EP1809151B1 - Dispositif de chauffage d'un liquide et procede pour chauffer un liquide - Google Patents

Dispositif de chauffage d'un liquide et procede pour chauffer un liquide Download PDF

Info

Publication number
EP1809151B1
EP1809151B1 EP05782895A EP05782895A EP1809151B1 EP 1809151 B1 EP1809151 B1 EP 1809151B1 EP 05782895 A EP05782895 A EP 05782895A EP 05782895 A EP05782895 A EP 05782895A EP 1809151 B1 EP1809151 B1 EP 1809151B1
Authority
EP
European Patent Office
Prior art keywords
fluid
heating
measured
energy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05782895A
Other languages
German (de)
English (en)
Other versions
EP1809151A2 (fr
Inventor
Christophe Boussemart
Jean-Bernard Pulzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nestec SA
Original Assignee
Nestec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nestec SA filed Critical Nestec SA
Priority to PL05782895T priority Critical patent/PL1809151T3/pl
Priority to EP07124079A priority patent/EP1913851B1/fr
Priority to EP05782895A priority patent/EP1809151B1/fr
Publication of EP1809151A2 publication Critical patent/EP1809151A2/fr
Application granted granted Critical
Publication of EP1809151B1 publication Critical patent/EP1809151B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/54Water boiling vessels in beverage making machines
    • A47J31/542Continuous-flow heaters
    • A47J31/545Control or safety devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/54Water boiling vessels in beverage making machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/31Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2028Continuous-flow heaters

Definitions

  • the present invention relates to a device for heating a fluid intended to equip a machine for the preparation of hot drinks.
  • the present invention also relates to a method for rapidly and accurately heating a liquid.
  • Patent is already known EP 1 380 243 a heating device intended in particular for equipping coffee machines.
  • This heating device comprises a metal tube in which the liquid to be heated can flow from an inlet channel to an outlet channel.
  • the outer surface of the tube is covered over several sections of its length with a plurality of sets of electrical resistors in series.
  • a cylindrical insert extends into the tube to form, with the inner wall of the tube, a helical channel for the circulation of the liquid and thus to promote turbulent circulation and rapid energy transfer from the tube to the liquid.
  • a flowmeter is also arranged upstream of the input channel.
  • the device further comprises a plurality of temperature sensors distributed on the tube at the inlet and the outlet of each set of resistors. The principle of distribution of the heating energy to the liquid is here based on the modulation of the electric power developed by the resistances which can be switched independently of each other or in series depending on the temperature of the water. entrance to the canal.
  • this device gives satisfactory results in terms of speed of heating, this device is relatively bulky in that the volume of water to be heated determines the height of the tube, and it is expensive in that it requires the printing of resistors in the form of thick films on the surface of the tube (commonly called "thick films").
  • the accuracy of the regulation of the liquid temperature is limited by the fact that the liquid does not come into direct contact with the sensors which are arranged outside the tube.
  • the speed of response to temperature differences, due to the inertia of the liquid to be heated, is also slower, which affects the accuracy of the temperature control.
  • the proximity of the temperature sensors of the resistance sets may influence the measurement in an uncontrollable manner because of the thermal conduction that occurs through the wall of the tube.
  • the patent US 6,246,831 refers to a fluid heating control system for home heating or an individual cistern comprising a plurality of heating chambers containing continuous electric heating elements.
  • the temperature control is based on temperature sensors in each chamber and determining a deviation between a set temperature and the sum of the temperatures measured in each chamber.
  • a control then responds quickly to changes in temperature and changes the power calculation by acting on the power modulation.
  • Such a method does not, however, take into account instantaneous variations in the actual amount of fluid flowing in the device; this quantity being based on an indirect calculation method. Thus, sudden changes in operating conditions can render this calculation ineffective, which makes the system adapted essentially to stable flow conditions but unsuitable for the production of hot water in a coffee machine recording sudden changes in flow.
  • the present invention therefore aims to overcome the aforementioned drawbacks as well as others by providing a liquid heating device employing simple means, compact and inexpensive.
  • the present invention also aims to provide such a heating device for instantaneously heating a liquid, with a preheating of the reduced heating system and without storage of heat energy beforehand and latent, at a given output temperature, between inlet temperature and 100 ° C, to improve the accuracy with respect to the outlet temperature of the liquid, as well as provide the necessary and sufficient energy for heating the liquid to said set temperature.
  • the present invention relates to a device for heating a liquid in hot liquid or in steam, in particular for household purposes and more particularly for the preparation of hot drinks
  • a device for heating a liquid in hot liquid or in steam comprising a body provided with a channel for the circulation of a liquid, said channel having a liquid inlet and a liquid outlet and being associated with at least one electric heating body of which power supply is controlled by switching means connected to control means; said channel comprising at least first and second channel portions interconnected by a third channel portion forming a connecting conduit; said at least first and second channel portions being each associated with at least one heating body.
  • the connecting pipe is associated with an intermediate temperature sensor connected to said control means; said intermediate temperature sensor being arranged to come into direct or indirect contact with the liquid flowing in said conduit for measuring the temperature of the liquid.
  • the device is characterized in that it comprises a flow meter which measures the quantity of liquid passing through said channel and in that the control and switching means are configured to control the heating element of said at least second channel portion. depending on the amount of useful energy to be supplied in said second channel portion to bring the intermediate temperature measured by said intermediate temperature sensor to a set temperature; said quantity of energy being calculated by the control means as a function of the quantity of liquid measured by the flow meter, the measured intermediate temperature and the set temperature at the outlet of the device, this quantity of energy being distributed to said heating body of said at least second channel portion by the control and switching means at determined time intervals.
  • the time intervals determined are less than 500 milliseconds. It should be noted in this connection that when a pulse flowmeter is used, the time interval will be adjusted to the pulse frequency of the pulse flowmeter.
  • the invention therefore provides a better accuracy in the temperature regulation, and therefore a better use of the energy consumed, because, on the one hand, the temperature of the liquid to be heated is measured directly, and on the other hand, calculated and distributed heating energy takes into account instantaneous variations in flow.
  • the device of the invention further comprises a liquid inlet temperature sensor arranged to come into direct or indirect contact with the liquid at the inlet of the device for measuring the temperature of the liquid, and a flow meter disposed, for example, upstream of the entrance of the first chamber.
  • Regulating means are also provided for calculating a factor for correcting the power to be assigned to the heating body of said second channel portion according to the measured input and intermediate temperatures, the flow rate measured by the flow meter and the energy balance.
  • control and switching means are also configured to control the heating body of said first channel portion as a function of the amount of theoretical energy useful to be supplied in said first channel portion to bring the quantity of fluid from the input temperature measured by the input sensor to an intermediate set point temperature.
  • the correction factor is then applied by the control means to adjust the amount of energy required to heat the liquid in the second chamber to obtain the temperature closest to the desired temperature at the output of the heating block.
  • the calculation is done at regular intervals of about 30 ms.
  • the amount of heating energy thus determined by this calculation is then distributed to each pulse of the flow meter (for a flow meter operating on a pulse mode) is, typically, every 10 to 100 ms or so, preferably every 10 to 30 ms. This provides a rapid response of heating to sudden changes in flow.
  • the structure of the device of the present invention therefore advantageously makes it possible to precisely determine the difference between the intermediate set point temperature and the measured intermediate temperature and thus to calculate a correction factor to precisely determine the amount of energy to be supplied to the liquid in the or the following channel portions to bring the liquid from the measured intermediate temperature to the setpoint exit temperature.
  • the device of the invention thus makes it possible to compensate for the errors and to correct the inaccuracies and tolerances coming from the measuring elements and those for the production of the heating energy, in particular the measurement errors of the flow meter, the tolerances on the power. resistors, network voltage and others.
  • the device regularly measures the voltage and / or the current of the network and calculates a correction factor representative of the variation of the voltage and / or the current and affects this correction factor to the calculation of the amount of energy to be supplied to the heating bodies, to adjust the engagement time of the resistors according to these variations.
  • the channel portions associated respectively with at least one heating body form each of the chambers interconnected by a connection duct, which has a section smaller than that of the chambers, one or more heating body being immersed in each of the chambers.
  • each heating element comprises at least one resistance, each resistance of each heating element being switchable independently. In this way, temperature adjustments can be made more quickly and with greater accuracy. temperature output. It also avoids problems related to sudden increases or drops in voltage ("flicker" effect).
  • the heating bodies are two in number, each being housed in a separate chamber and each comprising two resistors, each resistance of the two heating bodies being configured to be switched independently of one another. by the switching means.
  • the heating bodies are four in number, each being housed in a separate chamber and comprising a resistor, each resistor being configured to be switched independently by the switching means.
  • the intermediate temperature sensor is disposed downstream of the chamber communicating with the liquid inlet and upstream of the chamber communicating with the liquid outlet.
  • the structure of the device according to the invention thus makes it possible to use heating bodies in the form of heating cartridges which are commercially available and particularly economical in comparison with the sets of printed resistors of the prior art.
  • a plurality of cartridges of this type having a rated power of less than 450W, preferably less than or equal to 400W, at 230V advantageously allows, by successive and non-simultaneous switching of the different cartridges arranged in the channel, at a certain frequency, preferably of the order of 10 ms, to distribute the electric charge on the network and thus to limit the risk of sudden voltage jumps causing flicker phenomena.
  • this type of heating cartridge makes it possible to produce a device with low thermal inertia, which makes it possible to successively dispense liquids at different outlet temperatures, for example determined according to the nature of the beverage to be prepared. , at close intervals of time.
  • the device of the invention can be used to optimize variable liquid temperatures in a machine for preparing hot drinks, as described in the pending US patent application, US Patent No. 10 / 983,671 filed November 9, 2004 entitled "Method and device for optimizing the variable temperatures of a liquid".
  • the entire content of this application is incorporated herein by reference.
  • At least several of the steps a) to d) are repeated at time intervals of less than 500 milliseconds.
  • the time interval will be adjusted for the distribution of the quantity of energy in step d) on the pulse frequency of the pulsed flow meter or, at the very least, at a determined frequency of the order of one to a few tens of milliseconds for another type of flow meter.
  • Such a method makes it possible to obtain an improved accuracy of the desired output temperature of the liquid, in particular, thanks to the actual measurement of the temperatures of the liquid (and not those of the heating body as in the prior art) and by a determination of the quantities of energy supplied, which takes into account the actual variations in the flow rate of the liquid in the device.
  • the amounts of energy to be applied to both the first and second heating bodies are calculated according to the measured temperature variables and the flow meter measurement.
  • the method takes into account the global errors and inaccuracies that may come from different components of the device (for example, flow meter, resistors, etc.) or from the network voltage so as to refine the quantity of energy provided, in particular, the second heating body, and thus obtain an improved heating accuracy.
  • the method of the invention is of course applied in a loop, at close time intervals (of the order of a few milliseconds, for example, every 30 ms for the calculation and every 10 ms for the the distribution of energy to the heating bodies) during the passage of the liquid through the heating device; in particular, by regulating means such as a microcontroller or other equivalent electronic control means.
  • the temperature of the liquid is measured by sensors which are in direct or indirect contact with the liquid.
  • Direct contact refers to a measurement using a sensor immersed in the liquid. It may be, for example, a NTC probe protected by a glass or a ceramic.
  • Indirect contact refers to a measurement using a sensor (such as a fine NTC probe) attached for example by bonding the dry side of a non-heating conduit in or against which the liquid flows, such as a metal tube.
  • the liquid separates the sensor from the heating element itself so that the measured temperature is the temperature of the liquid and not a temperature affected by the conduction of the heating body against a thermally conductive solid surface .
  • One embodiment relates to a heater which further comprises a solenoid valve connected to said conduit between the fluid outlet and said user device and which is controlled by said control means, and in that said control means is arranged to control the solenoid valve so as to direct the fluid from the fluid outlet to a drain pan or a recirculation loop, when the temperature measured by said sensor has not yet reached the set temperature and to the user device when the temperature measured has reached the set temperature.
