WO2024172017A1 - 浮選剤およびヒ素非含有銅鉱物の回収方法 - Google Patents

浮選剤およびヒ素非含有銅鉱物の回収方法 Download PDF

Info

Publication number
WO2024172017A1
WO2024172017A1 PCT/JP2024/004785 JP2024004785W WO2024172017A1 WO 2024172017 A1 WO2024172017 A1 WO 2024172017A1 JP 2024004785 W JP2024004785 W JP 2024004785W WO 2024172017 A1 WO2024172017 A1 WO 2024172017A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenic
free copper
mineral
flotation agent
alkyl group
Prior art date
Application number
PCT/JP2024/004785
Other languages
English (en)
French (fr)
Inventor
孝祐 牧口
Original Assignee
住友化学株式会社
独立行政法人エネルギー・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 独立行政法人エネルギー・金属鉱物資源機構 filed Critical 住友化学株式会社
Publication of WO2024172017A1 publication Critical patent/WO2024172017A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/012Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; Specified applications
    • B03D2203/02Ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This disclosure relates to flotation agents and methods for recovering arsenic-free copper minerals.
  • copper concentrate is imported from so-called mining countries (for example, South American countries such as Chile and Peru), and is smelted domestically to produce copper bullion.
  • Copper ore mined overseas generally contains copper minerals that contain arsenic (hereinafter simply referred to as arsenic-containing copper minerals) and copper minerals that do not contain arsenic (hereinafter simply referred to as arsenic-free copper minerals), but in recent years the arsenic content in copper concentrate has been on the rise.
  • Patent Document 1 shows a method for copper concentrate containing arsenic, in which the copper concentrate is heated at 90 to 120°C, the arsenic-containing copper minerals are floated, and then separated from the sinking chalcopyrite and bornite.
  • Patent Document 1 implementing the method described in Patent Document 1 requires equipment and energy to heat large amounts of copper concentrate, which increases costs.
  • the object of the present disclosure is to provide a flotation agent capable of improving the recovery rate of arsenic-free copper minerals selectively recovered from a mixture containing arsenic-containing copper minerals and arsenic-free copper minerals, and a method for recovering arsenic-free copper minerals using this flotation agent.
  • a flotation agent used for selectively recovering an arsenic-free copper mineral from a mixture containing an arsenic-containing copper mineral and an arsenic-free copper mineral comprising a collector represented by the following formula (1): (In the formula (1), R1 and R2 each independently represent a linear or branched alkyl group having 1 to 16 carbon atoms, which may have a cyclic structure.) [2] The flotation agent according to the above [1], wherein R 1 and R 2 are each independently a linear or branched alkyl group having 5 to 12 carbon atoms.
  • the arsenic-free copper mineral comprises one or more selected from the group consisting of chalcopyrite, bornite, covellite and chalcocite, the flotation agent according to any one of [1] to [8] above.
  • a method for selectively recovering an arsenic-free copper mineral from a mixture containing an arsenic-containing copper mineral and an arsenic-free copper mineral comprising the steps of: adding a flotation agent containing a collector to a slurry of the mixture to selectively float and beneficiate the arsenic-containing copper mineral, and selectively recovering the arsenic-free copper mineral, wherein the flotation agent is the flotation agent described in any one of [1] to [9] above.
  • the present disclosure provides a flotation agent that can improve the recovery rate of arsenic-free copper minerals selectively recovered from a mixture containing arsenic-containing copper minerals and arsenic-free copper minerals, and a method for recovering arsenic-free copper minerals using this flotation agent.
  • FIG. 1 is a schematic diagram showing a simplified flotation tester (Hallimond tube) used in the examples and comparative examples.
  • the flotation agent of the embodiment includes a collector represented by the following formula (1), which is used to selectively recover arsenic-free copper minerals from a mixture containing arsenic-containing copper minerals and arsenic-free copper minerals.
  • R 1 and R 2 each independently represent a linear or branched alkyl group having 1 to 16 carbon atoms which may have a cyclic structure.
  • the collector represented by the above formula (1) can improve the recovery rate of arsenic-free copper minerals selectively recovered from a mixture containing arsenic-containing copper minerals and arsenic-free copper minerals, and therefore has excellent separation selectivity between copper and arsenic.
  • R 1 and R 2 may be the same alkyl group or different alkyl groups.
  • R 1 and R 2 in the above formula (1) are each independently a linear or branched alkyl group having 5 to 12 carbon atoms, and it is more preferable that R 1 is a linear alkyl group having 8 carbon atoms and R 2 is a linear alkyl group having 8 carbon atoms, that is, formula (1) is di-n-octyl disulfide.
  • R 1 and R 2 are each independently a branched alkyl group having 4 to 12 carbon atoms, and more preferably, R 1 is a branched alkyl group having 4 carbon atoms and R 2 is a branched alkyl group having 4 carbon atoms, R 1 is a branched alkyl group having 8 carbon atoms and R 2 is a branched alkyl group having 8 carbon atoms, or R 1 is a branched alkyl group having 12 carbon atoms and R 2 is a branched alkyl group having 12 carbon atoms.
  • the formula (1) when R 1 is a branched alkyl group having 4 carbon atoms and R 2 is a branched alkyl group having 4 carbon atoms, the formula (1) is preferably a compound represented by the following formula (2).
  • the formula (1) when R 1 is a branched alkyl group having 8 carbon atoms and R 2 is a branched alkyl group having 8 carbon atoms, the formula (1) is preferably a compound represented by the following formula (3) or a compound represented by the following formula (4).
  • the formula (1) when R 1 is a branched alkyl group having 12 carbon atoms and R 2 is a branched alkyl group having 12 carbon atoms, the formula (1) is preferably a compound represented by the following formula (5).
  • the amount of collector represented by the above formula (1) added to a mixture containing arsenic-containing copper minerals and arsenic-free copper minerals may be 50 g or more, 60 g or more, or 70 g or more per ton of the mixture.
  • the amount of collector added is 50 g or more per ton of the mixture, the recovery rate of arsenic-free copper minerals can be improved.
  • the amount of collector added represented by the above formula (1) may be 2000 g or less, 1500 g or less, or 1300 g or less per ton of mixture.
  • the selectivity of the arsenic-free copper mineral recovered from the mixture can be improved while maintaining a good recovery rate of the arsenic-free copper mineral.
  • the amount of collector added may be 0.25 to 4 times the upper limit of the solubility of the collector in the solution (water).
  • the above amounts of collector to be added are based on copper concentrate.
  • the proportion of arsenic-containing copper minerals and arsenic-free copper minerals contained in the copper ore is low, so the amount to be added can be adjusted accordingly.
