WO2024166862A1 - 光学ガラスおよび光学素子 - Google Patents

光学ガラスおよび光学素子 Download PDF

Info

Publication number
WO2024166862A1
WO2024166862A1 PCT/JP2024/003703 JP2024003703W WO2024166862A1 WO 2024166862 A1 WO2024166862 A1 WO 2024166862A1 JP 2024003703 W JP2024003703 W JP 2024003703W WO 2024166862 A1 WO2024166862 A1 WO 2024166862A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
order
anion
cation ratio
Prior art date
Application number
PCT/JP2024/003703
Other languages
English (en)
French (fr)
Inventor
昂浩 庄司
智明 根岸
Original Assignee
Hoya株式会社
豪雅光電科技(威海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社, 豪雅光電科技(威海)有限公司 filed Critical Hoya株式会社
Publication of WO2024166862A1 publication Critical patent/WO2024166862A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to optical glass and optical elements having desired optical properties.
  • Lenses with high refractive indices and anomalous partial dispersion in each Abbe region are widely used in applications such as car-mounted cameras, digital cameras such as single-lens reflex cameras, and information portable terminal devices such as smartphones.
  • glass with high mechanical properties is desirable to improve the yield rate during lens manufacturing.
  • processing glass into aspherical lenses processing can be difficult if the glass has a high glass transition temperature. Therefore, there is a demand for glass with a reduced glass transition temperature.
  • glasses with compositions containing P (phosphorus) as a network-forming component such as P-Al-RO and P-Al-F, have been used as glasses with an Abbe number ⁇ d of 62 or more and a relatively high refractive index nd.
  • P-Al-RO and P-Al-F have been used as glasses with an Abbe number ⁇ d of 62 or more and a relatively high refractive index nd.
  • such glasses with compositions containing P (phosphorus) as a network-forming component have poor mechanical properties, which causes problems such as a decrease in yield during the lens processing process and a deterioration in product quality.
  • the present invention therefore focuses on B-La-F type glasses.
  • B-La-F type glasses many of the components that contribute to low dispersion of the glass volatilize during melting, making it difficult to increase the Abbe number ⁇ d.
  • the glass composition is adjusted to suppress the volatilization of glass components, leading to the invention of glass with an Abbe number ⁇ d of 62 or more and excellent mechanical properties.
  • Patent Document 1 discloses fluorine-containing optical glass that has a large Abbe number relative to the refractive index and has excellent resistance to devitrification.
  • Patent Document 2 discloses optical glass that has a high refractive index and high transmittance in the near-infrared region.
  • Patent Documents 1 and 2 do not disclose optical glass with an Abbe number ⁇ d of 62 or more.
  • the present invention was made in consideration of these circumstances, and aims to provide an optical glass and optical element that has the desired optical constants, is inhibited from reducing mechanical properties, and does not have a high glass transition temperature.
  • the gist of the present invention is as follows:
  • the Abbe number ⁇ d is 62.00 or more;
  • the content of B3 + is more than 0 cation% and 50.00 cation% or less,
  • the content of Si4 + exceeds 0 cation%,
  • the content of F ⁇ exceeds 0 anion %, the total content of La 3+ , Gd 3+ , and Y 3+ [La 3+ +Gd 3+ +Y 3+ ] is 5 cation % or more;
  • Optical glass is
  • the Abbe number ⁇ d is 62.00 or more;
  • the content of B3 + is more than 0 cation% and 50.00 cation% or less,
  • the F ⁇ content is greater than 0 anion % and less than or equal to 85 anion %;
  • the total content of La 3+ , Gd 3+ , and Y 3+ [La 3+ + Gd 3+ + Y 3+ ] is 5 cation % or more;
  • a glass material for press molding comprising the optical glass described in any one of (1) to (3) above.
  • the present invention provides optical glass and optical elements that have desired optical constants, are prevented from decreasing mechanical properties, and have a low glass transition temperature.
  • the glass composition of the optical glass is expressed in cation %, unless otherwise specified.
  • Cation % is the molar percentage when the total content of all cationic components is taken as 100%.
  • the content and total content of glass components are based on cation %, unless otherwise specified, and "%" means “cation %".
  • the cation ratio refers to the proportion (ratio) of the content of cationic components to each other (including the total content of multiple types of cationic components) in the cation %.
  • anion % is the molar percentage when the total content of all anion components is 100%.
  • the valence of the cationic component (for example, the valence of B 3+ is +3, the valence of Si 4+ is +4, and the valence of La 3+ is +3) is a value determined by convention, and is similar to the notation of B 2 O 3 , SiO 2 , and La 2 O 3 when expressing glass components B, Si, and La on an oxide basis. Therefore, when analyzing the glass composition, it is not necessary to analyze the valence of the cationic component.
  • the valence of the anionic component (for example, the valence of O 2- is -2) is also a value determined by convention, and is similar to the notation of glass components on an oxide basis as described above, for example, B 2 O 3 , SiO 2 , and La 2 O 3. Therefore, when analyzing the glass composition, it is not necessary to analyze the valence of the anionic component.
  • the content of glass components can be quantified by known methods, such as inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), ion chromatography (IC), non-dispersive infrared spectrometry (ND-IR), etc.
  • ICP-AES inductively coupled plasma atomic emission spectrometry
  • ICP-MS inductively coupled plasma mass spectrometry
  • IC ion chromatography
  • ND-IR non-dispersive infrared spectrometry
  • chemical durability refers to excellent water resistance Da and water resistance Dw or both.
  • mechanical properties refer to excellent hardness of glass as evaluated by Knoop hardness Hk.
  • Knoop hardness Hk is an index showing the indentation hardness of glass. Note that the unit of Knoop hardness Hk is "MPa", but since it is customary to omit the unit of Knoop hardness Hk in the technical field to which this invention belongs, the unit of Knoop hardness Hk will also be omitted in this specification.
  • the thermal stability and stability upon reheating of glass both refer to the difficulty of crystal precipitation in glass. Thermal stability refers to the difficulty of crystal precipitation when molten glass solidifies, and stability upon reheating refers to the difficulty of crystal precipitation when solidified glass is reheated, such as during reheat pressing.
  • reduced or suppressed volatilization of glass components means that the loss of glass components due to volatilization of glass components during melting is small or suppressed. If the loss of glass components due to volatilization during melting is small, fluctuations in various properties including the refractive index are suppressed, and the occurrence of internal defects such as striae inside the glass is suppressed, making it possible to stabilize quality. Furthermore, since the loss of glass components is small, the product yield relative to the input raw materials can be directly increased. On the other hand, glass components that are likely to volatilize during melting are components that contribute to a decrease in dispersibility, an increase in anomalous partial dispersion, and a decrease in the glass transition temperature Tg. Therefore, by suppressing the volatilization of these components, it is possible to provide optical glass and optical elements that have the desired optical constants and a glass transition temperature Tg that is not high.
  • the refractive index refers to the refractive index nd at the helium d line (wavelength 587.56 nm).
  • optical glass of the present invention will be described below as a first embodiment and a second embodiment.
  • the optical glass according to the first embodiment is The Abbe number ⁇ d is 62.00 or more,
  • the content of B3 + is more than 0 cation% and 50.00 cation% or less,
  • the content of Si4 + exceeds 0 cation%,
  • the content of F ⁇ exceeds 0 anion %,
  • the total content of La 3+ , Gd 3+ and Y 3+ [La 3+ +Gd 3+ +Y 3+ ] is 5 cation % or more.
  • the Abbe number vd is equal to or greater than 62.00.
  • the Abbe number vd is preferably 62 to 75, and can also be 62.2 to 73, 62.4 to 71, 62.6 to 69, 62.8 to 68, 63 to 67, or 62 to 63.
  • the Abbe number vd can be adjusted to a desired value by appropriately adjusting the content of each glass component.
  • Components that relatively lower the Abbe number vd i.e., high dispersion components, are Nb5 + , Ti4 + , Zr4 + , W6 + , Bi3 + , Ta5 + , etc.
  • components that relatively increase the Abbe number vd i.e., low dispersion components, are F- , Si4 + , B3 + , Li + , Na + , K + , La3 + , Ba2 + , Ca2 + , Sr2 + , etc.
  • the Abbe number ⁇ d and the partial dispersion ratios Pg and F described later are calculated as follows. That is, the refractive index at the 12 wavelengths shown in Table A is measured according to the Japanese Industrial Standards (JIS) JIS B 7071-1, Method for measuring the refractive index of optical glass - Part 1: Minimum deviation method. Next, the refractive index of each line obtained by measurement is applied to the shot dispersion formula defined in Annex B of the Japanese Industrial Standards (JIS) JIS B 7071-1, Method for measuring the refractive index of optical glass - Part 1: Minimum deviation method, and the constants of the shot dispersion formula are found by the least squares method. Then, the Abbe number ⁇ d and the partial dispersion ratios Pg and F described later are calculated from the values of each linear refractive index obtained using the shot dispersion formula with the constants determined.
  • JIS Japanese Industrial Standards
  • Pg and F described later are calculated from the values of each linear refractive index obtained using the shot dispersion formula with the constants
  • n2 a0 + a1 ⁇ 2 + a2 ⁇ -2 + a3 ⁇ -4 + a4 ⁇ -6 + a5 ⁇ -8
  • n is the refractive index
  • is the wavelength ( ⁇ m)
  • a 0 , a 1 , a 2 , a 3 , a 4 , and a 5 are constants.
  • the B3+ content is greater than 0% and not more than 50.00%.
  • the lower limit of the B3 + content is preferably 5%, and more preferably 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, and 21%, in that order.
  • the upper limit of the B3 + content is preferably 45.00%, and more preferably 40.00%, 39.00%, 38.00%, 37.00%, 36.00%, 35.00%, 34.00%, 33.00%, 32.00%, 31.00%, 30.00%, 29.00%, 28.00%, 27.00%, 26.00%, 25.00%, 24.00%, and 23.00% in that order.
  • B3 + is a glass network forming component.
  • the chemical durability can be improved.
  • the content of B3+ is too low, the thermal stability and mechanical properties of the glass may be reduced.
  • the content of B3 + is too high, the volatilization of glass components may increase, and the thermal stability and chemical durability of the glass may be reduced.
  • the Si4 + content exceeds 0%.
  • the lower limit of the Si4 + content is preferably 1%, and more preferably 2%, 3%, 4%, 5%, 6%, 7%, and 8% in that order.
  • the upper limit of the Si4 + content is preferably 30%, and more preferably 25%, 23%, 21%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, and 10% in that order.
  • Si4 + is a network forming component of glass.
  • an optical glass having abnormal partial dispersion and improved chemical durability, mechanical properties, and thermal stability can be obtained.
  • the content of Si4+ is too small, the chemical durability, mechanical properties, and thermal stability of the glass may be reduced.
  • the content of Si4+ is too large, the melting property of the glass may be reduced, and the refractive index nd may be reduced.
  • the thermal stability of the glass may be reduced, and the glass transition temperature Tg may be increased.
  • the optical glass according to the first embodiment contains F - as an anion component, that is, the content of F - exceeds 0 anion %.
  • the lower limit of the content of F - is preferably 5 anion %, and more preferably 10 anion %, 15 anion %, 20 anion %, 24 anion %, 27 anion %, 30 anion %, 33 anion %, 35 anion %, 37 anion %, 39 anion %, 41 anion %, 43 anion %, 45 anion %, 46 anion %, 47 anion %, 48 anion %, 49 anion %, 50 anion %, 51 anion %, 52 anion %, 53 anion %, 54 anion %, 55 anion %, 56 anion %, and 57 anion % in this order.
  • the upper limit of the content of F - is preferably 80 anion%, and more preferably 77 anion%, 75 anion%, 73 anion%, 71 anion%, 69 anion%, 67 anion%, 65 anion%, 64 anion%, 63 anion%, 62 anion%, 61 anion%, 60 anion%, and 59 anion% in that order.
  • an optical glass having a high refractive index for low dispersion, high thermal stability, anomalous partial dispersion, low glass transition temperature Tg, and suitable for precision press molding can be obtained.
  • the content of F - is too small, the thermal stability of the glass may decrease, and anomalous partial dispersion may not be obtained. If the content of F - is too large, the volatilization of glass components may increase.
  • the total content of La 3+ , Gd 3+ , and Y 3+ [La 3+ +Gd 3+ +Y 3+ ] is 5% or more.
  • the lower limit of the total content is preferably 10%, and more preferably 15%, 20%, 25%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, and 38% in this order.
  • the upper limit of the total content is preferably 60%, and more preferably 55%, 50%, 48%, 46%, 45%, 44%, 43%, 42%, and 41% in this order.
  • the lower limit of the total content of Si4 + and B3 + [Si4 + + B3 + ] is preferably 10%, more preferably 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 29%, and 30% in this order.
  • the upper limit of the total content is preferably 70%, more preferably 65%, 60%, 58%, 56%, 54%, 52%, 50%, 48%, 47%, 46%, 45%, 44%, 43%, 42%, 41%, 40%, 39%, 38%, 37%, 36%, 35%, 34%, 33%, and 32% in this order.
  • the total content it is preferable for the total content to be within the above range.
  • the lower limit of the total content of Li + , Na + , and K + [Li + +Na + +K + ] is preferably 0%, and more preferably 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, and 11% in this order.
  • the upper limit of the total content is preferably 50%, and more preferably 45%, 40%, 35%, 30%, 25%, 20%, 18%, 16%, 14%, and 13% in this order. From the viewpoint of lowering the liquidus temperature of the glass and lowering the glass transition temperature Tg, it is preferable that the total content is within the above range.
  • the lower limit of the total content of Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ [Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ ] is preferably 0%, and more preferably 1%, 3%, 5%, 7%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, and 16% in this order.
  • the upper limit of the total content is preferably 30%, and more preferably 29%, 28%, 27%, 26%, 25%, 24%, 23%, 22%, 21%, 20%, and 19% in this order.
  • the total content is too low, the volatilization of the glass components increases, and the thermal stability and devitrification resistance of the glass may decrease. If the total content is too high, the high refractive index may be impaired, and the thermal stability of the glass may be impaired. From the viewpoint of obtaining an optical glass having desired optical constants, reduced volatilization of glass components, and high thermal stability, it is preferable that the total content is within the above range.
  • the upper limit of the total content of Mg2 + , Ca2 + , Sr2 + , Ba2 + and Zn2 + [ Mg2 + + Ca2 + + Sr2 + + Ba2 + + Zn2 + ] is preferably 50%, and more preferably 45%, 40%, 35%, 30%, 29%, 28%, 27%, 26%, 25%, 24%, 23%, 22%, 21%, 20%, and 19% in this order.
  • the lower limit of the total content is preferably 0%, and more preferably 1%, 3%, 5%, 7%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, and 16% in this order.
  • the total content is preferably within the above range.
  • the lower limit of the total content of Li + , Na + , K + , Mg2+ , Ca2 + , Sr2 + , and Ba2 + is preferably 0%, and more preferably 1%, 3%, 5%, 7%, 9%, 11%, 13%, 15%, 17%, 19%, 21%, 23%, 25%, and 27% in this order.
  • the upper limit of the total content is preferably 50%, and more preferably 45%, 42%, 40%, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, and 31% in this order. From the viewpoint of obtaining an optical glass having desired optical constants, reduced glass transition temperature Tg and glass liquidus temperature, and further reduced volatilization of glass components during melting, it is preferable for the total content to be within the above range.
  • Li + Na + K + Rb + Cs + Mg2 + Ca2 + Sr2 +Ba2 + is preferably 0%, and more preferably 1%, 3%, 5%, 7%, 9%, 11%, 13%, 15%, 17%, 19%, 21%, 23%, 25%, and 27% in this order.
  • the upper limit of the total content is preferably 50%, and more preferably 45%, 42%, 40%, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, and 31% in this order. From the viewpoint of obtaining an optical glass having desired optical constants, a reduced glass transition temperature Tg, reduced volatilization of glass components, and high thermal stability, it is preferable for the total content to be within the above range.
  • the lower limit of the total content of Ti 4+ , Nb 5+ , W 6+ , and Bi 3+ [Ti 4+ +Nb 5+ +W 6+ +Bi 3+ ] is preferably 0%, more preferably 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, and 1.6% in this order.
  • the upper limit of the total content is preferably 20%, more preferably 15%, 10%, 5%, 4%, 3.5%, 3%, and 2.5% in this order. From the viewpoint of maintaining high refraction and low dispersion, the total content may be 0%. From the viewpoint of maintaining a desired Abbe number ⁇ d and improving anomalous partial dispersion in the visible to near ultraviolet region, it is preferable that the total content is within the above range.
  • the upper limit of the total content of Zr4 + and Ta5+ [ Zr4 + + Ta5 + ] is preferably 20%, more preferably 15%, 10%, 5%, 4%, 3%, 2%, 1% in this order.
  • the lower limit of the total content is preferably 0%, more preferably 0.1%, 0.2%, 0.3% in this order. From the viewpoint of maintaining high refraction and low dispersion, the total content may be 0%. From the viewpoint of maintaining the thermal stability of the glass, the total content is preferably within the above range. If the total content is too high, the thermal stability of the glass may be reduced, and the raw material cost may increase.
  • the upper limit of the total content of Ti 4+ , Nb 5+ , Bi 3+ , W 6+ , Zr 4+ , and Ta 5+ [Ti 4+ +Nb 5+ +Bi 3+ +W 6+ +Zr 4+ +Ta 5+ ] is preferably 20%, more preferably 15%, 10%, 5%, 4%, 3.5%, 3%, and 2.5% in that order.
  • the lower limit of the total content is preferably 0%, more preferably 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, and 1.6% in that order. From the viewpoint of maintaining high refraction and low dispersion, the total content may be 0%. From the viewpoint of maintaining a desired Abbe number ⁇ d and improving anomalous partial dispersion in the visible to near ultraviolet region, it is preferable that the total content is within the above range.
  • the lower limit of the cation ratio [ Si4+ / ( Si4 ++ B3+ ) ] of the content of Si4 + to the total content of Si4+ and B3+ is preferably 0.020, and more preferably 0.05, 0.09, 0.13, 0.15, 0.17, 0.19, 0.21, 0.22, 0.23, 0.24, and 0.25 in this order.
  • the upper limit of the cation ratio is preferably 0.80, and more preferably 0.70, 0.60, 0.50, 0.40, 0.35, 0.34, 0.33, and 0.32 in this order. From the viewpoint of obtaining an optical glass having improved chemical durability, mechanical properties, and thermal stability, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cationic ratio [ B3+ / ( Si4 ++B3+)] of the content of B3+ to the total content of Si4+ and B3 + is preferably 0.980, and more preferably 0.95, 0.91, 0.87, 0.85, 0.83, 0.81, 0.79, 0.78, 0.77, 0.76, 0.75 in this order.
  • the lower limit of the cationic ratio is preferably 0.20, and more preferably 0.30, 0.40, 0.50, 0.60, 0.65, 0.66, 0.67, 0.68 in this order. From the viewpoint of obtaining an optical glass with improved chemical durability, mechanical properties, and thermal stability, it is preferable that the cationic ratio is within the above range.
  • the lower limit of the total content of Si4 + , B3 + , and P5 + [ Si4 ++ B3 ++P5 + ] is preferably 10%, more preferably 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 29%, and 30% in this order.
  • the upper limit of the total content is preferably 70%, more preferably 65%, 60%, 58%, 56%, 54%, 52%, 50%, 48%, 47%, 46%, 45%, 44%, 43%, 42%, 41%, 40%, 39%, 38%, 37%, 36%, 35%, 34%, 33%, and 32% in this order.
  • the total content it is preferable for the total content to be within the above range.
  • the upper limit of the cation ratio [ Si4 + /(Si4++ B3 ++P5+)] of the content of Si4 + to the total content of Si4 + , B3+, and P5 + is preferably 0.80, and more preferably 0.70, 0.60, 0.50, 0.40, 0.35, 0.34, 0.33, and 0.32 in this order.
  • the lower limit of the cation ratio is preferably 0.020, and more preferably 0.05, 0.09, 0.13, 0.15, 0.17, 0.19, 0.21, 0.22, 0.23, 0.24, and 0.25 in this order. From the viewpoint of obtaining an optical glass having improved chemical durability, mechanical properties, and thermal stability, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cationic ratio [B3 + /( Si4++B3++P5+)] of the content of B3+ to the total content of Si4+ , B3 + , and P5 + is preferably 0.980, and more preferably 0.95, 0.91, 0.87, 0.85, 0.83, 0.81, 0.79, 0.78, 0.77, 0.76, and 0.75 in this order.
  • the lower limit of the cationic ratio is preferably 0.20, and more preferably 0.30, 0.40, 0.50, 0.60, 0.65, 0.66, 0.67, and 0.68 in this order. From the viewpoint of obtaining an optical glass with improved chemical durability, mechanical properties, and thermal stability, it is preferable that the cationic ratio is within the above range.
  • the upper limit of the cationic ratio [P5 + /( Si4 ++ B3 ++P5+)] of the content of P5+ to the total content of Si4 + , B3 + , and P5 + is preferably 0.50, and more preferably 0.40, 0.30, 0.20, 0.10, 0.08, 0.06, 0.04, and 0.02 in this order.
  • the lower limit of the cationic ratio is preferably 0, and more preferably 0.005, 0.01, and 0.015 in this order.
  • the cationic ratio may be 0. From the viewpoint of obtaining an optical glass having improved chemical durability, mechanical properties, and thermal stability, it is preferable that the cationic ratio is within the above range.
  • the lower limit of the cation ratio [( Si4 + + B3 + )/(Si4+ + B3 + + P5 + )] of the total content of Si4 + and B3 + to the total content of Si4 + , B3 + , and P5+ is preferably 0.2, more preferably 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95 in this order.
  • the upper limit of the cation ratio is preferably 1, more preferably 0.99, 0.98, 0.97 in this order.
  • the cation ratio may be 1. From the viewpoint of obtaining an optical glass having excellent chemical durability and mechanical properties, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [Li + / (Li + +Na + + K + )] of the content of Li + to the total content of Li + , Na + , and K + is preferably 1, more preferably 0.95, 0.90, and 0.85 in this order.
  • the lower limit of the cation ratio is preferably 0, more preferably 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 in this order.
  • the cation ratio may be 1. From the viewpoint of suppressing the decrease in stability during reheating and from the viewpoint of reducing the glass transition temperature Tg, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cationic ratio [Na + /(Li + +Na + + K + )] of the content of Na + to the total content of Li + , Na + , and K + is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, and 0.3 in this order.
  • the lower limit of the cationic ratio is preferably 0, and more preferably 0.05, 0.10, and 0.15 in this order.
  • the cationic ratio may be 0. From the viewpoint of suppressing the decrease in stability during reheating and from the viewpoint of reducing the glass transition temperature Tg, it is preferable that the cationic ratio is within the above range.
  • the upper limit of the cation ratio [K + /(Li ++ Na ++ K + )] of the content of K + to the total content of Li + , Na + , and K+ is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, and 0.3 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.10, and 0.15 in this order.
  • the cation ratio may be 0. From the viewpoint of suppressing the decrease in stability during reheating and from the viewpoint of reducing the glass transition temperature Tg, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [ Mg2 + /(Mg2++ Ca2 ++ Sr2 ++Ba2 + )] of the content of Mg2 + to the total content of Mg2 + , Ca2+ , Sr2+, and Ba2 + is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.55, and 0.5 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.1, 0.15, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38, 0.40, 0.42, 0.44, and 0.46 in this order.
  • the cation ratio may be 0. From the viewpoint of suppressing a decrease in the stability and thermal stability of the glass when it is reheated, the cation ratio is preferably within the above range.
  • the upper limit of the cation ratio [Ca 2+ /(Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ )] of the content of Ca 2+ to the total content of Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.15 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05 and 0.1 in this order.
  • the cation ratio may be 0. From the viewpoint of suppressing the deterioration of the stability and thermal stability during reheating of the glass, the cation ratio is preferably within the above range.
  • the upper limit of the cation ratio [Sr 2+ /(Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ )] of the content of Sr 2+ to the total content of Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.15 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05 and 0.1 in this order.
  • the cation ratio may be 0. From the viewpoint of suppressing the deterioration of the stability and thermal stability during reheating of the glass, the cation ratio is preferably within the above range.
  • the lower limit of the cation ratio [Ba2 + /(Mg2++ Ca2 ++Sr2 ++Ba2 + )] of the Ba2+ content to the total content of Mg2 + , Ca2 + , Sr2 + , and Ba2 + is preferably 0, and more preferably 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50, in that order.
  • the upper limit of the cation ratio is preferably 1, and more preferably 0.90, 0.80, 0.75, 0.74, 0.73, 0.72, 0.71, 0.70, 0.69, 0.68, 0.67, 0.66, 0.65, 0.64, 0.63, 0.62, 0.61, 0.60, 0.59, 0.58, 0.57, 0.56, and 0.55 in that order. From the viewpoint of suppressing a decrease in stability and thermal stability during reheating of the glass, the cation ratio is preferably in the above range.
  • the upper limit of the cation ratio [ Mg2 + /(Mg2++ Ca2 ++ Sr2 ++ Ba2 ++Zn2 + )] of the content of Mg2 + to the total content of Mg2+, Ca2 + , Sr2 + , Ba2 + , and Zn2 + is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.55, and 0.5 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.1, 0.15, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38, 0.40, 0.42, 0.44, and 0.46 in this order.
  • the cation ratio may be 0. From the viewpoint of suppressing a decrease in the stability during reheating of the glass and in the thermal stability, the cation ratio is preferably in the above range.
  • the upper limit of the cation ratio [Ca 2+ /(Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ +Zn 2+ )] of the content of Ca 2+ to the total content of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.15 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05 and 0.1 in this order.
  • the cation ratio may be 0. From the viewpoint of suppressing the deterioration of the stability and thermal stability during reheating of the glass, the cation ratio is preferably within the above range.
  • the upper limit of the cation ratio [Sr 2+ /(Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ +Zn 2+ )] of the content of Sr 2+ to the total content of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.15 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05 and 0.1 in this order.
  • the cation ratio may be 0. From the viewpoint of suppressing the deterioration of the stability and thermal stability during reheating of the glass, the cation ratio is preferably within the above range.
  • the lower limit of the cation ratio [Ba2 + /( Mg2 ++ Ca2 ++ Sr2 ++ Ba2 ++Zn2 + )] of the Ba2 + content to the total content of Mg2 + , Ca2 + , Sr2 + , Ba2+ , and Zn2+ is preferably 0, and more preferably 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50, in that order.
  • the upper limit of the cation ratio is preferably 1, and more preferably 0.90, 0.80, 0.75, 0.74, 0.73, 0.72, 0.71, 0.70, 0.69, 0.68, 0.67, 0.66, 0.65, 0.64, 0.63, 0.62, 0.61, 0.60, 0.59, 0.58, 0.57, 0.56, and 0.55 in that order. From the viewpoint of suppressing a decrease in stability and thermal stability during reheating of the glass, the cation ratio is preferably in the above range.
  • the upper limit of the cationic ratio [Zn 2+ /(Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ +Zn 2+ )] of the content of Zn 2+ to the total content of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.15 in this order.
  • the lower limit of the cationic ratio is preferably 0, and more preferably 0.05 and 0.1 in this order.
  • the cationic ratio may be 0. From the viewpoint of suppressing the deterioration of stability and thermal stability during reheating of the glass, and from the viewpoint of maintaining the high refractive index of the glass, the cationic ratio is preferably within the above range.
  • the lower limit of the cation ratio [ La3+ / (La3 + + Gd3 + + Y3 + )] of the content of La3 + to the total content of La3+, Gd3 + , and Y3+ is preferably 0, and more preferably 0.05, 0.10, 0.15, 0.20, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, and 0.45, in that order.
  • the upper limit of the cation ratio is preferably 1, and more preferably 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.59, 0.58, 0.57, 0.56, 0.55, 0.54, and 0.53 in that order. From the viewpoint of increasing the refractive index nd and suppressing a decrease in the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cationic ratio [Gd3 + /( La3 ++ Gd3 ++Y3+)] of the content of Gd3 + to the total content of La3 + , Gd3 + , and Y3 + is preferably 1, and more preferably 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, and 0.10 in this order.
  • the lower limit of the cationic ratio is preferably 0, and more preferably 0.01 and 0.05 in this order.
  • the cationic ratio may be 0.
  • the upper limit of the cation ratio [Y3 + /( La3 ++ Gd3 ++Y3+)] of the content of Y3 + to the total content of La3 + , Gd3 +, and Y3 + is preferably 1, and more preferably 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.63, 0.61, 0.60, 0.59, 0.58, 0.57, 0.56, and 0.55, in that order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.10, 0.15, 0.20, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48 in that order.
