JP3831614B2 - Method for manufacturing light emitting or receiving device - Google Patents

Method for manufacturing light emitting or receiving device Download PDF

Info

Publication number
JP3831614B2
JP3831614B2 JP2001002727A JP2001002727A JP3831614B2 JP 3831614 B2 JP3831614 B2 JP 3831614B2 JP 2001002727 A JP2001002727 A JP 2001002727A JP 2001002727 A JP2001002727 A JP 2001002727A JP 3831614 B2 JP3831614 B2 JP 3831614B2
Authority
JP
Japan
Prior art keywords
lead frame
light
light emitting
emitting element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001002727A
Other languages
Japanese (ja)
Other versions
JP2002208735A (en
Inventor
晋 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tottori Sanyo Electric Co Ltd
Priority to JP2001002727A priority Critical patent/JP3831614B2/en
Publication of JP2002208735A publication Critical patent/JP2002208735A/en
Application granted granted Critical
Publication of JP3831614B2 publication Critical patent/JP3831614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Die Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒化ガリウム系化合物半導体素子からなる発光素子又は受光素子をリードフレーム又は電子回路基板に実装して構成した発光又は受光装置の製造方法に関する。
【0002】
【従来の技術】
窒化ガリウム系化合物半導体素子からなる発光素子又は受光素子は良く知られている。かかる素子では、光の透過率を向上させるため、様々な工夫がなされている。例えば、素子表面の電極を透明化し、光が透過できる領域の割合を高めている。また、素子の基板としてサファイヤのような透光性の材料を用い、この透光基板の上に素子を形成した後、電極を形成した表面側よりも光を通しやすくなっている透光基板側が発光面又は受光面となるように素子を実装している。
【0003】
透光基板が発光面又は受光面となるように素子を実装したものの例としては、特開2000−164938号公報に記載されたものがある。この先行技術例では、発光を透過する基板と、該基板上に窒化物半導体からなる発光層を含む半導体層と、該半導体層上に設けられた正及び負電極とを備えた発光素子を、基板側と発光装置の光出射面とが対向するように、基板をリードフレームのダイパッド部に固定し、前記正及び負電極をリードフレームにワイヤで接続している。
【0004】
ところでこの先行技術例記載の構成では、リードフレームの脚部の途中にリードパッドを形設し、ここと正及び負電極とをワイヤボンディングしており、リードパッドが中空に突き出したような形になっているため、ボンディングの作業性が悪い。このような形状のリードパッドをリードフレームに形設すること自体容易ではない上、ワイヤボンディングによってリードフレームが曲がらないよう、リードフレームの材料として肉厚のものを用い、強度を高めておくといった配慮が必要となる。さらに、断面L字形のリードフレームを1対、向かい合わせに置き、その間に発光素子を配置するものであるため、発光素子を実装する際、発光素子をつかんだボンディングヘッドがリードフレームに触れないよう、リードフレームの脚部と発光素子の間にある程度のクリアランスを確保しておく必要がある。ワイヤボンディング作業に関しても同様のクリアランスを必要とする。このようにクリアランスを設ける結果、発光素子とリードフレームとの組立体の体積をコンパクト化することが難しくなっている。
【0005】
【発明が解決しようとする課題】
本発明は、透光基板上に形成された窒化ガリウム系化合物半導体からなる発光素子又は受光素子を実装して構成した発光又は受光装置において、ワイヤボンディングの作業性を向上し、リードフレームの設計を容易に、またリードフレームの肉厚についての配慮を不要とし、さらに発光素子又は受光素子とリードフレームとの組立体の体積をコンパクト化できるようにすることを目的とする。加えて、電子回路基板への発光又は受光装置の組み付けが容易に行えるようにすることを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明の発光又は受光装置の製造方法は、請求項 1 に記載のように、透光基板上に形成された窒化ガリウム系化合物半導体からなる発光素子又は受光素子をリードフレームに実装した発光又は受光装置の製造方法であって、前記素子の透光基板をリードフレームの窓に重ね、この透光基板をリードフレームにダイボンディングする工程と、その上で素子の電極部を、前記ダイボンディング平面と高さをほぼ同じくするリードフレームの平面にワイヤボンディングする工程と、ワイヤボンディング工程後に前記リードフレームをL字形に折曲する工程と、折曲工程後に前記素子の周囲に樹脂をモールドする工程とを備えることを特徴とする
【0007】
本発明の発光又は受光装置の製造方法は、請求項2に記載のように、折曲工程後に、前記リードフレームの脚部を基板に固定する工程を備えることができる
【0008】