  • the flotation agent may further contain various additives such as an inhibitor and a foaming agent in addition to the collector represented by the above formula (1).
  • the flotation agent may also be composed only of the collector represented by the above formula (1) without containing the above additives.
  • the arsenic-containing copper mineral contained in the mixture is a copper mineral containing arsenic, specifically, a copper mineral containing arsenic (As) element as a chemical composition.
  • enargite Cu 3 AsS 4
  • luzonitite Cu 3 AsS 4
  • tennantite Cu 6 [Cu 4 (Fe, Zn) 2 ] As 4 S 13
  • giradite Cu 6 [Cu 4 (Fe, Zn) 2 ] As 4 Se 13
  • goldfieldite Cu 6 Cu 4 Te 2 (Sb, As) 4 S 13
  • argentotennantite Ag 6 [Cu 4 (Fe, Zn) 2 ] As 4 S 13 ), etc.
  • the recovery rate of the arsenic-free copper mineral selectively recovered from the mixture is good.
  • the arsenic-free copper mineral contained in the mixture is a copper mineral that does not contain arsenic. Specifically, it is a copper mineral that does not contain arsenic element in its chemical composition. For example, chalcopyrite (CuFeS 2 ), bornite (Cu 5 FeS 4 ), covellite (CuS), chalcocite (Cu 2 S), etc. can be mentioned. Even if the arsenic-free copper mineral contains one or more selected from the group consisting of chalcopyrite, bornite, covellite, and chalcocite, the recovery rate of the arsenic-free copper mineral selectively recovered from the mixture is good.
  • the arsenic-containing copper mineral may contain single-edged particles with the arsenic-free copper mineral.
  • the arsenic-free copper mineral may also contain a small amount (e.g., 0.1 wt% or less) of single-edged particles with the arsenic-containing copper mineral.
  • the arsenic-free copper mineral may also contain a small amount (e.g., 0.1 wt% or less) of arsenic as an impurity.
  • the mixture containing the arsenic-containing copper mineral and the arsenic-free copper mineral may be any mixture of the arsenic-containing copper mineral and the arsenic-free copper mineral.
  • it may be a mixture of fine particles of arsenic-containing copper mineral that have been pulverized and micronized, and fine particles of arsenic-free copper mineral that have been pulverized and micronized.
  • It may also be a copper concentrate containing the arsenic-containing copper mineral and the arsenic-free copper mineral, or it may be a copper ore containing the arsenic-containing copper mineral and the arsenic-free copper mineral.
  • the fine particles of arsenic-containing copper minerals and the fine particles of arsenic-free copper minerals contained in the mixture have an average particle size of 10 ⁇ m or more, the arsenic-containing copper minerals are more likely to be adsorbed by air bubbles, making it easier to selectively recover the arsenic-free copper minerals from the mixture.
  • the mixing ratio of the arsenic-containing copper mineral and the arsenic-free copper mineral in the mixture is not limited as long as the recovery rate of the arsenic-free copper mineral that is selectively recovered is not decreased.
  • the arsenic-containing copper mineral and the arsenic-free copper mineral may be in the same ratio, or the arsenic-containing copper mineral may be greater than the arsenic-free copper mineral, or the arsenic-containing copper mineral may be less than the arsenic-free copper mineral.
  • the method for recovering arsenic-free copper minerals of the embodiment is a method for selectively recovering arsenic-free copper minerals from a mixture containing arsenic-containing copper minerals and arsenic-free copper minerals, and uses the flotation agent of the above embodiment.
  • the method for recovering arsenic-free copper minerals includes a recovery step.
  • a flotation agent containing a collector is added to the mixture slurry to selectively float and beneficiate the arsenic-containing copper minerals, and the arsenic-free copper minerals are selectively recovered.
  • the flotation agent added to the mixture slurry is a flotation agent containing a collector represented by the above formula (1).
  • a mixture slurry can be produced by adding water to a mixture containing arsenic-containing copper minerals and arsenic-free copper minerals.
  • the slurry of the mixture to which the flotation agent is added is a fluid in which minerals containing arsenic-containing copper minerals and arsenic-free copper minerals (for example, mineral particles such as arsenic-containing copper mineral particles and arsenic-free copper mineral particles) are suspended in an aqueous solution.
  • the water added to the mixture containing arsenic-containing copper minerals and arsenic-free copper minerals is not particularly limited, and may be, for example, distilled water, tap water, or natural water. It may also be water obtained by filtering tap water, natural water, or other water with a reverse osmosis membrane (RO membrane) filter (hereinafter simply referred to as RO water).
  • RO membrane reverse osmosis membrane
  • the amount of water added to the mixture is not particularly limited as long as it can turn the mixture into a slurry, and may be, for example, 2 mL or more and 500 mL or less per 1 g of the mixture.
  • the temperature of the mixture slurry to which the flotation agent is added is not particularly limited as long as it is a temperature at which the arsenic-containing copper mineral can be floated, and may be, for example, room temperature (approximately 20°C or higher and 25°C or lower).
  • a so-called reverse flotation process is carried out, in which arsenic-containing copper minerals are floated to the top side of the mixture slurry and filtered, while arsenic-free copper minerals are retained in the mixture slurry and recovered.
  • the method for recovering arsenic-free copper minerals involves blowing air or nitrogen into a slurry of the mixture, and taking advantage of the fact that, among the mineral particles in the slurry, hydrophobic particles easily adhere to the air bubbles and rise to the surface, while hydrophilic particles do not easily adhere to the air bubbles and remain in the slurry.
  • the collector represented by formula (1) has a site that selectively adsorbs to arsenic-containing copper minerals compared to arsenic-free copper minerals, and a hydrophobic site that easily adheres to air bubbles. Therefore, the collector represented by formula (1) selectively causes arsenic-containing copper minerals (particles) to adhere to air bubbles and float to the top surface of the slurry, so that the froth becomes a high-arsenic copper concentrate with concentrated arsenic. As a result, the arsenic-free copper minerals are concentrated in the tailings, and the tailings becomes a low-arsenic copper concentrate with reduced arsenic.
  • Float ore contains a large amount of arsenic-containing copper minerals.
  • float ore may contain not only arsenic-containing copper minerals, but also other minerals, impurities, small amounts of arsenic-free copper minerals, etc.
  • sink ore contains a large amount of arsenic-free copper minerals.
  • sink ore may contain not only arsenic-free copper minerals, but also other minerals, impurities, small amounts of arsenic-containing copper minerals, etc.