  • the cation ratio may be 0. From the viewpoint of increasing the refractive index nd and suppressing the deterioration of the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [Ti4 + /(Ti4 + + Nb5+ +W6+ +Bi3 + )] of the Ti4 + content to the total content of Ti4+, Nb5 +, W6 + , and Bi3+ is preferably 1, and more preferably 0.9, 0.8 , 0.7 , 0.6, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.23, 0.21, 0.2, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, and 0.11 , in that order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, and 0.08 in that order.
  • the cation ratio may be 0. From the viewpoints of increasing the refractive index nd and maintaining a desired Abbe number ⁇ d and thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [Nb5 + /(Ti4 + + Nb5 + +W6 + +Bi3 + )] of the Nb5 + content to the total content of Ti4+, Nb5 + , W6 + , and Bi3 + is preferably 1, and more preferably 0.95, 0.90, 0.85, 0.80, 0.75, 0.74, 0.73, 0.72, 0.71, 0.70, 0.69, 0.68, and 0.67 , in that order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62 in that order.
  • the cation ratio may be 0. From the viewpoints of increasing the refractive index nd, maintaining the desired Abbe number ⁇ d, and maintaining the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [W6 + /(Ti4 + + Nb5 + +W6+ +Bi3 + )] of the content of W6 + to the total content of Ti4 + , Nb5 +, W6 + , and Bi3+ is preferably 1, and more preferably 0.9, 0.8 , 0.7, 0.6, 0.5, 0.45, 0.44, 0.43, 0.42, 0.41, 0.40, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.32, 0.31, 0.3, 0.29, 0.28, and 0.27, in that order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.1, 0.12, 0.14, 0.16, 0.18, 0.20, 0.21, 0.22, 0.23, and 0.24 in that order.
  • the cation ratio may be 0. From the viewpoints of increasing the partial dispersion ratio Pg,F, maintaining a desired Abbe number ⁇ d, and maintaining the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [Bi3 + /(Ti4 + + Nb5+ +W6+ +Bi3 + )] of the Bi3 + content to the total content of Ti4 +, Nb5 +, W6 + , and Bi3+ is preferably 1, and more preferably 0.9, 0.8 , 0.7, 0.6, 0.5, 0.45, 0.44, 0.43, 0.42, 0.41, 0.40, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.32, 0.31, 0.3, 0.29, 0.28, and 0.27, in that order.
  • the lower limit of the cation ratio is preferably 0, and may be 0.05, 0.1, 0.12, 0.14, 0.16, 0.18, 0.20, 0.21, 0.22, 0.23, or 0.24.
  • the cation ratio may be 0. From the viewpoints of increasing the refractive index nd and the partial dispersion ratio Pg,F, maintaining a desired Abbe number ⁇ d, and maintaining the thermal stability of the glass, and from the viewpoints of reducing damage to platinum melting equipment, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [ Zr4+ / ( Zr4 ++Ta5 + )] of the content of Zr4 + to the total content of Zr4+ and Ta5 + is preferably 1, and more preferably 0.95, 0.90, and 0.85 in that order.
  • the lower limit of the cation ratio is preferably 0, and may be 0.5, 0.6, 0.7, or 0.8.
  • the cation ratio may be 0. From the viewpoints of maintaining desired optical constants and suppressing raw material costs, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [ Ta5+ / ( Zr4 ++Ta5 + )] of the content of Ta5 + to the total content of Zr4+ and Ta5+ is preferably 1, and more preferably 0.5, 0.4, 0.3, and 0.2 in that order.
  • the lower limit of the cation ratio is preferably 0, and may be 0.05, 0.10, or 0.15.
  • the cation ratio may be 0. From the viewpoints of maintaining the desired optical constants and suppressing the raw material costs, it is preferable that the cation ratio is within the above range.
  • the cation ratio of the content of Ti4 + to the total content of Ti4 + , Nb5+ , Bi3 + , W6 + , Zr4 + , and Ta5 + is preferably 1, more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.23, 0.21, 0.2, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.10, 0.09, 0.08, 0.07, 0.06 in this order.
  • the lower limit of the cation ratio is preferably 0, more preferably 0.01, 0.02, 0.03, 0.04 in this order.
  • the cation ratio may be 0. From the viewpoint of increasing the refractive index nd and maintaining the desired Abbe number ⁇ d, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [ Nb5 + /(Ti4 + + Nb5 + +Bi3 + +W6+ +Zr4+ +Ta5+)] of the content of Nb5 + to the total content of Ti4+, Nb5 + , Bi3 + , W6+ , Zr4 + , and Ta5 + is preferably 1, and more preferably 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40, 0.35, 0.34 , 0.33, 0.32, 0.31, 0.30, 0.29, 0.28, and 0.27 , in that order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, and 0.24 in that order.
  • the cation ratio may be 0. From the viewpoint of increasing the refractive index nd and maintaining a desired Abbe number ⁇ d, it is preferable that the cation ratio is within the above range.
  • the cation ratio of the content of Bi 3+ to the total content of Ti 4+ , Nb 5+ , Bi 3+ , W 6+ , Zr 4+ , and Ta 5+ [Bi 3+ /(Ti 4+ + Nb 5+ + Bi 3+ + W 6+ + Zr 4+ + Ta 5+
  • the upper limit of the cation ratio is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.35, 0.30, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11.
  • the lower limit of the cation ratio is preferably 0, and may be 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, or 0.09.
  • the cation ratio may be 0. From the viewpoints of increasing the refractive index nd and the partial dispersion ratio Pg,F, maintaining the desired Abbe number vd, and maintaining the thermal stability of the glass, as well as reducing damage to platinum melting equipment, it is preferable that the cation ratio be within the above-mentioned range.
  • the upper limit of the cation ratio is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.35, 0.30, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09.
  • the cation ratio may be 0. From the viewpoints of increasing the partial dispersion ratio Pg,F, maintaining a desired Abbe number vd, and maintaining the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [ Zr4 + /(Ti4 ++ Nb5 ++ Bi3 ++ W6 ++Zr4++Ta5 + )] of the content of Zr4 + to the total content of Ti4+, Nb5 +, Bi3 + , W6 + , Zr4 + , and Ta5+ is preferably 1, and more preferably 0.95, 0.9, 0.85, 0.80, 0.75, 0.70, 0.69, 0.68, 0.67, 0.66, 0.65, 0.64, 0.63, and 0.62, in that order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.01, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, and 0.58 in that order.
  • the cation ratio may be 0. From the viewpoint of increasing the refractive index nd and maintaining a desired Abbe number ⁇ d, and from the viewpoint of improving the mechanical properties and chemical durability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cationic ratio [Ta5 + /( Ti4 ++ Nb5 ++ Bi3++ W6 ++ Zr4 ++Ta5 + )] of the content of Ta5 + to the total content of Ti4 + , Nb5 +, Bi3 +, W6 + , Zr4+ , and Ta5+ is preferably 1, and more preferably 0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0.08, 0.06, and 0.04 in this order.
  • the lower limit of the cationic ratio is preferably 0, and may be 0.01, 0.02, or 0.03.
  • the cationic ratio may be 0. From the viewpoint of maintaining the desired constants and suppressing the raw material cost, it is preferable that the cationic ratio is within the above range.
  • the upper limit of the cation ratio [Al 3+ /(Si 4+ +B 3+ )] of the content of Al 3+ to the total content of Si 4+ and B 3+ is preferably 0.5, more preferably 0.45, 0.40, 0.35, 0.30, 0.25, and 0.20 in this order.
  • the lower limit of the cation ratio is preferably 0, more preferably 0.01, 0.05, 0.1, and 0.15 in this order.
  • the cation ratio may be 0.
  • the mechanical properties and chemical durability of the glass can be improved.
  • the cation ratio becomes too high, the liquidus temperature rises and the thermal stability of the glass is impaired. From the viewpoint of maintaining the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [Al 3+ /(Li + Na + + K + )] of the content of Al 3+ to the total content of Li + , Na + , and K + is preferably 2, and more preferably 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, and 0.2 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.1, and 0.15 in this order.
  • the cation ratio may be 0.
  • the mechanical properties and chemical durability of the glass can be improved.
  • the cation ratio becomes too high, the liquidus temperature increases, and the thermal stability of the glass is impaired. From the viewpoint of maintaining the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [Al 3+ /(Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ )] of the content of Al 3+ to the total content of Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ is preferably 2, and more preferably 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.3, and 0.2 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.1, and 0.15 in this order.
  • the cation ratio may be 0. By increasing the cation ratio, the mechanical properties and chemical durability of the glass can be improved.
  • the cation ratio is within the above range.
  • the upper limit of the cation ratio [Al 3+ / (Li + Na + K + Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ )] of the content of Al 3+ to the total content of Li + , Na + , K + , Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ is preferably 5, and more preferably 4, 3, 2, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6 , 0.4, 0.3, and 0.2 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.1, and 0.15 in this order.
  • the cation ratio may be 0.
  • the mechanical properties and chemical durability of the glass can be improved.
  • the cation ratio is too high, the liquidus temperature rises and the thermal stability of the glass is impaired. From the viewpoint of maintaining the thermal stability and devitrification resistance of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [Al 3+ /(La 3+ +Gd 3+ +Y 3+ )] of the content of Al 3+ to the total content of La 3+ , Gd 3+ , and Y 3+ is preferably 2, and more preferably 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.3, and 0.2 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.1, and 0.15 in this order.
  • the cation ratio may be 0. From the viewpoint of increasing the refractive index nd and suppressing a decrease in the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [(Li + Na + K + )/(Si 4+ + B 3+ )] of the total content of Li + , Na + , and K + to the total content of Si 4+ and B 3+ is preferably 1, and more preferably 0.9, 0.8, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.43, 0.42, 0.41, and 0.40 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.32, 0.33, 0.34, and 0.35 in this order.
  • the cation ratio be within the above-mentioned range.
  • the upper limit of the cation ratio [(Mg2 + + Ca2 + + Sr2 + + Ba2 + )/( Si4 + + B3 + )] of the total content of Mg2+, Ca2 + , Sr2 + , and Ba2 + to the total content of Si4 + and B3 + is preferably 1, and more preferably 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.68, 0.66, 0.64, 0.62, 0.60, 0.59, and 0.58, in that order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.1, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55 in that order. From the viewpoint of suppressing deterioration of the chemical durability, mechanical properties, and thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the lower limit of the cation ratio [(Li + Na+K +Mg2++Ca2++Sr2++Ba2+)/(Si4++B3+)] of the total content of Li+, Na+, K+ , Mg2 + , Ca2 + , Sr2 + , and Ba2 + to the total content of Si4 + and B3 + is preferably 0.01, and more preferably 0.05, 0.10, 0.15, 0.20 , 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55 , 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95 , in that order.
  • the upper limit of the cation ratio is preferably 2, and more preferably 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1 and 1.0 in that order. From the viewpoint of obtaining an optical glass having desired optical constants and a reduced glass transition temperature Tg while suppressing volatilization of glass components during melting, it is preferable that the cation ratio be within the above range.
  • the lower limit of the cation ratio [(La3 + + Gd3 + + Y3 + )/( Si4 + + B3 + )] of the total content of La3 + , Gd3 + , and Y3 + to the total content of Si4+ and B3+ is preferably 0.01, and more preferably 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.02, 1.04, 1.06, 1.08, 1.10, 1.12, 1.14, 1.16, 1.18, 1.20, 1.21, 1.22, 1.23, 1.24, and 1.25, in that order.
  • the upper limit of the cation ratio is preferably 3, and more preferably 2.5, 2, 1.9, 1.8, 1.75, 1.70, 1.65, 1.60, 1.55, 1.50, 1.45, 1.40, 1.38, 1.36, 1.34, 1.32, and 1.30 in that order. From the viewpoint of increasing the refractive index nd and suppressing a decrease in the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • Si4+ and B3+ [(Li ++ Na ++ K ++ Mg2 ++ Ca2 ++ Sr2 ++ Ba2 ++ La3 ++ Gd3 ++Y3 + )/( Si4 ++B3 + ) )
  • Si4 ++B3 + ) is preferably 0.01, and more preferably 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.00, 2.05, 2.10, 2.15
  • the upper limit of the cation ratio is preferably 4, and more preferably 3.5, 3.0, 2.8, 2.6, 2.5, 2.4, 2.37, 2.35, 2.33, 2.31, 2.29, 2.27, and 2.25 in that order. From the viewpoint of obtaining an optical glass excellent in chemical durability, mechanical properties, and thermal stability while suppressing volatilization of glass components during melting, it is preferable that the cation ratio be within the above range.
  • the upper limit of the cation ratio [( Ti4+Nb5++W6+Bi3+)/(Si4++B3+)] of the total content of Ti4+ , Nb5 + , W6 + , and Bi3 + to the total content of Si4 + and B3+ is preferably 0.5, more preferably 0.4, 0.3, 0.2, and 0.1 in this order.
  • the lower limit of the cation ratio is preferably 0, more preferably 0.01, 0.02, 0.03, and 0.04 in this order.
  • the cation ratio may be 0. From the viewpoint of suppressing the decrease in the refractive index nd at a desired Abbe number ⁇ d, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [( Zr4 + + Ta5 + )/( Si4 + + B3 + )] of the total content of Zr4 + and Ta5 + to the total content of Si4+ and B3+ is preferably 0.5, more preferably 0.4, 0.3, 0.2, and 0.1 in this order.
  • the lower limit of the cation ratio is preferably 0, more preferably 0.01, 0.02, 0.03, and 0.04 in this order.
  • the cation ratio may be 0. From the viewpoint of maintaining the thermal stability of the glass and from the viewpoint of suppressing a decrease in the refractive index nd at a desired Abbe number ⁇ d, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [(Li + Na+K + )/( Si4 ++ B3 ++ Ti4 ++ Nb5 ++ W6 ++Bi3 + ) ] of the total content of Li + , Na + , and K + to the total content of Si4 + , B3+, Ti4+ , Nb5 + , W6 + , and Bi3+ is preferably 1, and more preferably 0.9, 0.8, 0.7, 0.6, 0.56 , 0.54, 0.52, 0.50, 0.48, 0.46, 0.44, 0.42, and 0.40 , in that order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.37 in that order.
  • the cation ratio may be 0. From the viewpoint of improving the chemical durability, mechanical properties, and thermal stability of the glass and suppressing the deterioration of stability during reheating, and from the viewpoint of obtaining an optical glass with a reduced glass transition temperature Tg, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio [(Mg2 + + Ca2 + + Sr2+ + Ba2+)/(Si4+ + B3+ + Ti4+ + Nb5+ + W6+ + Bi3+)] of the total content of Mg2+, Ca2+ , Sr2 + , and Ba2 + to the total content of Si4 +, B3 + , Ti4 +, Nb5 +, W6 + , and Bi3 + is preferably 1, and more preferably 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.63, 0.61, 0.60, and 0.59, in that order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.1, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55 in that order. From the viewpoint of suppressing deterioration of the chemical durability, mechanical properties, and thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the lower limit of the cation ratio is preferably 0.01, and more preferably 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.91, 0.92, 0.93, and 0.94 in that order.
  • the upper limit of the cation ratio is preferably 3, and more preferably 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, and 1.05 in that order. From the viewpoint of obtaining an optical glass having desired optical constants, suppressing volatilization of glass components during melting, and lowering the glass transition temperature Tg, it is preferable that the cation ratio be within the above range.
  • the cation ratio of the total content of La 3+ , Gd 3+ , and Y 3+ to the total content of Si 4+ , B 3+ , Ti 4+ , Nb 5+ , W 6+ , and Bi 3+ [(La 3+ + Gd 3+ + Y 3+ )/(Si 4+ + B 3+ + Ti 4+ + Nb 5+ + W 6+ + Bi 3+ ) is preferably 0.01, and more preferably 0.10, 0.20, 0.30, 0.40, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.07, 1.09, 1.11, 1.13, 1.15, 1.17, 1.19, 1.20, 1.21, 1.22, 1.23, 1.24, and 1.25 in that order.
  • the upper limit of the cation ratio is preferably 3, and more preferably 2.5, 2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.45, 1.40, 1.35, 1.34, 1.33, 1.32, 1.31, 1.30, 1.29, and 1.28 in that order. From the viewpoint of increasing the refractive index nd and suppressing a decrease in the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the cation ratio of the total content of Li + , Na +, K+ , Mg2 + , Ca2 + , Sr2 + , Ba2 + , La3 + , Gd3 + , and Y3 + to the total content of Si4 + , B3 + , Ti4+, Nb5+, W6+, and Bi3 + is [(Li ++ Na ++ K ++ Mg2 ++ Ca2 ++ Sr2++ Ba2 ++La3++ Gd3 ++ Y3 + )/( Si4 ++ B3 ++Ti4++ Nb5 ++ W6 ++Bi3 + ) is preferably 0.01, and more preferably 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70,
  • the upper limit of the cation ratio is preferably 4, and more preferably 3.8, 3.6, 3.4, 3.2, 3.0, 2.9, 2.8, 2.7, 2.65, 2.60, 2.55, 2.50, 2.40, 2.35, 2.30, and 2.25, in that order. From the viewpoint of obtaining an optical glass excellent in chemical durability, mechanical properties, and thermal stability while suppressing volatilization of glass components during melting, it is preferable that the cation ratio be within the above range.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.37 in that order. From the viewpoint of improving the chemical durability, mechanical properties, and thermal stability of the glass and suppressing a decrease in stability during reheating, and from the viewpoint of obtaining an optical glass with a reduced glass transition temperature Tg, it is preferable that the cation ratio is within the above range.
  • the upper limit of the cation ratio is preferably 1, and more preferably 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.63, 0.61, 0.60, and 0.59 in this order.
  • the lower limit of the cation ratio is preferably 0, and more preferably 0.1, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, and 0.55 in this order. From the viewpoint of suppressing the deterioration of the chemical durability, mechanical properties, and thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the lower limit of the cation ratio is preferably 0.01, and more preferably 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.91, 0.92, 0.93, and
  • the upper limit of the cation ratio is preferably 3, and more preferably 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, and 1.05 in that order. From the viewpoint of obtaining an optical glass having desired optical constants, suppressing volatilization of glass components during melting, and lowering the glass transition temperature Tg, it is preferable that the cation ratio be within the above range.
  • the cation ratio of the total content of La 3+ , Gd 3+ , and Y 3+ to the total content of Si 4+ , B 3+ , Ti 4+ , Nb 5+ , W 6+ , Bi 3+ , Zr 4+ , and Ta 5+ is preferably 0.01, and more preferably 0.10, 0.20, 0.30, 0.40, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.07, 1.09, 1.11, 1.13, 1.15, 1.17, 1.19, 1.20, 1.21, 1.22, 1.23, 1.24, and 1.25 in that order.
  • the upper limit of the cation ratio is preferably 3, and more preferably 2.5, 2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.45, 1.40, 1.35, 1.34, 1.33, 1.32, 1.31, 1.30, 1.29, and 1.28 in that order. From the viewpoint of increasing the refractive index nd and suppressing a decrease in the thermal stability of the glass, it is preferable that the cation ratio is within the above range.
  • the cation ratio of the total content of Li + , Na + , K + , Mg2+ , Ca2 + , Sr2 + , Ba2+ , La3 + , Gd3+, and Y3+ to the total content of Si4 + , B3 + , Ti4+, Nb5+, W6+, Bi3 + , Zr4 + , and Ta5+ is [(Li ++ Na ++ K ++ Mg2 ++ Ca2 ++ Sr2 ++ Ba2++ La3++ Gd3 ++Y3 + )/( Si4 ++ B3 ++Ti4++ Nb5++ W6 ++ Bi3 ++ Zr4 ++Ta5 + ) is preferably 0.01, and more preferably 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40
  • the upper limit of the cation ratio is preferably 4, and more preferably 3.8, 3.6, 3.4, 3.2, 3.0, 2.9, 2.8, 2.7, 2.65, 2.60, 2.55, 2.50, 2.40, 2.35, 2.30, and 2.25, in that order. From the viewpoint of obtaining an optical glass excellent in chemical durability, mechanical properties, and thermal stability while suppressing volatilization of glass components during melting, it is preferable that the cation ratio be within the above range.
  • the lower limit of the ratio [ (Bi3 + + W6 + + Bi3 + + Zr4 + + Ta5+ )] is preferably 0.50, and more preferably 0.60, 0.70, 0.80, 0.90, 1
  • the upper limit of the cation ratio is preferably 4, and more preferably 3.8, 3.6, 3.4, 3.2, 3.0, 2.9, 2.8, 2.7, 2.65, 2.60, 2.55, 2.50, 2.40, 2.35, 2.30, 2.25 in that order. If the cation ratio is too small, the volatilization of glass components may increase. If the cation ratio is too large, the thermal stability of glass may decrease. From the viewpoint of suppressing the volatilization of glass components, it is preferable that the cation ratio is within the above range.
  • the upper limit of the P5 + content is preferably 30%, and more preferably 20%, 10%, 8%, 6%, 5%, 4%, 3%, 2%, and 1% in that order.
  • the lower limit of the P5 + content is preferably 0%, and more preferably 0.05%, 0.1%, and 0.5% in that order.
  • the P5 + content may be 0%.
  • the upper limit of the content of Al 3+ is preferably 30%, and more preferably 20%, 10%, 8%, 6%, 5%, 4%, 3%, 2%, and 1% in that order.
  • the lower limit of the content of Al 3+ is preferably 0%, and more preferably 0.05%, 0.1%, and 0.5% in that order.
  • the content of Al 3+ may be 0%.
  • the mechanical properties and chemical durability of glass can be improved by increasing the content of Al 3+ .
  • the content of Al 3+ becomes too high, the liquidus temperature increases, and the thermal stability of the glass is impaired. If the liquidus temperature increases, the volatilization of glass components increases when the glass is flowed and formed, causing striae. From the viewpoint of maintaining the thermal stability of the glass, it is preferable that the content of Al 3+ is within the above range.
  • the upper limit of the Li + content is preferably 40%, more preferably 30%, 20%, 17%, 15%, 14%, 13%, and 12.5% in that order.
  • the lower limit of the Li + content is preferably 0%, more preferably 1%, 2%, 3%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, and 11.5% in that order.
  • the Li + content may be 0%.
  • Li + is a component that contributes to the low viscosity of glass. If the Li + content is too high, the thermal stability of the glass and the stability during reheating may decrease. If the Li + content is too low, the glass transition temperature Tg may increase. Therefore, the content of Li + is preferably within the above range.
  • the upper limit of the content of Na + is preferably 40%, and more preferably 30%, 20%, 10%, 8%, 6%, 5%, 4%, 3%, 2%, 1%, and 0.5% in that order.
  • the lower limit of the content of Na + is preferably 0%, and more preferably 0.05%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, and 0.35% in that order.
  • the content of Na + may be 0%.
  • Na + is a component that contributes to the low viscosity of glass, similar to Li + . If the content of Na + is too high, the thermal stability of the glass and the stability during reheating may be reduced. Therefore, the content of Na + is preferably within the above range.
  • the upper limit of the content of K + is preferably 40%, more preferably 30%, 20%, 10%, 8%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5% in this order.
  • the lower limit of the content of K + is preferably 0%, more preferably 0.05%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.35% in this order.
  • the content of K + may be 0%.
  • K + has the function of lowering the liquidus temperature and improving the thermal stability of the glass. On the other hand, if the content of K + is too high, the chemical durability, weather resistance, and stability during reheating are reduced. Therefore, the content of K + is preferably within the above range.
  • the upper limit of the content of Rb + is preferably 40%, and more preferably 30%, 20%, 10%, 8%, 6%, 5%, 4%, 3%, 2%, 1%, and 0.5% in that order.
  • the lower limit of the content of Rb + is preferably 0%.
  • the content of Rb + may be 0%. If the content of Rb + increases, the volatilization of glass components during melting increases, making it impossible to obtain the desired glass.
  • Rb+ is an expensive component, the content of Rb + is preferably within the above range.
  • the upper limit of the content of Cs + is preferably 40%, and more preferably 30%, 20%, 10%, 8%, 6%, 5%, 4%, 3%, 2%, 1%, and 0.5% in that order.
  • the lower limit of the content of Cs + is preferably 0%.
  • the content of Cs + may be 0%. If the content of Cs + is high, the volatilization of glass components during melting increases, and the desired glass cannot be obtained. In addition, there is a risk of a decrease in chemical durability and weather resistance. Therefore, the content of Cs + is preferably within the above range.
  • the upper limit of the content of Mg 2+ is preferably 40%, more preferably 30%, 20%, 18%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, and 9% in this order.
  • the lower limit of the content of Mg 2+ is preferably 0%, more preferably 1%, 2%, 3%, 4%, 5%, 6%, 7%, and 8% in this order.
  • the content of Mg 2+ may be 0%. If the content of Mg 2+ is too high, the thermal stability and devitrification resistance of the glass may be reduced. On the other hand, if the content of Mg 2+ is too low, the stability of the glass during reheating may be reduced. Therefore, the content of Mg 2+ is preferably within the above range.
  • the upper limit of the Ca2 + content is preferably 25%, more preferably 20%, 15%, 10%, 9%, 8%, 7%, 6%, and 5% in this order.
  • the lower limit of the Ca2 + content is preferably 0%, more preferably 0.5%, 1%, and 2% in this order.
  • the Ca2 + content may be 0%. If the Ca2+ content is too high, the thermal stability of the glass may be impaired, and the glass transition temperature Tg and liquidus temperature TL may increase. From the viewpoint of obtaining an optical glass having desired optical constants, it is preferable that the Ca2+ content is within the above range.
  • the upper limit of the Sr 2+ content is preferably 40%, and more preferably 30%, 20%, 10%, 8%, 6%, 5%, 4%, 3%, 2%, 1%, and 0.5% in that order.
  • the lower limit of the Sr 2+ content is preferably 0%.
  • the Sr 2+ content may be 0%.
  • Sr 2+ is a component that increases the refractive index nd among alkaline earth metals. However, if the Sr 2+ content is too high, the thermal stability and devitrification resistance of the glass may decrease. Therefore, the Sr 2+ content is preferably within the above range.
  • the upper limit of the content of Ba2 + is preferably 40%, more preferably 30%, 25%, 20%, 18%, 16%, 15%, 14%, 13%, 12%, 11%, and 10% in this order.
  • the lower limit of the content of Ba2+ is preferably 0%, more preferably 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, and 9% in this order.
  • Ba2+ is a component that increases the refractive index nd among alkaline earth metals, and at the same time, when contained in an appropriate amount, it is a component that lowers the liquidus temperature and increases the stability of the glass.
  • the content of Ba2+ is preferably within the above range.
  • the upper limit of the Zn2 + content is preferably 13%, and more preferably 10%, 8%, 6%, and 5% in that order.
  • the lower limit of the Zn2 + content is preferably 0%, and more preferably 0.5%, 1%, and 2% in that order.
  • the Zn2+ content may be 0%.
  • Zn2 + is a glass component that acts to lower the glass transition temperature Tg. If the content of Zn2+ is too high, the specific gravity may increase, the thermal stability and chemical durability of the glass may decrease, and the Abbe number may increase, resulting in a failure to obtain the desired high refractive index characteristics. Therefore, from the viewpoint of obtaining an optical glass with an improved glass transition temperature Tg, it is preferable to set the content of Zn2 + within the above range.
  • the lower limit of the La3 + content is preferably 5%, more preferably 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 14.5%, 15%, 15.5%, 16%, 16.5%, 17%, and 17.5% in this order.
  • the upper limit of the La3 + content is preferably 50%, more preferably 48%, 46%, 44%, 42%, 40%, 38%, 36%, 34%, 32%, 30%, 28%, 26%, 24%, 23%, 22%, 21.5%, 21%, 20.5%, and 20% in this order.
  • the upper limit of the content of Gd 3+ is preferably 50%, and more preferably 40%, 30%, 20%, 15%, 10%, 8%, 6%, 4%, 3%, 2%, and 1% in that order.
  • the lower limit of the content of Gd 3+ is preferably 0%.
  • the content of Gd 3+ may be 0%.
  • the content of Gd 3+ is in the above range.
  • the upper limit of the Y3 + content is preferably 50%, and more preferably 48%, 46%, 44%, 42%, 40%, 38%, 36%, 34%, 32%, 30%, 28%, 26%, 25%, 24%, 23%, 22.5%, 22%, and 21.5% in that order.
  • the lower limit of the Y3 + content is preferably 0%, and more preferably 1%, 5%, 8%, 10%, 12%, 14%, 16%, and 18% in that order.
  • the Y3+ content may be 0%.
  • the content of Y3+ is within the above range.
  • the upper limit of the content of Yb 3+ is preferably 50%, and more preferably 40%, 30%, 20%, 15%, 10%, 8%, 6%, 4%, 3%, 2%, and 1% in that order.
  • the lower limit of the content of Yb 3+ is preferably 0%.
  • the content of Yb 3+ may be 0%. Since Yb 3+ has a larger molecular weight than La 3+ , Gd 3+ , and Y 3+ , it increases the specific gravity of the glass. In addition, if the content of Yb 3+ is too high, the thermal stability of the glass decreases. From the viewpoint of preventing the decrease in the thermal stability of the glass and suppressing the increase in the specific gravity, the content of Yb 3+ is preferably within the above range.
  • the upper limit of the Ti 4+ content is preferably 20%, and more preferably 15%, 10%, 5%, 4%, 3.5%, 3%, and 2.5%, in that order.
  • the lower limit of the Ti 4+ content is preferably 0%, and may be 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, or 1.6%.
  • the Ti 4+ content may be 0%. From the viewpoints of maintaining a desired Abbe number ⁇ d and improving anomalous partial dispersion in the visible to near ultraviolet region, it is preferable that the Ti 4+ content be within the above range.
  • the upper limit of the Nb 5+ content is preferably 20%, and more preferably 15%, 10%, 5%, 4%, 3.5%, 3%, and 2.5% in that order.
  • the lower limit of the Nb 5+ content is preferably 0%, and more preferably 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, and 1.6% in that order.
  • the Nb 5+ content may be 0%. From the viewpoints of maintaining a desired Abbe number ⁇ d and improving anomalous partial dispersion in the visible to near ultraviolet region, it is preferable that the Nb 5+ content be within the above range.
  • the upper limit of the content of W6 + is preferably 20%, and more preferably 15%, 10%, 5%, 4%, 3.5%, 3%, and 2.5% in that order.
