support substrate is bonded to the surface via an ohmic electrode, and then the sapphire substrate is removed by polishing or laser lift-off to expose the n-type layer. On the exposed n-type layer surface A method of manufacturing a GaN-based LED that forms an n-side electrode is described. In the GaN-based LED manufactured by this method, since the uppermost layer of the laminate formed on the support substrate is an n-type nitride semiconductor layer, a current similar to that in the first embodiment is formed on the surface thereof. A diffusion layer and a transparent electrode layer can be formed.

ところで、特許文献6の方法では、発光層の成長を行う前にn型層を成長するので、n型層の成長時に発光層が劣化するという問題が無く、n型層を任意の厚さに成長することができる。そして、n型層は、電子濃度が1×1018cm−3以上となるようにn型不純物をドープし、かつ、膜厚を1μm以上に形成すれば、シート抵抗がかなり低くなり、横方向の電流拡散性が良好となる。そのために、n型層を厚くし、かつ、電子濃度が十分高くなる濃度に不純物をドープすることが行われているが、一方で、n型層を厚く形成すると、製造効率が低下するという問題があり、また、不純物の濃度を高くすると、当該n型層や、その上に成長する発光層、p型層の結晶性が低下し、発光効率の低下やリーク電流の増加という問題が現れる。
これに対して、透光性電極層と、金属からなる電流拡散層とを複合化した電極を用いれば、電極によって横方向の電流拡散が達成されるので、n型層を薄くすることができ、また、n型不純物のドープ量を少なくすることができる。そして、このような電極を用いたとき、透光性電極層とn型層との接触抵抗を、電流拡散層とn型層との接触抵抗より高くするという、本発明の構成が、好ましく用い得る。
すなわち、本発明は、結晶成長用基板が除去され、支持基板上に、n型層が最上層となるように、積層体が接合形成されたGaN系LEDにおいて、該n型層の膜厚を1μm未満、特に500nm未満とするときに、好適に用いることができ、また、該n型層の電子濃度を1×1018cm−3未満、特に1×1017cm−3未満とするときに、好適に用いることができる。
By the way, in the method of Patent Document 6, since the n-type layer is grown before the light-emitting layer is grown, there is no problem that the light-emitting layer deteriorates during the growth of the n-type layer, and the n-type layer is formed to an arbitrary thickness. Can grow. And if an n-type layer is doped with an n-type impurity so that the electron concentration is 1 × 10 18 cm −3 or more and is formed to have a film thickness of 1 μm or more, the sheet resistance becomes considerably low, and the lateral direction The current diffusibility is improved. For this reason, the n-type layer is made thick and the impurity is doped to a concentration at which the electron concentration becomes sufficiently high. On the other hand, if the n-type layer is formed thick, the production efficiency decreases. In addition, when the impurity concentration is increased, the crystallinity of the n-type layer, the light-emitting layer and the p-type layer grown on the n-type layer is lowered, and problems such as a reduction in light emission efficiency and an increase in leakage current appear.
On the other hand, if an electrode in which a translucent electrode layer and a current diffusion layer made of metal are combined is used, lateral current diffusion is achieved by the electrode, so that the n-type layer can be made thin. In addition, the doping amount of the n-type impurity can be reduced. And when such an electrode is used, the configuration of the present invention in which the contact resistance between the translucent electrode layer and the n-type layer is made higher than the contact resistance between the current diffusion layer and the n-type layer is preferably used. obtain.
That is, according to the present invention, in the GaN-based LED in which the stacked body is bonded so that the crystal growth substrate is removed and the n-type layer is the uppermost layer on the support substrate, the thickness of the n-type layer is increased. When it is less than 1 μm, particularly less than 500 nm, it can be suitably used, and when the electron concentration of the n-type layer is less than 1 × 10 18 cm −3 , particularly less than 1 × 10 17 cm −3. Can be preferably used.