  • Example 1 Di-n-octyl disulfide was used as a collector, and the collector was dispersed in pure water to prepare a 0.1 wt% di-n-octyl disulfide aqueous solution as a flotation agent. 5 g of mineral specimen 1 (arsenic-containing copper mineral) and 120 mL of pure water were placed in a beaker, and then the mineral specimen 1 and the pure water were stirred for 5 minutes.
  • nitrogen 20 was introduced into the slurry 10 through the plug 4 from below the tube 2 constituting the simplified flotation tester 1, generating bubbles 11 and performing separation by flotation.
  • the arsenic-containing copper mineral particles which are highly hydrophobic particles 12
  • adhered to the bubbles 11 and rose to the surface and the bubbles 11 that rose to the surface burst at the top and settled and accumulated in the tube 3 connected to the tube 2 (float A, froth).
  • the particles that did not adhere to the bubbles 11 remained in the tube 2 (tailings B, tailings).
  • the amount of float A relative to the total amount of mineral sample 2 fed into the simple flotation tester 1 was calculated as the float rate of mineral sample 2 in the same manner, except that mineral sample 1 was replaced with mineral sample 2 (arsenic-free copper mineral).
  • the separation efficiency (float rate of mineral sample 1/float rate of mineral sample 2) was then calculated. The results of the separation efficiency are shown in Table 3. The greater the separation efficiency, i.e., the higher the float rate of mineral sample 1 and the lower the float rate of mineral sample 2, the higher the recovery rate of arsenic-free copper mineral.
  • Example 2 The separation efficiency was determined in the same manner as in Example 1, except that di-n-octyl disulfide was replaced with di-n-decyl disulfide as the collector, and 0.1 wt % di-n-octyl disulfide aqueous solution was replaced with 0.1 wt % di-n-decyl disulfide aqueous solution as the flotation agent.
  • Example 4 The separation efficiency was determined in the same manner as in Example 1, except that di-n-octyl disulfide was replaced by dicyclohexyl disulfide as the collector, and that the 0.1 wt % di-n-octyl disulfide aqueous solution was replaced by a 0.1 wt % dicyclohexyl disulfide aqueous solution as the flotation agent.
  • Example 5 The separation efficiency was determined in the same manner as in Example 1, except that di-n-octyl disulfide was replaced with the above formula (2) (di-tert-butyl disulfide) as the collector, and the 0.1 wt % di-n-octyl disulfide aqueous solution was replaced with a 0.1 wt % di-tert-butyl disulfide aqueous solution as the flotation agent.
  • Example 6 The separation efficiency was determined in the same manner as in Example 1, except that di-n-octyl disulfide was replaced with the above formula (3) (bis(2-ethylhexyl) disulfide) as the collector, and that the 0.1 wt % di-n-octyl disulfide aqueous solution was replaced with a 0.1 wt % bis(2-ethylhexyl) disulfide aqueous solution as the flotation agent.
  • di-n-octyl disulfide was replaced with the above formula (3) (bis(2-ethylhexyl) disulfide) as the collector, and that the 0.1 wt % di-n-octyl disulfide aqueous solution was replaced with a 0.1 wt % bis(2-ethylhexyl) disulfide aqueous solution as the flotation agent.
  • Example 7 The separation efficiency was determined in the same manner as in Example 1, except that di-n-octyl disulfide was replaced with the above formula (4) (di-tert-octyl disulfide) as the collector, and a 0.1 wt % aqueous solution of di-n-octyl disulfide was replaced with a 0.1 wt % aqueous solution of di-tert-octyl disulfide as the flotation agent.
  • Example 8 The separation efficiency was determined in the same manner as in Example 1, except that di-n-octyl disulfide was replaced with the above formula (5) (di-tert-dodecyl disulfide) as the collector, and the 0.1 wt % di-n-octyl disulfide aqueous solution was replaced with a 0.1 wt % di-tert-dodecyl disulfide aqueous solution as the flotation agent.
  • Example 1 Separation efficiency was determined in the same manner as in Example 1, except that di-n-octyl disulfide was replaced with potassium amyl xanthate (PAX) as the collector, and a 0.1 wt % aqueous solution of PAX was used as the flotation agent instead of a 0.1 wt % aqueous solution of di-n-octyl disulfide.
  • PAX potassium amyl xanthate
  • Example 2 The separation efficiency was determined in the same manner as in Example 1, except that di-n-octyl disulfide was replaced with di-n-octyl sulfide as the collector, and 0.1 wt % di-n-octyl disulfide aqueous solution was replaced with 0.1 wt % di-n-octyl sulfide aqueous solution as the flotation agent.
  • Example 9 As the ore sample, an arsenic-containing copper ore was used. The arsenic-containing copper ore was pulverized using a ball mill, and a sample in which 80% of the undersize cumulative distribution was 75 ⁇ m was used as a test sample.
  • the quality of the test sample was determined using the following analysis flow. First, the weight of the test sample was measured, then microwave heating and acid dissolution were performed, and the solution was filled up to a constant volume to obtain an analytical sample solution. The analytical sample solution was then subjected to ICP analysis using an ICP-OES 5110 manufactured by Agilent Technologies, and quantitative analysis was performed to determine the elemental concentration in the solution. Specifically, the solution volume after filling up was multiplied by the solution concentration of each component element analyzed by ICP, and the result was divided by the weight of the acid-dissolved sample to determine the elemental quality (wt%). The quality analysis results of the arsenic-containing copper ore, the raw material of the test sample, are shown in Table 4.
  • test sample and 750 mL of pure water were placed in a 1 L agitator type flotation machine, and the slurry of pure water and test sample was adjusted to pH 10.5 with 1 mol/L sodium hydroxide aqueous solution and stirred for 5 minutes.
  • the collector diisoamyl disulfide was added to the slurry in an amount of 0.05 mol per 1 ton of test sample, and the slurry was stirred for 3 minutes.
  • methyl isobutyl carbinol a general-purpose foaming agent, was added to the slurry in an amount of 10 g per 1 ton of test sample, and the slurry was stirred for 0.5 minutes.
  • Example 9 The results of the recovery rates and separation efficiencies obtained in Example 9 and Comparative Example 3 are shown in Table 5.
  • a higher recovery rate of arsenic-containing copper minerals is also preferable in that the arsenic-free copper minerals (particles) in the slurry are concentrated, and the resulting ore becomes low-arsenic copper ore with reduced arsenic.
  • Example 9 As shown in Table 5, in the above test using the ore sample, in Example 9, a flotation agent containing the collector represented by formula (1) was used, and therefore the recovery rate of arsenic-free copper minerals was kept low compared to Comparative Example 3, in which a flotation agent not containing the collector represented by formula (1) was used, and the recovery rate of arsenic-containing copper minerals was at the same level, so that separation efficiency was high and low-arsenic copper ore could be selectively obtained from copper ore containing arsenic-containing copper minerals and arsenic-free copper minerals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物からヒ素非含有銅鉱物を選択的に回収するために用いられる、下記式(1)で表される捕収剤を含む浮選剤。(前記式(1)中、R1およびR2は、それぞれ独立して、環状構造を有していてもよい、炭素数1以上16以下の直鎖状または分岐状のアルキル基である。)