このように、リードフレームのダイボンディング平面とほぼ高さの等しい平面にワイヤボンディングを行うため、リードフレームを治具上に横たえたままダイボンディングとワイヤボンディングを行うことができ、作業が容易である。ボンディングヘッドは通常のものを使用でき、狭い場所で作業できるように小型のものをわざわざ製作する必要がない。またリードフレームの脚部となる部分に中空に突き出したような形のリードパッドを形設する必要がなく、リードフレームの成形コストが安い。ワイヤボンディングによりリードフレームが曲がることを気遣う必要もないので、リードフレームの材料として特に肉厚のものを使用する必要もなく、必要最小限の肉厚の材料で済ませることができ、成形が容易であるうえ、材料コストも節減できる。
【0009】
また本発明では、直線状のリードフレームにワイヤボンディング後、このリードフレームがL字形に折曲することとした。このように、リードフレームの形状がボンディングしやすい直線状である間にボンディングを済ませ、その後リードフレームを所定の形状に曲げるものであるから、発光素子又は受光素子とリードフレームの脚部とのクリアランスを、ボンディングヘッドのサイズ及び動きとは無関係に設定することができ、素子とリードフレームとの組立体の体積、ひいては発光又は受光素子全体の体積をコンパクト化することができる。
【0010】
【発明の実施の形態】
以下、本発明発光又は受光装置の第1の実施形態を図1から図3までの図に基づき説明する。
【0011】
図2に窒化ガリウム系化合物半導体からなる発光素子1の構造を示す。2は半導体形成のベースとなる透光基板で、材質はサファイヤである。透光基板2の上にはGaNバッファ層3、n型GaN層4、n型Ga1−yAlN(0<y<1)クラッド層5、n型InGa1−zN(0<z<1)活性層6、Mgドープp型Ga1−xAlN(0<x<0.5)クラッド層7、Mgドープp型GaNコンタクト層8がこの順で積層形成されている。Mgドープp型GaNコンタクト層8には金電極9が形成され、n型GaN層4にはアルミニウム電極10が形成される。
【0012】
発光素子1は次のようにして製造される。まず、サファイヤ製の透光基板2を反応管に入れ、クリーニングする。続いて反応管の温度を成長温度である510℃に上げ、キャリアガスである水素と、原料ガスであるアンモニア及びTMG(トリメチルガリウム)を反応管に導入し、透光基板2の上にGaNバッファ層3を約200Å成長させる。GaNバッファ層3形成後、TMGのみ供給を止め、温度を1030℃まで上昇させる。1030℃において原料ガスとしてTMGとアンモニア、ドーパントガスとしてシランを用い、Siをドープしたn型GaN層を4μm成長させる。n型GaN層を形成後、原料ガス及びドーパントガスの供給を止め、温度を800℃にして、原料ガスとしてTMG及びTMA(トリメチルアルミニウム)とアンモニア、ドーパントガスとしてシランを用い、n型クラッド層としてSiドープGa0.85Al0.14N層を0.15μm成長させる。その後、TMAの供給を止め、p型コンタクト層として、Mgドープp型GaN層を0.4μm成長させる。
【0013】
その後、透光基板2を反応管から取り出し、アニーリング装置にて窒素雰囲気中で700℃20分間のアニーリングを行い、p型Ga0.85Al0.14N層とp形GaNコンタクト層8の低抵抗化を行う。このようにして得られたウェハーをエッチングして図2のようにn型GaN層4を露出させる。p型GaN層4には金電極9、n型GaN層4にはアルミニウム電極10を形成する。その後500℃で再度アニーリングを行い、金電極9とアルミニウム電極10をそれぞれが形成された層となじませる。そして500μm□のチップにカットし、発光素子1として完成させる。
【0014】
図3は発光素子1をリードフレーム20、21に装着する状況を示す。リードフレーム20、21は銀メッキを施した厚さ約0.4mmの鉄の薄板からなり、一方のリードフレーム20には発光素子1を取り付ける箇所に約200μm□の窓22が形設されている。リードフレーム20、21は当初は図3に仮想線で示すように直線状である。この直線状のリードフレーム20、21を図示しない治具にセットし、発光素子1を図示しないボンディングヘッドでピックアップし、リードフレーム20の側に発光素子1の透光基板2を、銀ペースト等の接着剤を用いてダイボンディングする。この時窓22が透光基板2の中心に来るようにする。
【0015】
ダイボンディング完了後、金電極9とリードフレーム21を金線23でワイヤボンディングし、またアルミニウム電極10とリードフレーム20を金線24でワイヤボンディングする。リードフレーム20におけるワイヤボンディング平面はダイボンディングを行った平面と同じであり、従ってダイボンディング平面と高さが同じである。またリードフレーム21の側のワイヤボンディング平面も、ダイボンディング平面と高さが同じである。ワイヤボンディングについても、リードフレーム20、21が直線状のまま作業が進められるので、ボンディングヘッドの取り回しが楽である。
【0016】
ワイヤボンディング完了後、それまで直線状だったリードフレーム20、21を直角に折り曲げ、L字形にする。その後、リードフレーム20、21を治具、あるいはプレス型から取り出し、今度は図示しない樹脂モールド型にセットし、合成樹脂によるモールドを行う。図1はその仕上がりの形を示すもので、発光素子1及びリードフレーム20、21を樹脂が取り巻き、光放出部がレンズ状になった樹脂モールド25が形成されている。これにより、ランプ形の発光装置30が完成した。
【0017】
リードフレーム20、21間に所定の電圧を印加すると、発光素子1の内部で発光現象が生じ、その光は発光素子1の、図1において上向きになっている面と下向きになっている面から放出される。上向きになっている面、すなわち透光基板2を通じての発光効率は下向きになっている面の2〜3倍と高いのであるが、ここからの光はリードフレーム20の窓22と樹脂モールド25のレンズ部分を通じて外部に放出される。
【0018】
ボンディング工程を図4のようにすることも可能である。すなわちリードフレーム21は初めからL字形に折曲したものを使用する。そしてリードフレーム20(これは図3の工程例と同じく当初は直線状)との間隔を広めにとって治具にセットする。こうしておいてリードフレーム20に発光素子1をダイボンディングする。リードフレーム21の脚部が立ってはいるものの、発光素子1とは間隔が開いているので、ボンディングヘッドの取り回しは楽である。ダイボンディング完了後のワイヤボンディングについても、この広い間隔の存在により作業を容易に行うことができる。ワイヤボンディング完了後、リードフレーム20をL字形に折り曲げる。そしてリードフレーム21をリードフレーム20に近づけ、リードフレーム20、21の間隔を所定値にして樹脂モールド型にセットし、樹脂モールドを行う。