  • the lower limit of the content of W6+ is preferably 0%, and more preferably 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, and 1.6% in that order.
  • the content of W6+ may be 0%. From the viewpoints of increasing the transmittance and reducing the specific gravity, maintaining a desired Abbe number ⁇ d, and improving the anomalous partial dispersion in the visible to near ultraviolet region, it is preferable that the content of W6 + is within the above range.
  • the upper limit of the Bi 3+ content is preferably 20%, and more preferably 15%, 10%, 5%, 4%, 3.5%, 3%, and 2.5% in that order.
  • the lower limit of the Bi 3+ content is preferably 0%, and may be 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, or 1.6%.
  • the Bi 3+ content may be 0%. From the viewpoints of increasing the transmittance and reducing the specific gravity, reducing damage to platinum manufacturing equipment, and improving anomalous partial dispersion in the visible to near ultraviolet range, it is preferable that the Bi 3+ content be within the above range.
  • the upper limit of the content of Zr4 + is preferably 10%, more preferably 8%, 6%, 4%, 3%, 2%, and 1% in this order.
  • the lower limit of the content of Zr4 + is preferably 0%, more preferably 0.05%, 0.1%, and 0.5% in this order.
  • the content of Zr4+ may be 0%.
  • the content of Zr4+ is within the above range.
  • the upper limit of the content of Ta 5+ is preferably 10%, more preferably 8%, 6%, 4%, 3%, 2%, and 1% in this order.
  • the lower limit of the content of Ta 5+ is preferably 0%, more preferably 0.05%, 0.1%, and 0.5% in this order.
  • the content of Ta 5+ may be 0%.
  • Ta 5+ is a component that contributes to the high refraction and low dispersion of the glass.
  • the content of Ta 5+ is too high, the raw material cost may increase and the melting property of the glass may decrease. Furthermore, the specific gravity may increase. Therefore, the content of Ta 5+ is preferably within the above range.
  • the upper limit of the Ge4 + content is preferably 5%, and more preferably 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, and 0.5%, in that order.
  • the lower limit of the Ge4 + content is preferably 0%.
  • the Ge4+ content may be 0%.
  • Ge 4+ has the function of increasing the high dispersibility of the glass, but is an extremely expensive component among commonly used glass components, and therefore, from the viewpoint of reducing the production cost of the glass, it is preferable that the content of Ge 4+ is within the above range.
  • the content of Sc 3+ is preferably 2% or less.
  • the lower limit of the content of Sc 3+ is preferably 0%.
  • the content of Hf 4+ is preferably 2% or less.
  • the lower limit of the content of Hf 4+ is preferably 0%.
  • Sc 3+ and Hf 4+ have the effect of increasing the dispersibility of the glass, but are expensive components, so the contents of Sc 3+ and Hf 4+ are preferably within the above ranges.
  • the content of Lu 3+ is preferably 2% or less.
  • the lower limit of the content of Lu 3+ is preferably 0%.
  • Lu 3+ has the function of increasing the dispersibility of the glass, but because of its large molecular weight, it is also a glass component that increases the specific gravity of the glass, so the content of Lu 3+ is preferably within the above range.
  • the glass according to the first embodiment is preferably composed of Si4 + and B3 + as essential components, and Ca2 + , Zn2 + , P5 + , Al3 + , Li + , Na + , K + , Rb + , Cs + , Mg2 + , Sr2 + , Ba2+, La3 + , Gd3 + , Y3 + , Ti4 + , Nb5 + , W6 + , Bi3 + , Ta5+ , and Zr4 + as optional components.
  • the total content of these glass components is preferably 95% or more, more preferably 98% or more, even more preferably 99% or more, and particularly preferably 99.5% or more.
  • the optical glass according to the first embodiment contains O2- as an anion component.
  • the upper limit of the content of O2- is preferably 90 anion%, and more preferably 80 anion%, 75 anion%, 73 anion%, 71 anion%, 69 anion%, 67 anion%, 65 anion%, 63 anion%, 61 anion%, 60 anion%, 59 anion%, 58 anion%, 57 anion%, 56 anion%, 55 anion%, 54 anion%, 53 anion%, 52 anion%, 51 anion%, 50 anion%, 49 anion%, 48 anion%, 47 anion%, 46 anion%, 45 anion%, 44 anion%, and 43 anion% in that order.
  • the lower limit of the O2- content is preferably 10 anion%, and more preferably 12 anion%, 14 anion%, 16 anion%, 18 anion%, 20 anion%, 22 anion%, 24 anion%, 26 anion%, 28 anion%, 30 anion%, 32 anion%, 34 anion%, 35 anion%, 36 anion%, 37 anion%, 38 anion%, 39 anion%, 40 anion%, and 41 anion%, in that order.
  • the optical glass according to the first embodiment may contain a component other than O 2- and F - as an anion component.
  • an anion component other than O 2- and F - include Cl - , Br - , and I - .
  • Cl - , Br - , and I - are all likely to volatilize during melting of the glass. The volatilization of these components causes problems such as fluctuations in glass properties, deterioration of glass homogeneity, and significant consumption of melting equipment. Therefore, the content of Cl - is preferably less than 5 anion%, more preferably less than 3 anion%, even more preferably less than 1 anion%, particularly preferably less than 0.5 anion%, and even more preferably less than 0.25 anion%.
  • the total content of Br - and I - is preferably less than 5 anion%, more preferably less than 3 anion%, even more preferably less than 1 anion%, particularly preferably less than 0.5 anion%, even more preferably less than 0.1 anion%, and even more preferably 0 anion%.
  • the glass according to the first embodiment is preferably basically composed of the above glass components, but it may contain other components as long as they do not impede the effects of the present invention. Furthermore, the present invention does not exclude the inclusion of unavoidable impurities.
  • Sb ions can be added from the viewpoint of suppressing a decrease in transmittance at a wavelength of around 360 nm.
  • the upper limit of the Sb ion content is preferably 1.0000 mass% in terms of the external ratio, and more preferably 0.5000 mass%, 0.1000 mass%, 0.0900 mass%, 0.0800 mass%, 0.0700 mass%, 0.0600 mass%, 0.0500 mass%, 0.0400 mass%, 0.0300 mass%, 0.0250 mass%, 0.0200 mass%, 0.0150 mass%, 0.0100 mass%, 0.0090 mass%, 0.0080 mass%, 0.0070 mass%, 0.0060 mass%, and 0.0050 mass% in that order.
  • the Sb ion content is preferably 1.0 mass ppm or more in terms of the external ratio.
  • 1.0 mass ppm is 0.0001 mass%.
  • the lower limit of the Sb ion content is more preferably 0.0005 mass% in terms of the external percentage, and further more preferably 0.0008 mass%, 0.0010 mass%, 0.0012 mass%, 0.0014 mass%, 0.0016 mass%, 0.0018 mass%, 0.0020 mass%, 0.0022 mass%, 0.0024 mass%, 0.0026 mass%, 0.0028 mass%, 0.0030 mass%, 0.0032 mass%, 0.0034 mass%, 0.0036 mass%, and 0.0038 mass% in that order.
  • Sb ions can be added to glass, for example, by Sb 2 O 3 or Sb 2 S 3.
  • Sb ions include all Sb ions having trivalent, pentavalent, and other valences.
  • the content of Sb ions is an external percentage. That is, the content of Sb ions is expressed in mass% when the total content of all glass components other than Sb ions is 100 mass%. From the viewpoint of suppressing the decrease in transmittance at a wavelength of around 360 nm, it is preferable that the content of Sb ions is within the above range.
  • the optical glass also provides high transmittance over a wide range of the visible light region.
  • the glass does not contain any coloring elements.
  • coloring elements include Cu, Co, Ni, Fe, Cr, Eu, Nd, Er, and V.
  • Each element is preferably contained at less than 100 ppm by mass, more preferably 0 to 80 ppm by mass, and even more preferably 0 to 50 ppm by mass, and it is particularly preferable that the glass is substantially free of these elements.
  • Ga, Te, Tb, etc. are components that do not need to be incorporated and are expensive components, so the ranges of the contents of Ga 2 O 3 , TeO 2 , and TbO 2 expressed in mass % are each preferably 0 to 0.1%, more preferably 0 to 0.05%, even more preferably 0 to 0.01%, even more preferably 0 to 0.005%, even more preferably 0 to 0.001%, and particularly preferably not substantially contained.
  • the refractive index nd is preferably 1.55 to 1.80, and can also be 1.56 to 1.75, 1.57 to 1.70, 1.58 to 1.65, 1.59 to 1.63, 1.60 to 1.62, or 1.58 to 1.60.
  • the refractive index nd can be adjusted to a desired value by appropriately adjusting the content of each glass component.
  • Components that act to relatively increase the refractive index nd include Nb5 + , Ti4 + , W6 + , Bi3 + , Zr4 + , Ta5 + , La3 + , Gd3 + , Y3 + , etc.
  • components that act to relatively decrease the refractive index nd include Si4 + , B3+ , Li + , Na + , K + , etc.
  • the refractive index nd and the Abbe number vd satisfy the following formula [1-1].
  • the refractive index nd and the Abbe number vd more preferably satisfy the following formula [1-2], and further more preferably satisfy the following formulas [1-3], [1-4], and [1-5] in that order.
  • the lower limit of the partial dispersion ratio Pg,F in the visible short wavelength region is preferably 0.5200, and further preferably 0.5250, 0.5300, 0.5350, or 0.5400.
  • the upper limit of the partial dispersion ratio Pg,F is not particularly limited, but is usually 0.5700, and preferably 0.5650.
  • the partial dispersion ratio Pg,F preferably satisfies the following formula [2-1]. Pg,F ⁇ 0.6200-0.0014 ⁇ d... [2-1] It is more preferable that the partial dispersion ratio Pg,F satisfies the following formula [2-2], and more preferably satisfies the following formula [2-3], the following formula [2-4], the following formula [2-5], and the following formula [2-6] in that order.
  • the partial dispersion ratio Pg,F satisfy the above formula.
  • the upper limit of ⁇ Pg,F is not particularly limited, but is preferably 0.0500, and further preferably 0.0400, 0.0300, 0.0200, or 0.0150.
  • the lower limit of ⁇ Pg,F is preferably -0.0100, and more preferably -0.0090, -0.0080, -0.0070, -0.0060, -0.0050, -0.0040, -0.0030, -0.0020, -0.0010, 0.0000, 0.0010, 0.0020, 0.0030, 0.0040, 0.0050, 0.0060, 0.0070, 0.0080, 0.0090, 0.0100, 0.0110, 0.0120, and 0.0130 in that order.
  • ⁇ Pg,F By setting ⁇ Pg,F in the above range, an optical glass suitable for high-order chromatic aberration correction can be obtained.
  • the partial dispersion ratio Pg,F is calculated using the above shot dispersion formula.
  • the partial dispersion ratio Pg,F is calculated by using the refractive index values measured at 12 different wavelengths (spectral lines) shown in Table A above, fitting the coefficients of the wavelength term of the equation that relates the refractive index and wavelength, called the dispersion equation of the shot, and using the dispersion equation after determining these coefficients.
  • the partial dispersion ratio Pg,F can be calculated with high accuracy.
  • Pg,F(0) 0.6483-(0.001802 ⁇ d)
  • the specific gravity of the optical glass according to the first embodiment is preferably 6.0 or less, and more preferably 5.5 or less, 5.0 or less, 4.8 or less, and 4.6 or less in that order.
  • Components that relatively increase the specific gravity are Ba2 + , La3 + , Zr4+ , Nb5+ , Ta5 + , etc.
  • components that relatively decrease the specific gravity are Si4 + , B3 + , Li + , Na + , Mg2+ , etc.
  • the specific gravity can be controlled by appropriately adjusting the contents of these components.
  • the upper limit of the liquidus temperature LT of the optical glass according to the first embodiment is preferably 1200°C, and more preferably 1150°C, 1100°C, 1050°C, 1000°C, 980°C, 970°C, 960°C, 950°C, 940°C, 930°C, 920°C, 910°C, 900°C, and 890°C in that order.
  • the lower limit of the liquidus temperature LT is not particularly limited.
  • the liquidus temperature LT is determined by the balance of the contents of all the glass components. Among them, the contents of Si4 + , B3 + , Li + , Na + , K + , etc. have a large effect on the liquidus temperature LT. Furthermore, if the content of Zr 4+ , Al 3+ , etc. is large, the liquidus temperature increases.
  • the liquidus temperature is determined as follows: 10 cc (10 ml) of glass is placed in a platinum crucible and melted at a temperature of 1200°C or higher for 15 to 30 minutes, then cooled to below the glass transition temperature Tg. The glass together with the platinum crucible is placed in a melting furnace at the specified temperature and held there for 2 hours. The holding temperature is set at any temperature in 10°C increments, and after holding for 2 hours, it is cooled and the presence or absence of crystals inside the glass is observed with a 100x optical microscope. This process is repeated for each temperature, and the lowest temperature at which no crystals precipitate is taken as the liquidus temperature.
  • the upper limit of the glass transition temperature Tg of the optical glass according to the first embodiment is preferably 600°C, more preferably 580°C, 560°C, 540°C, 520°C, 510°C, 500°C, 490°C, 480°C, 470°C, 460°C, 450°C, 440°C, and 430°C in this order.
  • the lower limit of the glass transition temperature Tg is preferably 350°C, more preferably 360°C, 370°C, 380°C, 390°C, 400°C, 410°C, and 420°C in this order. From the viewpoint of improving the yield during precision press molding, it is preferable to set the glass transition temperature Tg to the above range.
  • glass transition temperature Tg is too high, precision press molding may not be possible.
  • Components that relatively lower the glass transition temperature Tg are F- , Li + , Na + , K + , etc.
  • Components that relatively raise the glass transition temperature Tg are Si4 + , La3 + , Zr4 + , Nb5+ , etc.
  • the glass transition temperature Tg can be controlled by appropriately adjusting the contents of these components.
  • the light transmittance of the optical glass according to the first embodiment can be evaluated by the coloring degrees ⁇ 80, ⁇ 70, and ⁇ 5.
  • the spectral transmittance of a glass sample having a thickness of 10.0 mm ⁇ 0.1 mm is measured in the wavelength range of 200 to 700 nm.
  • the wavelength at which the external transmittance is 80% is defined as ⁇ 80
  • the wavelength at which the external transmittance is 70% is defined as ⁇ 70
  • the wavelength at which the external transmittance is 5% is defined as ⁇ 5.
  • the ⁇ 80 of the optical glass according to the first embodiment is preferably 450 nm or less, more preferably 400 nm or less, and even more preferably 350 nm or less.
  • the ⁇ 70 is preferably 430 nm or less, more preferably 380 nm or less, and even more preferably 330 nm or less.
  • the ⁇ 5 is preferably 380 nm or less, more preferably 330 nm or less, and even more preferably 280 nm or less.
  • Knoop hardness Hk The lower limit of the Knoop hardness Hk of the optical glass according to the first embodiment is preferably 400, and more preferably 410, 420, 430, 440, 450, 460, 470, and 480, in that order. It is preferable to set the Knoop hardness Hk within the above range from the viewpoint of preventing damage when handling the glass and when machining the glass, such as grinding, polishing, and cutting, to manufacture lenses and the like.
  • the upper limit of the Knoop hardness Hk is not particularly limited, but is usually 750, and preferably 600.
  • the Knoop hardness Hk can be increased by adjusting the contents of La 3+ , Gd 3+ , Y 3+ , Si 4+ , Zr 4+ and Al 3+ .
  • the upper limit of the difference ( ⁇ T360) between the external transmittance at a wavelength of 700 nm and the external transmittance at a wavelength of 360 nm is preferably 31.0%, and more preferably 30.0%, 28.0%, 26.0%, 24.0%, 22.0%, 20.0%, 18.0%, 16.0%, 15.0%, 14.0%, 13.0%, 12.0%, 11.0%, 10.0%, 9.0%, 8.0%, 7.0%, and 6.0% in that order.
  • the lower limit of ⁇ T360 is not particularly limited, but is generally 2 to 30%. ⁇ T360 can be adjusted by introducing Sb ions.
  • ⁇ T360 may increase. By keeping ⁇ T360 within the above range, it is possible to suppress a decrease in transmittance in the vicinity of a wavelength of 360 nm.
  • External transmittance is defined as the percentage of transmitted light intensity relative to incident light intensity when light is incident in the thickness direction of a glass sample [transmitted light intensity/incident light intensity x 100]. Note that external transmittance also includes the reflection loss of light rays on the sample surface.
  • the glass according to the first embodiment may be produced by blending glass raw materials to obtain the above-mentioned predetermined composition, and by using the blended glass raw materials according to a known glass manufacturing method.
  • a plurality of compounds may be blended and thoroughly mixed to obtain a batch raw material, and the batch raw material may be placed in a platinum crucible or the like to be roughly melted (rough melt).
  • the molten material obtained by the rough melting is quenched and crushed to produce cullet.
  • the cullet is then placed in a platinum crucible, heated, and remelted (remelt) to obtain a molten glass, which is then clarified and homogenized, and then molded and slowly cooled to obtain an optical glass.
  • a known method may be applied to the molding and slowly cooling of the molten glass.
  • the desired glass components can be introduced into the glass in the desired content
  • the compounds used when mixing the batch raw materials include oxides, carbonates, nitrates, hydroxides, fluorides, composite oxides, fluorosilicates, and fluoroborates.
  • Press molding of glass material for press molding can be carried out by pressing the glass material for press molding in a heated and softened state into a press mold. Both heating and press molding can be carried out in the atmosphere. If a powdered mold release agent such as boron nitride is evenly applied to the surface of the glass material for press molding, and then it is heated and press molded, it is possible to reliably prevent the glass from fusing with the mold and also to smoothly stretch the glass along the molding surface of the mold. A homogeneous optical element blank can be obtained by annealing the glass after press molding to reduce distortion inside the glass.
  • glass materials for press molding include precision press molding preforms and glass materials for press molding optical element blanks (glass gobs for press molding), and include glass chunks with a mass equivalent to the mass of the desired press molded product.
  • Glass materials for press molding are also called preforms, and in addition to those that are used for press molding as is, they also include those that are used for press molding after undergoing mechanical processing such as cutting, grinding, and polishing.
  • Cutting methods include forming a groove in the area of the surface of the glass plate to be cut by a method called scribing, and then applying local pressure to the grooved area from the back side of the surface where the groove was formed, thereby breaking the glass plate at the grooved area, and cutting the glass plate with a cutting blade.
  • Grinding methods include spherical processing and smoothing processing using a curve generator.
  • Polishing methods include polishing with abrasive grains such as cerium oxide and zirconium oxide.
  • the glass material for press molding according to the first embodiment is made of optical glass with excellent mechanical properties, and is therefore less susceptible to damage during handling and processing.
  • a problem with glass materials for precision press molding has been that scratches on the surface of the glass material tend to remain on the surface of optical elements after press molding, particularly on the optically functional surface.
  • the glass material for press molding according to this embodiment has excellent mechanical properties and is less susceptible to scratches on the glass material surface, and is therefore preferably used as a glass material for precision press molding. Furthermore, even when mechanical processing, i.e. grinding and polishing, is performed on the press-molded product after press molding to produce optical elements, a press-molded product that is less susceptible to damage by mechanical processing can be produced.
  • an optical element blank made of the optical glass according to the first embodiment can be provided.
  • the optical element blank is a glass molded body having a shape similar to that of the optical element to be manufactured.
  • the optical element blank can be produced by a method of molding glass into a shape that includes a processing allowance to be removed when processing into the shape of the optical element to be manufactured, or the like.
  • the optical element blank can be produced by a method of heating and softening a glass material for press molding and press molding it (reheat press method), a method of supplying a molten glass lump to a press mold by a known method and press molding it (direct press method), or the like.
  • a known method may be applied.
  • the optical element blank described above may be used.
  • molten glass is poured into a mold and molded into a plate shape to manufacture a glass material made of the optical glass according to the present invention.
  • the obtained glass material is appropriately cut, ground, and polished to manufacture cut pieces having a size and shape suitable for press molding.
  • the cut pieces are heated and softened, and press molded (reheat pressed) by a known method to manufacture an optical element blank that approximates the shape of the optical element.
  • the optical element can be manufactured by a method including a process of processing the optical element blank. Examples of the processing include cutting, cutting, rough grinding, fine grinding, and polishing. When performing such processing, the use of the above glass can reduce breakage, and high-quality optical elements can be stably supplied.
  • optical elements include spherical lenses, aspherical lenses, prisms, diffraction gratings, etc.
  • Lens shapes include biconvex lenses, plano-convex lenses, biconcave lenses, plano-concave lenses, convex meniscus lenses, concave meniscus lenses, etc.
  • the optically functional surfaces of optical elements may be coated with an anti-reflection film, a total reflection film, etc., depending on the intended use.
  • the optical element according to the first embodiment is made of optical glass with excellent mechanical properties, and is therefore less susceptible to damage during handling and processing.
  • the optical element is less susceptible to damage when fixed.
  • the lens surface is less susceptible to damage even when clamped and fixed from both sides.
  • the oxide optical glass according to the second embodiment is The Abbe number ⁇ d is 62.00 or more,
  • the content of B3 + is more than 0 cation% and 50.00 cation% or less,
  • the F ⁇ content is greater than 0 anion % and less than or equal to 85 anion %;
  • the total content of La 3+ , Gd 3+ , and Y 3+ [La 3+ + Gd 3+ + Y 3+ ] is 5 cation % or more;
  • the Abbe number vd is equal to or greater than 62.00.
  • the Abbe number vd is preferably 62 to 75, and can also be 62.2 to 73, 62.4 to 71, 62.6 to 69, 62.8 to 68, 63 to 67, or 62 to 63.
  • the Abbe number vd is calculated in the same manner as in the first embodiment.
  • the Abbe number vd can be adjusted to a desired value by appropriately adjusting the content of each glass component.
  • Components that relatively lower the Abbe number vd i.e., high dispersion components, are Nb5 + , Ti4 + , Zr4 + , W6 + , Bi3 + , Ta5 + , etc.
  • components that relatively increase the Abbe number vd i.e., low dispersion components, are F- , Si4 + , B3 + , Li + , Na + , K + , La3 + , Ba2 + , Ca2 + , Sr2 + , etc.
  • the B3+ content is greater than 0% and not more than 50.00%.
  • the lower limit of the B3 + content is preferably 5%, and more preferably 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, and 21%, in that order.
  • the upper limit of the B3 + content is preferably 45.00%, and more preferably 40.00%, 39.00%, 38.00%, 37.00%, 36.00%, 35.00%, 34.00%, 33.00%, 32.00%, 31.00%, 30.00%, 29.00%, 28.00%, 27.00%, 26.00%, 25.00%, 24.00%, and 23.00% in that order.
  • B3 + is a glass network forming component.
  • the chemical durability can be improved.
  • the content of B3+ is too low, the thermal stability and mechanical properties of the glass may be reduced.
  • the content of B3 + is too high, the volatilization of glass components may increase, and the thermal stability and chemical durability of the glass may be reduced.
  • the optical glass according to the second embodiment contains F - as an anion component.
  • the content of F - is more than 0 anion% and 85 anion% or less.
  • the lower limit of the content of F - is preferably 5 anion%, and more preferably 10 anion%, 15 anion%, 20 anion%, 24 anion%, 27 anion%, 30 anion%, 33 anion%, 35 anion%, 37 anion%, 39 anion%, 41 anion%, 43 anion%, 45 anion%, 46 anion%, 47 anion%, 48 anion%, 49 anion%, 50 anion%, 51 anion%, 52 anion%, 53 anion%, 54 anion%, 55 anion%, 56 anion%, and 57 anion% in this order.
  • the upper limit of the content of F - is preferably 80 anion%, and more preferably 77 anion%, 75 anion%, 73 anion%, 71 anion%, 69 anion%, 67 anion%, 65 anion%, 64 anion%, 63 anion%, 62 anion%, 61 anion%, 60 anion%, and 59 anion% in that order.
  • an optical glass having a high refractive index for low dispersion, high thermal stability, anomalous partial dispersion, low glass transition temperature Tg, and suitable for precision press molding can be obtained.
  • the content of F - is too small, the thermal stability of the glass may decrease, and anomalous partial dispersion may not be obtained. If the content of F - is too large, the volatilization of glass components may increase.
  • the total content of La 3+ , Gd 3+ , and Y 3+ [La 3+ +Gd 3+ +Y 3+ ] is 5% or more.
  • the lower limit of the total content is preferably 10%, and more preferably 15%, 20%, 25%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, and 38% in this order.
  • the upper limit of the total content is preferably 60%, and more preferably 55%, 50%, 48%, 46%, 45%, 44%, 43%, 42%, and 41% in this order.
  • the lower limit of the cation ratio is preferably 0.70, and more preferably 0.80, 0.90, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40 , 1.45,
  • the upper limit of the cation ratio is preferably 4, and more preferably 3.8, 3.6, 3.4, 3.2, 3.0, 2.9, 2.8, 2.7, 2.65, 2.60, 2.55, 2.50, 2.40, 2.35, 2.30, 2.25 in that order.
  • the cation ratio is preferably 4, and more preferably 3.8, 3.6, 3.4, 3.2, 3.0, 2.9, 2.8, 2.7, 2.65, 2.60, 2.55, 2.50, 2.40, 2.35, 2.30, 2.25 in that order.
  • the cation ratio [( Si4 + + B3 + )/( Si4 + + B3+ + P5 + )] of the total content of Si4+ and B3 + to the total content of Si4 +, B3 + , and P5+ is 0.2 or more.
  • the lower limit of the cation ratio is preferably 0.3, and more preferably 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, and 0.95 in this order.
  • the upper limit of the cation ratio is preferably 1, and more preferably 0.99, 0.98, and 0.97 in this order.
  • the cation ratio may be 1.
  • the contents and ratios of glass components other than those mentioned above can be the same as those in the first embodiment.
  • the glass characteristics can be the same as those in the first embodiment.
  • the manufacture of the optical glass can be similar to that of the first embodiment.
  • Example 1 Glass samples having the glass compositions shown in Tables 1 to 9 were prepared by the following procedure, and various evaluations were carried out.
  • the content of glass components not shown is 0.00 cationic %.
  • the contents of Rb + , Cs + , and Ge 4+ were each 0.00 cationic %.
  • the ratio of the number of anions to the number of cations is the molar ratio of the total number of cations to the total number of anions, and can be calculated from the composition. Specifically, the sum of the positive charges of each cation when the total number of cations is 100 (an arbitrary constant) is calculated, and the total number of anions when the total number of cations is 100 is calculated by combining the negative charges of the anions that are the same number as the total number of cations and the anion molar percentage. From this calculated value, the ratio of the number of anions to the number of cations (anion number/cation number) was calculated.
  • the obtained glass sample was further annealed at about the glass transition temperature Tg for about 30 minutes to about 2 hours, and then cooled to room temperature in a furnace at a temperature drop rate of -30°C/hour to obtain an annealed sample.
  • the refractive index, Abbe number ⁇ d, partial dispersion ratio Pg,F, ⁇ Pg,F, specific gravity, glass transition temperature Tg, liquidus temperature LT, ⁇ 80, ⁇ 70, ⁇ 5, and ⁇ T360 of the obtained annealed sample were measured. The results are shown in Table 2.
  • n2 a0 + a1 ⁇ 2 + a2 ⁇ -2 + a3 ⁇ -4 + a4 ⁇ -6 + a5 ⁇ -8
  • n is the refractive index
  • is the wavelength ( ⁇ m)
  • a 0 , a 1 , a 2 , a 3 , a 4 , and a 5 are constants.
  • the refraction nd is the refractive index at a wavelength of 587.56 nm.
  • the Abbe number ⁇ d is expressed as follows using the refractive indices nd, nF, and nC at the d line, F line, and C line, respectively.
  • ⁇ d (nd-1)/(nF-nC)
  • Glass transition temperature Tg was measured using a differential scanning calorimeter (DSC3300SA) manufactured by NETZSCH JAPAN at a heating rate of 10° C./min.
  • the annealed sample was processed to have a thickness of 10 mm and parallel, optically polished flat surfaces, and the spectral transmittance was measured in the wavelength range from 280 nm to 700 nm.
  • the intensity of the light beam incident on the flat surface was defined as intensity A
  • the intensity of the light beam emerging from the other flat surface was defined as intensity B
  • the spectral transmittance B/A was calculated.
  • the wavelength at which the spectral transmittance is 70% is defined as ⁇ 70
  • the wavelength at which the spectral transmittance is 5% is defined as ⁇ 5.
  • the spectral transmittance includes the reflection loss of the light beam on the sample surface.
  • External transmittance is defined as the percentage of transmitted light intensity relative to incident light intensity when light is incident in the thickness direction of a glass sample [transmitted light intensity/incident light intensity x 100]. Note that external transmittance also includes the reflection loss of light rays on the sample surface.
  • Example 2 Using each of the optical glasses produced in Example 1, lens blanks were produced by a known method, and the lens blanks were processed by a known method such as polishing to produce various lenses.
  • the optical lenses produced include various lenses such as a biconvex lens, a biconcave lens, a plano-convex lens, a plano-concave lens, a concave meniscus lens, and a convex meniscus lens.
  • an optical glass according to one aspect of the present invention can be produced. Furthermore, it is of course possible to arbitrarily combine two or more of the items described in the specification as examples or preferred ranges.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】 所望の光学恒数を有し、機械的特性の低減が抑制され、ガラス転移温度の高くない光学ガラスおよび光学素子を提供すること。 【解決手段】 アッベ数νdが62.00以上であり、B3+の含有量が0カチオン%を超え50.00カチオン%以下であり、Si4+の含有量が0カチオン%を超え、F-の含有量が0アニオン%を超え、La3+、Gd3+、およびY3+の合計含有量[La3++Gd3++Y3+]が5カチオン%以上である、光学ガラス。