Description

浮選剤およびヒ素非含有銅鉱物の回収方法
 本開示は、浮選剤およびヒ素非含有銅鉱物の回収方法に関する。
 我が国では、いわゆる鉱山国である外国(例えば、チリ、ペルーなどの南米各国)から銅精鉱を輸入して、国内で製錬して銅地金を生産している。海外で採掘された銅鉱石には、一般に、ヒ素を含有する銅鉱物(以下、単にヒ素含有銅鉱物ともいう)とヒ素を含有しない銅鉱物(以下、単にヒ素非含有銅鉱物ともいう)が含まれているが、近年では、銅精鉱中のヒ素の含有量が増加傾向にある。
 銅精鉱に含まれるヒ素は、製錬の過程でスラグや煙灰などに分配され、それらは製錬所で安定的な形態に固定して処理されるものの、ヒ素の含有量増加に起因した処理費用の上昇や製錬所内外の保管場所などの問題が懸念されている。このため、銅製錬工程の前段階である選鉱工程において、ヒ素含有銅鉱物を選択的に回収する技術が求められている。例えば、特許文献1には、ヒ素を含む銅精鉱を対象として、銅精鉱を90~120℃で加熱処理した後、ヒ素含有銅鉱物を浮遊させ、沈降する黄銅鉱や斑銅鉱などと分離する方法が示されている。
 しかしながら、特許文献1の方法を実施するには、大量の銅精鉱を加熱する設備とエネルギーを必要とし、その分コストが増加するという問題があった。
特開2006-239553号公報
 本開示の目的は、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物から選択的に回収するヒ素非含有銅鉱物の回収率を向上させることができる浮選剤、およびこの浮選剤を用いたヒ素非含有銅鉱物の回収方法を提供することである。
[1] ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物からヒ素非含有銅鉱物を選択的に回収するために用いられる、下記式(1)で表される捕収剤を含む浮選剤。
Figure JPOXMLDOC01-appb-C000002
(前記式(1)中、RおよびRは、それぞれ独立して、環状構造を有していてもよい、炭素数1以上16以下の直鎖状または分岐状のアルキル基である。)
[2] RおよびRは、それぞれ独立して、炭素数5以上12以下の直鎖状または分岐状のアルキル基である、上記[1]に記載の浮選剤。
[3] Rは炭素数8の直鎖状のアルキル基であり、Rは炭素数8の直鎖状のアルキル基である、上記[1]または[2]に記載の浮選剤。
[4] RおよびRは、それぞれ独立して、炭素数4以上12以下の分岐状のアルキル基である、上記[1]に記載の浮選剤。
[5] Rは炭素数4の分岐状のアルキル基であり、Rは炭素数4の分岐状のアルキル基である、上記[1]または[4]に記載の浮選剤。
[6] Rは炭素数8の分岐状のアルキル基であり、Rは炭素数8の分岐状のアルキル基である、上記[1]または[4]に記載の浮選剤。
[7] Rは炭素数12の分岐状のアルキル基であり、Rは炭素数12の分岐状のアルキル基である、上記[1]または[4]に記載の浮選剤。
[8] 前記ヒ素含有銅鉱物は、硫ヒ銅鉱、ルソン銅鉱およびヒ四面銅鉱からなる群より選択される1種以上を含む、上記[1]~[7]のいずれか1つに記載の浮遊剤。
[9] 前記ヒ素非含有銅鉱物は、黄銅鉱、斑銅鉱、銅藍および輝銅鉱からなる群より選択される1種以上を含む、上記[1]~[8]のいずれか1つに記載の浮遊剤。
[10] ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物からヒ素非含有銅鉱物を選択的に回収するヒ素非含有銅鉱物の回収方法であって、前記混合物のスラリーに対して捕収剤を含む浮選剤を添加して、前記ヒ素含有銅鉱物を選択的に浮上させて選鉱し、前記ヒ素非含有銅鉱物を選択的に回収する回収工程を有し、前記浮選剤が上記[1]~[9]のいずれか1つに記載の浮選剤である、ヒ素非含有銅鉱物の回収方法。
 本開示によれば、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物から選択的に回収するヒ素非含有銅鉱物の回収率を向上させることができる浮選剤、およびこの浮選剤を用いたヒ素非含有銅鉱物の回収方法を提供することができる。
図1は、実施例および比較例で用いた簡易浮選試験機(ハリモンドチューブ)を示す概略図である。
 以下、実施形態に基づき詳細に説明する。
 本発明者らは、鋭意研究を重ねた結果、所定の構造を持つジスルフィド化合物を捕収剤として含む浮選剤を用いると、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物から選択的に回収するヒ素非含有銅鉱物の回収率を向上させることができることを見出し、かかる知見に基づき本発明を完成させるに至った。
 まず、実施形態の浮選剤について説明する。
 実施形態の浮選剤は、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物からヒ素非含有銅鉱物を選択的に回収するために用いられる、下記式(1)で表される捕収剤を含む。
Figure JPOXMLDOC01-appb-C000003
 上記式(1)中、RおよびRは、それぞれ独立して、環状構造を有していてもよい、炭素数1以上16以下の直鎖状または分岐状のアルキル基である。
 上記式(1)で表される捕収剤は、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物から選択的に回収するヒ素非含有銅鉱物の回収率を向上させることができるため、銅とヒ素との分離選択性が優れている。
 上記式(1)において、RおよびRは、同じアルキル基でもよいし、互いに異なるアルキル基でもよい。
 また、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物から選択的に回収するヒ素非含有銅鉱物の回収率を向上させる観点から、上記式(1)において、RおよびRは、それぞれ独立して、炭素数5以上12以下の直鎖状または分岐状のアルキル基であることが好ましく、Rは炭素数8の直鎖状のアルキル基であり、Rは炭素数8の直鎖状のアルキル基であること、すなわち式(1)はジ-n-オクチルジスルフィドであることがより好ましい。
 また、上記混合物から選択的に回収するヒ素非含有銅鉱物の回収率を向上させる観点から、上記式(1)において、RおよびRは、それぞれ独立して、炭素数4以上12以下の分岐状のアルキル基であることが好ましく、より好ましくは、Rが炭素数4の分岐状のアルキル基であり、Rが炭素数4の分岐状のアルキル基であること、Rが炭素数8の分岐状のアルキル基であり、Rが炭素数8の分岐状のアルキル基であること、またはRが炭素数12の分岐状のアルキル基であり、Rが炭素数12の分岐状のアルキル基であることである。
 式(1)において、Rが炭素数4の分岐状のアルキル基であり、Rが炭素数4の分岐状のアルキル基である場合、式(1)は下記式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(1)において、Rが炭素数8の分岐状のアルキル基であり、Rが炭素数8の分岐状のアルキル基である場合、式(1)は下記式(3)で表される化合物または下記式(4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 式(1)において、Rが炭素数12の分岐状のアルキル基であり、Rが炭素数12の分岐状のアルキル基である場合、式(1)は下記式(5)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物に対する上記式(1)で表される捕収剤の添加量は、混合物1t当たり、50g以上でもよく、60g以上でもよく、70g以上でもよい。捕収剤の添加量が混合物1t当たり50g以上であると、ヒ素非含有銅鉱物の回収率を向上させることができる。
 また、上記式(1)で表される捕収剤の添加量は、混合物1t当たり、2000g以下でもよく、1500g以下でもよく、1300g以下でもよい。捕収剤の添加量が混合物1t当たり2000g以下であると、ヒ素非含有銅鉱物の良好な回収率を維持しながら、混合物から回収するヒ素非含有銅鉱物の選択性を向上できる。
 また、捕収剤の添加量は、溶液(水)に対する捕収剤の溶解度の上限の0.25倍以上4倍以下であってもよい。