本発明のGaN系LEDに含まれる基板は、窒化物半導体層の成長に用いられた基板である必要はなく、該成長に用いられた基板が、工程中に研磨、レーザリフトオフ等により除去された後、接合された支持基板であってもよい。
窒化物半導体層の成長には、サファイア基板の他に、SiC、GaN、AlN、Si、スピネル、ZnO、GaAs、NGO、LGO等からなる基板を用いることができる。
窒化物半導体からなる積層体を形成した後、支持基板を接合する場合、該支持基板は、導電性、熱伝導性、熱膨張係数、へき開性などの観点から、目的に応じて望ましいものを適宜選択することができる。また、支持基板は、積層体の表面に、メッキ、気相成長などの方法で成長させた、厚膜金属層であってもよい。
The substrate included in the GaN-based LED of the present invention does not need to be a substrate used for growing a nitride semiconductor layer, and the substrate used for the growth was removed by polishing, laser lift-off, or the like during the process. The bonded support substrate may be used later.
For the growth of the nitride semiconductor layer, a substrate made of SiC, GaN, AlN, Si, spinel, ZnO, GaAs, NGO, LGO, or the like can be used in addition to the sapphire substrate.
When a support substrate is bonded after forming a laminate made of a nitride semiconductor, the support substrate is appropriately selected according to the purpose from the viewpoint of conductivity, thermal conductivity, thermal expansion coefficient, cleavage, and the like. You can choose. The support substrate may be a thick metal layer grown on the surface of the laminate by a method such as plating or vapor phase growth.

透光性電極層として導電性金属酸化物を用いる場合であるが、ITO、ZnO等の製膜は、真空蒸着法やスパッタリング法のような物理的手法であれば150℃〜300℃、CVDやスプレー法のような化学的手法でも350℃〜500℃という、窒化物半導体の結晶成長と比べると、かなり低い基板温度で行うことができる。従って、InGaN発光層に大きな熱ダメージを与えることなく、比較的厚い膜を形成することができる。そこで、透光性電極層を予め厚めに形成し、その後、エッチングなどの方法で、該透光性電極層中における発光波長の1/4以上の深さを有する凹部を表面に形成することにより、透光性電極層の表面を光散乱性とすることができる。透光性電極層の表面を光散乱性にすると、InGaN発光層で発生する光が該表面で散乱・回折されて、素子外部に取り出され易くなるため、LEDの光取り出し効率を改善することができる。   This is a case where a conductive metal oxide is used as the translucent electrode layer, but the film formation of ITO, ZnO or the like can be performed at 150 ° C. to 300 ° C. by a physical method such as a vacuum evaporation method or a sputtering method. Even chemical methods such as spraying can be performed at a substrate temperature of 350 ° C. to 500 ° C., which is considerably lower than that of nitride semiconductor crystal growth. Therefore, a relatively thick film can be formed without causing large thermal damage to the InGaN light emitting layer. Therefore, the translucent electrode layer is formed thick in advance, and then a recess having a depth of 1/4 or more of the emission wavelength in the translucent electrode layer is formed on the surface by a method such as etching. The surface of the translucent electrode layer can be made light scattering. If the surface of the translucent electrode layer is made light-scattering, the light generated in the InGaN light-emitting layer is scattered and diffracted on the surface and easily extracted to the outside of the device, which can improve the light extraction efficiency of the LED. it can.

基板上に形成される、窒化物半導体からなる積層体は、発光可能なpn接合ダイオード構造を含むものであればよく、従来公知の技術を参照して、上記第1の実施形態、第2の実施形態として例示した構造に、追加や省略を行ったり、各窒化物半導体層の厚さ、組成、バンドギャップ、不純物の種類、キャリア濃度等に、種々の変形を加えることができる。   The stacked body formed of the nitride semiconductor formed on the substrate only needs to include a pn junction diode structure capable of emitting light. With reference to a conventionally known technique, the first embodiment and the second embodiment described above. The structure exemplified as the embodiment can be added or omitted, and various modifications can be made to the thickness, composition, band gap, impurity type, carrier concentration, etc. of each nitride semiconductor layer.