Description

光学ガラスおよび光学素子
 本発明は、所望の光学的性質を有する光学ガラスおよび光学素子に関する。
 各アッベ領域において屈折率が高く異常部分分散性を備えるレンズは、車載用カメラ、一眼レフ等のデジタルカメラ、およびスマートフォン等の情報携帯端末機器など、幅広く使用されている。これらの用途では、レンズ製造時の歩留まりを向上させるため、ガラスの機械的特性が高いことが望まれている。また、例えばガラスを非球面レンズに加工する場合には、ガラス転移温度が高いガラスでは加工が困難になる場合がある。そこで、ガラス転移温度が低減されたガラスが求められている。
 特に、アッベ数νdが62以上であるレンズに着目すると、従来では、アッベ数νdが62以上であり屈折率ndの比較的高いガラスとして、P-Al-RO系およびP-Al-F系といった、P(リン)をネットワーク形成成分として含有する組成系のガラスが用いられてきた。しかし、このようなP(リン)をネットワーク形成成分として含有する組成系のガラスでは、機械的特性に劣るため、レンズ加工工程における歩留まりの悪化や、製品の品質悪化が問題となっていた。また、Si(ケイ素)をネットワーク形成成分として含有する組成系のガラスでは、高屈折低分散化に寄与するガラス成分を多量に導入することが困難であり、アッベ数νdが62以上で屈折率ndが高いといった所望の光学恒数を達成することは困難であった。
 そこで、本願発明では、B-La-F系のガラスに着目した。従来、B-La-F系のガラスでは、ガラスの低分散化に寄与する成分の多くが熔解中に揮発し、アッベ数νdを高めることは困難であった。本願発明では、ガラス組成を調整することでガラス成分の揮発を抑制し、アッベ数νdが62以上であり、機械的特性に優れるガラスを発明するに至った。
 特許文献1には、屈折率に対するアッベ数の値が大きく、耐失透性に優れた、弗素を含有する光学ガラスが開示されている。また、特許文献2には屈折率が高く近赤外領域での透過率が高い光学ガラスが開示されている。しかしながら、特許文献1および特許文献2では、アッベ数νdを62以上にまで高めた光学ガラスは開示されていない。
特開昭56-169150号公報 特開2017-19670号公報
 本発明は、このような実状に鑑みてなされ、所望の光学恒数を有し、機械的特性の低減が抑制され、ガラス転移温度の高くない光学ガラスおよび光学素子を提供することを目的とする。
 本発明の要旨は以下のとおりである。
(1) アッベ数νdが62.00以上であり、
 B3+の含有量が0カチオン%を超え50.00カチオン%以下であり、
 Si4+の含有量が0カチオン%を超え、
 F-の含有量が0アニオン%を超え、
 La3+、Gd3+、およびY3+の合計含有量[La3++Gd3++Y3+]が5カチオン%以上である、
 光学ガラス。
(2) Si4+、B3+、P5+、Ti4+、Nb5+、W6+、Bi3+、Zr4+、およびTa5+の合計含有量に対する、La3+、Gd3+、Y3+、Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(La3++Gd3++Y3++Li++Na++K++Rb++Cs++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++P5++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]が0.50以上である、
 (1)記載の光学ガラス。
(3) アッベ数νdが62.00以上であり、
 B3+の含有量が0カチオン%を超え50.00カチオン%以下であり、
 F-の含有量が0アニオン%を超え85アニオン%以下であり、
 La3+、Gd3+、およびY3+の合計含有量[La3++Gd3++Y3+]が5カチオン%以上であり、
 Si4+、B3+、P5+、Ti4+、Nb5+、W6+、Bi3+、Zr4+、およびTa5+の合計含有量に対する、La3+、Gd3+、Y3+、Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(La3++Gd3++Y3++Li++Na++K++Rb++Cs++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++P5++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]が0.60以上であり、
 Si4+、B3+、およびP5+の合計含有量に対するSi4+およびB3+の合計含有量のカチオン比[(Si4++B3+)/(Si4++B3++P5+)]が0.2以上である、
 光学ガラス。
(4) Sbイオンの含有量が、外割で1.0質量ppm以上である、(1)~(3)のいずれかに記載の光学ガラス。
(5) 厚さを10.0mm±0.1mmとしたときの、波長700nmにおける外部透過率と波長360nmにおける外部透過率との差が10%以下である、(1)~(3)のいずれかに記載の光学ガラス。
(6) 上記(1)~(3)のいずれかに記載の光学ガラスからなるプレス成形用ガラス素材。
(7) 上記(1)~(3)のいずれかに記載の光学ガラスからなる光学素子。
 本発明によれば、所望の光学恒数を有し、機械的特性の低減が抑制され、ガラス転移温度の高くない光学ガラスおよび光学素子を提供できる。
 本発明の実施形態において、光学ガラスのガラス組成は、特記しない限り、カチオン%にて表示する。カチオン%とは、全てのカチオン成分の含有量の合計を100%としたときのモル百分率である。ガラス成分の含有量および合計含有量は、特記しない限りカチオン%基準であり、「%」は「カチオン%」を意味する。また、カチオン比とは、カチオン%における、カチオン成分同士の含有量(複数種のカチオン成分の合計含有量も含む)の割合(比)をいう。
 なお、アニオン%とは、全てのアニオン成分の含有量の合計を100%としたときのモル百分率である。
 カチオン成分の価数(例えばB3+の価数は+3、Si4+の価数は+4、La3+の価数は+3)は、慣習により定まった値であり、ガラス成分としてのB、Si、Laを酸化物基準で表記する際、B23、SiO2、La23と表記するのと同様である。したがって、ガラス組成を分析する際、カチオン成分の価数まで分析しなくてもよい。また、アニオン成分の価数(例えばO2-の価数が-2)も慣習により定まった値であり、上記のように酸化物基準におけるガラス成分を、例えばB23、SiO2、La23と表記するのと同様である。したがって、ガラス組成を分析する際、アニオン成分の価数まで分析しなくてもよい。
 ガラス成分の含有量は、公知の方法、例えば、誘導結合プラズマ発光分光分析法(ICP-AES)、誘導結合プラズマ質量分析法(ICP-MS)、イオンクロマトグラフィー(IC)、非分散型赤外線吸収法(ND-IR)等の方法で定量することができる。また、本明細書および本発明において、構成成分の含有量が0%とは、この構成成分を実質的に含まないことを意味し、該成分が不可避的不純物レベルで含まれることを許容する。
 本明細書において、化学的耐久性とは、耐水性Daおよび耐水性Dwのいずれかまたはその両方に優れることをいう。また、機械的特性とは、ヌープ硬度Hkで評価されるガラスの硬度が優れることをいう。ヌープ硬度Hkとは、ガラスの押し込み硬さを示す指標である。なおヌープ硬度Hkの単位は「MPa」であるが、本発明が属する技術分野においてヌープ硬度Hkの単位を省略する慣例になっていることから、本明細書においてもヌープ硬度Hkの単位を省略することとする。さらに、ガラスの熱的安定性および再加熱時の安定性とは、ともにガラス中における結晶析出のしにくさを指す。熱的安定性は熔融状態のガラスが固化する際の結晶析出のしにくさを指し、再加熱時の安定性はリヒートプレス時のように、固化したガラスを再加熱したときの結晶析出のしにくさを指すものとする。
 本明細書において、ガラス成分の揮発が低減または抑制されているとは、熔解時にガラス成分が揮発することによる、ガラス成分の損失が小さいまたは抑制されていることを意味する。熔解時の揮発によるガラス成分の損失が小さいと、屈折率をはじめとした諸特性の変動が抑制され、またガラス内部における脈理等の内部欠陥の発生が抑制され、品質を安定させることが出来る。またガラス成分の損失がすくないことにより投入原料に対する製品の収率を直接高めることが出来る。一方で熔解時に揮発しやすいガラス成分は、分散性の低下、異常部分分散性の向上、およびガラス転移温度Tgの低下に寄与する成分である。そのためこれらの成分の揮発を抑制することにより、所望の光学恒数を有し、ガラス転移温度Tgの高くない光学ガラスおよび光学素子を提供できる。
 屈折率は、特記しない限り、ヘリウムのd線(波長587.56nm)における屈折率ndをいう。
 以下に、本発明の光学ガラスを、第1実施形態および第2実施形態として説明する。
第1実施形態
 第1実施形態に係る光学ガラスは、
 アッベ数νdが62.00以上であり、
 B3+の含有量が0カチオン%を超え50.00カチオン%以下であり、
 Si4+の含有量が0カチオン%を超え、
 F-の含有量が0アニオン%を超え、
 La3+、Gd3+、およびY3+の合計含有量[La3++Gd3++Y3+]が5カチオン%以上である。
<アッベ数νd>
 第1実施形態に係る光学ガラスにおいて、アッベ数νdは62.00以上である。アッベ数νdは好ましくは62~75であり、62.2~73、62.4~71、62.6~69、62.8~68、63~67または62~63とすることもできる。
 アッベ数νdは、各ガラス成分の含有量を適宜調整することにより所望の値にすることができる。相対的にアッベ数νdを低くする成分、すなわち高分散化成分は、Nb5+、Ti4+、Zr4+、W6+、Bi3+、Ta5+等である。一方、相対的にアッベ数νdを高くする成分、すなわち低分散化成分は、F-、Si4+、B3+、Li+、Na+、K+、La3+、Ba2+、Ca2+、Sr2+等である。
 本発明では、アッベ数νd、後述する部分分散比Pg,Fを次のように算出する。すなわち、日本工業規格(JIS規格)JIS B 7071-1 光学ガラスの屈折率測定法-第1部:最小偏角法により、表Aに示す12の波長における屈折率を測定する。次に、日本工業規格(JIS規格)JIS B 7071-1 光学ガラスの屈折率測定法-第1部:最小偏角法の附属書Bで定められているショットの分散式に、測定によって得た各線の屈折率をあてはめ、最小二乗法によりショットの分散式の定数を求める。そして、定数の定まったショットの分散式を使用して得た各線屈折率の値よりアッベ数νd、後述する部分分散比Pg,Fを算出する。
Figure JPOXMLDOC01-appb-T000001
 ショットの分散式: n2=a0+a1λ2+a2λ-2+a3λ-4+a4λ-6+a5λ-8
 ここで、nは屈折率、λは波長(μm)、a0、a1、a2、a3、a4、a5は定数である。
 アッベ数νdは、d線、F線、C線における各屈折率nd、nF、nCを用いて次のように表される。
  νd=(nd-1)/(nF-nC)
 第1実施形態に係る光学ガラスにおいて、B3+の含有量は0%を超え50.00%以下である。B3+の含有量の下限は、好ましくは5%であり、さらには10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%の順により好ましい。また、B3+の含有量の上限は、好ましくは45.00%であり、さらには40.00%、39.00%、38.00%、37.00%、36.00%、35.00%、34.00%、33.00%、32.00%、31.00%、30.00%、29.00%、28.00%、27.00%、26.00%、25.00%、24.00%、23.00%の順により好ましい。
 B3+はガラスのネットワーク形成成分である。B3+の含有量を上記範囲とすることで、化学的耐久性を改善できる。一方、B3+の含有量が少なすぎると、ガラスの熱的安定性および機械的特性が低下するおそれがある。また、B3+の含有量が多すぎると、ガラス成分の揮発が増大するおそれがあり、また、ガラスの熱的安定性および化学的耐久性が低下するおそれがある。
 第1実施形態に係る光学ガラスにおいて、Si4+の含有量は0%を超える。Si4+の含有量の下限は、好ましくは1%であり、さらには2%、3%、4%、5%、6%、7%、8%の順により好ましい。また、Si4+の含有量の上限は、好ましくは30%であり、さらには25%、23%、21%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%の順により好ましい。
 Si4+はガラスのネットワーク形成成分である。Si4+の含有量を上記範囲とすることで、異常部分分散性を有し、化学的耐久性、機械的特性、および熱的安定性が改善された光学ガラスが得られる。一方、Si4+の含有量が少なすぎると、ガラスの化学的耐久性、機械的特性、および熱的安定性が低下するおそれがある。Si4+の含有量が多すぎると、ガラスの熔解性が低下するおそれがあり、また、屈折率ndが低下するおそれがある。また、ガラスの熱的安定性が低下するおそれがあり、ガラス転移温度Tgが上昇するおそれがある。
 第1実施形態に係る光学ガラスは、アニオン成分としてF-を含み、すなわち、F-の含有量は0アニオン%を超える。F-の含有量の下限は、好ましくは5アニオン%であり、さらには10アニオン%、15アニオン%、20アニオン%、24アニオン%、27アニオン%、30アニオン%、33アニオン%、35アニオン%、37アニオン%、39アニオン%、41アニオン%、43アニオン%、45アニオン%、46アニオン%、47アニオン%、48アニオン%、49アニオン%、50アニオン%、51アニオン%、52アニオン%、53アニオン%、54アニオン%、55アニオン%、56アニオン%、57アニオン%の順により好ましい。また、F-の含有量の上限は、好ましくは80アニオン%であり、さらには77アニオン%、75アニオン%、73アニオン%、71アニオン%、69アニオン%、67アニオン%、65アニオン%、64アニオン%、63アニオン%、62アニオン%、61アニオン%、60アニオン%、59アニオン%の順により好ましい。F-の含有量を上記範囲とすることで、低分散性の割に高屈折であり、熱的安定性が高く、異常部分分散性を有し、ガラス転移温度Tgが低く、精密プレス成形に適した光学ガラスが得られる。一方、F-の含有量が少なすぎると、ガラスの熱的安定性が低下するおそれがあり、異常部分分散性が得られないおそれがある。F-の含有量が大きすぎると、ガラス成分の揮発が増大するおそれがある。
 第1実施形態に係る光学ガラスにおいて、La3+、Gd3+、およびY3+の合計含有量[La3++Gd3++Y3+]は5%以上である。該合計含有量の下限は、好ましくは10%であり、さらには15%、20%、25%、30%、31%、32%、33%、34%、35%、36%、37%、38%の順により好ましい。また、該合計含有量の上限は、好ましくは60%であり、さらには55%、50%、48%、46%、45%、44%、43%、42%、41%の順により好ましい。該合計含有量を上記範囲とすることで、屈折率ndの高い光学ガラスが得られる。一方、該合計含有量が少なすぎると、所望の光学恒数が得られないおそれがある。該合計含有量が多すぎると、ガラスの熱的安定性が低下するおそれがある。
 第1実施形態に係る光学ガラスにおける上記以外のガラス成分の含有量およびガラス特性について、以下に非制限的な例を示す。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量[Si4++B3+]の下限は、好ましくは10%であり、さらには12%、14%、16%、18%、20%、22%、24%、26%、28%、29%、30%の順により好ましい。また、該合計含有量の上限は、好ましくは70%であり、さらには65%、60%、58%、56%、54%、52%、50%、48%、47%、46%、45%、44%、43%、42%、41%、40%、39%、38%、37%、36%、35%、34%、33%、32%の順により好ましい。所望の光学恒数および異常部分分散性を有し、化学的耐久性、機械的特性、および熱的安定性が改善され、熔融時のガラス成分の揮発を抑えた光学ガラスを得る観点から、該合計含有量を上記範囲とすることが好ましい。
 本実施形態に係る光学ガラスにおいて、Li+、Na+、およびK+の合計含有量[Li++Na++K+]の下限は、好ましくは0%であり、さらには1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%の順により好ましい。また、該合計含有量の上限は、好ましくは50%であり、さらには45%、40%、35%、30%、25%、20%、18%、16%、14%、13%の順により好ましい。ガラスの液相温度を下げ、またガラス転移温度Tgを低下させる観点から、合計含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量[Mg2++Ca2++Sr2++Ba2+]の下限は、好ましくは0%であり、さらには1%、3%、5%、7%、9%、10%、11%、12%、13%、14%、15%、16%の順により好ましい。また、該合計含有量の上限は、好ましくは30%であり、さらには29%、28%、27%、26%、25%、24%、23%、22%、21%、20%、19%の順により好ましい。該合計含有量が少なすぎると、ガラス成分の揮発が増大し、ガラスの熱的安定性および耐失透性が低下するおそれがある。また、該合計含有量が多すぎると、高屈折性が損なわれるおそれがあり、ガラスの熱的安定性が損なわれるおそれがある。所望の光学恒数を有し、ガラス成分の揮発が低減された、ガラスの熱的安定性の高い光学ガラスを得る観点から、該合計含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、Ba2+およびZn2+の合計含有量[Mg2++Ca2++Sr2++Ba2++Zn2+]の上限は、好ましくは50%であり、さらには45%、40%、35%、30%、29%、28%、27%、26%、25%、24%、23%、22%、21%、20%、19%の順により好ましい。該合計含有量の下限は、好ましくは0%であり、さらには1%、3%、5%、7%、9%、10%、11%、12%、13%、14%、15%、16%の順により好ましい。該合計含有量が多すぎると、高屈折性が損なわれるおそれがあり、ガラスの熱的安定性が損なわれるおそれがある。また、該合計含有量が少なすぎると、ガラス成分の揮発が増大し、ガラスの熱的安定性および耐失透性が低下するおそれがある。そのため、該合計含有量は、上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Li+、Na+、K+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量[Li++Na++K++Mg2++Ca2++Sr2++Ba2+]の下限は、好ましくは0%であり、さらには1%、3%、5%、7%、9%、11%、13%、15%、17%、19%、21%、23%、25%、27%の順により好ましい。また、該合計含有量の上限は、好ましくは50%であり、さらには45%、42%、40%、39%、38%、37%、36%、35%、34%、33%、32%、31%の順により好ましい。所望の光学恒数を有し、ガラス転移温度Tgおよびガラスの液相温度が低減され、さらに熔解時のガラス成分の揮発の低減された光学ガラスを得る観点から、該合計含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量[Li++Na++K++Rb++Cs++Mg2++Ca2++Sr2++Ba2+]の下限は、好ましくは0%であり、さらには1%、3%、5%、7%、9%、11%、13%、15%、17%、19%、21%、23%、25%、27%の順により好ましい。また、該合計含有量の上限は、好ましくは50%であり、さらには45%、42%、40%、39%、38%、37%、36%、35%、34%、33%、32%、31%の順により好ましい。所望の光学恒数を有し、ガラス転移温度Tgが低減され、ガラス成分の揮発が低減され、熱的安定性の高い光学ガラスを得る観点から、該合計含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、W6+、およびBi3+の合計含有量[Ti4++Nb5++W6++Bi3+]の下限は、好ましくは0%であり、さらには0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%の順により好ましい。また、該合計含有量の上限は、好ましくは20%であり、さらには15%、10%、5%、4%、3.5%、3%、2.5%の順により好ましい。高屈折低分散性を維持する観点から該合計含有量は0%であってもよい。また、所望のアッベ数νdを維持し、可視~近紫外域における異常部分分散性を向上させる観点から、該合計含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Zr4+およびTa5+の合計含有量[Zr4++Ta5+]の上限は、好ましくは20%であり、さらには15%、10%、5%、4%、3%、2%、1%の順により好ましい。また、該合計含有量の下限は、好ましくは0%であり、さらには0.1%、0.2%、0.3%の順により好ましい。高屈折低分散性を維持する観点から該合計含有量は0%であってもよい。また、ガラスの熱的安定性を維持する観点から、該合計含有量を上記範囲とすることが好ましい。該合計含有量が多すぎると、ガラスの熱的安定性が低下するおそれがあり、原料コストが増大するおそれがある。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、Bi3+、W6+、Zr4+、およびTa5+の合計含有量[Ti4++Nb5++Bi3++W6++Zr4++Ta5+]の上限は、好ましくは20%であり、さらには15%、10%、5%、4%、3.5%、3%、2.5%の順により好ましい。また、該合計含有量の下限は、好ましくは0%であり、さらには0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%の順により好ましい。高屈折低分散性を維持する観点から該合計含有量は0%であってもよい。また、所望のアッベ数νdを維持し、可視~近紫外域における異常部分分散性を向上させる観点から、該合計含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するSi4+の含有量のカチオン比[Si4+/(Si4++B3+)]の下限は、好ましくは0.020であり、さらには0.05、0.09、0.13、0.15、0.17、0.19、0.21、0.22、0.23、0.24、0.25の順により好ましい。また、該カチオン比の上限は、好ましくは0.80であり、さらには0.70、0.60、0.50、0.40、0.35、0.34、0.33、0.32の順により好ましい。化学的耐久性、機械的特性、および熱的安定性が改善された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するB3+の含有量のカチオン比[B3+/(Si4++B3+)]の上限は、好ましくは0.980であり、さらには、0.95、0.91、0.87、0.85、0.83、0.81、0.79、0.78、0.77、0.76、0.75の順により好ましい。また、該カチオン比の下限は、好ましくは0.20であり、さらには0.30、0.40、0.50、0.60、0.65、0.66、0.67、0.68の順により好ましい。化学的耐久性、機械的特性、および熱的安定性が改善された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、およびP5+の合計含有量[Si4++B3++P5+]の下限は、好ましくは10%であり、さらには12%、14%、16%、18%、20%、22%、24%、26%、28%、29%、30%の順により好ましい。また、該合計含有量の上限は、好ましくは70%であり、さらには65%、60%、58%、56%、54%、52%、50%、48%、47%、46%、45%、44%、43%、42%、41%、40%、39%、38%、37%、36%、35%、34%、33%、32%の順により好ましい。所望の光学恒数および異常部分分散性を有し、化学的耐久性、機械的特性、および熱的安定性が改善され、熔融時のガラス成分の揮発を抑えた光学ガラスを得る観点から、該合計含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、およびP5+の合計含有量に対するSi4+の含有量のカチオン比[Si4+/(Si4++B3++P5+)]の上限は、好ましくは0.80であり、さらには0.70、0.60、0.50、0.40、0.35、0.34、0.33、0.32の順により好ましい。また、該カチオン比の下限は、好ましくは0.020であり、さらには0.05、0.09、0.13、0.15、0.17、0.19、0.21、0.22、0.23、0.24、0.25の順により好ましい。化学的耐久性、機械的特性、および熱的安定性が改善された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、およびP5+の合計含有量に対するB3+の含有量のカチオン比[B3+/(Si4++B3++P5+)]の上限は、好ましくは0.980であり、さらには、0.95、0.91、0.87、0.85、0.83、0.81、0.79、0.78、0.77、0.76、0.75の順により好ましい。また、該カチオン比の下限は、好ましくは0.20であり、さらには0.30、0.40、0.50、0.60、0.65、0.66、0.67、0.68の順により好ましい。化学的耐久性、機械的特性、および熱的安定性が改善された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、およびP5+の合計含有量に対するP5+の含有量のカチオン比[P5+/(Si4++B3++P5+)]の上限は、好ましくは0.50であり、さらには0.40、0.30、0.20、0.10、0.08、0.06、0.04、0.02の順により好ましい。また、該カチオン比の下限は、好ましくは0であり、さらには0.005、0.01、0.015の順により好ましい。該カチオン比は0であってもよい。化学的耐久性、機械的特性、および熱的安定性が改善された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、およびP5+の合計含有量に対するSi4+およびB3+の合計含有量のカチオン比[(Si4++B3+)/(Si4++B3++P5+)]の下限は、好ましくは0.2であり、さらには0.3、0.4、0.5、0.6、0.7、0.8、0.85、0.9、0.95の順により好ましい。また、該カチオン比の上限は、好ましくは1であり、さらには0.99、0.98、0.97の順により好ましい。該カチオン比は1であってもよい。化学的耐久性および機械的特性に優れる光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Li+、Na+、およびK+の合計含有量に対するLi+の含有量のカチオン比[Li+/(Li++Na++K+)]の上限は、好ましくは1であり、さらには0.95、0.90、0.85の順により好ましい。また、該カチオン比の下限は、好ましくは0であり、さらには0.1、0.2、0.3、0.4、0.5、0.6、0.7の順により好ましい。該カチオン比は1であってもよい。再加熱時の安定性の低下を抑制する観点、またガラス転移温度Tgを低減する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Li+、Na+、およびK+の合計含有量に対するNa+の含有量のカチオン比[Na+/(Li++Na++K+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.3の順により好ましい。また、該カチオン比の下限は、好ましくは0であり、さらには0.05、0.10、0.15の順により好ましい。該カチオン比は0であってもよい。再加熱時の安定性の低下を抑制する観点、またガラス転移温度Tgを低減する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Li+、Na+、およびK+の合計含有量に対するK+の含有量のカチオン比[K+/(Li++Na++K+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.3の順により好ましい。また、該カチオン比の下限は、好ましくは0であり、さらには0.05、0.10、0.15の順により好ましい。該カチオン比は0であってもよい。再加熱時の安定性の低下を抑制する観点、またガラス転移温度Tgを低減する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量に対するMg2+の含有量のカチオン比[Mg2+/(Mg2++Ca2++Sr2++Ba2+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.55、0.5の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.1、0.15、0.18、0.2、0.22、0.24、0.26、0.28、0.30、0.32、0.34、0.36、0.38、0.40、0.42、0.44、0.46の順により好ましい。該カチオン比は0であってもよい。ガラスの再加熱時の安定性および熱的安定性の低下を抑制する観点から、該カチオン比は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量に対するCa2+の含有量のカチオン比[Ca2+/(Mg2++Ca2++Sr2++Ba2+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.15の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1の順により好ましい。該カチオン比は0であってもよい。ガラスの再加熱時の安定性および熱的安定性の低下を抑制する観点から、該カチオン比は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量に対するSr2+の含有量のカチオン比[Sr2+/(Mg2++Ca2++Sr2++Ba2+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.15の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1の順により好ましい。該カチオン比は0であってもよい。ガラスの再加熱時の安定性および熱的安定性の低下を抑制する観点から、該カチオン比は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(Mg2++Ca2++Sr2++Ba2+)]の下限は、好ましくは0であり、さらには0.1、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50の順により好ましい。