 なお、捕収剤の上記添加量は銅精鉱をベースにしたものであり、銅鉱石の場合は銅鉱石に含まれるヒ素含有銅鉱物やヒ素非含有銅鉱物の割合が低くなるため、それに応じて適宜添加量を調整すればよい。
 また、浮選剤は、上記式(1)で表される捕収剤に加えて、抑制剤、起泡剤などの各種添加剤をさらに含んでもよい。また、浮選剤は、上記添加剤を含まずに、上記式(1)で表される捕収剤のみから構成されてもよい。
 混合物に含まれるヒ素含有銅鉱物は、ヒ素を含有する銅鉱物である。具体的には、化学組成としてヒ素(As)元素を含む銅鉱物である。例えば、硫ヒ銅鉱(Enargite、CuAsS)、ルソン銅鉱(Luzonite、CuAsS)、ヒ四面銅鉱(Tennantite、Cu[Cu(Fe,Zn)]As13)、ジロー鉱(Giraudite、Cu[Cu(Fe,Zn)]AsSe13)、ゴールドフィールド鉱(Goldfieldite、CuCuTe(Sb,As)13)、銀ヒ四面銅鉱(Argentotennantite、Ag[Cu(Fe,Zn)]As13)などが挙げられる。なかでも、ヒ素含有銅鉱物が硫ヒ銅鉱、ルソン銅鉱およびヒ四面銅鉱からなる群より選択される1種以上を含んでいても、混合物から選択的に回収するヒ素非含有銅鉱物の回収率は良好である。
 また、混合物に含まれるヒ素非含有銅鉱物は、ヒ素を含有しない銅鉱物である。具体的には、化学組成としてヒ素元素を含まない銅鉱物である。例えば、黄銅鉱(Chalcopyrite、CuFeS)、斑銅鉱(Bornite、CuFeS)、銅藍(Covellite、CuS)、輝銅鉱(Chalcocite、CuS)などが挙げられる。ヒ素非含有銅鉱物が黄銅鉱、斑銅鉱、銅藍および輝銅鉱からなる群より選択される1種以上を含んでいても、混合物から選択的に回収するヒ素非含有銅鉱物の回収率は良好である。
 なお、ヒ素含有銅鉱物は、ヒ素非含有銅鉱物との片刃粒子を含んでいてもよい。また、ヒ素非含有銅鉱物は、ヒ素含有銅鉱物との片刃粒子を微量(例えば0.1wt%以下)含んでいてもよい。また、ヒ素非含有銅鉱物は、不純物として微量(例えば0.1wt%以下)のヒ素を含んでいてもよい。
 また、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物は、ヒ素含有銅鉱物とヒ素非含有銅鉱物とが混合されたものであればよい。例えば、粉砕されて微粒化されたヒ素含有銅鉱物の微粒子と粉砕されて微粒化されたヒ素非含有銅鉱物の微粒子とが混合された混合物でもよい。また、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む銅精鉱でもよく、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む銅鉱石でもよい。
 混合物に含まれるヒ素含有銅鉱物の微粒子およびヒ素非含有銅鉱物の微粒子について、平均粒径が10μm以上であると、ヒ素含有銅鉱物が気泡に吸着しやすくなり、混合物から選択的にヒ素非含有銅鉱物を回収しやすくなる。
 また、上記混合物におけるヒ素含有銅鉱物とヒ素非含有銅鉱物との混合比率は、選択的に回収するヒ素非含有銅鉱物の回収率が低下しなければ限定されるものではない。例えば、ヒ素含有銅鉱物とヒ素非含有銅鉱物とが同じ割合でもよいし、ヒ素含有銅鉱物がヒ素非含有銅鉱物より多くてもよいし、ヒ素含有銅鉱物がヒ素非含有銅鉱物より少なくてもよい。
 次に、実施形態のヒ素非含有銅鉱物の回収方法について説明する。
 実施形態のヒ素非含有銅鉱物の回収方法は、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物からヒ素非含有銅鉱物を選択的に回収する方法であり、上記実施形態の浮選剤を用いる。ヒ素非含有銅鉱物の回収方法は、回収工程を有する。
 ヒ素非含有銅鉱物の回収方法における回収工程では、混合物のスラリーに対して捕収剤を含む浮選剤を添加して、ヒ素含有銅鉱物を選択的に浮上させて選鉱し、ヒ素非含有銅鉱物を選択的に回収する。混合物のスラリーに添加する浮選剤は、上記式(1)で表される捕収剤を含む浮選剤である。ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物に水を加えることで、混合物のスラリーを製造できる。
 浮選剤を添加する混合物のスラリーとは、水溶液中にヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む鉱物(例えば、ヒ素含有銅鉱物粒子やヒ素非含有銅鉱物粒子などの鉱物粒子)が懸濁した流動体である。ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物に加える水は、特に制限されるものではなく、例えば蒸留水でもよく、水道水や天然水でもよい。また、水道水や天然水などの水を逆浸透膜(RO膜)フィルターでろ過して得られる水(以下、単にRO水ともいう)でもよい。
 混合物に加える水の添加量は、混合物をスラリー化できれば特に限定されるものではなく、例えば混合物1gに対して2mL以上500mL以下でもよい。
 また、浮選剤を添加する混合物のスラリーの温度は、ヒ素含有銅鉱物を浮選できる温度であれば特に限定されるものではなく、例えば常温(20℃以上25℃以下程度)でもよい。
 実施形態のヒ素非含有銅鉱物の回収方法では、ヒ素含有銅鉱物を混合物のスラリーの上面側へ浮上させて選鉱しながら、ヒ素非含有銅鉱物を混合物のスラリー中に滞留させて回収する、いわゆる逆浮選プロセスを行う。
 ヒ素非含有銅鉱物の回収方法は、混合物のスラリーに空気や窒素を吹き込むことで、スラリー中の鉱物粒子のうち、疎水性粒子は気泡に容易に付着して浮上する一方、親水性粒子は気泡に容易には付着せずにスラリー中に滞留することを利用した分離法である。
 式(1)で表される捕収剤は、ヒ素非含有銅鉱物に比べてヒ素含有銅鉱物に選択的に吸着する部位、および気泡に付着しやすい疎水基の部位を有する。そのため、式(1)で表される捕収剤によって、選択的にヒ素含有銅鉱物(粒子)を気泡に付着させてスラリー上面に浮上させることによって、浮鉱(フロス(froth))はヒ素が濃縮した高ヒ素銅精鉱となる。これにより、ヒ素非含有銅鉱物は、沈鉱(テーリング(tailing))に濃縮され、沈鉱はヒ素が低減した低ヒ素銅精鉱となる。
 浮鉱には、ヒ素含有銅鉱物が多く含まれる。また、浮鉱には、ヒ素含有銅鉱物だけでなく、他の鉱物、不純物、少量のヒ素非含有銅鉱物などが含まれていてもよい。一方、沈鉱には、ヒ素非含有銅鉱物が多く含まれる。また、沈鉱には、ヒ素非含有銅鉱物だけでなく、他の鉱物、不純物、少量のヒ素含有銅鉱物などが含まれていてもよい。
 このように、上記式(1)で表される捕収剤を含む浮選剤を混合物のスラリーに添加し、ヒ素含有銅鉱物を選択的に浮上させて選鉱し、混合物のスラリーに沈殿しているヒ素非含有銅鉱物を選択的に回収することで、ヒ素含有銅鉱物とヒ素非含有銅鉱物との混合物から、ヒ素非含有銅鉱物を多く含む濃縮物を得ることができる。こうして、ヒ素含有銅鉱物とヒ素非含有銅鉱物との混合物から、ヒ素含有量が少ない、またはヒ素が含まれていない銅鉱物を効率よく回収することができる。
 以上説明した実施形態によれば、式(1)で表される捕収剤を含む浮選剤を用いると、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物から選択的に回収するヒ素非含有銅鉱物の回収率を向上させることができる。
 以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。
 次に、実施例および比較例について説明するが、本開示はこれら実施例に限定されるものではない。
 鉱物標本として、ヒ素含有銅鉱物およびヒ素非含有銅鉱物を検討対象として採用した。具体的には、ヒ素含有銅鉱物として、鉱物標本名=硫ヒ銅鉱を鉱物標本1に設定し、ヒ素非含有銅鉱物として、鉱物標本名=黄銅鉱を鉱物標本2に設定した。FRITSCH製のディスクミルを使用して、各鉱物標本を粉砕し、75μmでふるい分けられたものを試験試料とした。
 各試験試料の品位分析として、日本電子株式会社製JXA-8500Fを用いた電子線マイクロアナライザ分析によって、各元素濃度を測定した。鉱物標本1の結果を表1に示し、鉱物標本2の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
(実施例1)