  • the set temperature may be a theoretical intermediate temperature of the device when said temperature sensor is arranged to measure an intermediate temperature in said channel.
  • the set temperature is the desired outlet temperature when the temperature sensor is disposed at the outlet of the channel so as to measure the temperature of the fluid at the outlet of the device.
  • the fluid intended for the user device typically a substance extraction unit, for example a coffee or a steam ejection nozzle
  • a substance extraction unit for example a coffee or a steam ejection nozzle
  • the period of derivation in the drain pan is usually of the order of only a few seconds (Typically, 3-6 seconds). This arrangement therefore makes it possible to rapidly prepare beverages of constant quality regardless of possible fluctuations in the heating device.
  • FIG. figure 2 an exemplary liquid heating device according to a first embodiment indicated by the general reference numeral 1, integrated in a coffee machine 2 (FIG. figure 2 ) which may be indifferently intended for household or industrial use.
  • the nature of the liquid to be heated in the heating device is not critical and that the liquid may be any such as water, milk, a chocolate drink, etc.
  • the liquid to be heated is water.
  • the coffee machine 2 illustrated in figure 2 comprises a cold water tank 4 connected via a pipe 6 to a pump 8 which supplies water to the heating device 1 via a liquid inlet 10. The water flows through a channel 12 provided in a body 13 of the heating 1.
  • the channel 12 is associated with heating bodies 14a, 14b, 14c and 14d, whose power supply is controlled by switching means 16 connected to control means 18.
  • the heating bodies are thus immersed in the liquid to be heated and in direct contact with it.
  • the water exits the heater via a liquid outlet 20 and then flows through a conduit 22 to arrive through a conduit 24 on a cartridge 26 containing a substance for forming a beverage such as coffee from roasted coffee and ground or soluble coffee, tea, chocolate or other hot drinks.
  • the cartridge 26 is, for example, a sealed cartridge which opens under the pressure of the liquid as described in European Patent No 512,468 .
  • the coffee then flows into a cup 28.
  • the machine also makes it possible to produce steam via a duct 30 connected to the duct 22. figure 1 the direction of flow of water through the heater is indicated by arrows A and B.
  • the channel 12 comprises four channel portions 12a, 12b, 12c and 12d, successively interconnected by three connecting ducts 32ab, 32bc and 32cd.
  • the channel portions 12a, 12b, 12c and 12d each define a chamber that receives a heater body 14a, 14b, 14c and 14d.
  • the connecting conduits 32ab, 32bc and 32cd have cross sections smaller than those of the chambers 12a, 12b, 12c and 12d.
  • the chambers 12a, 12b, 12c and 12d are arranged parallel to each other and juxtaposed in a block 13a that includes the body 13.
  • the chambers 12a, 12b, 12c and 12d all open on a first side of the block 13a at a first end whereby the heating bodies 14a, 14b, 14c and 14d are introduced into the chambers 12a, 12b, 12c and 12d.
  • the second ends of the chambers 12a, 12b, 12c and 12d open on a second side of the block 13a opposite the first and the chambers 12a, 12b, 12c and 12d are interconnected at one of their ends by the three connecting ducts 32ab, 32bc and 32cd.
  • the chamber 12a is connected on the one hand to the liquid inlet 10 via a duct 36 at its end disposed on the second side of the block 13a and on the other hand to the chamber 12b via the connecting duct 32ab by its end disposed of the first side of the block 13a.
  • the chamber 12b is connected to the chamber 12c via the connecting pipe 32bc by its end disposed on the second side of the block 13a.
  • the chamber 12c is connected to the chamber 12d via the connecting pipe 32cd by its end disposed on the first side of the block 13a and the chamber 12d is connected to the liquid outlet 20 via a pipe 38 by its end disposed on the second side of the block 13a.
  • each heating body 14a, 14b, 14c and 14d extends substantially over the entire length of the chamber with which it is associated and has a shape substantially complementary to that of the chamber with which it is associated.
  • the outer surface of the heating bodies and / or the inner wall of the chamber associated therewith has a helical groove, which makes it possible to lengthen the path of the liquid during which it is in contact with the heating bodies and its speed; therefore increase the coefficient heat exchange; without thereby increasing the size of the heater.
  • the heating device 1 further comprises a temperature sensor 40 disposed in the conduit 36 connecting the liquid inlet to the inlet of the chamber 12a.
  • This sensor 40 is arranged to come into direct contact with the liquid to be heated and to measure the temperature of the liquid to be heated at the inlet of the heating device, that is to say before it has come into contact with one of the heating bodies of the device 1.
  • a flowmeter 42 is also provided in the duct 36, thus upstream of the chamber 12a.
  • the body 13 further comprises two covers 44, 46 which respectively extend from the first and second side of the block 13a and cover the two ends of each of the chambers 12a, 12b, 12c and 12d.
  • the cover 44 which is on the first side of the block 13a carries the heating bodies 14a, 14b, 14c, and 14d while the cover 46 which is on the second side of the block 13a carries an intermediate temperature sensor 48.
  • the sensor intermediate temperature 48 is associated with the connecting conduit 32bc and is arranged to come into direct contact with the liquid to be heated circulating in the conduit.
  • the inlet temperature sensor 40, the flow meter and the intermediate temperature sensor 48 are connected to the control means 18 of the device 1.
  • the cover 44 closes a first end of the chambers 12a, 12b, 12c and 12d and further delimits with the block 13a the connecting conduits 32ab and 32cd.
  • the lid 46 closes the second end of the chambers 12a, 12b, 12c and 12d and delimits the conduit 32bc with the block 13a.
  • the cover 46 further defines a channel 36a connecting the conduit 36 to the chamber 12a and the channel 38a connecting the chamber 12d to the conduit 38.
  • the covers 44 and 46 are fixed to the block 13a by means of screws (not shown ) and the seal is provided by O ring seals 44a, 46a interposed between the covers 44, 46 and the block 13a.
  • the control means 18 and the switching means 16 are configured to control the heating bodies 14a, 14b, 14c and 14d. These control means 16 are particularly designed to control the heating bodies 14c and 14d disposed respectively in the chambers 12c, 12d located downstream of the intermediate temperature sensor 48 as a function of the amount of useful energy to be supplied in the chambers 12c and 12d for bringing the liquid to be heated from the intermediate temperature measured by the intermediate temperature sensor 48 to a set temperature contained, for example, in a memory of the control means 18.
  • the heating bodies 14a, 14b, 14c, and 14d each comprise a resistor.
  • the resistors are connected to the switching means 16 and the control means 18 are arranged so as to be able to switch the resistors independently of one another.
  • the principle of energy distribution is based on the pulses given by the flow meter (for example every 100 ms or less). At each pulse of the flow meter corresponds energy or a given heating time on the heating bodies. This proportional system makes it possible to react to rapid variations in the flow rate; this may be the case during the extraction cycle of a capsule, in particular, at the time of piercing the capsule.
  • Each resistor develops a nominal power lower than the theoretical flicker power value of the network, typically less than 450W at 230V.
  • the maximum power that can be switched over the entire frequency range is about 380W.
  • the control means 18 are arranged to switch the resistances of the heating elements from the "on" state to the "off” state. and vice versa intermittently and non-simultaneously. Switching is always done at the zero crossing of the voltage to prevent the introduction of disturbance in the electrical network.
  • the control means 18 further comprise regulating means which are provided for calculating the amount of energy to be allocated to the heating bodies 14c, 14d disposed in the channel portions 12c, 12d located downstream of the intermediate temperature sensor 48, depending on the input and intermediate temperatures measured and the flow rate measured by the flowmeter 42. Other factors may be taken into account in the calculation of the quantity of energy, in particular the measurement of the mains voltage (for example 230V ).
  • the amount of energy can be corrected by a correction factor based on the fluctuation between the actually measured mains voltage and the nominal nominal voltage. This factor indicates whether the actual voltage is higher or lower than the nominal voltage, for example 230V. This factor is updated when the resistors are switched on in order to also take into account voltage drops in the supply line.
  • the control means generally comprise a microcontroller, memory and energy balance calculation programs and correction factors to be applied. Calculations of energy balances, corrections and switching of the heating bodies by the microcontroller are made at very short time intervals so as to constantly regulate the amounts of energy supplied to the heating bodies.
  • the intervals for calculating energy quantities are, in the order of a few milliseconds, preferably less than 100 ms, for example every 30 ms.
  • the automatic regulation mode is based on the following principle.
  • a temperature measurement of the liquid at the inlet of the device is taken by the temperature sensor 40 at the input of the device; the amount of liquid to be heated is taken by a flow meter 42 on the basis of pulses.
  • An intermediate temperature between the first and second heating body is also measured by the temperature sensor 48.
  • the system can start from a temperature of theoretical input, typically the temperature of the water network, stored in a microcontroller.
  • the microcontroller comprising a program for calculating the quantities of energy.
  • the intermediate temperature of setpoint is a value determined by calculation during tests of the device and which corresponds to an optimal theoretical value as a function of the measured temperature of the water at the inlet, the set outlet temperature (set point), a factor 230V network correction, the theoretical values of the ohmic resistances of the heating elements. This value varies depending on the desired outlet temperature, for example, for the production of a coffee or other beverage such as chocolate. This value is stored in the program or in a memory of the microcontroller.
  • the microcontroller also calculates the quantity of theoretical energy to be supplied by the second heating element according to the formula:
  • Quantity of energy for the second heating element Quantity of liquid to be heated measured by the flow meter x (desired outlet temperature - measured intermediate temperature) x heat capacity of the liquid. This amount of energy can also be corrected to account for the grid voltage.
  • the microcontroller then controls the distribution of these calculated energy quantities, per heating time unit, by controlling the switching on / off of the resistances contained in the heating bodies.
  • the correction factor is then applied by the microcontroller to adjust the amount of energy required to heat the liquid in the second chamber to obtain the temperature closest to the desired temperature output of the heating block.
  • the correction factor is less than 1; this means that the amount of real energy distributed by the heating body (s) upstream of the intermediate temperature probe is too low and it is therefore necessary to apply a correction by increasing the amount of energy distributed by the (s) heater located downstream of the intermediate temperature probe.
  • the factor is greater than 1, it means that the amount of real energy distributed by the heating body (s) upstream of the intermediate temperature probe is too high; and it is then necessary to apply a correction by decreasing the amount of energy distributed by the heating body (s) located downstream of this probe.
  • the correction factor is calculated at a value of 1.10; this means that the amount of energy distributed by the first heater (s) is 10% too high and it will then be necessary to apply a reduction in the amount of energy to the second heater (s) by 10% for to obtain an exit temperature approaching as close as possible to the desired temperature.
  • This heating device is distinguished from that described above only in that the channel 12 provided in the body 13 and through which the liquid to be heated circulates comprises only two channel portions 12e and 12f interconnected by a conduit of 32ef link which is associated with the intermediate temperature sensor 48 and that the heating bodies 14e and 14f respectively associated with the channel portions 12e and 12f each comprise two resistors, each of them being connected to the control means 18 via the switching means 16.
  • the electrical resistances of the heating bodies 14e and 14f each develop a nominal power lower than the theoretical flicker power value typically less than 450W at 230V and the control means 18 are arranged. to switch these resistors from the "on" state to the "off” state and vice versa intermittently typically at a frequency of the order of 10 ms.
  • Heating bodies of this type are, for example, so-called “high-charge” or “high-density” heating cartridges; that is, developing a significant power per unit area of heating.
  • FIG 5 is schematically shown a coffee machine incorporating another aspect of the invention.
  • the elements identical to those described in connection with the figure 4 are designated by the same reference numerals.
  • This coffee machine differs from that described above in that it comprises a device for ensuring the delivery of a "first" liquid or a "first” steam at the appropriate temperature.
  • the device comprises a first main duct 22 connected to the extraction device 26.
  • a counter-pressure valve 24a of the duct 24 is disposed at the inlet of the device 26.
  • a first solenoid valve 50a is connected to a portion of the duct 22a leading to a drainage tank 52.
  • a second so-called “steam” solenoid valve 50b is connected to the duct 30 disposed between the first user device and the second user device formed in the example by a steam ejection nozzle 56.
  • the solenoid valves 50a, 50b are controlled by the control means 18.
  • the solenoid valves 50a, 50b are arranged to respectively control the solenoid valves 50a, 50b so as to direct the fluid from the fluid outlet 20 to either of the two user devices, or to the tank of drainage 52 depending on whether or not the temperature measured by the sensor 48 reaches the set temperature for the user device under consideration.
  • the drain pan may be replaced by a recirculation loop returning to the inlet 10 of the heater. Recirculation, however, complicates the device because it may require a pump additional.
  • the set temperature is obtained after only a few seconds and the quantity of water rejected is therefore generally low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Food Science & Technology (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Resistance Heating (AREA)
  • Apparatus For Making Beverages (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Cookers (AREA)
  • Resistance Heating (AREA)
  • Control Of Temperature (AREA)