該カチオン比の上限は、好ましくは1であり、さらには0.90、0.80、0.75、0.74、0.73、0.72、0.71、0.70、0.69、0.68、0.67、0.66、0.65、0.64、0.63、0.62、0.61、0.60、0.59、0.58、0.57、0.56、0.55の順により好ましい。ガラスの再加熱時の安定性および熱的安定性の低下を抑制する観点から、該カチオン比は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、Ba2+、およびZn2+の合計含有量に対するMg2+の含有量のカチオン比[Mg2+/(Mg2++Ca2++Sr2++Ba2++Zn2+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.55、0.5の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.1、0.15、0.18、0.2、0.22、0.24、0.26、0.28、0.30、0.32、0.34、0.36、0.38、0.40、0.42、0.44、0.46の順により好ましい。該カチオン比は0であってもよい。ガラスの再加熱時の安定性および熱的安定性の低下を抑制する観点から、該カチオン比は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、Ba2+、およびZn2+の合計含有量に対するCa2+の含有量のカチオン比[Ca2+/(Mg2++Ca2++Sr2++Ba2++Zn2+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.15の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1の順により好ましい。該カチオン比は0であってもよい。ガラスの再加熱時の安定性および熱的安定性の低下を抑制する観点から、該カチオン比は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、Ba2+、およびZn2+の合計含有量に対するSr2+の含有量のカチオン比[Sr2+/(Mg2++Ca2++Sr2++Ba2++Zn2+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.15の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1の順により好ましい。該カチオン比は0であってもよい。ガラスの再加熱時の安定性および熱的安定性の低下を抑制する観点から、該カチオン比は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、Ba2+、およびZn2+の合計含有量に対するBa2+の含有量のカチオン比[Ba2+/(Mg2++Ca2++Sr2++Ba2++Zn2+)]の下限は、好ましくは0であり、さらには0.1、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50の順により好ましい。該カチオン比の上限は、好ましくは1であり、さらには0.90、0.80、0.75、0.74、0.73、0.72、0.71、0.70、0.69、0.68、0.67、0.66、0.65、0.64、0.63、0.62、0.61、0.60、0.59、0.58、0.57、0.56、0.55の順により好ましい。ガラスの再加熱時の安定性および熱的安定性の低下を抑制する観点から、該カチオン比は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、Ba2+、およびZn2+の合計含有量に対するZn2+の含有量のカチオン比[Zn2+/(Mg2++Ca2++Sr2++Ba2++Zn2+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.15の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1の順により好ましい。該カチオン比は0であってもよい。ガラスの再加熱時の安定性および熱的安定性の低下を抑制する観点、またガラスの高屈折性を維持する観点から、該カチオン比は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、La3+、Gd3+、およびY3+の合計含有量に対するLa3+の含有量のカチオン比[La3+/(La3++Gd3++Y3+)]の下限は、好ましくは0であり、さらには0.05、0.10、0.15、0.20、0.25、0.27、0.29、0.31、0.33、0.35、0.37、0.39、0.40、0.41、0.42、0.43、0.44、0.45の順により好ましい。該カチオン比の上限は、好ましくは1であり、さらには0.95、0.90、0.85、0.80、0.75、0.70、0.65、0.60、0.59、0.58、0.57、0.56、0.55、0.54、0.53の順により好ましい。屈折率ndを高め、またガラスの熱的安定性の低下を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、La3+、Gd3+、およびY3+の合計含有量に対するGd3+の含有量のカチオン比[Gd3+/(La3++Gd3++Y3+)]の上限は、好ましくは1であり、さらには0.95、0.90、0.85、0.80、0.75、0.70、0.65、0.60、0.55、0.50、0.45、0.40、0.35、0.30、0.25、0.20、0.15、0.10の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.01、0.05の順により好ましい。該カチオン比は0であってもよい。屈折率ndを高め、またガラスの熱的安定性の低下を抑制する観点、重希土類であるGd3+の含有量を削減する観点、および原料コストの上昇を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、La3+、Gd3+、およびY3+の合計含有量に対するY3+の含有量のカチオン比[Y3+/(La3++Gd3++Y3+)]の上限は、好ましくは1であり、さらには0.95、0.90、0.85、0.80、0.75、0.70、0.65、0.63、0.61、0.60、0.59、0.58、0.57、0.56、0.55の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.10、0.15、0.20、0.25、0.27、0.29、0.31、0.33、0.35、0.37、0.39、0.40、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48の順により好ましい。該カチオン比は0であってもよい。屈折率ndを高め、またガラスの熱的安定性の低下を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、W6+、およびBi3+の合計含有量に対するTi4+の含有量のカチオン比[Ti4+/(Ti4++Nb5++W6++Bi3+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.45、0.4、0.35、0.3、0.25、0.23、0.21、0.2、0.19、0.18、0.17、0.16、0.15、0.14、0.13、0.12、0.11の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08の順により好ましい。該カチオン比は0であってもよい。屈折率ndを高め、また所望のアッベ数νdおよびガラスの熱的安定性を維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、W6+、およびBi3+の合計含有量に対するNb5+の含有量のカチオン比[Nb5+/(Ti4++Nb5++W6++Bi3+)]の上限は、好ましくは1であり、さらには0.95、0.90、0.85、0.80、0.75、0.74、0.73、0.72、0.71、0.70、0.69、0.68、0.67の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.51、0.52、0.53、0.54、0.55、0.56、0.57、0.58、0.59、0.60、0.61、0.62の順により好ましい。該カチオン比は0であってもよい。屈折率ndを高め、所望のアッベ数νdを維持し、またガラスの熱的安定性を維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、W6+、およびBi3+の合計含有量に対するW6+の含有量のカチオン比[W6+/(Ti4++Nb5++W6++Bi3+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.45、0.44、0.43、0.42、0.41、0.40、0.39、0.38、0.37、0.36、0.35、0.34、0.33、0.32、0.31、0.3、0.29、0.28、0.27の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1、0.12、0.14、0.16、0.18、0.20、0.21、0.22、0.23、0.24の順により好ましい。該カチオン比は0であってもよい。部分分散比Pg,Fを高め、所望のアッベ数νdを維持し、またガラスの熱的安定性を維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、W6+、およびBi3+の合計含有量に対するBi3+の含有量のカチオン比[Bi3+/(Ti4++Nb5++W6++Bi3+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.45、0.44、0.43、0.42、0.41、0.40、0.39、0.38、0.37、0.36、0.35、0.34、0.33、0.32、0.31、0.3、0.29、0.28、0.27の順により好ましい。該カチオン比の下限は、好ましくは0であり、0.05、0.1、0.12、0.14、0.16、0.18、0.20、0.21、0.22、0.23、または0.24であってもよい。該カチオン比は0であってもよい。屈折率ndおよび部分分散比Pg,Fを高め、所望のアッベ数νdを維持し、またガラスの熱的安定性を維持する観点、および白金製熔解設備へのダメージを軽減する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Zr4+およびTa5+の合計含有量に対するZr4+の含有量のカチオン比[Zr4+/(Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.95、0.90、0.85の順により好ましい。該カチオン比の下限は、好ましくは0であり、0.5、0.6、0.7、または0.8であってもよい。該カチオン比は0であってもよい。所望の光学恒数を維持し、また原料コストを抑える観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Zr4+およびTa5+の合計含有量に対するTa5+の含有量のカチオン比[Ta5+/(Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.5、0.4、0.3、0.2の順により好ましい。該カチオン比の下限は、好ましくは0であり、0.05、0.10、または0.15であってもよい。該カチオン比は0であってもよい。所望の光学恒数を維持し、また原料コストを抑える観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、Bi3+、W6+、Zr4+、およびTa5+の合計含有量に対するTi4+の含有量のカチオン比[Ti4+/(Ti4++Nb5++Bi3++W6++Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.45、0.4、0.35、0.3、0.25、0.23、0.21、0.2、0.19、0.18、0.17、0.16、0.15、0.14、0.13、0.12、0.11、0.10、0.09、0.08、0.07、0.06の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.01、0.02、0.03、0.04の順により好ましい。該カチオン比は0であってもよい。屈折率ndを高め、また所望のアッベ数νdを維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、Bi3+、W6+、Zr4+、およびTa5+の合計含有量に対するNb5+の含有量のカチオン比[Nb5+/(Ti4++Nb5++Bi3++W6++Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.95、0.90、0.85、0.80、0.75、0.70、0.65、0.60、0.55、0.50、0.45、0.40、0.35、0.34、0.33、0.32、0.31、0.30、0.29、0.28、0.27の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.10、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24の順により好ましい。該カチオン比は0であってもよい。屈折率ndを高め、また所望のアッベ数νdを維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、Bi3+、W6+、Zr4+、およびTa5+の合計含有量に対するBi3+の含有量のカチオン比[Bi3+/(Ti4++Nb5++Bi3++W6++Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.35、0.30、0.29、0.28、0.27、0.26、0.25、0.24、0.23、0.22、0.21、0.20、0.19、0.18、0.17、0.16、0.15、0.14、0.13、0.12、0.11の順により好ましい。該カチオン比の下限は、好ましくは0であり、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、または0.09であってもよい。該カチオン比は0であってもよい。屈折率ndおよび部分分散比Pg,Fを高め、所望のアッベ数νdを維持し、またガラスの熱的安定性を維持する観点、および白金製熔解設備へのダメージを軽減する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、Bi3+、W6+、Zr4+、およびTa5+の合計含有量に対するW6+の含有量のカチオン比[W6+/(Ti4++Nb5++Bi3++W6++Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.35、0.30、0.29、0.28、0.27、0.26、0.25、0.24、0.23、0.22、0.21、0.20、0.19、0.18、0.17、0.16、0.15、0.14、0.13、0.12、0.11の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09の順により好ましい。該カチオン比は0であってもよい。部分分散比Pg,Fを高め、所望のアッベ数νdを維持し、またガラスの熱的安定性を維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、Bi3+、W6+、Zr4+、およびTa5+の合計含有量に対するZr4+の含有量のカチオン比[Zr4+/(Ti4++Nb5++Bi3++W6++Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.95、0.9、0.85、0.80、0.75、0.70、0.69、0.68、0.67、0.66、0.65、0.64、0.63、0.62の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.01、0.1、0.2、0.3、0.4、0.45、0.5、0.51、0.52、0.53、0.54、0.55、0.56、0.57、0.58の順により好ましい。該カチオン比は0であってもよい。屈折率ndを高め、また所望のアッベ数νdを維持する観点、およびガラスの機械的特性および化学的耐久性を向上する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+、Nb5+、Bi3+、W6+、Zr4+、およびTa5+の合計含有量に対するTa5+の含有量のカチオン比[Ta5+/(Ti4++Nb5++Bi3++W6++Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.5、0.4、0.3、0.25、0.2、0.15、0.1、0.08、0.06、0.04の順により好ましい。該カチオン比の下限は、好ましくは0であり、0.01、0.02、または0.03であってもよい。該カチオン比は0であってもよい。所望の恒数を維持し、原料コストを抑える観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するAl3+の含有量のカチオン比[Al3+/(Si4++B3+)]の上限は、好ましくは0.5であり、さらには0.45、0.40、0.35、0.30、0.25、0.20の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.01、0.05、0.1、0.15の順により好ましい。該カチオン比は0であってもよい。該カチオン比を高くすることによりガラスの機械的特性および化学的耐久性を向上させることができる。一方で該カチオン比が高くなりすぎると、液相温度が上昇し、ガラスの熱的安定性が損なわれる。ガラスの熱的安定性を維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Li+、Na+、およびK+の合計含有量に対するAl3+の含有量のカチオン比[Al3+/(Li++Na++K+)]の上限は、好ましくは2であり、さらには1.8、1.6、1.4、1.2、1.0、0.8、0.6、0.4、0.2の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1、0.15の順により好ましい。該カチオン比は0であってもよい。該カチオン比を高くすることによりガラスの機械的特性および化学的耐久性を向上させることができる。一方で該カチオン比が高くなりすぎると液相温度が上昇し、ガラスの熱的安定性が損なわれる。ガラスの熱的安定性を維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量に対するAl3+の含有量のカチオン比[Al3+/(Mg2++Ca2++Sr2++Ba2+)]の上限は、好ましくは2であり、さらには1.8、1.6、1.4、1.2、1.0、0.8、0.6、0.4、0.3、0.2の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1、0.15の順により好ましい。該カチオン比は0であってもよい。該カチオン比を高くすることによりガラスの機械的特性および化学的耐久性を向上させることができる。一方で該カチオン比が高くなりすぎると液相温度が上昇し、ガラスの熱的安定性が損なわれる。ガラスの熱的安定性および耐失透性を維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Li+、Na+、K+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量に対するAl3+の含有量のカチオン比[Al3+/(Li++Na++K++Mg2++Ca2++Sr2++Ba2+)]の上限は、好ましくは5であり、さらには4、3、2、1.8、1.6、1.4、1.2、1.0、0.8、0.6、0.4、0.3、0.2の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1、0.15の順により好ましい。該カチオン比は0であってもよい。該カチオン比を高くすることによりガラスの機械的特性および化学的耐久性を向上させることができる。一方で該カチオン比が高くなりすぎると液相温度が上昇し、ガラスの熱的安定性が損なわれる。ガラスの熱的安定性および耐失透性を維持する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、La3+、Gd3+、およびY3+の合計含有量に対するAl3+の含有量のカチオン比[Al3+/(La3++Gd3++Y3+)]の上限は、好ましくは2であり、さらには1.8、1.6、1.4、1.2、1.0、0.8、0.6、0.4、0.3、0.2の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.1、0.15の順により好ましい。該カチオン比は0であってもよい。屈折率ndを高め、またガラスの熱的安定性の低下を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するLi+、Na+、およびK+の合計含有量のカチオン比[(Li++Na++K+)/(Si4++B3+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.75、0.70、0.65、0.60、0.55、0.50、0.45、0.43、0.42、0.41、0.40の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.10、0.15、0.20、0.25、0.30、0.32、0.33、0.34、0.35の順により好ましい。ガラスの化学的耐久性、機械的特性、および熱的安定性を改善し、再加熱時の安定性の低下を抑制する観点、またガラス転移温度Tgの低減された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するMg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(Mg2++Ca2++Sr2++Ba2+)/(Si4++B3+)]の上限は、好ましくは1であり、さらには0.95、0.90、0.85、0.80、0.75、0.70、0.68、0.66、0.64、0.62、0.60、0.59、0.58の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.1、0.15、0.17、0.19、0.21、0.23、0.25、0.27、0.29、0.31、0.33、0.35、0.37、0.39、0.41、0.43、0.45、0.47、0.49、0.51、0.53、0.55の順により好ましい。ガラスの化学的耐久性、機械的特性、および熱的安定性の低下を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するLi+、Na+、K+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(Li++Na++K++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3+)]の下限は、好ましくは0.01であり、さらには、0.05、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95の順により好ましい。該カチオン比の上限は、好ましくは2であり、さらには1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、1.1、1.0の順により好ましい。所望の光学恒数を有し、熔融中のガラス成分の揮発を抑制しつつ、ガラス転移温度Tgの低減された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するLa3+、Gd3+、およびY3+の合計含有量のカチオン比[(La3++Gd3++Y3+)/(Si4++B3+)]の下限は、好ましくは0.01であり、さらには0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、0.90、1.00、1.02、1.04、1.06、1.08、1.10、1.12、1.14、1.16、1.18、1.20、1.21、1.22、1.23、1.24、1.25の順により好ましい。該カチオン比の上限は、好ましくは3であり、さらには2.5、2、1.9、1.8、1.75、1.70、1.65、1.60、1.55、1.50、1.45、1.40、1.38、1.36、1.34、1.32、1.30の順により好ましい。屈折率ndを高め、またガラスの熱的安定性の低下を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するLi+、Na+、K+、Mg2+、Ca2+、Sr2+、Ba2+、La3+、Gd3+、およびY3+の合計含有量のカチオン比[(Li++Na++K++Mg2++Ca2++Sr2++Ba2++La3++Gd3++Y3+)/(Si4++B3+)]の下限は、好ましくは0.01であり、さらには0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、0.90、1.00、1.05、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.45、1.50、1.55、1.60、1.65、1.70、1.75、1.80、1.85、1.90、1.95、2.00、2.05、2.10、2.15、2.20の順により好ましい。該カチオン比の上限は、好ましくは4であり、さらには3.5、3.0、2.8、2.6、2.5、2.4、2.37、2.35、2.33、2.31、2.29、2.27、2.25の順により好ましい。熔融中のガラス成分の揮発を抑制しつつ、化学的耐久性、機械的特性、および熱的安定性の優れる光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するTi4+、Nb5+、W6+、およびBi3+の合計含有量のカチオン比[(Ti4++Nb5++W6++Bi3+)/(Si4++B3+)]の上限は、好ましくは0.5であり、さらには0.4、0.3、0.2、0.1の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.01、0.02、0.03、0.04の順により好ましい。該カチオン比は0であってもよい。所望のアッベ数νdにおける屈折率ndの低下を抑える観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+およびB3+の合計含有量に対するZr4+およびTa5+の合計含有量のカチオン比[(Zr4++Ta5+)/(Si4++B3+)]の上限は、好ましくは0.5であり、さらには0.4、0.3、0.2、0.1の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.01、0.02、0.03、0.04の順により好ましい。該カチオン比は0であってもよい。ガラスの熱的安定性を維持する観点から、また、また所望のアッベ数νdにおける屈折率ndの低下を抑える観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、およびBi3+の合計含有量に対する、Li+、Na+、およびK+の合計含有量のカチオン比[(Li++Na++K+)/(Si4++B3++Ti4++Nb5++W6++Bi3+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.56、0.54、0.52、0.50、0.48、0.46、0.44、0.42、0.40の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.07、0.09、0.11、0.13、0.15、0.17、0.19、0.21、0.23、0.25、0.27、0.29、0.30、0.31、0.32、0.33、0.34、0.35、0.37の順により好ましい。該カチオン比は0であってもよい。ガラスの化学的耐久性、機械的特性、および熱的安定性を改善し、再加熱時の安定性の低下を抑制する観点、また、ガラス転移温度Tgの低減された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、およびBi3+の合計含有量に対する、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++Ti4++Nb5++W6++Bi3+)]の上限は、好ましくは1であり、さらには0.95、0.90、0.85、0.80、0.75、0.70、0.65、0.63、0.61、0.60、0.59の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.1、0.15、0.17、0.19、0.21、0.23、0.25、0.27、0.29、0.31、0.33、0.35、0.37、0.39、0.41、0.43、0.45、0.47、0.49、0.51、0.53、0.55の順により好ましい。ガラスの化学的耐久性、機械的特性、および熱的安定性の低下を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、およびBi3+の合計含有量に対する、Li+、Na+、K+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(Li++Na++K++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++Ti4++Nb5++W6++Bi3+)]の下限は、好ましくは0.01であり、さらには、0.05、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.91、0.92、0.93、0.94の順により好ましい。該カチオン比の上限は、好ましくは3であり、さらには2.9、2.8、2.7、2.6、2.5、2.4、2.3、2.2、2.1、2.0、1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、1.1、1.05の順により好ましい。所望の光学恒数を有し、熔融中のガラス成分の揮発を抑制しつつ、ガラス転移温度Tgの低減された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、およびBi3+の合計含有量に対する、La3+、Gd3+、およびY3+の合計含有量のカチオン比[(La3++Gd3++Y3+)/(Si4++B3++Ti4++Nb5++W6++Bi3+)]の下限は、好ましくは0.01であり、さらには0.10、0.20、0.30、0.40、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、1.00、1.05、1.07、1.09、1.11、1.13、1.15、1.17、1.19、1.20、1.21、1.22、1.23、1.24、1.25の順により好ましい。