【0019】
図5に本発明の第2の実施形態を示す。なおこの実施形態を含むこれ以降の実施形態の説明において、第1の実施形態と共通する要素には前と同じ符号を付し、説明は略す。さて、図5に示された発光装置31では、発光素子1とのワイヤボンディングまで済ませたリードフレーム20、21の脚部を合成樹脂製基板40の穴に挿入した後、基板40の裏面で脚部の端を折曲してリードフレーム20、21を基板40に固定した。その後樹脂ポッティングを行い、樹脂モールド25を形成したものである。
【0020】
図6に本発明の第3の実施形態を示す。この図に示された発光装置32は、合成樹脂製基板40にリードフレーム20、21の脚部を挿入し、脚部の端を折曲して固定するまでは第2の実施形態と同じである。ただしこの実施形態では樹脂ポッティングにより樹脂モールドを形成する代わりに、透明樹脂製カバー41をリードフレーム20、21に被せ、接着等の手段により透明樹脂製カバー41を基板40に固定するものとした。
【0021】
図7に本発明の第4の実施形態を示す。この図に示された発光装置33は、合成樹脂製基板40にリードフレーム20、21の脚部を立て、その後樹脂ポッティングにより樹脂モールド25を形成する点は第2の実施形態と同じである。ただしリードフレーム20の窓22を蛍光体プレート42が覆っており、発光素子1から放出されて窓22を抜ける光は蛍光体プレート42の蛍光発光により異なるスペクトルの光に変換される。これにより、白色ランプの製造も可能になる。なお基板40の表面には発光素子1の下面から出る光を上方に反射するための反射材43が取り付けられている。
【0022】
図8に本発明の第5の実施形態を示す。44は表面に配線パターンを有する電子回路基板で、その一部に窓45が設けられている。この窓45のところに発光素子1の透光基板2をダイボンディングする。リードフレーム20、21は使用しない。そして、電子回路基板44上の配線パターンと発光素子1の金電極9、アルミニウム電極10とをワイヤボンディングする。電子回路基板44の同一面にダイボンディングとワイヤボンディングを行うため、当然のことながら、ダイボンディング平面とワイヤボンディング平面の高さは同じということになる。これにより、発光素子1の発光制御回路まで一体化した発光装置34が構成される。図中46は配線パターン上に実装されたIC・抵抗・コンデンサ等の電子部品である。なお、窓45の箇所に樹脂ポッティングを施し、レンズを形成しても良い。
【0023】
上記第1〜第5の実施形態において、発光機能を有する発光素子1を用いて発光装置30、31、32、33、34を製造する例につき説明してきたが、同じ窒化ガリウム系化合物半導体でも受光素子として機能するものを用いれば、受光装置を製造することができる。これまで本発明による発光装置の作用効果として説明してきた点は、そのまま受光装置の作用効果でもある。
【0024】
以上、本発明の各種実施形態につき説明したが、この他、発明の主旨を逸脱しない範囲で更に種々の変更を加えて実施することができる。例えば、図3においてリードフレーム21がリードフレーム20と多少高さをくい違わせて治具上に置かれていたとしても本発明の趣旨を逸脱するものではない。リードフレーム20にダイボンディング用のパッドが形設され、そのためリードフレーム20においてダイボンディング平面とワイヤボンディング平面との間にレベル差が生じていたとしても同様である。
【0025】
【発明の効果】
本発明は次のような効果を奏するものである。
【0026】
発光素子又は受光素子の透光基板をリードフレームの透光部に重ね、素子の透光基板をリードフレームにダイボンディングし、その上で素子の電極部を、前記ダイボンディング平面と高さをほぼ同じくするリードフレームの平面にワイヤボンディングすることとしたものであり、リードフレームのダイボンディング平面とほぼ高さの等しい平面にワイヤボンディングを行うため、リードフレームを治具上に横たえたままダイボンディングとワイヤボンディングを行うことができ、作業が容易である。ボンディングヘッド等は通常のものを使用でき、狭い場所で作業できるように小型のものをわざわざ製作する必要がない。またリードフレームの脚部となる部分に中空に突き出したような形のリードパッドを形設する必要がなく、リードフレームの成形コストが安い。ワイヤボンディングによりリードフレームが曲がることを気遣う必要もないので、リードフレームの材料として特に肉厚のものを使用する必要もなく、必要最小限の肉厚の材料で済ませることができ、成形が容易であるうえ、材料コストも節減できる。
【0027】
また、直線状のリードフレームにワイヤボンディング後、このリードフレームがL字形に折曲することとしたものであり、リードフレームの形状がボンディングしやすい直線状である間にボンディングを済ませ、その後リードフレームを所定の形状に曲げるので、発光素子又は受光素子とリードフレームの脚部とのクリアランスを、ボンディングヘッドのサイズ及び動きとは無関係に設定することができ、素子とリードフレームとの組立体の体積、ひいては発光又は受光装置全体の体積をコンパクト化することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態を示す発光装置の断面図
【図2】 発光素子の側面図
【図3】 発光装置製造工程を示す説明図
【図4】 発光装置製造工程の他例を示す説明図
【図5】 本発明の第2の実施形態を示す発光装置の断面図
【図6】 本発明の第3の実施形態を示す発光装置の断面図
【図7】 本発明の第4の実施形態を示す発光装置の断面図
【図8】 本発明の第5の実施形態を示す発光装置の断面図
【符号の説明】
1 発光素子
2 透光基板
9 金電極
10 アルミニウム電極
20、21 リードフレーム
23、24 金線
25 樹脂モールド
30、3、32、33、34 発光装置
40 基板
41 透明樹脂製カバー
42 蛍光体プレート
43 反射材
44 電子回路基板
45 窓