本発明の第1の実施形態に係るGaN系LEDを示す平面図である。1 is a plan view showing a GaN-based LED according to a first embodiment of the present invention. 本発明の第1の実施形態に係るGaN系LEDを示し、図1のA−B線における断面図である。1 shows a GaN-based LED according to a first embodiment of the present invention, and is a cross-sectional view taken along line AB in FIG. 本発明の第1の実施形態に係るGaN系LEDを示し、図1のC−D線における断面図である。FIG. 2 shows a GaN-based LED according to the first embodiment of the present invention, and is a cross-sectional view taken along line CD in FIG. 1. 本発明の第1の実施形態に係るGaN系LEDを示す平面図である。1 is a plan view showing a GaN-based LED according to a first embodiment of the present invention. 本発明の第1の実施形態に係るGaN系LEDを示す平面図である。1 is a plan view showing a GaN-based LED according to a first embodiment of the present invention. 本発明の第1の実施形態に係るGaN系LEDを示す平面図である。1 is a plan view showing a GaN-based LED according to a first embodiment of the present invention. 本発明の第2の実施形態に係るGaN系LEDを示す平面図である。It is a top view which shows GaN-type LED which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るGaN系LEDを示し、図7のE−F線における断面図である。FIG. 8 shows a GaN-based LED according to the second embodiment of the present invention, and is a cross-sectional view taken along line E-F in FIG. 7. 従来のGaN系LEDを示す断面図である。It is sectional drawing which shows the conventional GaN-type LED.

符号の説明Explanation of symbols

101 サファイア基板
102 低温成長バッファ層
103 n型GaNクラッド層
104 InGaN発光層
105 p型AlGaNクラッド層
106 高ドープp型GaN層
107 n型GaNコンタクト層
P101 n側電極
P102 電流拡散層
P103 透光性電極層
P104 n側のボンディング用パッド電極
P105 p側のボンディング用パッド電極
P106 電流阻止層

DESCRIPTION OF SYMBOLS 101 Sapphire substrate 102 Low-temperature growth buffer layer 103 N-type GaN clad layer 104 InGaN light emitting layer 105 P-type AlGaN clad layer 106 Highly doped p-type GaN layer 107 N-type GaN contact layer P101 N side electrode P102 Current diffusion layer P103 Translucent electrode Layer P104 n-side bonding pad electrode P105 p-side bonding pad electrode P106 current blocking layer

Claims (10)