Abstract

La présente invention concerne un dispositif de chauffage d'un liquide, comprenant un corps muni d'un canal pour la circulation d'un liquide, ledit canal ayant une entrée de liquide (10) et une sortie de liquide (20) et étant associé à au moins un corps de chauffe électrique (14) dont l'alimentation est commandée par des moyens de commutation (16) reliés à des moyens de commande (18) , ledit dispositif étant caractérisé en ce ledit canal comprend au moins des première et deuxième portions (12) de canal reliées entre elles par une troisième portion de canal formant un conduit de liaison (32) , en ce que lesdites au moins première et deuxième portions de canal sont associées chacune à au moins un corps de chauffe (14) et en ce que le conduit de liaison est associé à un capteur de température intermédiaire (48) relié audits moyens de commande, pour commander le corps de chauffe de ladite au moins seconde portion de canal en fonction de la quantité d' énergie utile à apporter dans ladite seconde portion de canal pour monter la température intermédiaire mesurée par ledit capteur de température intermédiaire jusqu'à une température de consigne .

Description

  • La présente invention concerne un dispositif de chauffage d'un fluide destiné à équiper une machine pour la préparation de boissons chaudes.
  • La présente invention concerne également un procédé pour chauffer rapidement et précisément un liquide.
  • On connaît déjà du brevet EP 1 380 243 un dispositif de chauffage destiné notamment à équiper des machines à café. Ce dispositif de chauffage comprend un tube métallique dans lequel peut circuler le liquide à chauffer à partir d'un canal d'entrée vers un canal de sortie. La surface extérieure du tube est recouverte sur plusieurs sections de sa longueur d'une pluralité de jeux de résistances électriques en série. Un insert cylindrique s'étend dans le tube pour former, avec la paroi intérieure du tube, un canal hélicoïdal pour la circulation du liquide et ainsi favoriser une circulation turbulente et un transfert d'énergie rapide du tube au liquide. Un débitmètre est par ailleurs disposé en amont du canal l'entrée. Le dispositif comprend en outre une pluralité de capteurs de température répartis sur le tube à l'entrée et à la sortie de chaque jeu de résistances. Le principe de distribution de l'énergie de chauffage au liquide est ici basé sur la modulation de la puissance électrique développée par les résistances qui peuvent être commutées indépendamment les unes des autres ou en série en fonction de la température de l'eau à l'entrée du canal.
  • Bien que ce dispositif donne des résultats satisfaisants en termes de rapidité de chauffage, ce dispositif est relativement encombrant en ce que le volume d'eau à chauffer détermine la hauteur du tube, et il est onéreux en ce qu'il nécessite l'impression de résistances sous forme de films épais à la surface du tube (appelés couramment "thick films").
  • En outre, la précision de la régulation de la température du liquide est limitée par le fait que le liquide ne vient pas directement en contact avec les capteurs qui sont disposés à l'extérieur du tube. La vitesse de réponse à des différences de températures, due à l'inertie du liquide à chauffer, est aussi plus lente, ce qui nuit à la précision de la régulation de la température. A noter également que la proximité des capteurs de température des jeux de résistances risque d'influencer la mesure de manière non contrôlable en raison de la conduction thermique qui se produit au travers de la paroi du tube.
  • Dans le domaine des machines à café les débits d'eau à chauffer pour préparer un café sont relativement faibles typiquement de l'ordre de quelques dizaines de ml/min. Or, les débitmètres disponibles sur le marché sont peu précis pour la mesure de débits inférieurs à 200ml/min. Les incertitudes de mesures du débit dans cette application constituent donc un problème supplémentaire pour le calcul précis de l'énergie à fournir pour atteindre la température de consigne en sortie du dispositif. Dans le brevet EP 1 380 243 , les imprécisions dues au débit-mètre ne sont donc pas corrigées avant que le fluide ne quitte le dispositif de chauffage puisque seule la température d'entrée est prise en compte dans le calcul de la quantité d'énergie à fournir au dispositif.
  • De plus, ce document est silencieux sur les réalisations pratiques permettant l'agencement des capteurs de température à la surface du tube, un tel agencement paraissant en tout état de cause délicat en raison de la technologie proposée pour réaliser les jeux de résistances.
  • Le brevet US 6 246 831 se rapporte à un système de contrôle de chauffage de fluide pour le chauffage domestique ou une citerne individuelle comprenant plusieurs chambres de chauffe contenant des éléments chauffants électriques en continu. La régulation de température se base sur des capteurs de températures dans chaque chambre et en déterminant une déviation entre une température de consigne et la somme des températures mesurées dans chaque chambre. Une commande répond ensuite rapidement aux changements de température et modifie le calcul de puissance en agissant sur la modulation de puissance. Une telle méthode ne tient toutefois pas compte de variations instantanées de la quantité réelle de fluide circulant dans le dispositif; cette quantité étant basée sur une méthode de calcul indirecte. Ainsi des changements soudains des conditions opérationnelles peuvent rendre ce calcul inefficace, ce qui rend le système adapté essentiellement à des conditions d'écoulement stables mais inadapté pour la production d'eau chaude dans une machine à café enregistrant des brusques variations de débit.
  • La présente invention a donc pour but de remédier aux inconvénients susmentionnés ainsi qu'à d'autres encore en fournissant un dispositif de chauffage d'un liquide mettant en oeuvre des moyens simples, compacts et peu coûteux.
  • La présente invention a également pour but de fournir un tel dispositif de chauffage permettant de chauffer instantanément un liquide, avec un préchauffage du système de chauffe réduit et sans stockage d'énergie thermique préalable et latente, à une température de sortie donnée, comprise entre la température d'entrée et 100°C, d'améliorer la précision en ce qui concerne la température de sortie du liquide, ainsi que fournir l'énergie nécessaire et suffisante pour le chauffage du liquide à ladite température de consigne.
  • A cet effet, la présente invention concerne un dispositif de chauffage d'un liquide en liquide chaud ou en vapeur, notamment pour des applications ménagères et plus particulièrement pour la préparation de boissons chaudes comprenant un corps muni d'un canal pour la circulation d'un liquide, ledit canal ayant une entrée de liquide et une sortie de liquide et étant associé à au moins un corps de chauffe électrique dont l'alimentation est commandée par des moyens de commutation reliés à des moyens de commande; ledit canal comprenant au moins des première et deuxième portions de canal reliées entre elles par une troisième portion de canal formant un conduit de liaison; lesdites au moins première et deuxième portions de canal étant associées chacune à au moins un corps de chauffe. Le conduit de liaison est associé à un capteur de température intermédiaire relié auxdits moyens de commande; ledit capteur de température intermédiaire étant arrangé pour venir en contact direct ou indirect avec le liquide circulant dans ledit conduit pour mesurer la température du liquide. Le dispositif se caractérise en ce qu'il comprend un débit-mètre qui mesure la quantité de liquide traversant ledit canal et en ce que les moyens de commande et de commutation sont configurés pour commander le corps de chauffe de ladite au moins seconde portion de canal en fonction de la quantité d'énergie utile à apporter dans ladite seconde portion de canal pour amener la température intermédiaire mesurée par ledit capteur de température intermédiaire jusqu'à une température de consigne; ladite quantité d'énergie étant calculée par le moyen de commande en fonction de la quantité de liquide mesurée par le débit-mètre, de la température intermédiaire mesurée et de la température de consigne en sortie du dispositif, cette quantité d'énergie étant distribuée audit corps de chauffe de ladite au moins seconde portion de canal par les moyens de commande et de commutation à intervalles de temps déterminés.
  • Selon un mode de réalisation, préféré, les intervalles de temps déterminés sont inférieurs à 500 millisecondes. On notera à ce propos que lorsqu'un débit-mètre à impulsions est utilisé, l'intervalle de temps sera ajusté sur la fréquence des impulsions du débit-mètre à impulsions.
  • L'invention apporte donc une meilleure précision dans la régulation en température, donc une meilleure utilisation de l'énergie consommée, du fait que, d'une part que l'on mesure la température du liquide à chauffer de manière directe, et d'autre part, que l'énergie de chauffage calculée et distribuée tient compte des variations instantanées de débit.
  • Selon des caractéristiques avantageuses, le dispositif de l'invention comprend en outre un capteur de température d'entrée de liquide arrangé pour venir en contact direct ou indirect avec le liquide à l'entrée du dispositif pour mesurer la température du liquide, et un débitmètre disposé, par exemple, en amont de l'entrée de la première chambre. Des moyens de régulation sont également prévus pour calculer un facteur de correction de la puissance à affecter au corps de chauffe de ladite seconde portion de canal en fonction des températures d'entrée et intermédiaire mesurées, du débit mesuré par le débitmètre et du bilan d'énergie.
  • De manière préférentielle, les moyens de commande et de commutation sont aussi configurés pour commander le corps de chauffe de ladite première portion de canal en fonction de la quantité d'énergie théorique utile à apporter dans ladite première portion de canal pour amener la quantité de fluide de la température d'entrée mesurée par le capteur d'entrée jusqu'à une température de consigne intermédiaire.
  • En pratique, pour distribuer une quantité d'énergie théorique appropriée au corps de chauffe de la première portion de canal, on mesure la température du liquide à chauffer en entrée du dispositif, au moyen d'un capteur au contact direct ou indirect du fluide à mesurer, et on détermine la quantité d'énergie à fournir en fonction de la quantité de liquide à chauffer (déterminée par le débitmètre) pour atteindre une température intermédiaire de consigne selon la formule E = Quantité de liquide à chauffer x (T intermédiaire de consigne - T entrée mesurée) x Capacité calorifique du liquide.
  • Pour distribuer une quantité d'énergie théorique appropriée au corps de chauffe de la deuxième portion de canal, on calcule la quantité d'énergie selon le formule E = Quantité de liquide à chauffer mesurée par le débit-mètre x (Température de sortie désirée - Température intermédiaire mesurée) x Capacité calorifique du liquide.
  • Toutefois, pour tenir compte des éventuelles erreurs et imprécisions comme sur la mesure du débit, les tolérances sur la puissance des résistances, la tension du réseau, ou autres, il est préférable d'appliquer un facteur de correction calculé selon la formule: k = T intermediaire mesurée - T entrée mesurée / T intermediaire de consigne - T entrée mesurée .
    Figure imgb0001
  • Le facteur de correction est ensuite appliqué par les moyens de commande pour ajuster la valeur de quantité d'énergie nécessaire à chauffer le liquide dans la seconde chambre afin d'obtenir la température la plus proche de la température désirée en sortie du bloc chauffant.
  • Ces calculs de bilans énergétiques corrigés et la distribution des quantités d'énergie ainsi calculées aux corps de chauffe sont mis en oeuvre à intervalles brefs et répétés pour tenir compte des variations de débit enregistrées par le débit-mètre.
  • De préférence, le calcul se fait à intervalles réguliers de 30 ms environ. La quantité d'énergie de chauffage ainsi déterminée par ce calcul est alors distribuée à chaque impulsion du débit-mètre (pour un débit-mètre fonctionnant sur un mode à impulsions) soit, typiquement, toutes les 10 à 100 ms environ, de préférence toutes les 10 à 30 ms. On apporte ainsi une réponse rapide du chauffage à des variations brusques de débit.
  • La structure du dispositif de la présente invention permet donc avantageusement de déterminer précisément la différence entre la température intermédiaire de consigne et la température intermédiaire mesurée et donc de calculer un facteur de correction pour déterminer précisément la quantité d'énergie à fournir au liquide dans la ou les portions de canal suivantes pour amener le liquide de la température intermédiaire mesurée à la température de sortie de consigne.
  • Le dispositif de l'invention permet ainsi de compenser les erreurs et corriger les imprécisions et tolérances provenant des éléments de mesure et ceux pour la production de l'énergie de chauffage en particulier les erreurs de mesure du débit-mètre, les tolérances sur la puissance des résistances, la tension du réseau et autres.
  • Afin de corriger ces erreurs sur la seconde portion de canal; en particulier, les tolérances sur la puissance des résistances, la tension du réseau, et autres imprécisions, on peut donc mesurer la température de sortie et selon les mêmes calculs de bilans d'énergie calculer un nouveau facteur de correction applicable à cette seconde portion de canal. Ce second facteur de correction s'appliquera sur la quantité d'énergie à appliquer au prochain calcul.
  • Pour compenser aussi les fluctuations de la tension du réseau par rapport à une valeur nominale, le dispositif mesure régulièrement la tension et/ou le courant du réseau et calcule un facteur de correction représentatif de la variation de la tension et/ou du courant et affecte ce facteur de correction au calcul de la quantité d'énergie à fournir aux corps de chauffe, pour ajuster le temps d'enclenchement des résistances en fonction de ces variations.
  • Selon un mode de réalisation préféré de l'invention, les portions de canal associées respectivement à au moins un corps de chauffe forment chacune des chambres reliées entre elles par un conduit de liaison, lequel présente une section inférieure à celle des chambres, un ou plusieurs corps de chauffe étant immergés dans chacune des chambres.
  • Selon des caractéristiques avantageuses, chaque corps de chauffe comprend au moins une résistance, chaque résistance de chaque corps de chauffe étant commutable indépendamment. De cette façon, les ajustements de températures peuvent être plus rapidement réalisés et avec une plus grande précision de température en sortie. On évite aussi les problèmes liés aux brusques augmentations ou chutes de tension (effet de "scintillement").
  • Selon un premier mode de réalisation, les corps de chauffe sont au nombre de deux, chacun étant logé dans une chambre séparée et comprenant chacun deux résistances, chaque résistance des deux corps de chauffe étant configurée pour être commutée indépendamment l'une de l'autre par les moyens de commutation.
  • Selon un deuxième mode de réalisation, les corps de chauffe sont au nombre de quatre, chacun étant logé dans une chambre séparée et comprenant une résistance, chaque résistance étant configurée pour être commutée indépendamment par les moyens de commutation. Dans ce mode de réalisation, le capteur de température intermédiaire est disposé en aval de la chambre communiquant avec l'entrée de liquide et en amont de la chambre communiquant avec la sortie de liquide.
  • La structure du dispositif selon l'invention permet ainsi d'utiliser des corps de chauffe ayant la forme de cartouches chauffantes qui sont commercialement disponibles et particulièrement économiques en comparaison avec les jeux de résistances imprimées de l'art antérieur.
  • L'utilisation d'une pluralité de cartouches de ce type, ayant une puissance nominale inférieure à 450W, de préférence, inférieure ou égale à 400W, sous 230V permet avantageusement, par une commutation successive et non simultanée des différentes cartouches disposées dans le canal, à une certaine fréquence, de préférence de l'ordre de 10 ms, de répartir la charge électrique sur le réseau et ainsi de limiter les risques de brusques sauts de tension provoquant les phénomènes de scintillement. De plus, l'utilisation de ce type de cartouche chauffante permet de réaliser un dispositif à faible inertie thermique ce qui rend possible la distribution successive de liquides à des températures de sortie différentes, par exemple déterminées en fonction de la nature de la boisson à préparer, à des intervalles de temps rapprochés. En particulier, le dispositif de l'invention peut servir à optimiser des températures variables du liquide dans une machine de préparation de boissons chaudes, comme il est décrit dans la demande de brevet pendante américaine, US No. 10/983,671 déposée le 9 novembre 2004 intitulée "Méthode et dispositif pour optimiser les températures variables d'un liquide". Le contenu entier de cette demande est incorporé ici par référence.
  • L'invention se rapporte aussi à un procédé pour chauffer rapidement et précisément un liquide notamment pour des applications ménagères et plus particulièrement pour la préparation de café ou autres boissons chaudes. Le procédé comprend un dispositif de chauffage comprenant un corps muni d'un canal pour la circulation du liquide, au moins un premier corps de chauffe associé à une première portion de canal, au moins un second corps de chauffe associé à une seconde portion de canal. Selon le procédé de l'invention:
    1. a) la quantité de liquide à chauffer est mesurée par un débitmètre,
    2. b) la température intermédiaire est mesurée par un capteur de température intermédiaire placé au contact direct ou indirect du liquide entre le premier et second corps de chauffe,
    3. c) la quantité d'énergie théorique à fournir par le second corps de chauffe est calculée par le moyen de commande en fonction de la quantité de liquide à chauffer mesurée, de la température intermédiaire mesurée, de la température de consigne en sortie du dispositif et de la capacité calorifique du liquide,
    4. d) cette quantité d'énergie calculée est appliquée par le moyen de commutation aux second corps de chauffe, par commutation sélective des corps de chauffe, pour amener le liquide jusqu'à la (ou tout au moins au plus près de la) température de consigne désirée en sortie du dispositif,
    5. e) au moins plusieurs des étapes a) à d) sont répétées par le moyen de commande à intervalles de temps déterminés.
  • Selon un mode de réalisation préféré du procédé, au moins plusieurs des étapes a) à d) sont répétées à des intervalles de temps inférieurs à 500 millisecondes. L'intervalle de temps sera ajusté pour la distribution de la quantité d'énergie à l'étape d) sur la fréquence des impulsions du débit-mètre à impulsions ou, tout au moins, à une fréquence déterminée de l'ordre de une à quelques dizaines de millisecondes pour un autre type de débit-mètre.
  • Un tel procédé permet d'obtenir une précision améliorée de la température en sortie désirée du liquide, en particulier, grâce à la mesure réelle des températures du liquide (et non pas celles du corps de chauffe comme dans l'art antérieur) et par une détermination des quantités d'énergie fournies, qui tient compte des variations réelles du débit du liquide dans le dispositif.
  • Selon un mode de réalisation préféré du procédé de l'invention, les quantités d'énergie à appliquer à la fois aux premier et second corps de chauffe sont calculées en fonction des variables de températures mesurées et de la mesure du débit-mètre.