該カチオン比の上限は、好ましくは3であり、さらには2.5、2、1.9、1.8、1.7、1.6、1.5、1.45、1.40、1.35、1.34、1.33、1.32、1.31、1.30、1.29、1.28の順により好ましい。屈折率ndを高め、またガラスの熱的安定性の低下を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、およびBi3+の合計含有量に対する、Li+、Na+、K+、Mg2+、Ca2+、Sr2+、Ba2+、La3+、Gd3+、およびY3+の合計含有量のカチオン比[(Li++Na++K++Mg2++Ca2++Sr2++Ba2++La3++Gd3++Y3+)/(Si4++B3++Ti4++Nb5++W6++Bi3+)]の下限は、好ましくは0.01であり、さらには0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、0.90、1.00、1.05、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.45、1.50、1.55、1.60、1.65、1.70、1.75、1.80、1.85、1.90、1.95、2.00、2.05、2.10、2.15、2.20の順により好ましい。該カチオン比の上限は、好ましくは4であり、さらには3.8、3.6、3.4、3.2、3.0、2.9、2.8、2.7、2.65、2.60、2.55、2.50、2.40、2.35、2.30、2.25の順により好ましい。熔融中のガラス成分の揮発を抑制しつつ、化学的耐久性、機械的特性、および熱的安定性の優れる光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、Bi3+、Zr4+およびTa5+の合計含有量に対する、Li+、Na+、およびK+の合計含有量のカチオン比[(Li++Na++K+)/(Si4++B3++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.56、0.54、0.52、0.50、0.48、0.46、0.44、0.42、0.40の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.05、0.07、0.09、0.11、0.13、0.15、0.17、0.19、0.21、0.23、0.25、0.27、0.29、0.30、0.31、0.32、0.33、0.34、0.35、0.37の順により好ましい。ガラスの化学的耐久性、機械的特性、および熱的安定性を改善し、再加熱時の安定性の低下を抑制する観点、また、ガラス転移温度Tgの低減された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、Bi3+、Zr4+およびTa5+の合計含有量に対する、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]の上限は、好ましくは1であり、さらには0.95、0.90、0.85、0.80、0.75、0.70、0.65、0.63、0.61、0.60、0.59の順により好ましい。該カチオン比の下限は、好ましくは0であり、さらには0.1、0.15、0.17、0.19、0.21、0.23、0.25、0.27、0.29、0.31、0.33、0.35、0.37、0.39、0.41、0.43、0.45、0.47、0.49、0.51、0.53、0.55の順により好ましい。ガラスの化学的耐久性、機械的特性、および熱的安定性の低下を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、Bi3+、Zr4+およびTa5+の合計含有量に対する、Li+、Na+、K+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(Li++Na++K++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]の下限は、好ましくは0.01であり、さらには、0.05、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.91、0.92、0.93、0.94の順により好ましい。該カチオン比の上限は、好ましくは3であり、さらには2.9、2.8、2.7、2.6、2.5、2.4、2.3、2.2、2.1、2.0、1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、1.1、1.05の順により好ましい。所望の光学恒数を有し、熔融中のガラス成分の揮発を抑制しつつ、ガラス転移温度Tgの低減された光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、Bi3+、Zr4+およびTa5+の合計含有量に対する、La3+、Gd3+、およびY3+の合計含有量のカチオン比[(La3++Gd3++Y3+)/(Si4++B3++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]の下限は、好ましくは0.01であり、さらには0.10、0.20、0.30、0.40、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、1.00、1.05、1.07、1.09、1.11、1.13、1.15、1.17、1.19、1.20、1.21、1.22、1.23、1.24、1.25の順により好ましい。該カチオン比の上限は、好ましくは3であり、さらには2.5、2、1.9、1.8、1.7、1.6、1.5、1.45、1.40、1.35、1.34、1.33、1.32、1.31、1.30、1.29、1.28の順により好ましい。屈折率ndを高め、またガラスの熱的安定性の低下を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、Ti4+、Nb5+、W6+、Bi3+、Zr4+およびTa5+の合計含有量に対する、Li+、Na+、K+、Mg2+、Ca2+、Sr2+、Ba2+、La3+、Gd3+、およびY3+の合計含有量のカチオン比[(Li++Na++K++Mg2++Ca2++Sr2++Ba2++La3++Gd3++Y3+)/(Si4++B3++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]の下限は、好ましくは0.01であり、さらには0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、0.90、1.00、1.05、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.45、1.50、1.55、1.60、1.65、1.70、1.75、1.80、1.85、1.90、1.95、2.00、2.05、2.10、2.15、2.20の順により好ましい。該カチオン比の上限は、好ましくは4であり、さらには3.8、3.6、3.4、3.2、3.0、2.9、2.8、2.7、2.65、2.60、2.55、2.50、2.40、2.35、2.30、2.25の順により好ましい。熔融中のガラス成分の揮発を抑制しつつ、化学的耐久性、機械的特性、および熱的安定性の優れる光学ガラスを得る観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Si4+、B3+、P5+、Ti4+、Nb5+、W6+、Bi3+、Zr4+、およびTa5+の合計含有量に対する、La3+、Gd3+、Y3+、Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(La3++Gd3++Y3++Li++Na++K++Rb++Cs++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++P5++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]の下限は、好ましくは0.50であり、さらには0.60、0.70、0.80、0.90、1.00、1.05、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.45、1.50、1.55、1.60、1.65、1.70、1.75、1.80、1.85、1.90、1.95、2.00、2.05、2.10、2.15、2.20の順により好ましい。該カチオン比の上限は、好ましくは4であり、さらには3.8、3.6、3.4、3.2、3.0、2.9、2.8、2.7、2.65、2.60、2.55、2.50、2.40、2.35、2.30、2.25の順により好ましい。該カチオン比が小さすぎると、ガラス成分の揮発が増大するおそれがある。また、該カチオン比が大きすぎるとガラスの熱的安定性が低下するおそれがある。ガラス成分の揮発を抑制する観点から、該カチオン比を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、P5+の含有量の上限は、好ましくは30%であり、さらには20%、10%、8%、6%、5%、4%、3%、2%、1%の順により好ましい。また、P5+の含有量の下限は、好ましくは0%であり、さらには0.05%、0.1%、0.5%の順により好ましい。P5+の含有量は0%であってもよい。P5+の含有量を上記範囲とすることで、機械的特性ならびに化学的耐久性の比較的高いガラスを得ることが出来る。
 第1実施形態に係る光学ガラスにおいて、Al3+の含有量の上限は、好ましくは30%であり、さらには20%、10%、8%、6%、5%、4%、3%、2%、1%の順により好ましい。また、Al3+の含有量の下限は、好ましくは0%であり、さらには0.05%、0.1%、0.5%の順により好ましい。。Al3+の含有量は0%であってもよい。Al3+は、適当量を含有することによりガラスの相分離を抑制する働きを有する。また、Al3+の含有量を多くすることによりガラスの機械的特性および化学的耐久性を向上させることが出来る。一方でAl3+の含有量が多くなりすぎると液相温度が上昇し、ガラスの熱的安定性が損なわれる。液相温度が上昇するとガラスを流出および成形する時にガラス成分の揮発が増大し脈理の原因となる。ガラスの熱的安定性を維持する観点から、Al3+の含有量を上記範囲とすることが好ましい。
 第1実施形態に係るガラスにおいて、Li+の含有量の上限は、好ましくは40%であり、さらには30%、20%、17%、15%、14%、13%、12.5%の順により好ましい。また、Li+の含有量の下限は、好ましくは0%であり、さらには1%、2%、3%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%の順により好ましい。Li+の含有量は0%であってもよい。Li+はガラスの低粘性化に寄与する成分である。Li+の含有量が多すぎると、ガラスの熱的安定性ならびに再加熱時の安定性が低下するおそれがある。また、Li+の含有量が少なすぎると、ガラス転移温度Tgが上昇するおそれがある。そのため、Li+の含有量は、上記範囲であることが好ましい。
 第1実施形態に係るガラスにおいて、Na+の含有量の上限は、好ましくは40%であり、さらには30%、20%、10%、8%、6%、5%、4%、3%、2%、1%、0.5%の順により好ましい。また、Na+の含有量の下限は、好ましくは0%であり、さらには0.05%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%の順により好ましい。Na+の含有量は0%であってもよい。Na+は、Li+と同様にガラスの低粘性化に寄与する成分である。Na+の含有量が多すぎると、ガラスの熱的安定性ならびに再加熱時の安定性が低下するおそれがある。そのため、Na+の含有量は、上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、K+の含有量の上限は、好ましくは40%であり、さらには30%、20%、10%、8%、6%、5%、4%、3%、2%、1%、0.5%の順により好ましい。また、K+の含有量の下限は、好ましくは0%であり、さらには0.05%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%の順により好ましい。K+の含有量は0%であってもよい。K+は、液相温度を下げ、ガラスの熱的安定性を改善する働きを有する。一方、K+の含有量が多すぎると、化学的耐久性、耐候性、再加熱時の安定性が低下する。そのため、K+の含有量は、上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Rb+の含有量の上限は、好ましくは40%であり、さらには30%、20%、10%、8%、6%、5%、4%、3%、2%、1%、0.5%の順により好ましい。また、Rb+の含有量の下限は、好ましくは0%である。Rb+の含有量は0%であってもよい。Rb+は含有量が多くなると、熔解中にガラス成分の揮発が増加して、所望のガラスが得られなくなる。また高価な成分であるため、Rb+の含有量は、上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Cs+の含有量の上限は、好ましくは40%であり、さらには30%、20%、10%、8%、6%、5%、4%、3%、2%、1%、0.5%の順により好ましい。Cs+の含有量の下限は、好ましくは0%である。Cs+の含有量は0%であってもよい。Cs+は含有量が多くなると、熔解中にガラス成分の揮発が増加して、所望のガラスが得られなくなる。また化学的耐久性、耐候性が低下するおそれがある。そのため、Cs+の含有量は、上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Mg2+の含有量の上限は、好ましくは40%であり、さらには30%、20%、18%、16%、15%、14%、13%、12%、11%、10%、9%の順により好ましい。また、Mg2+の含有量の下限は、好ましくは0%であり、さらには1%、2%、3%、4%、5%、6%、7%、8%の順により好ましい。Mg2+の含有量は0%であってもよい。Mg2+の含有量が多すぎると、ガラスの熱的安定性および耐失透性が低下するおそれがある。一方Mg2+の含有量が少なすぎると、ガラスの再加熱時の安定性が低下するおそれがある。そのため、Mg2+の含有量は、上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ca2+の含有量の上限は、好ましくは25%であり、さらには20%、15%、10%、9%、8%、7%、6%、5%の順により好ましい。また、Ca2+の含有量の下限は、好ましくは0%であり、さらには0.5%、1%、2%の順により好ましい。Ca2+の含有量は0%であってもよい。Ca2+の含有量が多すぎると、ガラスの熱的安定性が損なわれ、また、ガラス転移温度Tgおよび液相温度TLが上昇するおそれがある。所望の光学恒数を有する光学ガラスを得る観点から、Ca2+の含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Sr2+の含有量の上限は、好ましくは40%であり、さらには30%、20%、10%、8%、6%、5%、4%、3%、2%、1%、0.5%の順により好ましい。また、Sr2+の含有量の下限は、好ましくは0%である。Sr2+の含有量は0%であってもよい。Sr2+は、アルカリ土類金属の中では屈折率ndを高める成分である。しかし、Sr2+の含有量が多すぎると、ガラスの熱的安定性および耐失透性が低下するおそれがある。そのため、Sr2+の含有量は、上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ba2+の含有量の上限は、好ましくは40%であり、さらには30%、25%、20%、18%、16%、15%、14%、13%、12%、11%、10%の順により好ましい。Ba2+の含有量の下限は、好ましくは0%であり、さらには1%、2%、3%、4%、5%、6%、7%、8%、9%の順により好ましい。Ba2+は、アルカリ土類金属の中では屈折率ndを高める成分であると同時に適量含有することにより液相温度を下げガラスの安定性を高める成分である。しかし、Ba2+の含有量が多すぎると、ガラスの熱的安定性および再加熱時安定性が低下するおそれがある。また、Ba2+の含有量が少なすぎると、ガラスの熱的安定性が低下するおそれがあり、また熔融中のガラスの成分の揮発が増大するおそれがある。そのため、Ba2+の含有量は、上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Zn2+の含有量の上限は、好ましくは13%であり、さらには10%、8%、6%、5%の順により好ましい。また、Zn2+の含有量の下限は、好ましくは0%であり、さらには0.5%、1%、2%の順により好ましい。Zn2+の含有量は0%であってもよい。
 Zn2+は、ガラス転移温度Tgを低下させる働きを有するガラス成分である。Zn2+の含有量が多すぎると、比重が上昇するおそれがあり、またガラスの熱的安定性、化学的耐久性が低下するおそれがあり、さらにアッベ数が増大する結果、所望の高屈折率特性が得られないおそれがある。したがって、ガラス転移温度Tgが改善された光学ガラスを得る観点から、Zn2+の含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、La3+の含有量の下限は、好ましくは5%であり、さらには6%、7%、8%、9%、10%、11%、12%、13%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%の順により好ましい。また、La3+の含有量の上限は、好ましくは50%であり、さらには48%、46%、44%、42%、40%、38%、36%、34%、32%、30%、28%、26%、24%、23%、22%、21.5%、21%、20.5%、20%の順により好ましい。La3+は一定量導入することにより、ガラス成分の揮発を抑制し、屈折率ndを高めることができる。しかし、La3+の含有量が多くなり過ぎるとガラスの熱的安定性が低下し、製造中にガラスが失透しやすくなるおそれがある。したがって、La3+の含有量は上記範囲であることが好ましい。
 第1実施形態に係るガラスにおいて、Gd3+の含有量の上限は、好ましくは50%であり、さらには40%、30%、20%、15%、10%、8%、6%、4%、3%、2%、1%の順により好ましい。また、Gd3+の含有量の下限は、好ましくは0%である。Gd3+の含有量は0%であってもよい。Gd3+はLa3+と同様に一定量導入することにより、ガラス成分の揮発を抑制し、屈折率ndを高めることができる。一方でGd3+の含有量が多くなり過ぎるとガラスの熱的安定性が低下する。また、Gd3+の含有量が多くなり過ぎるとガラスの比重が増大し、好ましくない。また原料コストが増大するおそれがある。したがって、ガラスの熱的安定性を良好に維持しつつ、比重の増大を抑制する観点、また重希土類であるGd3+の含有量を削減する観点から、Gd3+の含有量は上記範囲であることが好ましい。
 第1実施形態に係るガラスにおいて、Y3+の含有量の上限は、好ましくは50%であり、さらには48%、46%、44%、42%、40%、38%、36%、34%、32%、30%、28%、26%、25%、24%、23%、22.5%、22%、21.5%の順により好ましい。また、Y3+の含有量の下限は、好ましくは0%であり、さらには1%、5%、8%、10%、12%、14%、16%、18%の順により好ましい。Y3+の含有量は0%であってもよい。
 Y3+は一定量導入することにより、ガラス成分の揮発を抑制し、屈折率ndを高めることができる。しかしY3+の含有量が多すぎるとガラスの熱的安定性が低下し、製造中にガラスが失透しやすくなる。一方、Y3+の含有量が少なすぎてもガラスの熱的安定性が低下するおそれがある。したがって、ガラスの熱的安定性の低下を抑制する観点から、Y3+の含有量は上記範囲であることが好ましい。
 第1実施形態に係るガラスにおいて、Yb3+の含有量の上限は、好ましくは50%であり、さらには40%、30%、20%、15%、10%、8%、6%、4%、3%、2%、1%の順により好ましい。また、Yb3+の含有量の下限は、好ましくは0%である。Yb3+の含有量は0%であってもよい。Yb3+は、La3+、Gd3+、Y3+と比べて分子量が大きいため、ガラスの比重を増大させる。また、Yb3+の含有量が多すぎるとガラスの熱的安定性が低下する。ガラスの熱的安定性の低下を防ぎ、比重の増大を抑制する観点から、Yb3+の含有量は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ti4+の含有量の上限は、好ましくは20%であり、さらには15%、10%、5%、4%、3.5%、3%、2.5%の順により好ましい。また、Ti4+の含有量の下限は、好ましくは0%であり、さらには0.1%、0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、または1.6%であってもよい。Ti4+の含有量は0%であってもよい。所望のアッベ数νdを維持し、また可視~近紫外域における異常部分分散性を向上させる観点から、Ti4+の含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Nb5+の含有量の上限は、好ましくは20%であり、さらには15%、10%、5%、4%、3.5%、3%、2.5%の順により好ましい。また、Nb5+の含有量の下限は、好ましくは0%であり、さらには0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%の順により好ましい。Nb5+の含有量は0%であってもよい。所望のアッベ数νdを維持し、また可視~近紫外域における異常部分分散性を向上させる観点から、Nb5+の含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、W6+の含有量の上限は、好ましくは20%であり、さらには15%、10%、5%、4%、3.5%、3%、2.5%の順により好ましい。W6+の含有量の下限は、好ましくは0%であり、さらには0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%の順により好ましい。W6+の含有量は0%であってもよい。透過率を高め、また、比重を低減する観点から、また所望のアッベ数νdを維持し、また可視~近紫外域における異常部分分散性を向上させる観点から、W6+の含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Bi3+の含有量の上限は、好ましくは20%であり、さらには15%、10%、5%、4%、3.5%、3%、2.5%の順により好ましい。また、Bi3+の含有量の下限は、好ましくは0%であり、さらには0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、または1.6%であってもよい。Bi3+の含有量は0%であってもよい。透過率を高め、また比重を低減する観点から、白金製の製造装置へのダメージ低減の観点から、また可視~近紫外域における異常部分分散性を向上させる観点から、Bi3+の含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Zr4+の含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、3%、2%、1%の順により好ましい。また、Zr4+の含有量の下限は、好ましくは0%であり、さらには0.05%、0.1%、0.5%の順により好ましい。Zr4+の含有量は0%であってもよい。Zr4+は適当量含有することにより化学的耐久性を改善する作用がある。しかしZr4+の含有量が多すぎると、液相温度LTが上昇するおそれがあり、またガラスの熔解性が低下するおそれがある。このため、Zr4+の含有量を上記範囲とすることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ta5+の含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、3%、2%、1%の順により好ましい。また、Ta5+の含有量の下限は、好ましくは0%であり、さらには0.05%、0.1%、0.5%の順により好ましい。Ta5+の含有量は0%であってもよい。Ta5+は、ガラスの高屈折低分散性に寄与する成分である。一方、Ta5+の含有量が多すぎると、原料コストが高くなるおそれがあり、またガラスの熔解性が低下するおそれがある。さらに、比重が上昇するおそれがある。そのため、Ta5+の含有量は上記範囲であることが好ましい。
 第1実施形態に係る光学ガラスにおいて、Ge4+の含有量の上限は、好ましくは5%であり、さらには4.5%、4%、3.5%、3%、2.5%、2%、1.5%、1%、0.5%の順により好ましい。また、Ge4+の含有量の下限は、好ましくは0%である。Ge4+の含有量は0%であってもよい。
 Ge4+は、ガラスの高分散性を高める働きを有するが、一般的に使用されるガラス成分の中で、突出して高価な成分である。したがって、ガラスの製造コストを低減する観点から、Ge4+の含有量を上記範囲とすることが好ましい。
 第1実施形態に係るガラスにおいて、Sc3+の含有量は、好ましくは2%以下である。また、Sc3+の含有量の下限は、好ましくは0%である。
 第1実施形態に係るガラスにおいて、Hf4+の含有量は、好ましくは2%以下である。また、Hf4+の含有量の下限は、好ましくは0%である。
 Sc3+、Hf4+は、ガラスの高分散性を高める働きを有するが、高価な成分である。そのため、Sc3+、Hf4+の各含有量は上記範囲であることが好ましい。
 第1実施形態に係るガラスにおいて、Lu3+の含有量は、好ましくは2%以下である。また、Lu3+の含有量の下限は、好ましくは0%である。
 Lu3+は、ガラスの高分散性を高める働きを有するが、分子量が大きいことから、ガラスの比重を増加させるガラス成分でもある。そのため、Lu3+の含有量は上記範囲であることが好ましい。
 第1実施形態に係るガラスは、必須成分としてSi4+およびB3+、任意成分としてCa2+、Zn2+、P5+、Al3+、Li+、Na+、K+、Rb+、Cs+、Mg2+、Sr2+、Ba2+、La3+、Gd3+、Y3+、Ti4+、Nb5+、W6+、Bi3+、Ta5+、およびZr4+で構成されていることが好ましい。これらのガラス成分の合計含有量は、好ましくは95%以上であり、より好ましくは98%以上である、さらに好ましくは99%以上であり、特に好ましくは99.5%以上である。
 第1実施形態に係る光学ガラスは、アニオン成分としてO2-を含む。O2-の含有量の上限は、好ましくは90アニオン%であり、さらには80アニオン%、75アニオン%、73アニオン%、71アニオン%、69アニオン%、67アニオン%、65アニオン%、63アニオン%、61アニオン%、60アニオン%、59アニオン%、58アニオン%、57アニオン%、56アニオン%、55アニオン%、54アニオン%、53アニオン%、52アニオン%、51アニオン%、50アニオン%、49アニオン%、48アニオン%、47アニオン%、46アニオン%、45アニオン%、44アニオン%、43アニオン%の順により好ましい。また、O2-の含有量の下限は、好ましくは10アニオン%であり、さらには12アニオン%、14アニオン%、16アニオン%、18アニオン%、20アニオン%、22アニオン%、24アニオン%、26アニオン%、28アニオン%、30アニオン%、32アニオン%、34アニオン%、35アニオン%、36アニオン%、37アニオン%、38アニオン%、39アニオン%、40アニオン%、41アニオン%の順により好ましい。
 第1実施形態に係る光学ガラスは、アニオン成分として、O2-およびF-以外の成分を含んでいてもよい。O2-およびF-以外のアニオン成分として、Cl-、Br-、I-を例示できる。しかし、Cl-、Br-、I-は、いずれもガラスの熔融中に揮発しやすい。これらの成分の揮発によって、ガラスの特性が変動する、ガラスの均質性が低下する、熔融設備の消耗が著しくなる等の問題が生じる。したがって、Cl-の含有量は、5アニオン%未満であることが好ましく、より好ましくは3アニオン%未満、さらに好ましくは1アニオン%未満、特に好ましくは0.5アニオン%未満、一層好ましくは0.25アニオン%未満である。また、Br-およびI-の合計含有量は、5アニオン%未満であることが好ましく、より好ましくは3アニオン%未満、さらに好ましくは1アニオン%未満、特に好ましくは0.5アニオン%未満、一層好ましくは0.1アニオン%未満、より一層好ましくは0アニオン%である。
 第1実施形態に係るガラスは、基本的に上記ガラス成分により構成されることが好ましいが、本発明の作用効果を妨げない範囲において、その他の成分を含有することも可能である。また、本発明において、不可避的不純物の含有を排除するものではない。
 本実施形態に係る光学ガラスでは、波長360nm付近における透過率の低減を抑制する観点から、Sbイオンを添加できる。Sbイオンの含有量の上限は、好ましくは外割で1.0000質量%であり、さらには0.5000質量%、0.1000質量%、0.0900質量%、0.0800質量%、0.0700質量%、0.0600質量%、0.0500質量%、0.0400質量%、0.0300質量%、0.0250質量%、0.0200質量%、0.0150質量%、0.0100質量%、0.0090質量%、0.0080質量%、0.0070質量%、0.0060質量%、0.0050質量%の順により好ましい。また、Sbイオンの含有量は、好ましくは外割で1.0質量ppm以上である。なお、1.0質量ppmは0.0001質量%である。Sbイオンの含有量の下限は、より好ましくは外割で0.0005質量%であり、さらには0.0008質量%、0.0010質量%、0.0012質量%、0.0014質量%、0.0016質量%、0.0018質量%、0.0020質量%、0.0022質量%、0.0024質量%、0.0026質量%、0.0028質量%、0.0030質量%、0.0032質量%、0.0034質量%、0.0036質量%、0.0038質量%の順により好ましい。
 Sbイオンは、例えばSb23やSb23によってガラスに添加できる。Sbイオンには、3価、5価、およびその他の価数を有する全てのSbイオンが含まれる。また、Sbイオンの含有量は外割である。すなわち、Sbイオン以外の全ガラス成分の合計含有量を100質量%としたときのSbイオンの含有量を質量%で示す。波長360nm付近における透過率の低減を抑制する観点から、Sbイオンの含有量を上記範囲とすることが好ましい。Sbイオンの含有量が多すぎると、坩堝由来のPtがガラスに導入されやすくなり、Ptコロイドが形成されてガラス内にチンダル状のクモリが発生し波長帯に依らない光線透過率悪化が発生するおそれがある。またSbイオン自身の光吸収により特定波長の光線透過率が悪化するおそれがある。Sbイオンを含有しない場合やSbイオンの含有量が少なすぎる場合は、波長360nm付近におけるPtイオンの吸収が顕在化し、その結果可視光にまでおよぶ波長範囲において特定波長の光線透過率が悪化するおそれがある。