基板と、
上記基板の上に形成された、n型層およびp型層を含む複数の窒化物半導体層からなる積層体と、
上記積層体の上面に部分的に形成された、金属からなる電流拡散層と、
上記電流拡散層が形成されていない領域に露出した上記積層体の上面に、上記電流拡散層と電気的に接続されるように形成された透光性電極層とを有し、
上記積層体と上記電流拡散層との界面の接触抵抗が、上記積層体と上記透光性電極層との界面の接触抵抗よりも大きいことを特徴とする発光ダイオード。
A substrate,
A laminate formed of a plurality of nitride semiconductor layers including an n-type layer and a p-type layer, formed on the substrate;
A current diffusion layer made of metal partially formed on the upper surface of the laminate;
A translucent electrode layer formed on the top surface of the laminate exposed in a region where the current diffusion layer is not formed and electrically connected to the current diffusion layer;
The light emitting diode characterized by the contact resistance of the interface of the said laminated body and the said electric current diffusion layer being larger than the contact resistance of the interface of the said laminated body and the said translucent electrode layer.
上記積層体の最上層がn型窒化物半導体からなり、上記電流拡散層がAg、Rh、PdまたはPtからなり、かつ、上記透光性電極層が導電性金属酸化物からなる、請求項1に記載の発光ダイオード。   2. The uppermost layer of the laminate is made of an n-type nitride semiconductor, the current diffusion layer is made of Ag, Rh, Pd, or Pt, and the light-transmitting electrode layer is made of a conductive metal oxide. A light emitting diode according to 1. トンネル接合構造を有する、請求項2に記載の発光ダイオード。   The light emitting diode according to claim 2, which has a tunnel junction structure. 上記最上層が、膜厚1μm未満のn型窒化物半導体層であるか、または、電子濃度1×1018cm−3未満のn型窒化物半導体層である、請求項2に記載の発光ダイオード。 The light emitting diode according to claim 2, wherein the uppermost layer is an n-type nitride semiconductor layer having a thickness of less than 1 μm or an n-type nitride semiconductor layer having an electron concentration of less than 1 × 10 18 cm −3. . 上記積層体の最上層がp型窒化物半導体からなり、上記電流拡散層がAlからなり、かつ、上記透光性電極層が導電性金属酸化物からなる、請求項1に記載の発光ダイオード。   2. The light emitting diode according to claim 1, wherein an uppermost layer of the stacked body is made of a p-type nitride semiconductor, the current diffusion layer is made of Al, and the translucent electrode layer is made of a conductive metal oxide. 上記積層体の最上層がp型窒化物半導体からなり、上記電流拡散層がAlからなり、かつ、上記透光性電極層がAlよりも仕事関数の大きな金属からなる、請求項1に記載の発光ダイオード。   The uppermost layer of the laminate is made of a p-type nitride semiconductor, the current diffusion layer is made of Al, and the translucent electrode layer is made of a metal having a work function larger than that of Al. Light emitting diode. 上記透光性電極層が、Ni、Pd、Rh、Au、IrまたはPtからなる、請求項6に記載の発光ダイオード。   The light-emitting diode according to claim 6, wherein the translucent electrode layer is made of Ni, Pd, Rh, Au, Ir, or Pt. 上記導電性金属酸化物からなる透光性電極層の厚さが200nm以下である、請求項2〜5のいずれかに記載の発光ダイオード。   The light emitting diode according to any one of claims 2 to 5, wherein a thickness of the translucent electrode layer made of the conductive metal oxide is 200 nm or less. 上記透光性電極層が上記電流拡散層の上を覆って形成され、それによって、上記電流拡散層が形成されていない領域に露出した上記積層体の上面に、上記透光性電極層が形成された構成となっている、請求項1〜8のいずれかに記載の発光ダイオード。   The translucent electrode layer is formed so as to cover the current diffusion layer, whereby the translucent electrode layer is formed on the upper surface of the stacked body exposed in a region where the current diffusion layer is not formed. The light emitting diode according to any one of claims 1 to 8, wherein the light emitting diode is configured as described above. 更に、上記透光性電極層の上に形成されたボンディング用のパッド電極と、少なくともその一部が上記パッド電極の射影領域内に入るように、上記積層体の上面に形成された電流阻止層とを有し、上記電流阻止層は、上記電流拡散層と同じ材料からなるとともに、上記電流拡散層と実質的に同じ膜厚を有し、かつ、上記積層体の上面における、上記パッド電極の射影領域の50%以上が、上記電流阻止層により覆われている、請求項1〜9のいずれかに記載の発光ダイオード。   Further, a bonding pad electrode formed on the translucent electrode layer, and a current blocking layer formed on the upper surface of the laminate so that at least a part of the pad electrode enters the projected region of the pad electrode. And the current blocking layer is made of the same material as the current diffusion layer, has substantially the same film thickness as the current diffusion layer, and the pad electrode on the upper surface of the stacked body. The light emitting diode according to claim 1, wherein 50% or more of the projected area is covered with the current blocking layer.
JP2004342875A 2004-11-26 2004-11-26 Light emitting diode Pending JP2006156590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342875A JP2006156590A (en) 2004-11-26 2004-11-26 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342875A JP2006156590A (en) 2004-11-26 2004-11-26 Light emitting diode

Publications (1)