  • Le procédé comprend alors les étapes suivantes :
    • f) la température du liquide à l'entrée du dispositif est mesurée par un capteur de température d'entrée du liquide placé au contact direct ou indirect du liquide,
    • g) la quantité de liquide à chauffer est mesurée par un débitmètre,
    • h) la quantité d'énergie théorique à fournir par le premier corps de chauffe est calculée par un moyen de commande en fonction de la quantité de liquide mesurée, de la température mesurée à l'entrée du dispositif, d'une température intermédiaire de consigne et de la capacité calorifique du liquide,
    • i) la température intermédiaire est mesurée par un capteur de température intermédiaire placé au contact direct ou indirect du liquide entre le premier et second corps de chauffe,
    • j) la quantité d'énergie théorique à fournir par le second corps de chauffe est calculée par le moyen de commande en fonction de la quantité de liquide à chauffer mesurée, de la température intermédiaire mesurée, de la température de consigne en sortie du dispositif et de la capacité calorifique du liquide,
    • k) ces quantités d'énergie calculées sont appliquées par le moyen de commutation, respectivement, aux premier et second corps de chauffe, par commutation sélective des corps de chauffe, pour amener le liquide jusqu'à la (ou tout au moins au plus près de la) température de consigne désirée en sortie du dispositif,
    • l) au moins plusieurs des étapes f) à k) sont répétées par le moyen de commande à intervalles de temps déterminés.
  • Selon un mode préférentiel, le procédé prend en compte les erreurs et imprécisions globales pouvant provenir de différents composants du dispositif (par exemple, débit-mètre, résistances, etc.) ou de la tension du réseau de façon à affiner la quantité d'énergie fournie, notamment, au second corps de chauffe, et obtenir ainsi, une précision de chauffage améliorée. Pour cela, on calcule un facteur de correction selon la formule: k = température intermediaire mesurée - Température dʹentrée mesurée / température intermediaire de consigne - Température dʹentrée mesurée ,
    Figure imgb0002
    et
    l'on applique ce facteur de correction pour calculer la quantité d'énergie à fournir par le second corps de chauffe.
  • Le procédé de l'invention est bien entendu appliqué en boucle, à des intervalles de temps rapprochés (de l'ordre de quelques millisecondes, par exemple, toutes les 30 ms pour ce qui est du calcul et toutes les 10 ms pour ce qui est de la distribution d'énergie aux corps de chauffe) pendant le passage du liquide au travers du dispositif de chauffage; notamment, par des moyens de régulation tels qu'un microcontrôleur ou autres moyens de régulation électroniques équivalents.
  • Selon un aspect de l'invention, la température du liquide est mesurée par des capteurs qui sont en contact direct ou indirect avec le liquide. Un contact "direct" s'entend d'une mesure utilisant un capteur plongé dans le liquide. Il peut s'agir, par exemple d'une sonde NTC protégée par un verre ou une céramique. Un contact "indirect" s'entend d'une mesure utilisant un capteur (telle qu'une sonde fine NTC) fixé par exemple par collage du côté sec d'un conduit non-chauffant dans ou contre lequel circule le liquide, tel qu'un tube métallique. Dans tous les cas, le liquide sépare le capteur par rapport au corps de chauffe proprement dit de façon à ce que la température mesurée soit la température du liquide et non pas une température affectée par la conduction du corps de chauffe contre une surface solide conductrice thermiquement.
  • Un mode de réalisation concerne un dispositif de chauffage lequel comprend en outre une électrovanne raccordée audit conduit entre la sortie de fluide et ledit dispositif utilisateur et qui est commandée par lesdits moyens de commande, et en ce que lesdits moyens de commande sont agencés pour commander l'électrovanne de façon à diriger le fluide provenant de la sortie de fluide vers un bac de drainage ou une boucle de recirculation, lorsque la température mesurée par ledit capteur n'a pas encore atteint la température de consigne et vers le dispositif utilisateur lorsque la température mesurée a atteint la température de consigne.
  • La température de consigne peut être une température intermédiaire théorique du dispositif lorsque ledit capteur de température est disposé de manière à mesurer une température intermédiaire dans ledit canal. Dans une variante, la température de consigne est la température en sortie souhaitée lorsque le capteur de température est disposé à la sortie du canal de manière à mesurer la température du fluide à la sortie du dispositif.
  • Grâce à ces caractéristiques on s'assure que le fluide à destination du dispositif utilisateur, typiquement une unité d'extraction d'une substance par exemple du café ou une buse d'éjection de vapeur, arrive toujours dans ce dispositif à une température suffisante même lorsque le dispositif est utilisé dans la journée pour la première fois. Compte tenu de la faible inertie thermique du dispositif, la période de dérivation dans le bac de drainage, est en général de l'ordre de quelques secondes seulement (Typiquement, de 3-6 secondes). Cet arrangement permet donc de préparer rapidement des boissons de qualité constante indépendamment d'éventuelles fluctuations au niveau du dispositif de chauffage.
  • D'autres caractéristiques et avantages de la présente invention ressortiront plus clairement de la description détaillée qui suit de modes de réalisation du dispositif de chauffage selon l'invention, donnés à titre purement illustratif et non limitatif, en liaison avec les dessins annexés sur lesquels :
    • la figure 1 est une vue en perspective partiellement arrachée d'un dispositif de chauffage d'un liquide selon un premier mode de réalisation de l'invention ;
    • la figure 2 est une vue schématique d'une machine à café comprenant le dispositif de chauffage de la figure 1, le dispositif de chauffage étant représenté en coupe ;
    • la figure 3 est une vue en perspective d'un dispositif de chauffage d'un liquide selon un deuxième mode de réalisation de l'invention ;
    • la figure 4 est une vue schématique d'une machine à café comprenant le dispositif de chauffage de la figure 3, le dispositif de chauffage étant représenté en coupe et
    • la figure 5 est une vue similaire à la figure 4 illustrant un autre aspect de l'invention
  • En se référant aux figures 1 et 2, on voit illustré à titre d'exemple un dispositif de chauffage d'un liquide selon un premier mode de réalisation désigné par la référence numérique générale 1, intégré dans une machine à café 2 (figure 2) qui peut indifféremment être destinée à un usage ménager ou industriel. A noter que la nature du liquide à chauffer dans le dispositif de chauffage n'est pas critique et que le liquide peut être quelconque par exemple de l'eau, du lait, une boisson chocolatée etc.. Dans l'application du dispositif de chauffage illustré, le liquide à chauffer est de l'eau. La machine à café 2 illustrée à la figure 2 comprend un réservoir d'eau froide 4 relié via une conduite 6 à une pompe 8 qui alimente en eau le dispositif de chauffage 1 via une entrée de liquide 10. L'eau circule à travers un canal 12 prévu dans un corps 13 du dispositif de chauffage 1. Le canal 12 est associé à des corps de chauffe 14a, 14b, 14c et 14d, dont l'alimentation électrique est commandée par des moyens de commutation 16 reliés à des moyens de commande 18. Les corps de chauffe sont ainsi immergés dans le liquide à chauffer et en contact direct avec celui-ci. L'eau sort du dispositif de chauffage via une sortie de liquide 20 puis circule à travers un conduit 22 pour arriver à travers un conduit 24 sur une cartouche 26 contenant une substance destinée à former une boisson telle que du café à partir de café torréfié et moulu ou de café soluble, du thé, du chocolat ou autres boissons chaudes. La cartouche 26 est, par exemple, une cartouche scellée qui s'ouvre sous la pression du liquide conformément à ce qui est décrit dans le brevet européen No 512 468 . Le café coule ensuite dans une tasse 28. La machine permet également de produire de la vapeur via un conduit 30 relié au conduit 22. A la figure 1, la direction de circulation d'eau à travers le dispositif de chauffage est indiquée par les flèches A et B.
  • Dans le dispositif de chauffage 1 selon le premier mode de réalisation de l'invention, le canal 12 comprend quatre portions de canal 12a, 12b, 12c et 12d, reliées successivement entre elles par trois conduits de liaison 32ab, 32bc et 32cd. Les portions de canal 12a, 12b, 12c et 12d définissent chacune une chambre qui reçoit un corps de chauffe14a, 14b, 14c et 14d. On notera à ce propos que les conduits de liaison 32ab, 32bc et 32cd présentent des sections transversales inférieures à celles des chambres 12a, 12b, 12c et 12d. Les chambres 12a, 12b, 12c et 12d sont arrangées parallèles entre elles et juxtaposées dans un bloc 13a que comprend le corps 13. Les chambres 12a, 12b, 12c et 12d débouchent toutes sur un premier côté du bloc 13a à une première de leurs extrémités par laquelle les corps de chauffe 14a, 14b, 14c et 14d sont introduits dans les chambres12a, 12b, 12c et 12d. Les deuxièmes extrémités des chambres 12a, 12b, 12c et 12d débouchent sur un deuxième côté du bloc 13a opposé au premier et les chambres 12a, 12b, 12c et 12d sont reliées entre elles à une de leurs extrémités par les trois conduits de liaison 32ab, 32bc et 32cd. La chambre 12a est reliée d'une part à l'entrée de liquide 10 via un conduit 36 par son extrémité disposée du deuxième côté du bloc 13a et d'autre part à la chambre 12b via le conduit de liaison 32ab par son extrémité disposée du premier côté du bloc 13a. La chambre 12b est reliée à la chambre 12c via le conduit de liaison 32bc par son extrémité disposée du deuxième côté du bloc 13a. La chambre 12c est reliée à la chambre 12d via le conduit de liaison 32cd par son extrémité disposée du premier côté du bloc 13a et la chambre 12d est reliée à la sortie de liquide 20 via un conduit 38 par son extrémité disposée du deuxième côté du bloc 13a.
  • On notera que chaque corps de chauffe 14a, 14b, 14c et 14d s'étend sensiblement sur toute la longueur de la chambre à laquelle il est associé et présente une forme sensiblement complémentaire à celle de la chambre à laquelle il est associé. Selon une variante avantageuse (non représentée), la surface extérieure des corps de chauffe et/ou la paroi intérieure de la chambre qui lui est associée présente un rainurage hélicoïdal, ce qui permet d'allonger le trajet du liquide pendant lequel il est en contact avec les corps de chauffe et sa vitesse; donc augmenter le coefficient d'échange de chaleur; sans pour cela augmenter l'encombrement du dispositif de chauffage.
  • Le dispositif de chauffage 1 comprend en outre un capteur de température 40 disposé dans le conduit 36 reliant l'entrée de liquide à l'entrée de la chambre 12a. Ce capteur 40 est arrangé pour venir en contact direct avec le liquide à chauffer et pour mesurer la température du liquide à chauffer à l'entrée du dispositif de chauffage, c'est-à-dire avant qu'il ne soit venu en contact avec un des corps de chauffe du dispositif 1. Un débitmètre 42 est également prévu dans le conduit 36, donc en amont de la chambre 12a.
  • Comme cela est visible à la figure 2, le corps 13 comprend en outre deux couvercles 44, 46 qui s'étendent respectivement du premier et du deuxième côté du bloc 13a et recouvrent les deux extrémités de chacune des chambres 12a, 12b, 12c et 12d. Le couvercle 44 qui se trouve du premier côté du bloc 13a porte les corps de chauffe 14a, 14b, 14c, et 14d tandis que le couvercle 46 qui se trouve du deuxième côté du bloc 13a porte un capteur de température intermédiaire 48. Le capteur de température intermédiaire 48 est associé au conduit de liaison 32bc et est agencé pour venir en contact direct avec le liquide à chauffer circulant dans le conduit.
  • Le capteur de température d'entrée 40, le débitmètre et le capteur de température intermédiaire 48 sont reliés aux moyens de commande 18 du dispositif 1.
  • Le couvercle 44 ferme une première extrémité des chambres 12a, 12b, 12c et 12d et délimite en outre avec le bloc 13a les conduits de liaison 32ab et 32cd. Le couvercle 46 ferme la deuxième extrémité des chambres 12a, 12b, 12c et 12d et délimite le conduit 32bc avec le bloc 13a. Le couvercle 46 délimite en outre un canal 36a reliant le conduit 36 à la chambre 12a ainsi que le canal 38a reliant la chambre 12d au conduit 38. Typiquement, les couvercles 44 et 46 sont fixés sur le bloc 13a au moyens de vis (non représentées) et l'étanchéité est assurée au moyen de joints O ring 44a, 46a interposés entre les couvercles 44, 46 et le bloc 13a.
  • Les moyens de commande 18 et les moyens de commutation 16 sont configurés pour commander les corps de chauffe 14a, 14b, 14c et 14d. Ces moyens de commande 16 sont particulièrement agencés pour commander les corps de chauffe 14c et 14d disposés respectivement dans les chambres 12c, 12d situées en aval du capteur de température intermédiaire 48 en fonction de la quantité d'énergie utile à apporter dans les chambres 12c et 12d pour amener le liquide à chauffer de la température intermédiaire mesurée par le capteur de température intermédiaire 48 jusqu'à une température de consigne contenue par exemple dans une mémoire des moyens de commande 18.
  • Les corps de chauffe 14a, 14b, 14c, et 14d comprennent chacun une résistance. Les résistances sont reliées aux moyens de commutation 16 et les moyens de commande 18 sont agencés de manière à pouvoir commuter les résistances indépendamment les unes des autres. Le principe de distribution de l'énergie est basé sur les impulsions données par le débit-mètre (par exemple tous les 100 ms ou moins). A chaque impulsion du débit-mètre correspond une énergie soit un temps de chauffe donné sur les corps de chauffe. Ce système proportionnel permet de réagir à des variations rapides du débit; ce qui peut être le cas au cours du cycle d'extraction d'une capsule, en particulier, au moment du perçage de la capsule. Chaque résistance développe une puissance nominale inférieure à la valeur de puissance théorique de scintillement du réseau, typiquement inférieur à 450W sous 230V. Selon la norme IEC 1000-3-3, la puissance maximale pouvant être commutée sur toute la gamme de fréquences est d'environ 380W. Pour éviter les écarts de puissance en valeur absolue supérieurs à la puissance nominale de chacune des résistances, les moyens de commande 18 sont agencés pour commuter les résistances des corps de chauffe de l'état "en circuit" à l'état "hors circuit" et vice-versa de manière intermittente et non simultanée. La commutation se fait toujours au passage à zéro de la tension pour éviter l'introduction de perturbation dans le réseau électrique.
  • Les moyens de commande 18 comprennent en outre des moyens de régulation qui sont prévus pour calculer la quantité d'énergie à affecter aux corps de chauffe 14c, 14d disposés dans les portions de canal 12c, 12d situées en aval du capteur de température intermédiaire 48, en fonction des températures d'entrée et intermédiaire mesurées et du débit mesuré par le débitmètre 42. D'autres facteurs peuvent être pris en compte dans le calcul de la quantité d'énergie, notamment la mesure de la tension du réseau (par exemple 230V). La quantité d'énergie peut être corrigée par un facteur de correction basé sur la fluctuation entre la tension réellement mesurée du réseau et la tension nominale théorique. Ce facteur indique si la tension réelle est supérieure ou inférieure à la tension nominale, par exemple, de 230V. Ce facteur est mis à jour lorsque les résistances sont enclenchées afin de tenir aussi compte des chutes de tension dans la ligne d'alimentation.
  • Les moyens de régulation comprennent généralement un microcontrôleur, de la mémoire et des programmes de calcul des bilans énergétiques et des facteurs de correction à appliquer. Les calculs des bilans énergétiques, des corrections et les commutations des corps de chauffe, par le microcontrôleur se font à intervalles de temps très courts de façon à constamment réguler les quantités d'énergie apportées aux corps de chauffe. Les intervalles pour les calculs des quantités d'énergie sont, de l'ordre de quelques millisecondes, préférablement, de moins de 100 ms, par exemple toutes les 30 ms.
  • Le mode de régulation automatique est basé sur le principe suivant. Une mesure de température du liquide à l'entrée du dispositif est prise par le capteur de température 40 à l'entrée du dispositif; la quantité de liquide à chauffer est quant à elle prise par un débit-mètre 42 sur la base d'impulsions. Une température intermédiaire entre le premier et second corps de chauffe est aussi mesurée par le capteur de température 48. Dans un mode de réalisation ne comprenant pas de capteur de température à l'entrée de liquide, le système pourra partir d'une température d'entrée théorique,typiquement de la température de l'eau du réseau, mémorisée dans un microcontrôleur.
  • Ces mesures sont recueillies par le microcontrôleur comprenant un programme de calcul des quantités d'énergie. En particulier, le microcontrôleur calcule ainsi la quantité d'énergie théorique à fournir par le premier corps de chauffe selon la formule:
    Quantité d'Energie des premiers corps de chauffe (14a, 14b, 14e) = Quantité de liquide à chauffer mesurée par le débit-mètre x (T intermédiaire de consigne - T entrée mesurée) x Capacité calorifique du liquide. Un facteur de correction basé sur les variations de tension du réseau peut être appliqué à la valeur de quantité finale.
  • La température intermédiaire de consigne est une valeur déterminée par calcul lors de tests du dispositif et qui correspond à une valeur théorique optimale en fonction de la température mesurée de l'eau à l'entrée, la température de sortie fixée (consigne), un facteur de correction du réseau 230V, les valeurs théoriques des résistances ohmiques des éléments chauffants. Cette valeur varie en fonction de la température de sortie désirée, par exemple, pour la production d'un café ou d'une autre boisson comme du chocolat. Cette valeur est enregistrée dans le programme ou dans une mémoire du microcontrôleur.
  • Le microcontrôleur calcule aussi la quantité d'énergie théorique à fournir par le second corps de chauffe selon la formule:
  • Quantité d'énergie pour les seconds corps de chauffe (14c, 14d, 14f) = Quantité de liquide à chauffer mesurée par le débit-mètre x (Température de sortie désirée - Température intermédiaire mesurée) x Capacité calorifique du liquide. Cette quantité d'énergie peut elle aussi être corrigée pour tenir compte de la tension du réseau.
  • Le microcontrôleur contrôle ensuite la distribution de ces quantités d'énergie calculées, par unité de temps de chauffe, en commandant la commutation on/off des résistances contenues dans les corps de chauffe.
  • Toutefois, pour tenir compte des éventuelles erreurs et imprécisions comme sur la mesure du débit, les tolérances sur la puissance des résistances, la tension du réseau, ou autres, il est préférable d'appliquer un facteur de correction calculé selon la formule: k = T intermediaire mesurée - T entrée mesurée / T intermediaire de consigne - T entrée mesurée .
    Figure imgb0003
  • Le facteur de correction est ensuite appliqué par le microcontrôleur pour ajuster la valeur de quantité d'énergie nécessaire à chauffer le liquide dans la seconde chambre afin d'obtenir la température la plus proche de la température désirée en sortie du bloc chauffant.
  • Ainsi, la correction sur le(s) corps de chauffe est appliquée de la manière suivante: Quantité d énergie corrigée du second corps de chauffe = 2 - k × Quantité d énergie théorique du second corps de chauffe ,
    Figure imgb0004