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a light emitting or receiving device in which a light emitting element or a light receiving element made of a gallium nitride compound semiconductor element is mounted on a lead frame or an electronic circuit board.
[0002]
[Prior art]
A light emitting element or a light receiving element made of a gallium nitride compound semiconductor element is well known. Such devices have been devised in various ways to improve the light transmittance. For example, the electrode on the element surface is made transparent to increase the ratio of the region through which light can be transmitted. Further, a light-transmitting material such as sapphire is used as a substrate of the element, and after forming the element on the light-transmitting substrate, the light-transmitting substrate side on which light is more easily transmitted than the surface side on which the electrode is formed is provided. The element is mounted so as to be a light emitting surface or a light receiving surface.
[0003]
An example in which the element is mounted so that the light-transmitting substrate is a light-emitting surface or a light-receiving surface is disclosed in Japanese Patent Application Laid-Open No. 2000-164938. In this prior art example, a light-emitting element including a substrate that transmits light, a semiconductor layer including a light-emitting layer made of a nitride semiconductor on the substrate, and positive and negative electrodes provided on the semiconductor layer, The substrate is fixed to the die pad portion of the lead frame so that the substrate side faces the light emitting surface of the light emitting device, and the positive and negative electrodes are connected to the lead frame with wires.
[0004]
By the way, in the configuration described in this prior art example, a lead pad is formed in the middle of the leg portion of the lead frame, and this and the positive and negative electrodes are wire-bonded so that the lead pad protrudes hollow. Therefore, bonding workability is poor. It is not easy to form a lead pad with such a shape on the lead frame. In addition, a thick lead frame material should be used to increase the strength so that the lead frame will not be bent by wire bonding. Is required. Furthermore, since a pair of L-shaped lead frames are placed facing each other and a light emitting element is disposed between them, the bonding head that holds the light emitting element does not touch the lead frame when mounting the light emitting element. It is necessary to ensure a certain clearance between the leg portion of the lead frame and the light emitting element. Similar clearances are required for wire bonding operations. As a result of providing the clearance as described above, it is difficult to reduce the volume of the assembly of the light emitting element and the lead frame.