Publication Number Publication Date
JP2006156590A true JP2006156590A (en) 2006-06-15

Family

ID=36634500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342875A Pending JP2006156590A (en) 2004-11-26 2004-11-26 Light emitting diode

Country Status (1)

Country Link
JP (1) JP2006156590A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833309B1 (en) * 2006-04-04 2008-05-28 삼성전기주식회사 Nitride semiconductor light emitting device
JP2008192710A (en) * 2007-02-01 2008-08-21 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2008244161A (en) * 2007-03-27 2008-10-09 Toyoda Gosei Co Ltd Method for forming electrode of group iii nitride-based compound semiconductor light-emitting element
WO2009057241A1 (en) * 2007-11-01 2009-05-07 Panasonic Corporation Semiconductor light emitting element and semiconductor light emitting device using the same
JP2009206449A (en) * 2008-02-29 2009-09-10 Shogen Koden Kofun Yugenkoshi Semiconductor element
JP2010504640A (en) * 2006-09-25 2010-02-12 ソウル オプト デバイス カンパニー リミテッド Light emitting diode with electrode extension for current spreading
JP2010512660A (en) * 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar and semipolar light emitting devices
JP2010512662A (en) * 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Transparent light emitting diode
JP2010123742A (en) * 2008-11-19 2010-06-03 Showa Denko Kk Light emitting diode and method of manufacturing the same, and lamp
WO2010146808A1 (en) * 2009-06-18 2010-12-23 パナソニック株式会社 Gallium nitride-based compound semiconductor light-emitting diode
JP2011049322A (en) * 2009-08-26 2011-03-10 Toshiba Corp Semiconductor light-emitting element and method for manufacturing the same
JP2011151346A (en) * 2009-12-24 2011-08-04 Stanley Electric Co Ltd Face-up optical semiconductor device
CN102169942A (en) * 2010-02-26 2011-08-31 丰田合成株式会社 Semiconductor light-emitting element
WO2012005252A1 (en) * 2010-07-09 2012-01-12 昭和電工株式会社 Semiconductor light emitting element, lamp, electronic device, and machine
US8110847B2 (en) 2007-01-03 2012-02-07 Samsung Led Co., Ltd. Nitride-based semiconductor light emitting diode
US8120057B2 (en) 2007-02-01 2012-02-21 Nichia Corporation Semiconductor light emitting element
JP2012138465A (en) * 2010-12-27 2012-07-19 Showa Denko Kk Group-iii nitride semiconductor light-emitting element manufacturing method, group-iii nitride semiconductor light-emitting element, lamp, electronic apparatus and machinery
JP2012156555A (en) * 2007-09-14 2012-08-16 Sharp Corp Nitride semiconductor light emitting element
KR101464282B1 (en) * 2008-04-18 2014-11-21 에피스타 코포레이션 Semiconductor device
US8956896B2 (en) 2006-12-11 2015-02-17 The Regents Of The University Of California Metalorganic chemical vapor deposition (MOCVD) growth of high performance non-polar III-nitride optical devices
US9553240B2 (en) 2014-09-30 2017-01-24 Nichia Corporation Semiconductor light-emitting element
EP2296199B1 (en) * 2009-09-14 2019-04-24 Stanley Electric Co., Ltd. Semiconductor light emitting device and manufacturing method thereof
US20220302353A1 (en) * 2021-03-22 2022-09-22 Excellence Opto. Inc. Light-emitting diode grain structure with multiple contact points
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256602A (en) * 1997-03-12 1998-09-25 Sharp Corp Semiconductor light emitting device
JP2001156333A (en) * 1999-11-30 2001-06-08 Showa Denko Kk AlGaInP LIGHT EMITTING DIODE
JP2003060236A (en) * 2001-05-30 2003-02-28 Shogen Koden Kofun Yugenkoshi Light-emitting diode having insulating substrate
JP2004172189A (en) * 2002-11-18 2004-06-17 Shiro Sakai Nitride semiconductor device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256602A (en) * 1997-03-12 1998-09-25 Sharp Corp Semiconductor light emitting device
JP2001156333A (en) * 1999-11-30 2001-06-08 Showa Denko Kk AlGaInP LIGHT EMITTING DIODE
JP2003060236A (en) * 2001-05-30 2003-02-28 Shogen Koden Kofun Yugenkoshi Light-emitting diode having insulating substrate
JP2004172189A (en) * 2002-11-18 2004-06-17 Shiro Sakai Nitride semiconductor device and its manufacturing method