 また、上記光学ガラスは、可視領域の広い範囲にわたり高い透過率が得られる。こうした特長を活かすには、着色性の元素を含まないことが好ましい。着色性の元素としては、Cu、Co、Ni、Fe、Cr、Eu、Nd、Er、V等を例示することができる。いずれの元素とも、100質量ppm未満であることが好ましく、0~80質量ppmであることがより好ましく、0~50質量ppmであることが更に好ましく、実質的に含まれないことが特に好ましい。
 Ga、Te、Tb等は、導入が不要な成分であり、高価な成分でもある。そのため、質量%表示によるGa23、TeO2、TbO2の含有量の範囲は、いずれも、それぞれ0~0.1%であることが好ましく、0~0.05%であることがより好ましく、0~0.01%であることが更に好ましく、0~0.005%であることが一層好ましく、0~0.001%であることがより一層好ましく、実質的に含まれないことが特に好ましい。
(ガラス特性)
<屈折率nd>
 第1実施形態に係る光学ガラスにおいて、屈折率ndは、好ましくは1.55~1.80であり、1.56~1.75、1.57~1.70、1.58~1.65、1.59~1.63、1.60~1.62、または1.58~1.60とすることもできる。
 屈折率ndは各ガラス成分の含有量を適宜調整することにより所望の値にすることができる。相対的に屈折率ndを高める働きを有する成分(高屈折率化成分)は、Nb5+、Ti4+、W6+、Bi3+、Zr4+、Ta5+、La3+、Gd3+、Y3+等である。一方、相対的に屈折率ndを低くする働きを有する成分(低屈折率化成分)は、Si4+、B3+、Li+、Na+、K+等である。
 第1実施形態に係る光学ガラスにおいて、屈折率ndとアッベ数νdとは下記式〔1-1〕を満たすことが好ましい。
  nd≧(-0.0081×νd+2.1181) ・・・〔1-1〕
 屈折率ndとアッベ数νdとは、下記式〔1-2〕を満たすことがより好ましく、さらには、下記式〔1-3〕、下記式〔1-4〕、下記式〔1-5〕の順に満たすことがより好ましい。
  nd≧(-0.0081×νd+2.1231) ・・・〔1-2〕
  nd≧(-0.0081×νd+2.1281) ・・・〔1-3〕
  nd≧(-0.0081×νd+2.1331) ・・・〔1-4〕
  nd≧(-0.0081×νd+2.1381) ・・・〔1-5〕
<部分分散比Pg,F>
 第1実施形態に係る光学ガラスにおいて、可視短波長域における部分分散比Pg,Fの下限は、好ましくは0.5200であり、さらには0.5250、0.5300、0.5350、0.5400、0.5410、0.5420、0.5430、0.5440、0.5450の順により好ましい。部分分散比Pg,Fを上記範囲とすることで、高次の色収差補正に好適な光学ガラスが得られる。一方、部分分散比Pg,Fの上限は、特に限定されないが、通常0.5700であり、好ましくは0.5650である。
 また、第1実施形態に係る光学ガラスにおいて、部分分散比Pg,Fは下記式〔2-1〕を満たすことが好ましい。
 Pg,F≧0.6200-0.0014×νd …〔2-1〕
 部分分散比Pg,Fは、下記式〔2-2〕を満たすことがより好ましく、さらには、下記式〔2-3〕、下記式〔2-4〕、下記式〔2-5〕、下記式〔2-6〕の順に満たすことがより好ましい。
 Pg,F≧0.6220-0.0014×νd …〔2-2〕
 Pg,F≧0.6240-0.0014×νd …〔2-3〕
 Pg,F≧0.6260-0.0014×νd …〔2-4〕
 Pg,F≧0.6280-0.0014×νd …〔2-5〕
 Pg,F≧0.6300-0.0014×νd …〔2-6〕
 第1実施形態に係る光学ガラスからなる光学素子において、広い波長範囲において色収差を良好に補正する観点から、部分分散比Pg,Fは上記式を満たすことが好ましい。
 第1実施形態に係る光学ガラスにおいて、ΔPg,Fの上限は特に限定されないが、好ましくは0.0500であり、さらには0.0400、0.0300、0.0200、0.0150である。一方、ΔPg,Fの下限は、好ましくは-0.0100であり、さらには-0.0090、-0.0080、-0.0070、-0.0060、-0.0050、-0.0040、-0.0030、-0.0020、-0.0010、0.0000、0.0010、0.0020、0.0030、0.0040、0.0050、0.0060、0.0070、0.0080、0.0090、0.0100、0.0110、0.0120、0.0130の順に好ましい。ΔPg,Fを上記範囲とすることで、高次の色収差補正に好適な光学ガラスが得られる。
 部分分散比Pg,Fは、上記ショットの分散式を用いて算出する。
 本願発明では、部分分散比Pg,Fは、上記表Aに示す12の異なる波長(スペクトル線)において測定した屈折率の値を用い、上記ショットの分散式と呼ばれる屈折率と波長とを関係付ける式の波長項の係数をフィッティングにより求め、これら係数を定めた後に当該分散式を用いて算出する。12の異なる波長において測定した屈折率の値を使用することにより、高い精度で部分分散比Pg,Fを算出することができる。一方、屈折率を測定する波長の数を減らし、簡略化した方法によって部分分散比Pg,Fを算出することもできるが、精度が十分でない。
 部分分散比Pg,Fは、g線、F線、C線における各屈折率ng、nF、nCを用いて次のように表される。
  Pg,F=(ng-nF)/(nF-nC)
 また、横軸をアッベ数νd、縦軸を部分分散比Pg,Fとする平面において、ノーマルラインは下式により表される。
  Pg,F(0)=0.6483-(0.001802×νd)
 さらに、ノーマルラインからの部分分散比Pg,Fの偏差ΔPg,Fは次のように表される。
  ΔPg,F=Pg,F-Pg,F(0)
<ガラスの比重>
 第1実施形態に係る光学ガラスの比重は、好ましくは6.0以下であり、さらには5.5以下、5.0以下、4.8以下、4.6以下の順により好ましい。
 相対的に比重を高くする成分は、Ba2+、La3+、Zr4+、Nb5+、Ta5+等である。一方、相対的に比重を低くする成分は、Si4+、B3+、Li+、Na+、Mg2+等である。これら成分の含有量を適宜調整することで比重を制御することができる。
<液相温度LT>
 第1実施形態に係る光学ガラスの液相温度LTの上限は、好ましくは1200℃であり、さらには1150℃、1100℃、1050℃、1000℃、980℃、970℃、960℃、950℃、940℃、930℃、920℃、910℃、900℃、890℃の順により好ましい。液相温度を上記範囲とすることで、ガラスの熔融、成形温度を低下させることができ、その結果、熔融工程におけるガラス熔融器具(例えば、坩堝、熔融ガラスの攪拌器具など)の侵蝕ならびにガラス成分自身の揮発に起因する脈理の発生を低減できる。液相温度LTの下限は特に限定されない。液相温度LTは、全てのガラス成分の含有量のバランスによって決まる。その中でも、液相温度LTに対しては、Si4+、B3+、Li+、Na+、K+等の含有量の影響が大きい。またZr4+、Al3+等の含有量が多いと液相温度は上昇する。
 液相温度は次のように決定する。10cc(10ml)のガラスを白金坩堝中に投入し1200℃以上の温度で15~30分熔融した後にガラス転移温度Tg以下まで冷却し、ガラスを白金坩堝ごと所定温度の熔解炉に入れ2時間保持する。保持温度は10℃刻みで任意温度で設定し、2時間保持後、冷却し、100倍の光学顕微鏡でガラス内部の結晶の有無を観察する。この操作を温度毎に繰り返し、結晶の析出しなかった最低温度を液相温度とする。
<ガラス転移温度Tg>
 第1実施形態に係る光学ガラスのガラス転移温度Tgの上限は、好ましくは600℃であり、さらには580℃、560℃、540℃、520℃、510℃、500℃、490℃、480℃、470℃、460℃、450℃、440℃、430℃の順により好ましい。また、ガラス転移温度Tgの下限は、好ましくは350℃であり、さらには360℃、370℃、380℃、390℃、400℃、410℃、420℃の順により好ましい。精密プレス成型時の歩留まりを向上する観点から、ガラス転移温度Tgを上記範囲とすることが好ましい。ガラス転移温度Tgが高すぎると、精密プレス成型ができないおそれがある。
 相対的にガラス転移温度Tgを下げる成分は、F-、Li+、Na+、K+等である。相対的にガラス転移温度Tgを上げる成分は、Si4+、La3+、Zr4+、Nb5+等である。これらの成分の含有量を適宜調整することでガラス転移温度Tgを制御できる。
<ガラスの光線透過性>
 第1実施形態に係る光学ガラスの光線透過性は、着色度λ80、λ70、およびλ5により評価できる。
 厚さ10.0mm±0.1mmのガラス試料について波長200~700nmの範囲で分光透過率を測定し、外部透過率が80%となる波長をλ80、外部透過率が70%となる波長をλ70、外部透過率が5%となる波長をλ5とする。
 第1実施形態に係る光学ガラスのλ80は、好ましくは450nm以下であり、より好ましくは400nm以下であり、さらに好ましくは350nm以下である。λ70は、好ましくは430nm以下であり、より好ましくは380nm以下であり、さらに好ましくは330nm以下である。λ5は、好ましくは380nm以下であり、より好ましくは330nm以下であり、さらに好ましくは280nm以下である。
 <機械的特性 ヌープ硬度Hk>
 第1実施形態に係る光学ガラスのヌープ硬度Hkの下限は、好ましくは400であり、さらには410、420、430、440、450、460、470、480の順により好ましい。ガラスを取り扱う際、およびガラスを研削、研磨、切削など機械加工してレンズ等を製造する際の加傷を防止する観点から、ヌープ硬度Hkを上記範囲とすることが好ましい。ヌープ硬度Hkの上限は特に限定されないが、通常750であり、好ましくは600である。
 ヌープ硬度Hkは、La3+、Gd3+、Y3+、Si4+、Zr4+、Al3+の含有量を調整することにより高めることができる。
<ΔT360>
 本実施形態に係る光学ガラスにおいて、厚さを10.0mm±0.1mmとしたときの、波長700nmにおける外部透過率と波長360nmにおける外部透過率との差(ΔT360)の上限は、好ましくは31.0%であり、さらには30.0%、28.0%、26.0%、24.0%、22.0%、20.0%、18.0%、16.0%、15.0%、14.0%、13.0%、12.0%、11.0%、10.0%、9.0%、8.0%、7.0%、6.0%の順により好ましい。ΔT360の下限は、特に限定されないが、一般的には2~30%である。ΔT360は、Sbイオンの導入により調節することができる。また、本願においては低分散性を持つガラスを提供するため、Ti、Nb、W、Bi等の高分散成分を用いることは原則好ましくないが、高異常分散化等の目的によりこれらを導入する場合はΔT360が増大しうる。ΔT360を上記範囲とすることで、波長360nm近傍における透過率の低減が抑制できる。
 外部透過率は、ガラスサンプルの厚み方向に光を入射したときの、入射光強度に対する透過光強度の百分率[透過光強度/入射光強度×100]で定義される。なお、外部透過率にはサンプル表面における光線の反射損失も含まれる。
(光学ガラスの製造)
 第1実施形態に係るガラスは、上記所定の組成となるようにガラス原料を調合し、調合したガラス原料により公知のガラス製造方法に従って作製すればよい。例えば、複数種の化合物を調合し、十分混合してバッチ原料とし、バッチ原料を白金坩堝等の中に入れて粗熔解(ラフメルト)する。粗熔解によって得られた熔融物を急冷、粉砕してカレットを作製する。さらにカレットを白金坩堝中に入れて加熱、再熔融(リメルト)して熔融ガラスとし、さらに清澄、均質化した後に熔融ガラスを成形し、徐冷して光学ガラスを得る。熔融ガラスの成形、徐冷には、公知の方法を適用すればよい。
 なお、ガラス中に所望のガラス成分を所望の含有量となるように導入することができれば、バッチ原料を調合するときに使用する化合物は特に限定されないが、このような化合物として、酸化物、炭酸塩、硝酸塩、水酸化物、弗化物、複合酸化物、弗珪酸塩、弗硼酸塩等が挙げられる。
(プレス成形用ガラス素材の製造)
 本発明の一態様によれば、第1実施形態に係る光学ガラスからなるプレス成形用ガラス素材およびその製造方法を提供することができる。
 プレス成形用ガラス素材のプレス成形は、加熱して軟化した状態にあるプレス成形用ガラス素材をプレス成形型でプレスすることにより行うことができる。加熱、プレス成形は、ともに大気中で行うことができる。プレス成形用ガラス素材の表面に、窒化ホウ素などの粉末状離型剤を均一に塗布し、加熱、プレス成形すると、ガラスと成形型の融着を確実に防止できる他、プレス成形型の成形面に沿ってガラスをスムーズに延ばすことができる。プレス成形後にアニールしてガラス内部の歪を低減することにより、均質な光学素子ブランクを得ることができる。
 プレス成形用ガラス素材の例としては、精密プレス成形用プリフォーム、光学素子ブランクをプレス成形するためのガラス素材(プレス成形用ガラスゴブ)等があり、目的とするプレス成形品の質量に相当する質量を有するガラス塊が挙げられる。
 また、プレス成形用ガラス素材は、プリフォームとも呼ばれ、そのままの状態でプレス成形に供されるものに加え、切断、研削、研磨などの機械加工を施すことによりプレス成形に供されるものも含む。切断方法としては、ガラス板の表面の切断したい部分にスクライビングと呼ばれる方法で溝を形成し、溝が形成された面の裏面から溝の部分に局所的な圧力を加えて、溝の部分でガラス板を割る方法や、切断刃によってガラス板をカットする方法などがある。また、研削方法としてはカーブジェネレーターを用いた球面加工やスムージング加工などが挙げられる。研磨方法としては、酸化セリウムや酸化ジルコニウム等の砥粒を用いた研磨が挙げられる。
 第1実施形態に係るプレス成形用ガラス素材は、機械的特性に優れる光学ガラスからなるため、取り扱い時および加工時に加傷しにくい。従来、精密プレス成形用ガラス素材では、ガラス素材表面の傷がプレス成形後の光学素子表面、特に光学機能面に残存しやすいことが問題となっていた。本実施形態に係るプレス成形用ガラス素材は、機械的特性に優れ、ガラス素材表面に傷が付きにくいことから、精密プレス成形用ガラス素材として好ましく使用できる。また、プレス成形後のプレス成形品に機械加工、すなわち研削、研磨して光学素子を作製する場合にも、機械加工によって加傷しにくいプレス成形品が製造できる。
(光学素子ブランクの製造)
 本発明の一態様によれば、第1実施形態に係る光学ガラスからなる光学素子ブランクを提供することができる。光学素子ブランクは、製造しようとする光学素子の形状に近似する形状を有するガラス成形体である。光学素子ブランクは、製造しようとする光学素子の形状に加工する際に除去する加工代を加えた形状にガラスを成形する方法等により作製することができる。例えば、プレス成形用ガラス素材を加熱、軟化してプレス成形する方法(リヒートプレス法)、公知の方法で熔融ガラス塊をプレス成形型に供給しプレス成形する方法(ダイレクトプレス法)等により光学素子ブランクを作製することができる。
(光学素子の製造)
 第1実施形態に係る光学ガラスを使用して光学素子を作製するには、公知の方法を適用すればよい。例えば、上述の光学素子ブランクを用いて製造できる。また例えば、上記光学ガラスの製造において、熔融ガラスを鋳型に流し込んで板状に成形し、本発明に係る光学ガラスからなるガラス素材を作製する。得られたガラス素材を適宜、切断、研削、研磨し、プレス成形に適した大きさ、形状のカットピースを作製する。カットピースを加熱、軟化して、公知の方法でプレス成形(リヒートプレス)し、光学素子の形状に近似する光学素子ブランクを作製する。光学素子は、光学素子ブランクを加工する工程を含む方法により製造することができる。加工としては、切断、切削、粗研削、精研削、研磨等を例示することができる。こうした加工を行う際、上記ガラスを使用することにより、破損を軽減することができ、高品質の光学素子を安定して供給することができる。
 光学素子の種類としては、球面レンズ、非球面レンズ等のレンズ、プリズム、回折格子等を例示することができる。レンズの形状としては、両凸レンズ、平凸レンズ、両凹レンズ、平凹レンズ、凸メニスカスレンズ、凹メニスカスレンズ等の諸形状を例示することができる。光学素子の光学機能面には使用目的に応じて、反射防止膜、全反射膜などをコーティングしてもよい。
 第1実施形態に係る光学素子は、機械的特性に優れる光学ガラスからなるため、取り扱い時および加工時に加傷しにくい。特に、光学素子を固定する際にも加傷しにくい。例えば、レンズの芯取り加工において、レンズ表面を両側から挟んで固定しても加傷しにくい。
第2実施形態
 第2実施形態に係る酸化物光学ガラスは、
 アッベ数νdが62.00以上であり、
 B3+の含有量が0カチオン%を超え50.00カチオン%以下であり、
 F-の含有量が0アニオン%を超え85アニオン%以下であり、
 La3+、Gd3+、およびY3+の合計含有量[La3++Gd3++Y3+]が5カチオン%以上であり、
 Si4+、B3+、P5+、Ti4+、Nb5+、W6+、Bi3+、Zr4+、およびTa5+の合計含有量に対する、La3+、Gd3+、Y3+、Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(La3++Gd3++Y3++Li++Na++K++Rb++Cs++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++P5++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]が0.60以上であり、
 Si4+、B3+、およびP5+の合計含有量に対するSi4+およびB3+の合計含有量のカチオン比[(Si4++B3+)/(Si4++B3++P5+)]が0.2以上である。
<アッベ数νd>
 第2実施形態に係る光学ガラスにおいて、アッベ数νdは62.00以上である。アッベ数νdは好ましくは62~75であり、62.2~73、62.4~71、62.6~69、62.8~68、63~67または62~63とすることもできる。アッベ数νdは、第1実施形態と同様に算出する。
 アッベ数νdは、各ガラス成分の含有量を適宜調整することにより所望の値にすることができる。相対的にアッベ数νdを低くする成分、すなわち高分散化成分は、Nb5+、Ti4+、Zr4+、W6+、Bi3+、Ta5+等である。一方、相対的にアッベ数νdを高くする成分、すなわち低分散化成分は、F-、Si4+、B3+、Li+、Na+、K+、La3+、Ba2+、Ca2+、Sr2+等である。
 第2実施形態に係る光学ガラスにおいて、B3+の含有量は0%を超え50.00%以下である。B3+の含有量の下限は、好ましくは5%であり、さらには10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%の順により好ましい。また、B3+の含有量の上限は、好ましくは45.00%であり、さらには40.00%、39.00%、38.00%、37.00%、36.00%、35.00%、34.00%、33.00%、32.00%、31.00%、30.00%、29.00%、28.00%、27.00%、26.00%、25.00%、24.00%、23.00%の順により好ましい。
 B3+はガラスのネットワーク形成成分である。B3+の含有量を上記範囲とすることで、化学的耐久性を改善できる。一方、B3+の含有量が少なすぎると、ガラスの熱的安定性および機械的特性が低下するおそれがある。また、B3+の含有量が多すぎると、ガラス成分の揮発が増大するおそれがあり、また、ガラスの熱的安定性および化学的耐久性が低下するおそれがある。
 第2実施形態に係る光学ガラスは、アニオン成分としてF-を含む。F-の含有量は0アニオン%を超え85アニオン%以下である。F-の含有量の下限は、好ましくは5アニオン%であり、さらには10アニオン%、15アニオン%、20アニオン%、24アニオン%、27アニオン%、30アニオン%、33アニオン%、35アニオン%、37アニオン%、39アニオン%、41アニオン%、43アニオン%、45アニオン%、46アニオン%、47アニオン%、48アニオン%、49アニオン%、50アニオン%、51アニオン%、52アニオン%、53アニオン%、54アニオン%、55アニオン%、56アニオン%、57アニオン%の順により好ましい。また、F-の含有量の上限は、好ましくは80アニオン%であり、さらには77アニオン%、75アニオン%、73アニオン%、71アニオン%、69アニオン%、67アニオン%、65アニオン%、64アニオン%、63アニオン%、62アニオン%、61アニオン%、60アニオン%、59アニオン%の順により好ましい。F-の含有量を上記範囲とすることで、低分散性の割に高屈折であり、熱的安定性が高く、異常部分分散性を有し、ガラス転移温度Tgが低く、精密プレス成形に適した光学ガラスが得られる。一方、F-の含有量が少なすぎると、ガラスの熱的安定性が低下するおそれがあり、異常部分分散性が得られないおそれがある。F-の含有量が大きすぎると、ガラス成分の揮発が増大するおそれがある。
 第2実施形態に係る光学ガラスにおいて、La3+、Gd3+、およびY3+の合計含有量[La3++Gd3++Y3+]は5%以上である。該合計含有量の下限は、好ましくは10%であり、さらには15%、20%、25%、30%、31%、32%、33%、34%、35%、36%、37%、38%の順により好ましい。また、該合計含有量の上限は、好ましくは60%であり、さらには55%、50%、48%、46%、45%、44%、43%、42%、41%の順により好ましい。該合計含有量を上記範囲とすることで、屈折率ndの高い光学ガラスが得られる。一方、該合計含有量が少なすぎると、所望の光学恒数が得られないおそれがある。該合計含有量が多すぎると、ガラスの熱的安定性が低下するおそれがある。
 第2実施形態に係る光学ガラスにおいて、Si4+、B3+、P5+、Ti4+、Nb5+、W6+、Bi3+、Zr4+、およびTa5+の合計含有量に対する、La3+、Gd3+、Y3+、Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(La3++Gd3++Y3++Li++Na++K++Rb++Cs++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++P5++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]は0.60以上である。該カチオン比の下限は、好ましくは0.70であり、さらには0.80、0.90、1.00、1.05、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.45、1.50、1.55、1.60、1.65、1.70、1.75、1.80、1.85、1.90、1.95、2.00、2.05、2.10、2.15、2.20の順により好ましい。該カチオン比の上限は、好ましくは4であり、さらには3.8、3.6、3.4、3.2、3.0、2.9、2.8、2.7、2.65、2.60、2.55、2.50、2.40、2.35、2.30、2.25の順により好ましい。該カチオン比を上記範囲とすることで、ガラス成分の揮発を抑制できる。一方、該カチオン比が小さすぎると、ガラス成分の揮発が増大するおそれがある。また、該カチオン比が大きすぎるとガラスの熱的安定性が低下するおそれがある。
 第2実施形態に係る光学ガラスにおいて、Si4+、B3+、およびP5+の合計含有量に対するSi4+およびB3+の合計含有量のカチオン比[(Si4++B3+)/(Si4++B3++P5+)]は0.2以上である。該カチオン比の下限は、好ましくは0.3であり、さらには0.4、0.5、0.6、0.7、0.8、0.85、0.9、0.95の順により好ましい。また、該カチオン比の上限は、好ましくは1であり、さらには0.99、0.98、0.97の順により好ましい。該カチオン比は1であってもよい。該カチオン比を上記範囲とすることで、化学的耐久性および機械的特性に優れる光学ガラスが得られる。
 第2実施形態に係る光学ガラスにおいて、上記以外のガラス成分の含有量および比率は、第1実施形態と同様とすることができる。
 また、第2実施形態に係る光学ガラスにおいて、ガラス特性は、第1実施形態と同様とすることができる。
 さらに、第2実施形態に係る光学ガラスの製造、プレス成形用ガラス素材の製造、光学素子ブランクの製造、および光学素子の製造も、第1実施形態と同様とすることができる。
 以下に、本発明を実施例により更に詳細に説明する。ただし、本発明は実施例に示す態様に限定されるものではない。
(実施例1)
 表1~9に示すガラス組成を有するガラスサンプルを以下の手順で作製し、各種評価を行った。
[光学ガラスの製造]
 まず、ガラスの構成成分に対応する酸化物、弗化物、水酸化物、炭酸塩、および硝酸塩、複合酸化物、弗珪酸塩、弗硼酸塩等を原材料として準備し、得られる光学ガラスのガラス組成が、表1に示す各組成となるように上記原材料を秤量、調合して、原材料を十分に混合した。こうして得られた調合原料(バッチ原料)を、白金坩堝に投入し、1150~1250℃で1.5~3時間加熱して熔融ガラスとし、攪拌して均質化を図り、清澄してから、熔融ガラスを適当な温度に予熱した金型に鋳込んだ。鋳込んだガラスを、ガラス転移温度Tg近傍の温度で30分間熱処理し、炉内で室温まで放冷することにより、ガラスサンプルを得た。
 表1(1)~(9)において、表示のないガラス成分の含有量は0.00カチオン%である。例えば、いずれのガラスサンプルにおいても、Rb+、Cs+、およびGe4+の各含有量は0.00カチオン%であった。
[カチオンの数に対するアニオンの数の比]
 カチオンの数に対するアニオンの数の比(anion数/cation数)は、カチオンの合計数とアニオンの合計数とのモル比であり、組成から計算できる。具体的には、カチオンの合計数を100(任意の定数)とした時の各カチオンの持つ正電荷の総和を算出し、それと同数となるアニオンの負電荷とアニオンモル百分率とを組み合わせることにより、カチオンの合計数を100とした時のアニオンの合計数を算出する。この算出された数値から、カチオンの数に対するアニオンの数の比(anion数/cation数)を算出した。
[光学特性の測定]
 得られたガラスサンプルを、さらにガラス転移温度Tg付近で約30分から約2時間アニール処理した後、炉内で降温速度-30℃/時間で室温まで冷却してアニールサンプルを得た。得られたアニールサンプルについて、屈折率、アッベ数νd、部分分散比Pg,F、ΔPg,F、比重、ガラス転移温度Tg、液相温度LT、λ80、λ70、λ5、およびΔT360を測定した。結果を表2に示す。
(i)屈折率nd、ng、nF、nC、アッベ数νd、および部分分散比Pg,F
  上記アニールサンプルについて、日本工業規格(JIS規格)JIS B 7071-1 光学ガラスの屈折率測定法-第1部:最小偏角法により、表Aに示す12の波長における屈折率を測定した。
 次に日本工業規格(JIS規格) JIS B 7071-1 光学ガラスの屈折率測定法-第1部:最小偏角法の附属書Bで定められているショットの分散式に、測定によって得た各線の屈折率をあてはめ、最小二乗法によりショットの分散式の定数を求めた。そして、定数の定まったショットの分散式を使用してアッベ数νd、および部分分散比Pg,Fを算出した。
Figure JPOXMLDOC01-appb-T000002
 ショットの分散式: n2=a0+a1λ2+a2λ-2+a3λ-4+a4λ-6+a5λ-8
 ここで、nは屈折率、λは波長(μm)、a0、a1、a2、a3、a4、a5は定数である。
 なお、屈折ndとは、波長587.56nmにおける屈折率である。
 アッベ数νdは、d線、F線、C線における各屈折率nd、nF、nCを用いて次のように表される。
  νd=(nd-1)/(nF-nC)
 部分分散比Pg,Fは、g線、F線、C線における各屈折率ng、nF、nCを用いて次のように表される。
  Pg,F=(ng-nF)/(nF-nC)
(ii)ΔPg,F
 横軸をアッベ数νd、縦軸を部分分散比Pg,Fとする平面において、ノーマルラインPg,F(0)は下式により表される。
  Pg,F(0)=0.6483-(0.001802×νd)
 ノーマルラインからの部分分散比Pg,Fの偏差ΔであるPg,Fを下記式に基づき算出した。
  ΔPg,F=Pg,F-Pg,F(0)
(iii)比重
 比重は、アルキメデス法により測定した。
(iv)ガラス転移温度Tg
 ガラス転移温度Tgは、NETZSCH JAPAN社製の示差走査熱量分析装置(DSC3300SA)を使用し、昇温速度10℃/分にて測定した。
(v)液相温度LT
 ガラスを所定温度に加熱された炉内に入れて約2時間保持し、冷却後、ガラス内部を40~100倍の光学顕微鏡で観察し、結晶の有無から液相温度を測定した。
(vi)λ80、λ70、λ5
 上記アニールサンプルを、厚さ10mmで、互いに平行かつ光学研磨された平面を有するように加工し、波長280nmから700nmまでの波長域における分光透過率を測定した。光学研磨された一方の平面に垂直に入射する光線の強度を強度Aとし、他方の平面から出射する光線の強度を強度Bとして、分光透過率B/Aを算出した。分光透過率が80%になる波長をλ80とし、分光透過率が70%になる波長をλ70とし、分光透過率が5%になる波長をλ5とした。なお、分光透過率には試料表面における光線の反射損失も含まれる。
(vii)ΔT360
 上記アニールサンプルを、厚さを10.0mm±0.1mmで、互いに平行かつ光学研磨された平面を有するように加工し、波長700nmおよび波長360nmにおける外部透過率を測定した。波長700nmにおける外部透過率(T700)と波長360nmにおける外部透過率(T360)との差を算出し、ΔT360とした。
 外部透過率は、ガラスサンプルの厚み方向に光を入射したときの、入射光強度に対する透過光強度の百分率[透過光強度/入射光強度×100]で定義される。なお、外部透過率にはサンプル表面における光線の反射損失も含まれる。
[機械的特性 ヌープ硬度Hk]
 得られたガラスサンプルを、厚さ2mm~20mmで、互いに平行かつ光学研磨された平面を有するように加工し、日本光学硝子工業会規格JOGIS-09に準じて、ヌープ硬度Hkを測定した。具体的には、加工したガラスサンプルにknoop圧子を押し込み、その圧痕の大きさからヌープ硬度Hkを測定した。結果を表2(1)~(2)に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
(実施例2)
 実施例1において作製した各光学ガラスを用いて、公知の方法により、レンズブランクを作製し、レンズブランクを研磨等の公知方法により加工して各種レンズを作製した。
 作製した光学レンズは、両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズ、凹メニスカスレンズ、凸メニスカスレンズ等の各種レンズである。
 上記作製した各種レンズを、該レンズよりもアッベ数が小さいガラス、例えばフリントガラスからなるレンズと組合せることにより、近紫外域~可視域における高次の色収差を良好に補正することができた。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 例えば、上記に例示されたガラス組成に対し、明細書に記載の組成を調整することにより、本発明の一態様にかかる光学ガラスを作製することができる。
 また、明細書に例示または好ましい範囲として記載した事項の2つ以上を任意に組み合わせることは、もちろん可能である。