 捕収剤としてジ-n-オクチルジスルフィドを用い、捕収剤を純水に分散させて、浮選剤として0.1wt%のジ-n-オクチルジスルフィド水溶液を作製した。また、5gの鉱物標本1(ヒ素含有銅鉱物)および120mLの純水をビーカーに投入した後、鉱物標本1および純水を5分間攪拌した。
 次に、0.5mLの浮選剤をビーカーにさらに投入して、ビーカー内の溶液を3分間攪拌した。次いで、汎用的な起泡剤として、メチルイソブチルカルビノール(MIBC)の0.2wt%溶液を1.0mL加えて、2分間攪拌した。その後、3分間静置して得られたスラリー10を図1に示す簡易浮選試験機1(ハリモンドチューブ)に投入した。
 次いで、簡易浮選試験機1を構成する管2の下方から栓4を介してスラリー10に窒素20を導入し、気泡11を発生させて、浮選処理による分離を行った。具体的には、高疎水性粒子12であるヒ素含有銅鉱物の粒子の多くは、気泡11に付着して浮上し、浮上した気泡11は上方で破裂し、管2に接続している管3内に沈降し、堆積した(浮鉱A、フロス)。一方で、気泡11に付着しなかった粒子は、管2内で滞留した(尾鉱B、テーリング)。
 そして、鉱物標本1の浮鉱率として、簡易浮選試験機1に投入した鉱物標本1の全量に対する浮鉱Aの量を算出した。
 続いて、鉱物標本1を鉱物標本2(ヒ素非含有銅鉱物)に代えた以外は同様にして、鉱物標本2の浮鉱率として、簡易浮選試験機1に投入した鉱物標本2の全量に対する浮鉱Aの量を算出した。そして、分離効率(鉱物標本1の浮鉱率/鉱物標本2の浮鉱率)を求めた。分離効率の結果を表3に示す。分離効率が大きいほど、すなわち、鉱物標本1の浮鉱率が高く、鉱物標本2の浮鉱率が低いほど、ヒ素非含有銅鉱物の回収率が高い。
(実施例2)
 捕収剤として、ジ-n-オクチルジスルフィドをジ-n-デシルジスルフィドに、浮選剤として、0.1wt%のジ-n-オクチルジスルフィド水溶液を0.1wt%のジ-n-デシルジスルフィド水溶液にそれぞれ代えた以外は、実施例1と同様にして、分離効率を求めた。
(実施例3)
 捕収剤として、ジ-n-オクチルジスルフィドをジイソアミルジスルフィドに、浮選剤として、0.1wt%のジ-n-オクチルジスルフィド水溶液を0.1wt%のジイソアミルジスルフィド水溶液にそれぞれ代えた以外は、実施例1と同様にして、分離効率を求めた。
(実施例4)
 捕収剤として、ジ-n-オクチルジスルフィドをジシクロヘキシルジスルフィドに、浮選剤として、0.1wt%のジ-n-オクチルジスルフィド水溶液を0.1wt%のジシクロヘキシルジスルフィド水溶液にそれぞれ代えた以外は、実施例1と同様にして、分離効率を求めた。
(実施例5)
 捕収剤として、ジ-n-オクチルジスルフィドを上記式(2)(ジ-tert-ブチルジスルフィド)に、浮選剤として、0.1wt%のジ-n-オクチルジスルフィド水溶液を0.1wt%のジ-tert-ブチルジスルフィド水溶液にそれぞれ代えた以外は、実施例1と同様にして、分離効率を求めた。
(実施例6)
 捕収剤として、ジ-n-オクチルジスルフィドを上記式(3)(ビス(2-エチルヘキシル)ジスルフィド)に、浮選剤として、0.1wt%のジ-n-オクチルジスルフィド水溶液を0.1wt%のビス(2-エチルヘキシル)ジスルフィド水溶液にそれぞれ代えた以外は、実施例1と同様にして、分離効率を求めた。
(実施例7)
 捕収剤として、ジ-n-オクチルジスルフィドを上記式(4)(ジ-tert-オクチルジスルフィド)に、浮選剤として、0.1wt%のジ-n-オクチルジスルフィド水溶液を0.1wt%のジ-tert-オクチルジスルフィド水溶液にそれぞれ代えた以外は、実施例1と同様にして、分離効率を求めた。
(実施例8)
 捕収剤として、ジ-n-オクチルジスルフィドを上記式(5)(ジ-tert-ドデシルジスルフィド)に、浮選剤として、0.1wt%のジ-n-オクチルジスルフィド水溶液を0.1wt%のジ-tert-ドデシルジスルフィド水溶液にそれぞれ代えた以外は、実施例1と同様にして、分離効率を求めた。
(比較例1)
 捕収剤として、ジ-n-オクチルジスルフィドをPotassium Amyl Xanthate(PAX)に、浮選剤として、0.1wt%のジ-n-オクチルジスルフィド水溶液を0.1wt%のPAX水溶液にそれぞれ代えた以外は、実施例1と同様にして、分離効率を求めた。
(比較例2)
 捕収剤として、ジ-n-オクチルジスルフィドをジ-n-オクチルスルフィドに、浮選剤として、0.1wt%のジ-n-オクチルジスルフィド水溶液を0.1wt%のジ-n-オクチルスルフィド水溶液にそれぞれ代えた以外は、実施例1と同様にして、分離効率を求めた。
Figure JPOXMLDOC01-appb-T000010
 表3に示すように、鉱物標本を用いた上記試験において、実施例1~8では、式(1)で表される捕収剤を含む浮選剤を用いたことから、式(1)で表される捕収剤を含まない浮選剤を用いた比較例1~2に比べて分離効率が高く、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物から選択的に回収するヒ素非含有銅鉱物の回収率を向上できた。
(実施例9)
 鉱石試料として、ヒ素含有銅鉱石を採用した。ボールミルを使用して、ヒ素含有銅鉱石を粉砕し、網下積算分布80%が75μmとなったサンプルを試験試料とした。
 試験試料の品位を以下の分析フローで求めた。まず、試験試料の重量測定を行い、次いで、マイクロウェーブ加熱・酸溶解を行い、メスアップを行って定容し、分析試料溶液を得た。次いで、分析試料溶液を、Agilent Technologies製のICP-OES 5110を用いて、ICP分析を行い、溶液中の元素濃度として定量分析した。具体的には、メスアップ後の溶液体積に、ICPで分析した各成分元素の溶液濃度を乗じたものを、酸溶解した試料の重量で除して、元素品位(wt%)とした。試験試料の原料であるヒ素含有銅鉱石の品位分析結果を表4に示す。
Figure JPOXMLDOC01-appb-T000011
 250gの試験試料および750mLの純水を1Lアジテア式浮選機に投入した後、1mol/L水酸化ナトリウム水溶液で純水と試験試料のスラリーをpH10.5に調整し、5分間攪拌した。
 次に、1tの試験試料に対して0.05molの添加量となるように捕収剤であるジイソアミルジスルフィドをスラリーに投入して、スラリーを3分間攪拌した。次いで、汎用的な起泡剤として、メチルイソブチルカルビノールを1tの試験試料に対して10gの添加量となるようにスラリーに加え、スラリーを0.5分間攪拌した。
 次いで、アジテア式浮選機に空気を導入し、気泡を発生させて、16分間浮選処理による分離を行った。気泡に付着した試料は浮鉱として、気泡に付着せずスラリー中にとどまった試料を沈鉱として回収した。回収した試料の品位分析を行い、下記式(A)からヒ素含有銅鉱物の回収率、下記式(C)からヒ素非含有銅鉱物の回収率、下記式(D)から分離効率を求めた。また、下記式(B)からヒ素含有銅鉱物由来銅重量を求めた。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
(比較例3)
 捕収剤として、ジイソアミルジスルフィドを一般的な硫化銅捕収剤Xanthateの一種であるPotassium Amyl Xanthateに代えた以外は、実施例9と同様にして、ヒ素含有銅鉱物の回収率、ヒ素非含有銅鉱物の回収率、および分離効率を求めた。
 実施例9および比較例3で得られた各回収率と分離効率の結果を表5に示す。ヒ素含有銅鉱物の回収率及び分離効率は高い方が好ましい。また、ヒ素含有銅鉱物の回収率が高くなれば、スラリー中のヒ素非含有銅鉱物(粒子)が濃縮され、沈鉱はよりヒ素が低減した低ヒ素銅鉱石となる点でも好ましい。
Figure JPOXMLDOC01-appb-T000016
 表5に示すように、鉱石試料を用いた上記試験において、実施例9では、式(1)で表される捕収剤を含む浮選剤を用いたことから、式(1)で表される捕収剤を含まない浮選剤を用いた比較例3に比べて、ヒ素非含有銅鉱物の回収率が低く抑えられ、ヒ素含有銅鉱物の回収率は同水準であることから、分離効率が高く、ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む銅鉱石から選択的に低ヒ素銅鉱石を得ることができた。
 1 簡易浮選試験機
 2、3 管
 4 栓
 10 スラリー
 11 気泡
 12 高疎水性粒子
 20 窒素または空気
 A 浮鉱
 B 尾鉱