    soit encore:
    Quantité d'énergie corrigée = (2-K) x Capacité calorifique du liquide x Quantité de liquide à chauffer x (Température de sortie désirée - Température intermédiaire mesurée). Cette quantité d'énergie peut elle aussi être corrigée pour tenir compte de la tension du réseau.
  • Ainsi lorsque le facteur de correction est inférieur à 1; cela signifie que la quantité d'énergie réelle distribuée par le(s) corps de chauffe en amont de la sonde de température intermédiaire est trop faible et il faut donc appliquer une correction par augmentation de la quantité d'énergie distribuée par le(s) corps de chauffe situés en aval de la sonde de température intermédiaire. Lorsque le facteur est supérieur à 1, cela signifie que la quantité d'énergie réelle distribuée par le(s) corps de chauffe en amont de la sonde de température intermédiaire est trop élevée; et il faut alors appliquer une correction en diminuant la quantité d'énergie distribuée par le(s) corps de chauffe situés en aval de cette sonde. Par exemple, si le facteur de correction est calculé à une valeur de 1.10; cela signifie que la quantité d'énergie distribuée par le(s) premier(s) de chauffe est 10% trop élevée et il faudra alors appliquer une réduction de la quantité d'énergie aux second(s) corps de chauffe de 10% pour obtenir une température de sortie se rapprochant au plus près de la température désirée.
  • Aux figures 3 et 4 est représenté un dispositif de chauffage d'un liquide selon un deuxième mode de réalisation de l'invention dans lequel les éléments identiques à ceux décrits en liaison avec les figures 1 et 2 sont désignés par les mêmes références numériques.
  • Ce dispositif de chauffage ne se distingue de celui décrit précédemment qu'en ce que le canal 12 prévu dans le corps 13 et à travers lequel circule le liquide à chauffer ne comprend que deux portions de canal 12e et 12f reliées entre elles par un conduit de liaison 32ef auquel est associé le capteur de température intermédiaire 48 et qu'en ce que les corps de chauffe 14e et 14f associés respectivement aux portions de canal 12e et 12f comprennent chacun deux résistances, chacune d'elles étant reliée aux moyens de commande 18 via les moyens de commutation 16.
  • De même que dans le premier mode de réalisation, les résistances électriques des corps de chauffe 14e et 14f développent chacune une puissance nominale inférieure à la valeur de puissance théorique de scintillement du réseau typiquement inférieure à 450W sous 230V et les moyens de commande 18 sont agencés pour commuter ces résistances de l'état "en circuit" à l'état "hors circuit" et vice-versa de manière intermittente typiquement à une fréquence de l'ordre de 10 ms. Des corps de chauffe de ce type sont par exemple de cartouches chauffantes dites "haute charge" ou "haute densité"; c'est à dire développant une puissante importante par unité de surface de chauffe.
  • A la figure 5 est représentée schématiquement une machine à café incorporant un autre aspect de l'invention. Dans cette figure, les éléments identiques à ceux décrits en liaison avec la figure 4 sont désignés par les mêmes références numériques.
  • Cette machine à café ne se distingue de celle décrite précédemment qu'en ce qu'elle comprend un dispositif permettant d'assurer la délivrance d'un "premier" liquide ou d'une "première" vapeur à la température adéquate. Pour cela, le dispositif comprend un premier conduit principal 22 relié au dispositif d'extraction 26. Une valve de contre-pression 24a du conduit 24 est disposé à l'entrée du dispositif 26. Une première électrovanne 50a est reliée à une portion de conduit 22a conduisant à un bac de draînage 52. Une deuxième électrovanne dite "vapeur" 50b est raccordée au conduit 30 disposé entre le premier dispositif utilisateur et le deuxième dispositif utilisateur formé dans l'exemple par une buse d'éjection de vapeur 56. Les électrovannes 50a, 50b sont commandées par les moyens de commande 18. Ces derniers sont agencés pour commander respectivement les électrovannes 50a, 50b de façon à diriger le fluide provenant de la sortie de fluide 20 soit vers un des deux dispositifs utilisateurs, soit vers le bac de drainage 52 selon que la température mesurée par le capteur 48 atteint ou non à la température de consigne pour le dispositif utilisateur considéré. A noter que le bac de drainage peut être remplacé par une boucle de recirculation retournant à l'entrée 10 du dispositif de chauffage. Une recirculation complique toutefois le dispositif car il peut nécessiter une pompe supplémentaire. De plus, la température de consigne est obtenue après quelques secondes seulement et la quantité d'eau rejetée est donc généralement faible.
  • Le dispositif fonctionne de la façon suivante:
    • Pour une boisson à extraire par le dispositif d'extraction 26, l'électrovanne "vapeur" 50b reste fermée. La pompe à eau 8 alimente le dispositif de chauffage qui fonctionne selon le principe déjà décrit. La température de l'eau est contrôlée en continue par le capteur de température 48. Tant que cette température est en dessous d'une température de consigne prédéterminée, le contrôleur 18 maintient l'électrovanne "de dérivation" 50a ouverte de façon à ce que l'eau sortant du dispositif de chauffage ne soit pas utilisée pour l'extraction mais soit drainée dans le bac de drainage ou recirculée. Une fois la température de consigne atteinte, le contrôleur commande la fermeture de la vanne 50a. Le fluide peut alors circuler jusqu'à forcer l'ouverture de la valve de contre-pression et alimenter le dispositif 26.
    • Lorsque la commande de vapeur est activée, comme pour préparer du lait moussé, le principe de montée en température est similaire. Au début du chauffage, la vanne 50b reste fermée et la vanne 50a est ouverte pour drainer ou recirculer le fluide (généralement de l'eau). Une fois la température de consigne de production de vapeur atteinte, la vanne 50a est fermée par le contrôleur et la vanne 50b est ouverte. La pression de vapeur étant trop faible pour ouvrir la valve de contre-pression 24, la vapeur alimente directement la sortie 56. Il faut noter qu'un capteur de température de sortie vers la sortie 20 du dispositif peut être utilisé pour le contrôle de la température au lieu d'un capteur de température intermédiaire.
    • Il va de soi que la présente invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits et que diverses modifications et variantes simples peuvent être envisagées par l'homme du métier sans sortir du cadre de l'invention telle que définie par les revendications annexées. A titre d'exemple, le capteur intermédiaire 48 disposé entre la chambre 12b et 12c aux figures 1 et 2 pourrait également être disposé entre la chambre 12c et 12d, l'idée étant que le capteur de température intermédiaire soit disposé en aval d'une chambre comprenant un corps de chauffe et communiquant avec l'entrée de liquide et en amont d'une chambre comprenant un corps de chauffe et communiquant avec la sortie de liquide.