[0005]
[Problems to be solved by the invention]
The present invention provides a light-emitting or light-receiving device configured by mounting a light-emitting element or a light-receiving element made of a gallium nitride compound semiconductor formed on a light-transmitting substrate. An object of the present invention is to make it easy to make the thickness of the lead frame unnecessary and to make the volume of the light emitting element or the assembly of the light receiving element and the lead frame compact. In addition, it is an object of the present invention to facilitate the assembly of a light emitting or light receiving device to an electronic circuit board.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, a method for manufacturing a light-emitting or light-receiving device according to the present invention leads a light-emitting element or light-receiving element made of a gallium nitride compound semiconductor formed on a light-transmitting substrate as described in claim 1. A method of manufacturing a light emitting or receiving device mounted on a frame, comprising: a step of superimposing a light transmitting substrate of the element on a window of a lead frame; and die bonding the light transmitting substrate to a lead frame; Wire bonding to a lead frame plane substantially the same height as the die bonding plane, a step of bending the lead frame into an L shape after the wire bonding step, and a periphery of the element after the bending step. And a step of molding a resin .
[0007]
The manufacturing method of the light emitting or light receiving device of the present invention can include a step of fixing the leg portion of the lead frame to the substrate after the bending step .
[0008]
In this way, wire bonding is performed on a plane that is almost the same height as the die bonding plane of the lead frame, so that die bonding and wire bonding can be performed while the lead frame is lying on a jig, which is easy to work. . A normal bonding head can be used, and it is not necessary to make a small one so that it can work in a narrow place. In addition, it is not necessary to form a lead pad that protrudes in a hollow shape at the portion that becomes the leg portion of the lead frame, and the molding cost of the lead frame is low. Since there is no need to worry about bending of the lead frame due to wire bonding, there is no need to use a particularly thick material as the lead frame material, and it is possible to use the minimum necessary thickness material, and molding is easy. In addition, material costs can be reduced.
[0009]
In the present invention, the lead frame is bent into an L shape after wire bonding to a linear lead frame. In this way, bonding is completed while the shape of the lead frame is a straight line that is easy to bond, and then the lead frame is bent into a predetermined shape, so that the clearance between the light emitting element or the light receiving element and the leg portion of the lead frame Can be set regardless of the size and movement of the bonding head, and the volume of the assembly of the element and the lead frame, and thus the volume of the entire light emitting or receiving element can be made compact.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the light emitting or receiving device according to the present invention will be described with reference to FIGS.
[0011]
FIG. 2 shows the structure of the light-emitting element 1 made of a gallium nitride compound semiconductor. Reference numeral 2 denotes a translucent substrate serving as a base for semiconductor formation, and the material is sapphire. GaN buffer layer 3 is formed on the translucent substrate 2, n-type GaN layer 4, n-type Ga 1-y Al y N ( 0 <y <1) cladding layer 5, n-type In z Ga 1-z N ( 0 <Z <1) The active layer 6, the Mg-doped p-type Ga 1-x Al x N (0 <x <0.5) cladding layer 7, and the Mg-doped p-type GaN contact layer 8 are stacked in this order. . A gold electrode 9 is formed on the Mg-doped p-type GaN contact layer 8, and an aluminum electrode 10 is formed on the n-type GaN layer 4.
[0012]
The light emitting element 1 is manufactured as follows. First, a transparent substrate 2 made of sapphire is placed in a reaction tube and cleaned. Subsequently, the temperature of the reaction tube is raised to 510 ° C. which is the growth temperature, hydrogen as a carrier gas, ammonia and TMG (trimethyl gallium) as source gases are introduced into the reaction tube, and a GaN buffer is formed on the transparent substrate 2. Grow layer 3 about 200 mm. After the GaN buffer layer 3 is formed, the supply of only TMG is stopped and the temperature is raised to 1030 ° C. At 1030 ° C., TMG and ammonia are used as source gases, and silane is used as a dopant gas, and an n-type GaN layer doped with Si is grown to 4 μm. After forming the n-type GaN layer, the supply of the source gas and the dopant gas is stopped, the temperature is set to 800 ° C., TMG and TMA (trimethylaluminum) and ammonia are used as the source gas, silane is used as the dopant gas, and the n-type cladding layer is used. A Si-doped Ga 0.85 Al 0.14 N layer is grown to 0.15 μm. Thereafter, the supply of TMA is stopped, and an Mg-doped p-type GaN layer is grown as a p-type contact layer by 0.4 μm.