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217916B2 (en) 2004-06-03 2019-02-26 The Regents Of The University Of California Transparent light emitting diodes
KR100833309B1 (en) * 2006-04-04 2008-05-28 삼성전기주식회사 Nitride semiconductor light emitting device
JP2010504640A (en) * 2006-09-25 2010-02-12 ソウル オプト デバイス カンパニー リミテッド Light emitting diode with electrode extension for current spreading
US10593854B1 (en) 2006-12-11 2020-03-17 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
US9130119B2 (en) 2006-12-11 2015-09-08 The Regents Of The University Of California Non-polar and semi-polar light emitting devices
US10658557B1 (en) 2006-12-11 2020-05-19 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
JP2010512660A (en) * 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar and semipolar light emitting devices
JP2010512662A (en) * 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Transparent light emitting diode
US10644213B1 (en) 2006-12-11 2020-05-05 The Regents Of The University Of California Filament LED light bulb
US8835959B2 (en) 2006-12-11 2014-09-16 The Regents Of The University Of California Transparent light emitting diodes
US10454010B1 (en) 2006-12-11 2019-10-22 The Regents Of The University Of California Transparent light emitting diodes
US8956896B2 (en) 2006-12-11 2015-02-17 The Regents Of The University Of California Metalorganic chemical vapor deposition (MOCVD) growth of high performance non-polar III-nitride optical devices
US8110847B2 (en) 2007-01-03 2012-02-07 Samsung Led Co., Ltd. Nitride-based semiconductor light emitting diode
KR101332053B1 (en) 2007-02-01 2013-11-22 니치아 카가쿠 고교 가부시키가이샤 Semiconductor light emitting element
USRE49298E1 (en) 2007-02-01 2022-11-15 Nichia Corporation Semiconductor light emitting element
USRE49406E1 (en) 2007-02-01 2023-01-31 Nichia Corporation Semiconductor light emitting element
US8120057B2 (en) 2007-02-01 2012-02-21 Nichia Corporation Semiconductor light emitting element
JP2008192710A (en) * 2007-02-01 2008-08-21 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2008244161A (en) * 2007-03-27 2008-10-09 Toyoda Gosei Co Ltd Method for forming electrode of group iii nitride-based compound semiconductor light-emitting element
JP2012156555A (en) * 2007-09-14 2012-08-16 Sharp Corp Nitride semiconductor light emitting element
US8309975B2 (en) 2007-11-01 2012-11-13 Panasonic Corporation Semiconductor light emitting element and semiconductor light emitting device using the same
WO2009057241A1 (en) * 2007-11-01 2009-05-07 Panasonic Corporation Semiconductor light emitting element and semiconductor light emitting device using the same
WO2009057311A1 (en) * 2007-11-01 2009-05-07 Panasonic Corporation Semiconductor light emitting element and semiconductor light emitting device using the same
JPWO2009057311A1 (en) * 2007-11-01 2011-03-10 パナソニック株式会社 Semiconductor light emitting element and semiconductor light emitting device using the same
JP2009206449A (en) * 2008-02-29 2009-09-10 Shogen Koden Kofun Yugenkoshi Semiconductor element
KR101464282B1 (en) * 2008-04-18 2014-11-21 에피스타 코포레이션 Semiconductor device
JP2010123742A (en) * 2008-11-19 2010-06-03 Showa Denko Kk Light emitting diode and method of manufacturing the same, and lamp
JPWO2010146808A1 (en) * 2009-06-18 2012-11-29 パナソニック株式会社 Gallium nitride compound semiconductor light emitting diode
WO2010146808A1 (en) * 2009-06-18 2010-12-23 パナソニック株式会社 Gallium nitride-based compound semiconductor light-emitting diode
JP2011049322A (en) * 2009-08-26 2011-03-10 Toshiba Corp Semiconductor light-emitting element and method for manufacturing the same
US8791498B2 (en) 2009-08-26 2014-07-29 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
EP2296199B1 (en) * 2009-09-14 2019-04-24 Stanley Electric Co., Ltd. Semiconductor light emitting device and manufacturing method thereof
JP2011151346A (en) * 2009-12-24 2011-08-04 Stanley Electric Co Ltd Face-up optical semiconductor device
CN102169942A (en) * 2010-02-26 2011-08-31 丰田合成株式会社 Semiconductor light-emitting element
US8274070B2 (en) 2010-02-26 2012-09-25 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element including an auxiliary electrode
JP2011181597A (en) * 2010-02-26 2011-09-15 Toyoda Gosei Co Ltd Semiconductor light emitting element
US8835966B2 (en) 2010-07-09 2014-09-16 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, lamp, electronic device and machine
WO2012005252A1 (en) * 2010-07-09 2012-01-12 昭和電工株式会社 Semiconductor light emitting element, lamp, electronic device, and machine
JP2012138465A (en) * 2010-12-27 2012-07-19 Showa Denko Kk Group-iii nitride semiconductor light-emitting element manufacturing method, group-iii nitride semiconductor light-emitting element, lamp, electronic apparatus and machinery
US9553240B2 (en) 2014-09-30 2017-01-24 Nichia Corporation Semiconductor light-emitting element
US10892382B2 (en) 2014-09-30 2021-01-12 Nichia Corporation Semiconductor light-emitting element
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11796163B2 (en) 2020-05-12 2023-10-24 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device
US20220302353A1 (en) * 2021-03-22 2022-09-22 Excellence Opto. Inc. Light-emitting diode grain structure with multiple contact points
US11569418B2 (en) * 2021-03-22 2023-01-31 Excellence Opto. Inc. Light-emitting diode grain structure with multiple contact points