Claims (10)

  1.  ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物からヒ素非含有銅鉱物を選択的に回収するために用いられる、下記式(1)で表される捕収剤を含む浮選剤。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)中、RおよびRは、それぞれ独立して、環状構造を有していてもよい、炭素数1以上16以下の直鎖状または分岐状のアルキル基である。)
  2.  RおよびRは、それぞれ独立して、炭素数5以上12以下の直鎖状または分岐状のアルキル基である、請求項1に記載の浮選剤。
  3.  Rは炭素数8の直鎖状のアルキル基であり、Rは炭素数8の直鎖状のアルキル基である、請求項1に記載の浮選剤。
  4.  RおよびRは、それぞれ独立して、炭素数4以上12以下の分岐状のアルキル基である、請求項1に記載の浮選剤。
  5.  Rは炭素数4の分岐状のアルキル基であり、Rは炭素数4の分岐状のアルキル基である、請求項1に記載の浮選剤。
  6.  Rは炭素数8の分岐状のアルキル基であり、Rは炭素数8の分岐状のアルキル基である、請求項1に記載の浮選剤。
  7.  Rは炭素数12の分岐状のアルキル基であり、Rは炭素数12の分岐状のアルキル基である、請求項1に記載の浮選剤。
  8.  前記ヒ素含有銅鉱物は、硫ヒ銅鉱、ルソン銅鉱およびヒ四面銅鉱からなる群より選択される1種以上を含む、請求項1に記載の浮選剤。
  9.  前記ヒ素非含有銅鉱物は、黄銅鉱、斑銅鉱、銅藍および輝銅鉱からなる群より選択される1種以上を含む、請求項1に記載の浮選剤。
  10.  ヒ素含有銅鉱物とヒ素非含有銅鉱物とを含む混合物からヒ素非含有銅鉱物を選択的に回収するヒ素非含有銅鉱物の回収方法であって、
     前記混合物のスラリーに対して捕収剤を含む浮選剤を添加して、前記ヒ素含有銅鉱物を選択的に浮上させて選鉱し、前記ヒ素非含有銅鉱物を選択的に回収する回収工程を有し、
     前記浮選剤が請求項1~9のいずれか1項に記載の浮選剤である、ヒ素非含有銅鉱物の回収方法。
PCT/JP2024/004785 2023-02-15 2024-02-13 浮選剤およびヒ素非含有銅鉱物の回収方法 WO2024172017A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-021779 2023-02-15
JP2023021779 2023-02-15