[0013]
Thereafter, the translucent substrate 2 is taken out from the reaction tube, and annealed at 700 ° C. for 20 minutes in a nitrogen atmosphere by an annealing apparatus, so that the p-type Ga 0.85 Al 0.14 N layer and the p-type GaN contact layer 8 are low. Perform resistance. The wafer thus obtained is etched to expose the n-type GaN layer 4 as shown in FIG. A gold electrode 9 is formed on the p-type GaN layer 4, and an aluminum electrode 10 is formed on the n-type GaN layer 4. Thereafter, annealing is performed again at 500 ° C., and the gold electrode 9 and the aluminum electrode 10 are made to conform to the formed layers. Then, it is cut into a 500 μm square chip to complete the light emitting element 1.
[0014]
FIG. 3 shows a situation in which the light emitting element 1 is mounted on the lead frames 20 and 21. The lead frames 20 and 21 are made of an iron thin plate having a thickness of about 0.4 mm plated with silver, and one lead frame 20 is formed with a window 22 of about 200 μm □ at a position where the light emitting element 1 is attached. . The lead frames 20 and 21 are initially linear as shown by phantom lines in FIG. The linear lead frames 20 and 21 are set on a jig (not shown), the light-emitting element 1 is picked up by a bonding head (not shown), and the light-transmitting substrate 2 of the light-emitting element 1 is placed on the lead frame 20 side using silver paste or the like. Die bonding is performed using an adhesive. At this time, the window 22 is set to be in the center of the transparent substrate 2.
[0015]
After completion of die bonding, the gold electrode 9 and the lead frame 21 are wire-bonded with a gold wire 23, and the aluminum electrode 10 and the lead frame 20 are wire-bonded with a gold wire 24. The wire bonding plane in the lead frame 20 is the same as the plane where the die bonding is performed, and therefore the height is the same as the die bonding plane. The wire bonding plane on the lead frame 21 side is also the same height as the die bonding plane. As for wire bonding, since the work is performed while the lead frames 20 and 21 are straight, it is easy to handle the bonding head.
[0016]
After the wire bonding is completed, the lead frames 20 and 21 that have been linear until then are bent at right angles to form an L shape. Thereafter, the lead frames 20 and 21 are taken out from the jig or press die, and are then set in a resin mold die (not shown) and molded with a synthetic resin. FIG. 1 shows the shape of the finished product, in which a resin mold 25 is formed in which a light-emitting element 1 and lead frames 20 and 21 are surrounded by a resin, and a light emitting portion is formed in a lens shape. Thereby, the lamp-shaped light emitting device 30 was completed.
[0017]
When a predetermined voltage is applied between the lead frames 20 and 21, a light emission phenomenon occurs inside the light emitting element 1, and the light is emitted from the upward and downward surfaces of the light emitting element 1 in FIG. 1. Released. The light emission efficiency through the surface facing upward, that is, through the translucent substrate 2 is as high as 2 to 3 times that of the surface facing downward, but the light from here is transmitted through the window 22 of the lead frame 20 and the resin mold 25. It is emitted to the outside through the lens part.
[0018]
The bonding process can be as shown in FIG. That is, the lead frame 21 is bent from the beginning into an L shape. Then, the lead frame 20 (which is initially linear in the same way as the process example of FIG. 3) is set on a jig with a wide interval. In this way, the light emitting element 1 is die-bonded to the lead frame 20. Although the leg portion of the lead frame 21 is standing, the space between the lead frame 21 and the light emitting element 1 is wide, so that the handling of the bonding head is easy. Also for wire bonding after completion of die bonding, the work can be easily performed due to the existence of this wide space. After the wire bonding is completed, the lead frame 20 is bent into an L shape. Then, the lead frame 21 is brought close to the lead frame 20, the interval between the lead frames 20 and 21 is set to a predetermined value, and the resin mold is set.
[0019]
FIG. 5 shows a second embodiment of the present invention. In addition, in description of subsequent embodiment including this embodiment, the same code | symbol as before is attached | subjected to the element which is common in 1st Embodiment, and description is abbreviate | omitted. In the light emitting device 31 shown in FIG. 5, the legs of the lead frames 20 and 21 that have been wire-bonded to the light emitting element 1 are inserted into the holes of the synthetic resin substrate 40, and then the legs are formed on the back surface of the substrate 40. The lead frames 20 and 21 were fixed to the substrate 40 by bending the ends of the portions. Thereafter, resin potting is performed to form a resin mold 25.
[0020]
FIG. 6 shows a third embodiment of the present invention. The light emitting device 32 shown in this figure is the same as that of the second embodiment until the leg portions of the lead frames 20 and 21 are inserted into the synthetic resin substrate 40 and the ends of the leg portions are bent and fixed. is there. However, in this embodiment, instead of forming the resin mold by resin potting, the transparent resin cover 41 is placed on the lead frames 20 and 21, and the transparent resin cover 41 is fixed to the substrate 40 by means such as adhesion.