Claims (31)

  1. Dispositif (1) de chauffage d'un fluide, en liquide chaud ou en vapeur pour la préparation de café ou autres boissons chaudes, comprenant un corps (13) muni d'un canal (12) pour la circulation d'un fluide, ledit canal ayant une entrée (10) de fluide et une sortie (20) de fluide et étant associé à au moins un corps de chauffe (14a, 14b, 14c, 14d) électrique dont l'alimentation est commandée par des moyens de commutation (16) reliés à des moyens de commande (18); ledit canal comprenant au moins des première et deuxième portions (12a, 12b, 12c, 12d) de canal reliées entre elles par une troisième portion de canal formant un conduit de liaison (32ab, 32bc, 32cd); lesdites au moins première et deuxième portions de canal (12a, 12b, 12c, 12d) étant associées chacune à au moins un corps de chauffe; le conduit de liaison étant associé à un capteur de température intermédiaire (48) relié audits moyens de commande; ledit capteur de température intermédiaire étant arrangé pour mesurer la température du fluide circulant dans ledit conduit, ledit dispositif étant caractérisé en ce qu'il comprend un débit-mètre (42) qui mesure la quantité de fluide traversant ledit canal et en ce que les moyens de commande et de commutation sont configurés pour commander le corps de chauffe de ladite au moins seconde portion de canal en fonction de la quantité d'énergie utile à apporter dans ladite seconde portion de canal pour amener le fluide à chauffer de la température intermédiaire mesurée par ledit capteur de température intermédiaire jusqu'à une température de consigne en sortie du dispositif; ladite quantité d'énergie étant calculée par le moyen de commande en fonction de la quantité de fluide mesurée par le débit-mètre, de la température intermédiaire mesurée et de la température de consigne en sortie du dispositif, et cette quantité d'énergie étant distribuée audit corps de chauffe de ladite au moins seconde portion de canal par les moyens de commande et de commutation à intervalles de temps déterminés.
  2. Dispositif de chauffage d'un fluide selon la revendication 1, caractérisé en ce que les intervalles de temps déterminés sont inférieurs ou égaux à 500 millisecondes.
  3. Dispositif de chauffage d'un fluide selon la revendication 1 ou 2, caractérisé en ce que les corps de chauffe sont immergés dans le fluide à chauffer.
  4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend en outre un capteur de température d'entrée (40) de fluide arrangé pour venir en contact direct avec le fluide à l'entrée du dispositif et un débitmètre disposé en amont de l'entrée de la première chambre.
  5. Dispositif selon la revendication 4, caractérisé en ce que des moyens de régulation (16, 18) sont prévus pour calculer un facteur de correction de la puissance à affecter au corps de chauffe de ladite seconde portion de canal en fonction des températures d'entrée et intermédiaire mesurées.
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chaque corps de chauffe comprend au moins une résistance, chaque résistance de chaque corps de chauffe étant commutable indépendamment.
  7. Dispositif selon la revendication 6, caractérisé en ce que les corps de chauffe sont au nombre de deux et comprennent chacun deux résistances, chaque résistance des deux corps de chauffe étant agencée pour être commutée indépendamment l'une de l'autre par les moyens de commutation (16).
  8. Dispositif selon la revendication 6, caractérisé en ce que les corps de chauffe sont au nombre de quatre, chacun étant logé dans une portion de canal séparée et chacun comprenant une résistance, chaque résistance étant agencée pour être commutée indépendamment par les moyens de commutation.
  9. Dispositif selon la revendication 6, 7 ou 8, caractérisé en ce que chaque résistance développe une puissance nominale inférieure à la valeur de puissance théorique de scintillement du réseau et en ce que les résistances sont commutées dans une position marche-arrêt par les moyens de commutation de manière décalée pour éviter les écarts de puissance en valeur absolue supérieurs à la puissance nominale de chacune des résistances.
  10. Dispositif selon la revendication 8, caractérisé en ce que chaque résistance développe une puissance électrique nominale inférieure à 450W.
  11. Dispositif de chauffage d'un fluide selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites portions de canal associées respectivement à au moins un corps de chauffe forment chacune des chambres reliées entre elles par un conduit de liaison qui présente une section transversale inférieure à celle des chambres.
  12. Dispositif de chauffage d'un fluide selon la revendication 11, caractérisé en ce que la surface extérieure des corps de chauffe et/ou la paroi intérieure de la chambre qui lui est associée présente un rainurage hélicoïdal.
  13. Dispositif selon l'une des revendications 11 ou 12, caractérisé en ce que le corps comprend un bloc dans lequel sont ménagées lesdites chambres, en ce que lesdites chambres sont parallèles entre elles et débouchent de part et d'autre du bloc, en ce qu'elles sont reliées entre elles à une de leurs extrémités par un conduit de liaison et en ce que le corps comprend en outre deux couvercles qui recouvrent respectivement des premières et deuxièmes extrémités desdites chambres.
  14. Dispositif selon la revendication 13, caractérisé en ce que le premier couvercle qui est associé à des premières extrémités desdites chambres porte les corps de chauffe (12a, 12b, 12c, 12d) et en ce que le deuxième couvercle qui est associé aux deuxièmes extrémités desdites chambres porte le capteur de température intermédiaire (48).
  15. Dispositif selon la revendication 14, caractérisé en ce que les premier et deuxième couvercles délimitent avec le bloc le ou les conduits de liaison.
  16. Dispositif selon la revendication 14, caractérisé en ce que le deuxième capteur et le débitmètre sont disposés dans un conduit ménagé dans le bloc et reliant l'entrée de fluide à l'entrée d'une première chambre.
  17. Dispositif selon la revendication 13, caractérisé en ce que chaque corps de chauffe s'étend sur toute la longueur de la chambre à laquelle il et associé et en ce qu'il présente une forme complémentaire à celle de la chambre à laquelle elle est associée.
  18. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le capteur de température intermédiaire (48) est disposé en aval de la chambre communiquant avec l'entrée de fluide et en amont de la chambre communiquant avec la sortie de fluide.
  19. Procédé pour chauffer rapidement et précisément un fluide pour la préparation de café ou autres boissons, à partir d'un dispositif de chauffage comprenant un corps muni d'un canal pour la circulation du fluide, d'au moins un premier corps de chauffe et d'au moins un second corps de chauffe, caractérisé en ce que
    a) la quantité de fluide à chauffer est mesurée par un débitmètre (42),
    b) la température intermédiaire est mesurée par un capteur de température intermédiaire (48) placé au contact direct ou indirect du fluide entre le premier et second corps de chauffe (12a, 12b, 12c, 12d),
    c) la quantité d'énergie théorique à fournir par le second corps de chauffe est calculée par le moyen de commande en fonction de la quantité de fluide à chauffer mesurée, de la température intermédiaire mesurée, de la température de consigne en sortie du dispositif et de la capacité calorifique du fluide,
    d) cette quantité d'énergie calculée est appliquée par le moyen de commutation, respectivement, aux second corps de chauffe, par commutation sélective des corps de chauffe, pour amener le fluide jusqu'à la (ou tout au moins au plus près de la) température de consigne désirée en sortie du dispositif,
    e) au moins plusieurs des étapes a) à d) sont répétées par le moyen de commande à intervalles de temps déterminés.
  20. Procédé pour chauffer rapidement et précisément un fluide selon la revendication 19, caractérisé en ce qu'au moins plusieurs des étapes a) à d) sont répétées à des intervalles de temps inférieurs ou égaux à 500 millisecondes.
  21. Procédé selon la revendication 19 ou 20, caractérisé en ce que la quantité d'énergie distribuée à l'étape d) se fait à ou après chaque impulsion du débit-mètre pendant l'étape a).
  22. Procédé selon la revendication 21, caractérisé en ce que l'intervalle pour le calcul de la quantité d'énergie à l'étape c) est d'environ 30 ms.
  23. Procédé selon la revendication 19, pour chauffer rapidement et précisément un fluide notamment pour des applications ménagères et plus particulièrement pour la préparation de café ou autres boissons, à partir d'un dispositif de chauffage comprenant un corps muni d'un canal pour la circulation du fluide, d'au moins un premier corps de chauffe, d'au moins un second corps de chauffe, caractérisé en ce que :
    f) la température du fluide à l'entrée du dispositif est mesurée par un capteur de température d'entrée du fluide placé au contact direct ou indirect du fluide,
    g) la quantité de fluide à chauffer est mesurée par un débitmètre,
    h) la quantité d'énergie théorique à fournir par le premier corps de chauffe est calculée par un moyen de commande en fonction de la quantité de fluide mesurée, de la température mesurée à l'entrée du dispositif, d'une température intermédiaire de consigne et de la capacité calorifique du fluide,
    i) la température intermédiaire est mesurée par un capteur de température intermédiaire placé au contact direct ou indirect du fluide entre le premier et second corps de chauffe,
    j) la quantité d'énergie théorique à fournir par le second corps de chauffe est calculée par le moyen de commande en fonction de la quantité de fluide à chauffer mesurée, de la température intermédiaire mesurée, de la température de consigne en sortie du dispositif et de la capacité calorifique du fluide,
    k) ces quantités d'énergie calculées sont appliquées par le moyen de commutation, respectivement, aux premiers et second corps de chauffe, par commutation sélective des corps de chauffe, pour amener le fluide jusqu'à la (ou tout au moins au plus près de la) température de consigne désirée en sortie du dispositif,
    l) au moins plusieurs des étapes f) à k) sont répétées par le moyen de commande à intervalles de temps déterminés.
  24. Procédé pour chauffer rapidement et précisément un fluide selon la revendication 23, caractérisé en ce qu'au moins plusieurs des étapes f) à k) sont répétées à des intervalles de temps inférieurs ou égaux à 500 millisecondes.
  25. Procédé selon la revendication 23 ou 24, caractérisé en ce que les quantités d'énergie distribuées à l'étape k) se fait à ou après chaque impulsion du débit-mètre pendant l'étape g).
  26. Procédé selon la revendication 24, caractérisé en ce que l'intervalle pour les calculs des quantités d'énergie aux étapes h) et j) est d'environ 30 ms.
  27. Procédé selon la revendication 24, 25 ou 26 caractérisé en ce qu' on calcule un facteur de correction selon la formule: k = température intermediaire mesurée - Température dʹentrée mesurée / température intermediaire de consigne - Température dʹentrée mesurée ,
    Figure imgb0005

    on applique ce facteur de correction pour calculer la quantité d'énergie à fournir par le second corps de chauffe.
  28. Dispositif de chauffage d'un fluide selon la revendication 1, caractérisé en ce qu'une sortie de fluide est reliée par un conduit à un dispositif utilisateur, et en ce que ledit dispositif de chauffage comprend en outre au moins une électrovanne (50a) raccordée audit conduit entre la sortie de fluide et ledit dispositif utilisateur et qui est commandée par lesdits moyens de commande (18), en ce que lesdits moyens de commande sont agencés pour commander l'électrovanne de façon à diriger le fluide provenant de la sortie de fluide vers un bac de drainage ou une boucle de recirculation lorsque la température mesurée par ledit capteur n'a pas encore atteint la température de consigne et vers le dispositif utilisateur lorsque la température mesurée a atteint la température de consigne.
  29. Dispositif selon la revendication 28, caractérisé en ce que le dispositif utilisateur comprend une unité d'extraction d'une substance contenue dans une cartouche (26) et/ou une buse d'éjection de vapeur
  30. Dispositif selon la revendication 28 ou 29, caractérisé en ce que le dispositif comprend en outre des moyens permettant d'engendrer une contre-pression disposés en aval du dispositif utilisateur et en ce que l'électrovanne (50a) est une vanne simple disposée sur une branche de dérivation du conduit .
  31. Dispositif selon la revendication 28 ou 29, caractérisé en ce que l'électrovanne (50a) est une vanne à trois voies disposée sur le conduit, les trois voies étant respectivement raccordées à la sortie de fluide, au bac de drainage et au dispositif utilisateur.
EP05782895A 2004-09-13 2005-09-09 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide Active EP1809151B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL05782895T PL1809151T3 (pl) 2004-09-13 2005-09-09 Urządzenie podgrzewające płyn i sposób podgrzewania płynu
EP07124079A EP1913851B1 (fr) 2004-09-13 2005-09-09 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide
EP05782895A EP1809151B1 (fr) 2004-09-13 2005-09-09 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04021674A EP1634520A1 (fr) 2004-09-13 2004-09-13 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide
EP05782895A EP1809151B1 (fr) 2004-09-13 2005-09-09 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide
PCT/EP2005/009689 WO2006029763A2 (fr) 2004-09-13 2005-09-09 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07124079A Division EP1913851B1 (fr) 2004-09-13 2005-09-09 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide

Publications (2)

Publication Number Publication Date
EP1809151A2 EP1809151A2 (fr) 2007-07-25
EP1809151B1 true EP1809151B1 (fr) 2008-09-10

Family

ID=34926511

Family Applications (3)

Application Number Title Priority Date Filing Date
EP04021674A Withdrawn EP1634520A1 (fr) 2004-09-13 2004-09-13 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide
EP05782895A Active EP1809151B1 (fr) 2004-09-13 2005-09-09 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide
EP07124079A Active EP1913851B1 (fr) 2004-09-13 2005-09-09 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04021674A Withdrawn EP1634520A1 (fr) 2004-09-13 2004-09-13 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07124079A Active EP1913851B1 (fr) 2004-09-13 2005-09-09 Dispositif de chauffage d'un liquide et procede pour chauffer un liquide

Country Status (27)

Country Link
US (2) US7907835B2 (fr)
EP (3) EP1634520A1 (fr)
JP (1) JP5048499B2 (fr)
KR (2) KR101297860B1 (fr)
CN (1) CN101060803B (fr)
AR (1) AR055254A1 (fr)
AT (1) ATE407607T1 (fr)
AU (1) AU2005284369B2 (fr)
BR (1) BRPI0515262A (fr)
CA (2) CA2578732A1 (fr)
DE (2) DE602005009733D1 (fr)
DK (1) DK1809151T3 (fr)
ES (2) ES2327363T3 (fr)
HK (2) HK1109317A1 (fr)
HR (1) HRP20070098A2 (fr)
IL (1) IL181503A (fr)
MA (1) MA28852B1 (fr)
MX (1) MX2007002994A (fr)
NO (1) NO20071907L (fr)
PL (1) PL1809151T3 (fr)
PT (2) PT1913851E (fr)
RU (1) RU2367328C2 (fr)
SG (1) SG155933A1 (fr)
TN (1) TNSN07092A1 (fr)
TW (1) TWI274572B (fr)
WO (1) WO2006029763A2 (fr)
ZA (1) ZA200703020B (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8479640B2 (en) 2007-10-04 2013-07-09 Nestec S.A. Beverage brewing unit
US8573116B2 (en) 2007-10-04 2013-11-05 Nestec S.A. Heating device with an integrated thermoblock for a beverage preparation machine
US8600223B2 (en) 2007-10-04 2013-12-03 Nestec S.A. Integrated heater for a beverage preparation device
US8850957B2 (en) 2008-04-22 2014-10-07 Nestec S.A. Modular assembly of a beverage preparation machine
US8863648B2 (en) 2009-03-23 2014-10-21 Nestec S.A. Pump mount in a beverage preparation machine
US8915177B2 (en) 2008-08-08 2014-12-23 Nestec S.A. Beverage machine with carrying handle and configurable appearance and side functions
US9277839B2 (en) 2010-07-12 2016-03-08 Nestec S.A. Secure cup support for beverage machine