Claims (7)

  1.  アッベ数νdが62.00以上であり、
     B3+の含有量が0カチオン%を超え50.00カチオン%以下であり、
     Si4+の含有量が0カチオン%を超え、
     F-の含有量が0アニオン%を超え、
     La3+、Gd3+、およびY3+の合計含有量[La3++Gd3++Y3+]が5カチオン%以上である、
     光学ガラス。
  2.  Si4+、B3+、P5+、Ti4+、Nb5+、W6+、Bi3+、Zr4+、およびTa5+の合計含有量に対する、La3+、Gd3+、Y3+、Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(La3++Gd3++Y3++Li++Na++K++Rb++Cs++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++P5++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]が0.50以上である、
     請求項1に記載の光学ガラス。
  3.  アッベ数νdが62.00以上であり、
     B3+の含有量が0カチオン%を超え50.00カチオン%以下であり、
     F-の含有量が0アニオン%を超え85アニオン%以下であり、
     La3+、Gd3+、およびY3+の合計含有量[La3++Gd3++Y3+]が5カチオン%以上であり、
     Si4+、B3+、P5+、Ti4+、Nb5+、W6+、Bi3+、Zr4+、およびTa5+の合計含有量に対する、La3+、Gd3+、Y3+、Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、およびBa2+の合計含有量のカチオン比[(La3++Gd3++Y3++Li++Na++K++Rb++Cs++Mg2++Ca2++Sr2++Ba2+)/(Si4++B3++P5++Ti4++Nb5++W6++Bi3++Zr4++Ta5+)]が0.60以上であり、
     Si4+、B3+、およびP5+の合計含有量に対するSi4+およびB3+の合計含有量のカチオン比[(Si4++B3+)/(Si4++B3++P5+)]が0.2以上である、
     光学ガラス。
  4.  Sbイオンの含有量が、外割で1.0質量ppm以上である、請求項1~3のいずれかに記載の光学ガラス。
  5.  厚さを10.0mm±0.1mmとしたときの、波長700nmにおける外部透過率と波長360nmにおける外部透過率との差が10%以下である、請求項1~3のいずれかに記載の光学ガラス。
  6.  請求項1~3のいずれかに記載の光学ガラスからなるプレス成形用ガラス素材。
  7.  請求項1~3のいずれかに記載の光学ガラスからなる光学素子。
PCT/JP2024/003703 2023-02-10 2024-02-05 光学ガラスおよび光学素子 WO2024166862A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2023-019347 2023-02-10
JP2023019344 2023-02-10
JP2023-019344 2023-02-10
JP2023019340 2023-02-10
JP2023-019340 2023-02-10
JP2023019347 2023-02-10

Publications (1)

Publication Number Publication Date
WO2024166862A1 true WO2024166862A1 (ja) 2024-08-15

Family

ID=92262550

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2024/003703 WO2024166862A1 (ja) 2023-02-10 2024-02-05 光学ガラスおよび光学素子
PCT/JP2024/003702 WO2024166861A1 (ja) 2023-02-10 2024-02-05 光学ガラスおよび光学素子
PCT/JP2024/003697 WO2024166860A1 (ja) 2023-02-10 2024-02-05 光学ガラスおよび光学素子

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2024/003702 WO2024166861A1 (ja) 2023-02-10 2024-02-05 光学ガラスおよび光学素子
PCT/JP2024/003697 WO2024166860A1 (ja) 2023-02-10 2024-02-05 光学ガラスおよび光学素子

Country Status (1)

Country Link
WO (3) WO2024166862A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193978A (ja) * 1992-01-21 1993-08-03 Sumita Kogaku Glass:Kk 精密プレス成形用光学ガラス
WO2010090014A1 (ja) * 2009-02-03 2010-08-12 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子
JP2013126935A (ja) * 2011-08-05 2013-06-27 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2014043390A (ja) * 2012-08-27 2014-03-13 Cdgm Glass Co Ltd 光学ガラス、それを用いたガラスプリフォーム、光学部品、及び光学機器
JP2015067536A (ja) * 2013-09-30 2015-04-13 ショット アクチエンゲゼルシャフトSchott AG 光学ガラス、及び光学要素
JP2016153355A (ja) * 2015-02-20 2016-08-25 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2018108920A (ja) * 2016-12-28 2018-07-12 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN112551888A (zh) * 2020-12-30 2021-03-26 湖北新华光信息材料有限公司 光学玻璃及其制备方法和光学元件
CN114031291A (zh) * 2021-12-06 2022-02-11 湖北新华光信息材料有限公司 光学玻璃及其制备方法和光学元件
JP2022075155A (ja) * 2020-11-06 2022-05-18 株式会社オハラ 光学ガラス、プリフォーム及び光学素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095260B2 (ja) * 2010-07-26 2017-03-15 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP6028071B1 (ja) * 2015-07-07 2016-11-16 株式会社住田光学ガラス 光学ガラス、ガラスプリフォーム、及び光学部品
JP7446086B2 (ja) * 2019-05-20 2024-03-08 株式会社オハラ 光学ガラス、プリフォーム及び光学素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193978A (ja) * 1992-01-21 1993-08-03 Sumita Kogaku Glass:Kk 精密プレス成形用光学ガラス
WO2010090014A1 (ja) * 2009-02-03 2010-08-12 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子
JP2013126935A (ja) * 2011-08-05 2013-06-27 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2014043390A (ja) * 2012-08-27 2014-03-13 Cdgm Glass Co Ltd 光学ガラス、それを用いたガラスプリフォーム、光学部品、及び光学機器
JP2015067536A (ja) * 2013-09-30 2015-04-13 ショット アクチエンゲゼルシャフトSchott AG 光学ガラス、及び光学要素
JP2016153355A (ja) * 2015-02-20 2016-08-25 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2018108920A (ja) * 2016-12-28 2018-07-12 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2022075155A (ja) * 2020-11-06 2022-05-18 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN112551888A (zh) * 2020-12-30 2021-03-26 湖北新华光信息材料有限公司 光学玻璃及其制备方法和光学元件
CN114031291A (zh) * 2021-12-06 2022-02-11 湖北新华光信息材料有限公司 光学玻璃及其制备方法和光学元件

Also Published As

Publication number Publication date
WO2024166860A1 (ja) 2024-08-15
WO2024166861A1 (ja) 2024-08-15

Similar Documents

Publication Publication Date Title
CN111892297B (zh) 磷酸盐光学玻璃、压制成型用玻璃材料及光学元件
JP6480722B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
WO2014196523A1 (ja) 光学ガラス、光学素子ブランク、プレス成形用ガラス素材、光学素子、およびそれらの製造方法
JP6738243B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
CN108529874B (zh) 光学玻璃及光学元件
JP6472657B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
CN110028238A (zh) 光学玻璃和光学元件
TWI756192B (zh) 玻璃、壓製成型用玻璃材料、光學元件坯件和光學元件
JP7194551B2 (ja) 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP2019210156A (ja) 光学ガラスおよび光学素子
WO2024166862A1 (ja) 光学ガラスおよび光学素子
CN112079567A (zh) 光学玻璃及光学元件
JP7194861B2 (ja) 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7234454B2 (ja) 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7170488B2 (ja) 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
TWI838410B (zh) 光學玻璃、壓製成形用玻璃原材料、光學元件坯料及光學元件
TWI781231B (zh) 光學玻璃及光學元件
JP2023180862A (ja) 光学ガラスおよび光学素子
JP2023181083A (ja) 光学ガラスおよび光学素子
JP2022179313A (ja) 光学ガラスおよび光学素子
JP2024056400A (ja) 光学ガラスおよび光学素子
TW202248160A (zh) 光學玻璃、光學元件坯料、壓製成型用玻璃材料、以及光學元件
TW202246191A (zh) 光學玻璃及光學元件
TW202404916A (zh) 光學玻璃及光學元件