[0021]
FIG. 7 shows a fourth embodiment of the present invention. The light-emitting device 33 shown in this figure is the same as the second embodiment in that the legs of the lead frames 20 and 21 are raised on the synthetic resin substrate 40 and the resin mold 25 is then formed by resin potting. However, the phosphor plate 42 covers the window 22 of the lead frame 20, and the light emitted from the light emitting element 1 and passing through the window 22 is converted into light of a different spectrum by the fluorescence emission of the phosphor plate 42. This also makes it possible to manufacture a white lamp. A reflective material 43 for reflecting upward the light emitted from the lower surface of the light emitting element 1 is attached to the surface of the substrate 40.
[0022]
FIG. 8 shows a fifth embodiment of the present invention. 44 is an electronic circuit board having a wiring pattern on its surface, and a window 45 is provided in a part thereof. The translucent substrate 2 of the light emitting element 1 is die-bonded at the window 45. The lead frames 20 and 21 are not used. Then, the wiring pattern on the electronic circuit board 44 and the gold electrode 9 and the aluminum electrode 10 of the light emitting element 1 are wire-bonded. Since die bonding and wire bonding are performed on the same surface of the electronic circuit board 44, the die bonding plane and the wire bonding plane have the same height. Thereby, the light emitting device 34 integrated with the light emission control circuit of the light emitting element 1 is configured. In the figure, reference numeral 46 denotes an electronic component such as an IC, a resistor, or a capacitor mounted on the wiring pattern. Note that resin potting may be applied to the window 45 to form a lens.
[0023]
In the first to fifth embodiments, the example of manufacturing the light emitting devices 30, 31, 32, 33, 34 using the light emitting element 1 having the light emitting function has been described, but even the same gallium nitride compound semiconductor receives light. If a device that functions as an element is used, a light receiving device can be manufactured. The points described so far as the operational effects of the light emitting device according to the present invention are also the operational effects of the light receiving device.
[0024]
While various embodiments of the present invention have been described above, various other modifications can be made without departing from the spirit of the present invention. For example, even if the lead frame 21 is placed on a jig with a slightly different height from the lead frame 20 in FIG. 3, it does not depart from the spirit of the present invention. Even if there is a level difference between the die bonding plane and the wire bonding plane in the lead frame 20, a die bonding pad is formed on the lead frame 20.
[0025]
【The invention's effect】
The present invention has the following effects.
[0026]
The transparent substrate of the light emitting element or the light receiving element is overlaid on the transparent part of the lead frame, the transparent substrate of the element is die-bonded to the lead frame, and the electrode part of the element is approximately the same as the die bonding plane. Wire bonding is performed on the same plane of the lead frame, and in order to perform wire bonding on a plane that is almost the same height as the die bonding plane of the lead frame, die bonding is performed with the lead frame lying on the jig. Wire bonding can be performed, and the operation is easy. A normal bonding head or the like can be used, and there is no need to make a small one so that it can be operated in a narrow place. In addition, it is not necessary to form a lead pad that protrudes in a hollow shape at the portion that becomes the leg portion of the lead frame, and the molding cost of the lead frame is low. Since there is no need to worry about bending of the lead frame due to wire bonding, there is no need to use a particularly thick material as the lead frame material, and it is possible to use the minimum necessary thickness material, and molding is easy. In addition, material costs can be reduced.
[0027]
In addition, after wire bonding to a linear lead frame, this lead frame is bent into an L-shape, and bonding is completed while the shape of the lead frame is a straight line that is easy to bond, and then the lead frame Therefore, the clearance between the light emitting element or the light receiving element and the leg portion of the lead frame can be set irrespective of the size and movement of the bonding head, and the volume of the assembly of the element and the lead frame can be set. As a result, the volume of the entire light emitting or receiving device can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a light-emitting device showing a first embodiment of the present invention. FIG. 2 is a side view of a light-emitting element. FIG. 3 is an explanatory view showing a light-emitting device manufacturing process. FIG. 5 is a cross-sectional view of a light-emitting device showing a second embodiment of the present invention. FIG. 6 is a cross-sectional view of a light-emitting device showing a third embodiment of the present invention. FIG. 8 is a cross-sectional view of a light-emitting device showing a fourth embodiment. FIG. 8 is a cross-sectional view of a light-emitting device showing a fifth embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Translucent substrate 9 Gold electrode 10 Aluminum electrode 20, 21 Lead frame 23, 24 Gold wire 25 Resin mold 30, 3, 32, 33, 34 Light-emitting device 40 Substrate 41 Transparent resin cover 42 Phosphor plate 43 Reflection Material 44 Electronic circuit board 45 Window

Claims (2)

透光基板上に形成された窒化ガリウム系化合物半導体からなる発光素子又は受光素子をリードフレームに実装した発光又は受光装置の製造方法であって、
前記素子の透光基板をリードフレームの窓に重ね、この透光基板をリードフレームにダイボンディングする工程と、その上で素子の電極部を、前記ダイボンディング平面と高さをほぼ同じくするリードフレームの平面にワイヤボンディングする工程と、ワイヤボンディング工程後に前記リードフレームをL字形に折曲する工程と、折曲工程後に前記素子の周囲に樹脂をモールドする工程とを備えることを特徴とする発光又は受光装置の製造方法
A method of manufacturing a light emitting or receiving device in which a light emitting element or a light receiving element made of a gallium nitride compound semiconductor formed on a light transmitting substrate is mounted on a lead frame,
A step of superimposing the light-transmitting substrate of the element on a window of a lead frame and die-bonding the light-transmitting substrate to the lead frame, and a lead frame on which the electrode portion of the element is substantially the same as the die bonding plane Or a step of bending the lead frame into an L shape after the wire bonding step, and a step of molding a resin around the element after the bending step. Manufacturing method of light receiving device.