Similar Documents

Publication Publication Date Title
JP2006156590A (en) Light emitting diode
US7291865B2 (en) Light-emitting semiconductor device
US7485897B2 (en) Nitride-based light-emitting device having grid cell layer
JP4457826B2 (en) Light-emitting diode using nitride semiconductor
JP5235866B2 (en) Metal electrode formation method, semiconductor light emitting device manufacturing method, and nitride compound semiconductor light emitting device
JP2006128227A (en) Nitride semiconductor light emitting element
JPWO2006082687A1 (en) GaN-based light emitting diode and light emitting device
JP2005244207A (en) Nitride gallium based compound semiconductor luminous element
KR20150103291A (en) High-performance heterostructure light emitting devices and methods
JP2005033197A (en) Nitride semiconductor device
TWI260099B (en) Positive electrode structure and gallium nitride-based compound semiconductor light-emitting device
JP2006080469A (en) Nitride semiconductor light emitting element
JP5608589B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
EP1530242B1 (en) Semiconductor light emitting device
TWI488333B (en) LED element and manufacturing method thereof
JP2008078297A (en) GaN-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE
JP4803302B2 (en) Nitride semiconductor light emitting device
JP2011171695A (en) Light-emitting diode, light-emitting diode lamp, and lighting device
KR20090115322A (en) Group 3 nitride-based semiconductor devices
JP5586371B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
KR101534846B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
TWI585993B (en) Nitride light emitting device and manufacturing method thereof
JP5818031B2 (en) LED element
JP2004221112A (en) Oxide semiconductor light emitting element
JP4787562B2 (en) pn junction light emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080401

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907