Publications (1)

Publication Number Publication Date
WO2024172017A1 true WO2024172017A1 (ja) 2024-08-22

Family

ID=92420200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/004785 WO2024172017A1 (ja) 2023-02-15 2024-02-13 浮選剤およびヒ素非含有銅鉱物の回収方法

Country Status (1)

Country Link
WO (1) WO2024172017A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554137A (en) * 1982-10-13 1985-11-19 Societe Nationale Elf Aquitaine (Production) Enrichment of minerals by flotation and collector agents employed for this purpose
US4618461A (en) * 1983-07-25 1986-10-21 The Dow Chemical Company O,O'-, O,S'- or S,S'-dithiodialkylene-bis(mono- or dihydrocarbyl carbamothioates) and S,S'-dithiodialkylene-bis(mono- or dihydrocarbyl carbamodithioates) and method of preparation thereof
JPS62129160A (ja) * 1985-11-29 1987-06-11 ザ・ダウ・ケミカル・カンパニ− 鉱物有価物の泡沫浮遊選鉱のための捕集剤組成物
JPS63100961A (ja) * 1985-05-31 1988-05-06 ザ・ダウ・ケミカル・カンパニ− 硫化物鉱物の選択的泡沫浮遊選鉱のための捕集剤
US5132008A (en) * 1991-09-30 1992-07-21 Phillips Petroleum Company Preparation of bis(alkylthio) alkanes or bis(arylthio) alkanes and use thereof
JP2021074640A (ja) * 2019-11-05 2021-05-20 国立大学法人九州大学 選鉱方法
WO2022044599A1 (ja) * 2020-08-27 2022-03-03 独立行政法人石油天然ガス・金属鉱物資源機構 ヒ素含有銅鉱物を選択的に回収する方法及びそれに用いる浮選剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554137A (en) * 1982-10-13 1985-11-19 Societe Nationale Elf Aquitaine (Production) Enrichment of minerals by flotation and collector agents employed for this purpose
US4618461A (en) * 1983-07-25 1986-10-21 The Dow Chemical Company O,O'-, O,S'- or S,S'-dithiodialkylene-bis(mono- or dihydrocarbyl carbamothioates) and S,S'-dithiodialkylene-bis(mono- or dihydrocarbyl carbamodithioates) and method of preparation thereof
JPS63100961A (ja) * 1985-05-31 1988-05-06 ザ・ダウ・ケミカル・カンパニ− 硫化物鉱物の選択的泡沫浮遊選鉱のための捕集剤
JPS62129160A (ja) * 1985-11-29 1987-06-11 ザ・ダウ・ケミカル・カンパニ− 鉱物有価物の泡沫浮遊選鉱のための捕集剤組成物
US5132008A (en) * 1991-09-30 1992-07-21 Phillips Petroleum Company Preparation of bis(alkylthio) alkanes or bis(arylthio) alkanes and use thereof
JP2021074640A (ja) * 2019-11-05 2021-05-20 国立大学法人九州大学 選鉱方法
WO2022044599A1 (ja) * 2020-08-27 2022-03-03 独立行政法人石油天然ガス・金属鉱物資源機構 ヒ素含有銅鉱物を選択的に回収する方法及びそれに用いる浮選剤

Similar Documents

Publication Publication Date Title
JP4450108B1 (ja) 高砒素品位含銅物からの砒素鉱物の分離方法
CA2582953C (en) Arsenide depression in flotation of multi-sulfide minerals
AU2016204138B2 (en) Sulfide flotation aid
AU2011211739B2 (en) Method for separating arsenic mineral from copper material with high arsenic content
CN106955790B (zh) 一种n-烷基羟肟酸-o-烃基硫氨酯捕收剂、制备及其应用
WO2022044599A1 (ja) ヒ素含有銅鉱物を選択的に回収する方法及びそれに用いる浮選剤
Phetla et al. A multistage sulphidisation flotation procedure for a low grade malachite copper ore
WO2008019451A1 (en) Collectors and flotation methods
WO2013169141A1 (en) Method and apparatus for separation of molybdenite from pyrite containing copper-molybdenum ores
JP7344504B2 (ja) 選鉱方法
CN100556553C (zh) 矿石浮选法中使用的硫醇组合物及回收金属化合物的方法
JP7299592B2 (ja) 選鉱方法
JP2012115781A (ja) 砒素を含む含銅物の選鉱方法
Muzenda et al. Effect of pH on the Recovery and grade of base metal sulphides (PGMs) by flotation
WO2024172017A1 (ja) 浮選剤およびヒ素非含有銅鉱物の回収方法
JP6430330B2 (ja) 選鉱方法
JP5188118B2 (ja) 黄鉄鉱の浮遊性を抑制する浮遊選鉱方法
BR0315150B1 (pt) processo de flotação por espuma para beneficiamento de um minério.
JPS5876153A (ja) 金属硫化物の選鉱法とそれに用いる捕集剤
JP6999109B2 (ja) 選鉱方法
Rutledge Fundamental surface chemistry and froth flotation behavior using quebracho tannins
US4643823A (en) Recovering metal sulfides by flotation using mercaptoalcohols
Lin Characterization and flotation of sulfur from chalcopyrite concentrate leaching residue
WO2023112734A1 (ja) 選鉱方法
WO2024127851A1 (ja) 鉱物粒子回収方法