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1495702A1 (fr) * 2003-07-10 2005-01-12 Nestec S.A. Dispositif pour l'extraction d'une capsule
EP1634520A1 (fr) * 2004-09-13 2006-03-15 Nestec S.A. Dispositif de chauffage d'un liquide et procede pour chauffer un liquide
DE102006029061B4 (de) * 2006-06-24 2009-03-12 Aesculap Ag Halteelement für ein Haltesystem für medizinische Gegenstände und Haltesystem für medizinische Gegenstände
GB2447480A (en) * 2007-03-14 2008-09-17 Michael Hughes Temperature control of a liquid
US8165461B2 (en) * 2007-05-07 2012-04-24 Sullivan Joseph M Modular heating system for tankless water heater
FR2920657B1 (fr) * 2007-09-07 2013-02-22 Cie Mediterraneenne Des Cafes Chaudiere pour machine de preparation de boissons.
IL186784A0 (en) * 2007-10-18 2008-02-09 Coffee And Juice Generation Lt Systems and methods for preparing drinks
US20110168027A1 (en) * 2008-01-03 2011-07-14 Babas S.R.L. Delivering system for infusion-type beverages
EP2252182B1 (fr) 2008-01-24 2012-06-20 Nestec S.A. Gestionnaire d'économie d'énergie pour dispositifs de préparation de boissons
EP2082669A2 (fr) 2008-01-25 2009-07-29 Nestec S.A. Appareil hybride pour préparer des boissons
US8043645B2 (en) 2008-07-09 2011-10-25 Starbucks Corporation Method of making beverages with enhanced flavors and aromas
DE202009015187U1 (de) * 2008-11-14 2010-06-24 Koninklijke Philips Electronics N.V. Einsatzteil für einen Durchlauferhitzer
RU2535461C2 (ru) 2009-02-06 2014-12-10 Нестек С.А. Устройство и способ, использующие центрифугирование для экстракции жидкости, и средства компенсации тепловых потерь
EP2223641B1 (fr) 2009-02-18 2016-05-11 Nestec S.A. Dispositif de chauffage avec une configuration à plusieurs puissances
US8208800B2 (en) * 2009-03-16 2012-06-26 Hsien Mu Chiu Potable water heating device
ES2464735T5 (es) 2009-03-23 2021-12-10 Nestle Sa Montaje de bomba en una máquina de preparación de bebidas
EP2507774A1 (fr) 2009-12-02 2012-10-10 Nestec S.A. Machine de préparation de boissons prenant en charge une fonctionnalité de service à distance
CN102695443B (zh) 2010-01-06 2015-04-08 雀巢产品技术援助有限公司 饮料制备机器
JP2011143780A (ja) * 2010-01-13 2011-07-28 Sanden Corp 加熱装置
JP2011144976A (ja) * 2010-01-13 2011-07-28 Sanden Corp 加熱装置
JP2011143781A (ja) * 2010-01-13 2011-07-28 Sanden Corp 加熱装置
PL2523587T3 (pl) 2010-01-15 2014-03-31 Nestec Sa Ergonomiczna jednostka serwisowa do maszyn do wytwarzania napojów
PT2523586E (pt) 2010-01-15 2014-09-09 Nestec Sa Suporte de ingrediente ergonómico e coordenação de unidade de serviço
WO2011089210A1 (fr) 2010-01-21 2011-07-28 Nestec S.A. Machine à boisson comprenant un réservoir amovible d'approvisionnement en liquide
EP2353474A1 (fr) 2010-02-03 2011-08-10 Nestec S.A. Distributeur de boissons avec agencement de nettoyage sécurisé
EP2353473A1 (fr) 2010-02-03 2011-08-10 Nestec S.A. Distributeur de boissons avec cycle de nettoyage hygiénique
BR112012022312A2 (pt) 2010-03-05 2017-10-31 Nestec Sa redução de perturbação de bomba.
PT2571409E (pt) 2010-05-21 2014-05-12 Nestec Sa Interface de distribuidor ergonómica
WO2011144647A1 (fr) 2010-05-21 2011-11-24 Nestec S.A. Robot culinaire commandé à distance
ES2474593T3 (es) 2010-05-21 2014-07-09 Nestec S.A. Máquina de bebidas con una gestión ergonómica del agua
WO2011144722A1 (fr) 2010-05-21 2011-11-24 Nestec S.A. Dispositif de stockage d'eau chaude ou de fourniture de vapeur
WO2011144719A1 (fr) 2010-05-21 2011-11-24 Nestec S.A. Poignée et interface utilisateur ergonomiques
EP2574205A2 (fr) 2010-05-21 2013-04-03 Nestec S.A. Élément chauffant en ligne couplé à double circuit dynamique
CA2801278A1 (fr) 2010-06-09 2011-12-15 Nestec S.A. Agencement d'entretien ergonomique pour machine a boissons
CN102946776B (zh) 2010-06-17 2016-08-03 雀巢产品技术援助有限公司 用于控制热调节装置的能量传输的设备和方法
CN103025216B (zh) 2010-06-28 2016-03-30 雀巢产品技术援助有限公司 胶囊传感系统
BR112013001143B1 (pt) 2010-07-16 2020-04-14 Nestec Sa máquina de preparação de bebida e método de transformação de uma máquina de preparação de bebida existente
IT1402968B1 (it) * 2010-09-06 2013-09-27 Iacobucci Hf Electronics S P A Macchina per caffè da incasso
WO2012032019A1 (fr) 2010-09-07 2012-03-15 Nestec S.A. Poignée ergonomique à interface utilisateur
CA2814323C (fr) 2010-10-27 2018-10-16 Nestec S.A. Machine a boisson pour differents environnements spatiaux
CA2819281A1 (fr) 2010-12-01 2012-06-07 Nestec S.A. Interface utilisateur simple pour une machine pour boisson
AU2011334911A1 (en) 2010-12-01 2013-06-13 Nestec S.A. Beverage machine having a capsule passage with a gate
JP2013544172A (ja) 2010-12-01 2013-12-12 ネステク ソシエテ アノニム 液滴収集器を有する飲料調製装置
US20130247769A1 (en) 2010-12-01 2013-09-26 Nestec S.A. Ergonomic user-interface for motorised ingredient chamber
JP2013544173A (ja) 2010-12-01 2013-12-12 ネステク ソシエテ アノニム 信頼性の高いユーザーインジケータ付き飲料機
MX2013006177A (es) 2010-12-02 2013-09-06 Nestec Sa Sensor termico de baja inercia en una maquina de bebidas.
JP2012131331A (ja) * 2010-12-21 2012-07-12 Sanden Corp 車両用加熱装置
US8554064B1 (en) * 2010-12-27 2013-10-08 Msp Corporation Method and apparatus for generating vapor at high rates
EP2661199B8 (fr) 2011-01-03 2019-07-31 Société des Produits Nestlé S.A. Distributeur de boissons possédant un couvercle destiné à une ouverture pour l'introduction d'ingrédients
JP2014504513A (ja) 2011-01-03 2014-02-24 ネステク ソシエテ アノニム 機械的伝動を伴う電動式飲料マシン
EP2474254A1 (fr) 2011-01-07 2012-07-11 Nestec S.A. Système modulaire de distribution de boissons
DE202011001661U1 (de) * 2011-01-19 2011-06-09 Mahlich, Gotthard, 61476 Brüh- oder Zubereitungskammer für ein Getränkezubereitungsgerät
EP2478804A1 (fr) 2011-01-21 2012-07-25 Nestec S.A. Formation de mousse de lait avec gaz sous pression
CN102160750B (zh) * 2011-02-16 2013-04-24 广东新宝电器股份有限公司 即热式发热煲体
ES2527009T3 (es) * 2011-02-18 2015-01-19 Gruppo Cimbali S.P.A. Un sistema mejorado para calentar el agua en una caldera y un método respectivo
EP2688449B1 (fr) 2011-03-23 2018-09-26 Nestec S.A. Machine à boisson ayant un couvercle pour un dispositif d'admission des ingrédients
KR20120111906A (ko) * 2011-04-01 2012-10-11 웅진코웨이주식회사 온수공급장치 및 온수공급방법
CA2836321A1 (fr) * 2011-05-27 2012-12-06 Nestec S.A. Distributeur de boissons dote d'un module rotatif de buses amovible
USD677510S1 (en) 2011-06-16 2013-03-12 Calphalon Corporation Coffee maker
CN103648342A (zh) * 2011-08-26 2014-03-19 陈晓明 优质热水的快速制备方法及装置
CA2846790A1 (fr) 2011-09-16 2013-03-21 Nestec S.A. Machine a boissons multi-systeme hygienique
US20140328136A1 (en) 2011-09-16 2014-11-06 Alfred Yoakim Multi-system beverage machine safe connector
CA2845142A1 (fr) 2011-09-16 2013-03-21 Nestec S.A. Accouplements multiples pour machine a boissons multi-systeme
GB201118226D0 (en) * 2011-10-21 2011-12-07 Strix Ltd Flow heaters
JP6087955B2 (ja) 2011-12-30 2017-03-01 ネステク ソシエテ アノニム マルチシステム飲料マシン
AU2013208992B2 (en) 2012-01-13 2016-10-13 Nestec S.A. Beverage machine for short and tall cups
ES2617997T3 (es) 2012-01-13 2017-06-20 Nestec S.A. Máquina de bebidas con un módulo extraíble
CN102538215A (zh) * 2012-02-28 2012-07-04 苏州苏海亚电气有限公司 电加热器的温控装置
EP2819558B1 (fr) 2012-02-28 2019-05-01 Nestec S.A. Couvercle pour un passage d'introduction des ingrédients avec gestion d'humidité
EP2633789A1 (fr) 2012-02-28 2013-09-04 Nestec S.A. Machine de préparation de boissons avec gestion de résidus liquids
RU2628716C2 (ru) 2012-10-09 2017-08-21 Нестек С.А. Машина для приготовления напитков
US8934764B2 (en) * 2012-11-05 2015-01-13 Betacera Inc. Electrical heating device and equipment with pluggable heating module
CA2894423A1 (fr) 2012-12-12 2014-06-19 Nestec S.A. Dispositif de production de boisson utilisant une centrifugation pour extraire un liquide comprenant un moyen de compensation de perte de chaleur
GB201301297D0 (en) * 2013-01-24 2013-03-06 Strix Ltd Liquid heating apparatus
JP6074117B2 (ja) * 2013-11-01 2017-02-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 液体加熱装置
FR3012872B1 (fr) * 2013-11-07 2015-11-13 Valeo Systemes Thermiques Dispositif electrique de conditionnement thermique de fluide pour vehicule automobile, et appareil de chauffage et/ou de climatisation associe
WO2015086371A1 (fr) 2013-12-11 2015-06-18 Nestec S.A. Machine à boisson avec butée de capsule pivotante
WO2015155145A1 (fr) 2014-04-08 2015-10-15 Nestec S.A. Manipulation de capsules de tailles multiples à actionnement séquentiel
US20150297029A1 (en) * 2014-04-16 2015-10-22 Spectrum Brands, Inc. Cooking appliance using thin-film heating element
AU2015101973A4 (en) * 2014-05-09 2019-12-12 Newell Australia Pty Ltd Espresso machine
EP3166456B1 (fr) 2014-07-09 2018-09-26 Nestec S.A. Accessoire pour alimenter automatiquement une machine de boisson avec un liquide provenant d'un réseau de distribution
PT3166457T (pt) 2014-07-09 2020-01-20 Nestle Sa Dispositivo para conectar uma máquina de bebidas a uma rede de distribuição com monitorização segura
WO2016005348A1 (fr) 2014-07-09 2016-01-14 Nestec S.A. Dispositif permettant de raccorder une machine à boissons à un réseau de distribution avec interruption d'écoulement en toute sécurité
WO2016005351A1 (fr) 2014-07-09 2016-01-14 Nestec S.A. Accouplement d'un dispositif permettant de raccorder une machine à boissons à un réseau de distribution
WO2016034255A1 (fr) * 2014-09-05 2016-03-10 Tuttoespresso S.R.L. Appareil et procédé de préparation de boisson
WO2016083484A1 (fr) 2014-11-27 2016-06-02 Nestec S.A. Système de poignée ergonomique
US11076714B2 (en) 2014-11-27 2021-08-03 Societe Des Produits Nestle S.A. Liquid dispensing machine with manual drop stop
WO2016083488A1 (fr) 2014-11-27 2016-06-02 Nestec S.A. Machine de distribution de liquide avec arrêt de gouttes compactes
DE102014118876A1 (de) * 2014-12-17 2016-06-23 Thyssenkrupp Ag Verfahren zur Hochdruckbehandlung eines Produkts
TWI613405B (zh) * 2015-07-24 2018-02-01 盈太企業股份有限公司 加熱器之結構
ITUA20161423A1 (it) * 2015-10-23 2017-09-07 Eurek S R L Metodo, macchina e caldaia per la preparazione di bevande
JP6891184B2 (ja) * 2015-10-23 2021-06-18 エウレク エス.アール.エル. 飲料を調製するための方法及び機械
CA3001089A1 (fr) 2015-11-11 2017-05-18 Nestec S.A. Raccordement facile d'un reservoir de liquide a une machine a boissons
RU2760900C2 (ru) 2016-06-30 2021-12-01 Сосьете Де Продюи Нестле С.А. Устройство для приготовления напитка с управляемым насосом
EP3509464B1 (fr) 2016-09-09 2021-08-18 Société des Produits Nestlé S.A. Distributeur de boissons avec manipulation ergonomique
CA3034163A1 (fr) 2016-10-11 2018-04-19 Nestec S.A. Machine de distribution de liquide a regulateur de vitesse
AU2017343599B2 (en) 2016-10-11 2023-02-02 Société des Produits Nestlé S.A. Liquid dispensing machine with drop stop
CN110312453A (zh) 2017-02-28 2019-10-08 雀巢产品有限公司 具有平行分配路径的分配器
EP3592185B1 (fr) 2017-03-10 2023-11-01 Société des Produits Nestlé S.A. Machine de préparation de boissons et procédé de commande d'un dispositif de conditionnement thermique d'une telle machine de préparation de boissons
CN107007153A (zh) * 2017-04-13 2017-08-04 宁波云川环保科技有限公司 一种速热饮水机螺旋加热装置
AU2018283446A1 (en) 2017-06-13 2019-10-31 Societe Des Produits Nestle S.A. Beverage preparation machine with capsule recognition
WO2019057619A1 (fr) 2017-09-25 2019-03-28 Nestec Sa Machines à boissons à modularité
EP3687347B1 (fr) 2017-09-25 2023-07-26 Société des Produits Nestlé S.A. Distributeur de boissons doté d'un module amovible
IT201700119289A1 (it) * 2017-10-20 2019-04-20 Cma Macch Per Caffe Srl Macchina per l’erogazione di caffe’
JP7308199B2 (ja) 2017-12-20 2023-07-13 ソシエテ・デ・プロデュイ・ネスレ・エス・アー 泡を微細化する飲料調製マシン
AU2018387159A1 (en) 2017-12-20 2020-05-07 Societe Des Produits Nestle S.A. Beverage preparation machine with drop evacuation
US11866318B2 (en) 2017-12-20 2024-01-09 Societe Des Produits Nestle S.A. Beverage preparation machine with handy drop stop
EP3749154A1 (fr) 2018-02-09 2020-12-16 Société des Produits Nestlé S.A. Machine de préparation de boissons ayant une capacité de reconnaissance de capsule
WO2019158542A1 (fr) 2018-02-14 2019-08-22 Societe Des Produits Nestle S.A. Réceptacle de capsules usagées pour machines à boisson
JP2021515623A (ja) 2018-03-14 2021-06-24 ソシエテ・デ・プロデュイ・ネスレ・エス・アー 制御された流出開口を有する飲料マシン
US11363907B2 (en) 2018-03-14 2022-06-21 Societe Des Produits Nestle S.A. Beverage machine with a controlled capsule piercing
CN111801035B (zh) 2018-03-14 2023-04-21 雀巢产品有限公司 具有部分打开的分配面的饮料机器
EP3764855A1 (fr) 2018-03-14 2021-01-20 Société des Produits Nestlé S.A. Machine à boissons dotée d'une face de distribution partiellement fermée
TW202004141A (zh) * 2018-05-18 2020-01-16 美商轉移能源公司 估計流體溫度的方法及利用溫度估計資料的系統
WO2019243091A1 (fr) * 2018-06-18 2019-12-26 Franke Kaffeemaschinen Ag Dispositif de préparation de boissons chaudes comprenant un chauffe-eau instantané
JP2021532921A (ja) 2018-08-09 2021-12-02 ソシエテ・デ・プロデュイ・ネスレ・エス・アー 容易に挿入可能なカップ支持体
EP4248808A3 (fr) 2018-09-27 2023-10-04 Société des Produits Nestlé S.A. Distributeur de boissons avec une distribution d'actionnement
EP3628195A1 (fr) 2018-09-27 2020-04-01 Société des Produits Nestlé S.A. Machine de préparation de boissons avec détection de récipient
WO2020064982A1 (fr) 2018-09-27 2020-04-02 Société des Produits Nestlé SA Unité de service adaptative d'une machine à boisson
EP3637218A1 (fr) * 2018-10-10 2020-04-15 Gambro Lundia AB Dispositif de chauffage de fluide pour un appareil de traitement sanguin extracorporel et procédé pour détecter la température de fluide au niveau de la sortie du dispositif de chauffage de fluide pour un appareil de traitement sanguin extracorporel
US11060764B2 (en) * 2018-11-13 2021-07-13 White Knight Fluid Handling Inc. On-demand heater and temperature control system and related process
AU2019400059A1 (en) 2018-12-12 2021-05-20 Société des Produits Nestlé SA Beverage preparation machine with capsule recognition
AU2021217123A1 (en) 2020-02-05 2022-06-30 Societe Des Produits Nestle S.A. Beverage preparation machine with capsule recognition
US20230038172A1 (en) 2020-02-05 2023-02-09 Societe Des Produits Nestle S.A. Beverage preparation machine with capsule recognition
CN110975961B (zh) * 2020-03-04 2020-08-04 赛默飞世尔(上海)仪器有限公司 预加热系统和对溶剂进行预加热的控制方法
US20220099338A1 (en) * 2020-09-30 2022-03-31 Bradford White Corporation Water Heater
AU2022358952A1 (en) 2021-10-08 2024-02-29 Société des Produits Nestlé S.A. Beverage preparation machine with simple ergonomic opening-closure
CA3233465A1 (fr) 2021-10-13 2023-04-20 Laurent LAGOUCHE Machine a boissons ergonomique
WO2023143957A1 (fr) * 2022-01-28 2023-08-03 De' Longhi Appliances S.R.L. Dispositif de chauffage électrique instantané pour fluide et son procédé de commande
GB2615141B (en) * 2022-02-01 2024-02-07 Strix Ltd Flow heaters and liquid heating appliances

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953923A (en) * 1974-12-09 1976-05-04 Lake Center Industries Method of making heating device for liquids
GB8334614D0 (en) * 1983-12-30 1984-02-08 James I G C Hot drink dispensing apparatus
JPS62132347U (fr) * 1986-02-14 1987-08-20
JPS63107695U (fr) * 1986-09-05 1988-07-11
CH674305A5 (fr) * 1987-08-14 1990-05-31 Turmix Ag
CH675819A5 (fr) * 1988-06-10 1990-11-15 Nestle Sa
JPH0396747A (ja) 1989-09-07 1991-04-22 Nikon Corp 回転伝達装置
JPH0540756U (ja) * 1991-10-28 1993-06-01 株式会社長府製作所 給湯機
DE4233676A1 (de) * 1992-10-07 1994-04-14 Ego Elektro Blanc & Fischer Elektrischer Heizkörper für Medien, insbesondere Durchflußerhitzer
DE19520121A1 (de) * 1995-06-01 1996-12-05 Braun Ag Verfahren zur Zubereitung von heißen Getränken und Vorrichtung zur Durchführung des Verfahrens
AU7016396A (en) * 1995-10-10 1997-04-30 Donald Kuhnel Fluid heater with improved heating elements controller
US6830239B1 (en) * 1997-12-09 2004-12-14 Paul R. Weber Semi-frozen food product carbonator
JP2000220888A (ja) * 1999-01-29 2000-08-08 Sony Disc Technology Inc 流体加熱方法及びその装置
JP2000241022A (ja) 1999-02-23 2000-09-08 Fuji Electric Co Ltd 水の瞬間加熱装置
US6246831B1 (en) * 1999-06-16 2001-06-12 David Seitz Fluid heating control system
EP1074210A1 (fr) * 1999-08-04 2001-02-07 Nuova Faema S.p.A. Machine à café espresso
US6459854B1 (en) * 2000-01-24 2002-10-01 Nestec S.A. Process and module for heating liquid
CN2465625Y (zh) * 2001-03-05 2001-12-19 慈霖机械股份有限公司 罐装咖啡一贯化作业系统的冲泡装置
KR100448521B1 (ko) * 2001-11-19 2004-09-13 주식회사 경동보일러 보일러의 온수제어장치
JP4166037B2 (ja) * 2002-05-24 2008-10-15 三洋電機株式会社 吸収冷温水機
ES2307683T3 (es) 2002-07-12 2008-12-01 Nestec S.A. Dispositivo para calentar un liquido.
US7717026B1 (en) * 2003-05-28 2010-05-18 Food Equipment Technologies Company, Inc. Multicontrolled brewer for optimum flavor extraction
EP1634520A1 (fr) * 2004-09-13 2006-03-15 Nestec S.A. Dispositif de chauffage d'un liquide et procede pour chauffer un liquide
US7401545B2 (en) 2004-11-09 2008-07-22 Nestec S.A. Method and apparatus for optimizing variable liquid temperatures
US7860377B2 (en) * 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
JP2007017097A (ja) 2005-07-08 2007-01-25 Tokyo Electron Ltd 蒸気発生方法、その装置及び蒸気処理装置並びに蒸気発生用記録媒体
EP2082669A2 (fr) * 2008-01-25 2009-07-29 Nestec S.A. Appareil hybride pour préparer des boissons

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8479640B2 (en) 2007-10-04 2013-07-09 Nestec S.A. Beverage brewing unit
US8573116B2 (en) 2007-10-04 2013-11-05 Nestec S.A. Heating device with an integrated thermoblock for a beverage preparation machine
US8600223B2 (en) 2007-10-04 2013-12-03 Nestec S.A. Integrated heater for a beverage preparation device
US9119503B2 (en) 2007-10-04 2015-09-01 Nestec S.A. Beverage brewing unit
US9398829B2 (en) 2007-10-04 2016-07-26 Nestec S.A. Integrated heater for a beverage preparation device
US9439533B2 (en) 2007-10-04 2016-09-13 Nestec S.A. Heating device with an integrated thermoblock for a beverage preparation machine
US8850957B2 (en) 2008-04-22 2014-10-07 Nestec S.A. Modular assembly of a beverage preparation machine
US8915177B2 (en) 2008-08-08 2014-12-23 Nestec S.A. Beverage machine with carrying handle and configurable appearance and side functions
US8863648B2 (en) 2009-03-23 2014-10-21 Nestec S.A. Pump mount in a beverage preparation machine
US9277839B2 (en) 2010-07-12 2016-03-08 Nestec S.A. Secure cup support for beverage machine

Also Published As

Publication number Publication date
CA2578732A1 (fr) 2006-03-23
US20080273868A1 (en) 2008-11-06
NO20071907L (no) 2007-04-13
RU2367328C2 (ru) 2009-09-20
HK1119546A1 (en) 2009-03-13
EP1809151A2 (fr) 2007-07-25
BRPI0515262A (pt) 2008-07-15
CA2792130A1 (fr) 2006-03-23
IL181503A (en) 2011-06-30
PT1809151E (pt) 2008-09-30
PL1809151T3 (pl) 2009-04-30
HRP20070098A2 (en) 2007-04-30
KR20070053339A (ko) 2007-05-23
HK1109317A1 (en) 2008-06-06
SG155933A1 (en) 2009-10-29
EP1634520A1 (fr) 2006-03-15
TWI274572B (en) 2007-03-01
JP5048499B2 (ja) 2012-10-17
AR055254A1 (es) 2007-08-15
EP1913851A2 (fr) 2008-04-23
PT1913851E (pt) 2009-07-23
US8515267B2 (en) 2013-08-20
WO2006029763A3 (fr) 2007-03-15
EP1913851B1 (fr) 2009-07-15
ZA200703020B (en) 2008-08-27
CN101060803A (zh) 2007-10-24
ATE407607T1 (de) 2008-09-15
KR101297860B1 (ko) 2013-08-19
TNSN07092A1 (fr) 2008-06-02
JP2008512157A (ja) 2008-04-24
DK1809151T3 (da) 2009-01-26
DE602005009733D1 (de) 2008-10-23
US7907835B2 (en) 2011-03-15
AU2005284369A1 (en) 2006-03-23
US20110127255A1 (en) 2011-06-02
ES2314707T3 (es) 2009-03-16
MA28852B1 (fr) 2007-09-03
AU2005284369B2 (en) 2010-12-02
EP1913851A3 (fr) 2008-05-07
RU2007113820A (ru) 2008-10-27
KR101235440B1 (ko) 2013-02-20
CN101060803B (zh) 2010-04-14
TW200626099A (en) 2006-08-01
KR20120106892A (ko) 2012-09-26
MX2007002994A (es) 2007-05-16
ES2327363T3 (es) 2009-10-28
WO2006029763A2 (fr) 2006-03-23
DE602005015493D1 (de) 2009-08-27
IL181503A0 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
EP1809151B1 (fr) Dispositif de chauffage d'un liquide et procede pour chauffer un liquide
US9295359B2 (en) Coffee machine having a brewing device and having a coffee post-heater arranged downstream of the brewing device
RU2571351C2 (ru) Устройство для приготовления напитка, приспособленное для точной настройки температуры распределения напитка
AU2005303625B2 (en) Method and device for supplying hot water
US11857103B2 (en) Machine and method for preparing beverages
RU2763420C2 (ru) Кофемашина для приготовления горячего напитка
FR2483762A1 (fr) Machine a cafe avec regulation thermique perfectionnee
FR2642634A1 (fr) Appareil electrique pour la preparation d'infusions
CN114144098A (zh) 一种生产提取物的系统和方法
EP3735872B1 (fr) Machine de préparation d'une boisson munie d'un réservoir d'eau et d'un capteur de pression pour la mesure d'une quantité d'eau extraite dudit réservoir
FR3103890A1 (fr) Dispositifs de chauffage de fluide.
AU2022283094A1 (en) System and method for dispensing a portion of a hot milk-containing beverage component or beverage, and use of a thick film heater
JP2024520038A (ja) 温かいミルク含有飲料成分又は飲料の部分を分配するためのシステム及び方法、並びに厚膜ヒータの使用
JP2006025878A (ja) 液体供給装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070917

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20070917

Extension state: MK

Payment date: 20070917

Extension state: YU

Payment date: 20070917

Extension state: AL

Payment date: 20070917

Extension state: HR

Payment date: 20070917

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071106

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20080917

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005009733

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20080403381

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2314707

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E004738

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

26N No opposition filed

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130828

Year of fee payment: 9

Ref country code: ES

Payment date: 20130813

Year of fee payment: 9

Ref country code: CZ

Payment date: 20130906

Year of fee payment: 9

Ref country code: FI

Payment date: 20130910

Year of fee payment: 9

Ref country code: SE

Payment date: 20130911

Year of fee payment: 9

Ref country code: HU

Payment date: 20130827

Year of fee payment: 9

Ref country code: RO

Payment date: 20130813

Year of fee payment: 9

Ref country code: LU

Payment date: 20130913

Year of fee payment: 9

Ref country code: IE

Payment date: 20130910

Year of fee payment: 9

Ref country code: PT

Payment date: 20130311

Year of fee payment: 9

Ref country code: DK

Payment date: 20130910

Year of fee payment: 9

Ref country code: GR

Payment date: 20130813

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20130712

Year of fee payment: 9

Ref country code: TR

Payment date: 20130813

Year of fee payment: 9

Ref country code: GB

Payment date: 20130904

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130912

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005009733

Country of ref document: DE

Representative=s name: ANDRAE WESTENDORP PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20150309

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 407607

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140909

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20080403381

Country of ref document: GR

Effective date: 20150403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140910

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140910

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150403

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150911

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150629

Year of fee payment: 11

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150925

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150909

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160907

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005009733

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404