前記折曲工程後に、前記リードフレームの脚部を基板に固定する工程を備えることを特徴とする請求項1に記載の発光又は受光装置の製造方法The method of manufacturing a light emitting or receiving device according to claim 1, further comprising a step of fixing a leg portion of the lead frame to the substrate after the bending step .
JP2001002727A 2001-01-10 2001-01-10 Method for manufacturing light emitting or receiving device Expired - Fee Related JP3831614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002727A JP3831614B2 (en) 2001-01-10 2001-01-10 Method for manufacturing light emitting or receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002727A JP3831614B2 (en) 2001-01-10 2001-01-10 Method for manufacturing light emitting or receiving device

Publications (2)

Publication Number Publication Date
JP2002208735A JP2002208735A (en) 2002-07-26
JP3831614B2 true JP3831614B2 (en) 2006-10-11

Family

ID=18871185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002727A Expired - Fee Related JP3831614B2 (en) 2001-01-10 2001-01-10 Method for manufacturing light emitting or receiving device

Country Status (1)

Country Link
JP (1) JP3831614B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020240A (en) * 2002-08-30 2004-03-09 엘지이노텍 주식회사 Light Emitting Diode Lamp and method for fabricating thereof
WO2008060586A2 (en) 2006-11-15 2008-05-22 The Regents Of The University Of California Textured phosphor conversion layer light emitting diode
WO2008060585A2 (en) * 2006-11-15 2008-05-22 The Regents Of University Of California Standing transparent mirrorless light emitting diode
JP5326204B2 (en) * 2006-11-29 2013-10-30 富士通株式会社 LIGHT EMITTING COMPONENT, ITS MANUFACTURING METHOD, LIGHT EMITTING COMPONENT ASSEMBLY AND ELECTRONIC DEVICE
TWI460881B (en) 2006-12-11 2014-11-11 Univ California Transparent light emitting diodes
KR100903280B1 (en) 2008-10-13 2009-06-17 최운용 Led assembly having redundancy electrode and fabrication method thereof
CN102341923B (en) * 2008-10-13 2013-09-18 崔云龙 Led assembly having redundancy electrode and fabrication method thereof
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Also Published As

Publication number Publication date
JP2002208735A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
JP4325412B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
CN101467267B (en) Light emitting device and its manufacturing method
US7871850B2 (en) Light emitting device and manufacturing method thereof
JP3627822B2 (en) Semiconductor light emitting device and manufacturing method thereof
CN100423306C (en) Method for manufacturing light emitting diode package
TWI489654B (en) LED module manufacturing method and LED module
JP2008010591A (en) Light emitting device, manufacturing method thereof, package, and substrate for mounting light emitting element
KR20090015514A (en) Semiconductor light emitting device
JP3831614B2 (en) Method for manufacturing light emitting or receiving device
US7126163B2 (en) Light-emitting diode and its manufacturing method
JP2002009347A (en) Led light source and its manufacturing method
TW200525785A (en) Radiation-emitting and/or radiation-receiving semiconductor component and method for producing such component
US6667497B1 (en) LED package
JP2002222992A (en) Led light emitting element and device thereof
JPH06302864A (en) Manufacture of light-emitting device
JP3941826B2 (en) LED luminaire manufacturing method
KR100407773B1 (en) GaN LIGHT EMITTING DEVICE AND THE PACKAGE THEREOF
JP2003197966A (en) Gallium nitride-based compound semiconductor element
KR100628884B1 (en) White Light Emitting and its method of making
JP2000208821A (en) Chip type light-emitting diode
JP3938337B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH11354845A (en) Gan compound semiconductor light emitting element
JP2003008080A (en) Light emitting or light receiving device
KR102471801B1 (en) Semiconductor light emitting device
JP3938350B2 (en) Mounting method of semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees