WO2024160238A1 - 一种用于气体捕集的吸收塔 - Google Patents

一种用于气体捕集的吸收塔 Download PDF

Info

Publication number
WO2024160238A1
WO2024160238A1 PCT/CN2024/075005 CN2024075005W WO2024160238A1 WO 2024160238 A1 WO2024160238 A1 WO 2024160238A1 CN 2024075005 W CN2024075005 W CN 2024075005W WO 2024160238 A1 WO2024160238 A1 WO 2024160238A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
absorption tower
reaction
liquid
tower body
Prior art date
Application number
PCT/CN2024/075005
Other languages
English (en)
French (fr)
Inventor
刘汉明
王焕君
张元雪
郭东方
牛红伟
刘练波
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能集团技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能集团技术创新中心有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024160238A1 publication Critical patent/WO2024160238A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact

Definitions

  • the present disclosure relates to the technical field of absorption towers, and in particular to an absorption tower for gas capture.
  • the chemical absorption gas capture system consists of three main parts: absorption unit, lean-rich liquid heat exchange unit and desorption unit.
  • the absorption unit is mainly an absorption tower, and the tower body has an absorption section and a water washing section.
  • the solution enters from the upper part of the absorption section of the absorption tower and flows from top to bottom.
  • the carbon dioxide-containing gas enters the absorption tower from the bottom of the absorption tower and rises evenly to the packing area. The liquid and gas react in convection contact, thereby achieving the absorption of carbon dioxide.
  • the absorption tower is arranged in a stacked manner to ensure that the gas is fully reacted or absorbed in the absorption tower, but the stacked arrangement will cause the absorption tower to be relatively high (the height will exceed 40 meters), which is not conducive to scenarios with height restrictions, such as installation on buildings or ships.
  • the embodiments of the present disclosure are intended to solve one of the technical problems in the related art at least to a certain extent.
  • an embodiment of the present disclosure proposes an absorption tower for gas capture, the height of which is much lower than that of the absorption tower in the prior art, and is convenient for use in ships and buildings.
  • An absorption tower body wherein the absorption tower body has a chamber, the absorption tower body is provided with an air inlet, an air outlet, a liquid inlet and a liquid outlet, the chamber includes a reaction chamber located in the middle of the height direction of the absorption tower body, the liquid inlet and the air outlet are located above the reaction chamber, and the air inlet and the liquid outlet are located below the reaction chamber,
  • the reaction chamber comprises a first reaction chamber, a second reaction chamber and a third reaction chamber which are arranged at intervals in a first direction, wherein the first direction is orthogonal to the height direction of the absorption tower body, and the air inlet is connected with the first reaction chamber, the second reaction chamber and the third reaction chamber so that the flue gas can be respectively introduced into the first reaction chamber, the second reaction chamber and the third reaction chamber.
  • the third reaction chamber, the liquid inlet is communicated with the first reaction chamber so that the reaction liquid can flow into the first reaction chamber, and the exhaust port and the liquid discharge port are communicated with the third reaction chamber;
  • a first conveying assembly connected to a lower portion of the first reaction chamber, and connected to an upper portion of the second reaction chamber, for conveying the reaction liquid after the flue gas and the reaction liquid react in the first reaction chamber to the second reaction chamber, so as to facilitate the reaction of the reaction liquid with the flue gas introduced into the second reaction chamber;
  • a second conveying assembly connected to the lower part of the second reaction chamber, and connected to the upper part of the third reaction chamber, for conveying the reaction liquid after the reaction in the second reaction chamber to the third reaction chamber, so as to facilitate the reaction of the reaction liquid after the reaction with the flue gas introduced into the third reaction chamber;
  • first cylinder and a second cylinder, wherein the first cylinder is disposed in the chamber, and the first reaction chamber is formed between the peripheral wall of the first cylinder and the peripheral wall of the absorption tower body,
  • the second cylinder is arranged in the cavity of the first cylinder, the second reaction chamber is formed between the peripheral wall of the second cylinder and the peripheral wall of the first cylinder, and the cavity of the second cylinder forms the third reaction chamber.
  • the first reaction chamber, the second reaction chamber and the third reaction chamber in the absorption tower for gas capture of the embodiment of the present disclosure are arranged sequentially in the first direction, so as to avoid the overall height of the absorption tower being too high due to the stacking arrangement, thereby facilitating its construction and use on ships and in buildings, and having a wide range of applications.
  • the projection contours of the first cylinder, the second cylinder and the absorption tower body in the height direction orthogonal to the absorption tower body are similar, and the projection contours of the first cylinder, the second cylinder and the absorption tower body in the height direction orthogonal to the absorption tower body are circles or regular polygons.
  • the projection area of the first reaction chamber in the height direction orthogonal to the absorption tower body is smaller than the projection area of the second reaction chamber in the height direction orthogonal to the absorption tower body.
  • a projected area of the second reaction chamber in a height direction orthogonal to the absorption tower body is smaller than a projected area of the third reaction chamber in a height direction orthogonal to the absorption tower body.
  • each of the first reaction chamber and the second reaction chamber is in communication with each of the exhaust port and the liquid drain port.
  • the first delivery assembly further includes a first pipeline, a first pump and a first heat exchanger, wherein a first end of the first pipeline is connected to the first reaction chamber, a second end of the first pipeline is connected to the second reaction chamber, the first pump is disposed on the first pipeline, and the first heat exchanger is disposed between the first pump and the second end of the first pipeline;
  • the second conveying component also includes a second pipeline, a second pump and a second heat exchanger, the first end of the second pipeline is connected to the second reaction chamber, the second end of the second pipeline is connected to the third reaction chamber, the second pump is arranged on the second pipeline, and the second heat exchanger is arranged between the second pump and the second end of the second pipeline.
  • the invention further comprises a first spraying member, a second spraying member and a third spraying member, wherein the first spraying member is disposed in the first reaction chamber and connected to the top wall of the first reaction chamber, and the first spraying member is connected to the liquid inlet;
  • the second spraying member is disposed in the second reaction chamber and connected to the top wall of the second reaction chamber, and the second spraying member is connected to the second end of the first pipe;
  • the third spraying member is disposed in the third reaction chamber and connected to the top wall of the third reaction chamber, and the third spraying member is communicated with the second end of the second pipeline.
  • first spray members there are multiple first spray members, multiple second spray members and multiple third spray members, multiple first spray members are arranged at intervals along the circumference of the first reaction chamber, multiple second spray members are arranged at intervals along the circumference of the second reaction chamber, and multiple third spray members are arranged at intervals along the circumference of the third reaction chamber.
  • the invention further comprises a first ventilation pipe, a second ventilation pipe and a third ventilation pipe, wherein a first end of the first ventilation pipe is disposed on the bottom wall of the first reaction chamber and communicates with the air inlet, and a second end of the first ventilation pipe extends in a direction away from the bottom wall of the first reaction chamber;
  • the first end of the second ventilation pipe is arranged on the bottom wall of the second reaction chamber and communicated with the air inlet, and the second end of the second ventilation pipe extends in a direction away from the bottom wall of the second reaction chamber;
  • the first end of the third ventilation pipe is arranged on the bottom wall of the third reaction chamber and is communicated with the air inlet, and the second end of the third ventilation pipe extends in a direction away from the bottom wall of the third reaction chamber.
  • it further comprises a first liquid outlet, a second liquid outlet and a third liquid outlet, wherein the first liquid outlet is disposed on the bottom wall of the first reaction chamber, and the first liquid outlet is used to connect the first reaction chamber and the liquid discharge section;
  • the second liquid outlet is provided on the bottom wall of the second reaction chamber, and the second liquid outlet is used to connect the second reaction chamber and the liquid discharge section;
  • the third liquid outlet is arranged on the bottom wall of the third reaction chamber, and the third liquid outlet is used to connect the third reaction chamber and the liquid discharge section.
  • FIG1 is a schematic structural diagram of an absorption tower for gas capture according to an embodiment of the present disclosure.
  • FIG2 is a schematic cross-sectional view of an absorption tower for gas capture according to an embodiment of the present disclosure, viewed from a top view.
  • FIG3 is a schematic cross-sectional view of an absorption tower for gas capture according to another embodiment of the present disclosure, viewed from a top view.
  • Absorption tower body 1 Absorption tower body 1; exhaust section 11; exhaust port 111; reaction section 12; liquid inlet 121; liquid discharge section 13; liquid discharge port 131; air inlet 132; First reaction chamber 20; first cylinder 21; second reaction chamber 211; second cylinder 22; third reaction chamber 221; First conveying assembly 31; first pipeline 311; first pump 312; first heat exchanger 313; The second conveying assembly 32; the second pipeline 321; the second pump 322; the second heat exchanger 323; A first spraying element 41; a second spraying element 42; a third spraying element 43; A first ventilation pipe 51 ; a second ventilation pipe 52 ; and a third ventilation pipe 53 .
  • the absorption tower for gas capture includes: an absorption tower body 1 , a first conveying assembly 31 and a second conveying assembly 32 .
  • the absorption tower body 1 has a chamber therein, and the absorption tower body 1 is provided with an air inlet 132, an exhaust port 111, a liquid inlet 121 and a liquid discharge port.
  • the chamber includes a reaction chamber located in the middle position in the height direction of the absorption tower body 1 (such as the up and down direction in FIG. 1 ), the liquid inlet 121 and the exhaust port 111 are located above the reaction chamber, and the air inlet 132 and the liquid discharge port are located below the reaction chamber. In some specific embodiments, as shown in FIG.
  • the absorption tower body 1 is sequentially provided with an exhaust section 11, a reaction section 12 and a liquid discharge section 13 in a top-to-bottom direction, the exhaust port 111 is provided in the exhaust section 11 for discharging the flue gas after the reaction, and the liquid discharge port is provided in the liquid discharge section 13 for discharging the reaction liquid after the reaction.
  • the reaction chamber includes a first reaction chamber 20, a second reaction chamber 211 and a third reaction chamber 221 which are arranged at intervals in a first direction.
  • the first direction (such as the left and right direction in Figure 1) intersects with the height direction of the absorption tower body 1.
  • the air inlet 132 is connected to the first reaction chamber 20, the second reaction chamber 211 and the third reaction chamber 221 so that the flue gas can enter the first reaction chamber 20, the second reaction chamber 211 and the third reaction chamber 221 respectively.
  • the liquid inlet 121 is connected to the first reaction chamber 20 so that the reaction liquid can enter the first reaction chamber 20.
  • the exhaust port 111 and the liquid discharge port are connected to the third reaction chamber 221.
  • the first conveying assembly 31 is connected to the lower part of the first reaction chamber 20, and the first conveying assembly 31 is connected to the upper part of the second reaction chamber 211, so as to convey the reaction liquid after the reaction of the flue gas and the reaction liquid in the first reaction chamber 20 to the second reaction chamber 211, so as to facilitate the reaction of the reaction liquid with the flue gas introduced into the second reaction chamber 211.
  • the second conveying assembly 32 is connected to the lower part of the second reaction chamber 211, and the second conveying assembly 32 is connected to the upper part of the third reaction chamber 221, so as to transport the reaction liquid after reaction in the second reaction chamber 211 to the third reaction chamber 221, thereby facilitating the reaction of the reaction liquid after reaction with the flue gas introduced into the third reaction chamber 221.
  • the first reaction chamber 20, the second reaction chamber 211, and the third reaction chamber 221 are arranged in the left-right direction, so that the height of the entire absorption tower can be avoided to be too high, so as to facilitate application in scenes such as ships and buildings.
  • the first conveying assembly 31 is connected between the first reaction chamber 20 and the second reaction chamber 211, so that the reaction liquid in the first reaction chamber 20 after reacting with the flue gas can be extracted by the first conveying assembly 31 and passed into the second reaction chamber 211, so that the reaction liquid entering the second reaction chamber 211 is in the second reaction chamber 211 and passes into the second reaction chamber 211.
  • the second conveying assembly 32 passes the reaction liquid after the reaction in the second reaction chamber 211 into the third reaction chamber 221, so that the reaction liquid entering the third reaction chamber 221 reacts with the flue gas passing into the third reaction chamber 221 in the third reaction chamber 221.
  • the reaction liquid is a liquid that can absorb carbon dioxide
  • the flue gas is a gas containing carbon dioxide.
  • the first transmission component is then used to transport the reaction liquid in the first reaction chamber 20 to the second reaction chamber 211 so that it reacts with the carbon dioxide in the flue gas in the second reaction chamber 211.
  • the second transmission component is used to transport the reaction liquid in the second reaction chamber 211 to the third reaction chamber 221 so that it reacts with the carbon dioxide in the flue gas in the third reaction chamber 221.
  • the inventors found that after the reaction liquid in the first reaction chamber 20 reacts, the temperature of the reaction liquid will increase. When the reaction liquid in the first reaction chamber 20 reacts with the flue gas in the second reaction chamber 211 using the first transmission component, the absorption rate of carbon dioxide will be affected.
  • the first conveying component 31 also includes a first pipeline 311, a first pump 312 and a first heat exchanger 313, the first end of the first pipeline 311 is connected to the first reaction chamber 20, the second end of the first pipeline 311 is connected to the second reaction chamber 211, the first pump 312 is arranged on the first pipeline 311, and the first heat exchanger 313 is arranged between the first pump 312 and the second end of the first pipeline 311.
  • the second conveying component 32 also includes a second pipeline 321, a second pump 322 and a second heat exchanger 323.
  • the first end of the second pipeline 321 is connected to the second reaction chamber 211, the second end of the second pipeline 321 is connected to the third reaction chamber 221, the second pump 322 is arranged on the second pipeline 321, and the second heat exchanger 323 is arranged between the second pump 322 and the second end of the second pipeline 321.
  • the first heat exchanger 313 and the second heat exchanger 323 can respectively change the temperature of the reaction liquid in the first pipe 311 and the second pipe 321, thereby increasing the absorption rate of carbon dioxide by the reaction liquid, which is beneficial to the capture of carbon dioxide in the flue gas.
  • the first reaction chamber 20, the second reaction chamber 211 and the third reaction chamber 221 in the absorption tower for gas capture of the embodiment of the present disclosure are arranged sequentially in the first direction, so as to avoid the overall height of the absorption tower being too high due to the stacking arrangement, thereby facilitating its construction and use on ships and in buildings, and having a wide range of applications.
  • first conveying component 31 and the second conveying component 32 can also be used to change the temperature of the reaction liquid when conveying the reaction liquid, so that the reaction liquid has a certain carbon dioxide absorption rate to better capture carbon dioxide in the flue gas.
  • the absorption tower for gas capture according to the embodiment of the present disclosure has the advantages of wide application range and good capture effect.
  • the absorption tower for gas capture can also be used to capture other gases such as sulfur dioxide.
  • the absorption tower for gas capture of the embodiment of the present disclosure further includes a first cylinder 21 and a second cylinder 22.
  • the first cylinder 21 is disposed in the chamber, and a peripheral wall of the first cylinder 21 and the peripheral wall of the absorption tower body 1 form a
  • the first reaction chamber 20 and the second cylinder 22 are arranged in the cavity of the first cylinder 21
  • the second reaction chamber 211 is formed between the peripheral wall of the second cylinder 22 and the peripheral wall of the first cylinder 21
  • the cavity of the second cylinder 22 forms a third reaction chamber 221 .
  • the second reaction chamber 211 is arranged around the third reaction chamber 221, and the first reaction chamber 20 is arranged around the second reaction chamber 211. Therefore, it can better ensure that the temperature in the first reaction chamber 20, the second reaction chamber 211 and the third reaction chamber 221 is uniform during use, and effectively prevent the influence of the external ring during use, which may cause uneven temperature in the reaction chamber and affect the reaction effect.
  • the projection contours of the first cylinder 21, the second cylinder 22 and the absorption tower body 1 in the height direction orthogonal to the absorption tower body 1 are similar, and the projection contours of the first cylinder 21, the second cylinder 22 and the absorption tower body 1 in the height direction orthogonal to the absorption tower body 1 are circular or regular polygonal.
  • the edge profiles of the first cylinder 21, the second cylinder 22 and the absorption tower body 1 can be circular or regular polygonal.
  • the absorption tower of the embodiment of the present disclosure can be designed into different shapes, such as circular or rectangular, according to different usage scenarios, which is conducive to better application in different environments.
  • the projection area of the first reaction chamber 20 in the height direction orthogonal to the absorption tower body 1 is smaller than the projection area of the second reaction chamber 211 in the height direction orthogonal to the absorption tower body 1, and the projection area of the second reaction chamber 211 in the height direction orthogonal to the absorption tower body 1 is smaller than the projection area of the third reaction chamber 221 in the height direction orthogonal to the absorption tower body 1.
  • the reaction effect in the second reaction chamber 211 is weaker than the reaction effect in the first reaction chamber 20 (i.e., the absorption efficiency of carbon dioxide by the reaction liquid in the second reaction chamber is lower than that in the first reaction chamber), and the reaction effect in the third reaction chamber 221 is weaker than the reaction effect in the second reaction chamber 211.
  • the space of the reaction site can be increased to increase the reaction time. Therefore, the volume of the second reaction chamber 211 is set to be larger than the volume of the first reaction chamber 20, and the volume of the third reaction chamber 221 is set to be larger than the volume of the second reaction chamber 211.
  • each of the first reaction chamber 20 and the second reaction chamber 211 is in communication with each of the exhaust port 111 and the liquid drain port.
  • first reaction chamber 20 is communicated with the exhaust port 111 and the liquid discharge port
  • second reaction chamber 211 is communicated with the exhaust port 111 and the liquid discharge port.
  • the reaction efficiency of the reaction liquid in the second reaction chamber 211 and the third reaction chamber 221 is higher than that in the first reaction chamber 20, when the carbon dioxide is continuously captured, more and more reaction liquid will be in the first reaction chamber 20 and the second reaction chamber 211. Therefore, the excess reaction liquid can be discharged through the drain port.
  • the exhaust port 111 can be used to exhaust the gases in the first reaction chamber 20 , the second reaction chamber 211 and the third reaction chamber 221 .
  • the absorption tower for gas capture of the disclosed embodiment further includes a first spray member 41, a second spray member 42 and a third spray member 43, wherein the first spray member 41 is disposed in the first reaction chamber 20 and connected to the top wall of the first reaction chamber 20, and the first spray member 41 is connected to the liquid inlet 121.
  • the second spray member 42 is disposed in the second reaction chamber 211 and connected to the top wall of the second reaction chamber 211, and the second spray member 42 is connected to the second end of the first pipe 311.
  • the third spray member 43 is disposed in the third reaction chamber 221 and connected to the top wall of the third reaction chamber 221, and the third spray member 43 is connected to the second end of the second pipe 321.
  • the first spray element 41 is disposed at the top of the first reaction chamber 20, and the reaction liquid of the first spray element 41 can react more fully with the flue gas to improve the capture effect.
  • the second spray element 42 and the third spray element 43 can respectively improve the capture efficiency in the second reaction chamber 211 and the third reaction chamber 221.
  • the first spray piece 41, the second spray piece 42 and the first spray piece 41 are all multiple, the multiple first spray pieces 41 are arranged at intervals along the circumference of the first reaction chamber 20, the multiple second spray pieces 42 are arranged at intervals along the circumference of the second reaction chamber 211, and the multiple third spray pieces 43 are arranged at intervals along the circumference of the third reaction chamber 221.
  • the absorption tower for gas capture of the embodiment of the present disclosure further includes a first liquid outlet, a second liquid outlet, and a third liquid outlet, wherein the first liquid outlet is arranged on the bottom wall of the first reaction chamber 20, and the first liquid outlet is used to connect the first reaction chamber 20 and the liquid discharge section 13.
  • the second liquid outlet is arranged on the bottom wall of the second reaction chamber 211, and the second liquid outlet is used to connect the second reaction chamber 211 and the liquid discharge section 13.
  • the third liquid outlet is arranged on the bottom wall of the third reaction chamber 221, and the third liquid outlet is used to connect the third reaction chamber 221 and the liquid discharge section 13.
  • the bottom wall of the first reaction chamber 20 is provided with a first liquid outlet, and the first liquid outlet is connected to the liquid discharge port, so that the excess reaction liquid in the first reaction chamber 20 can be discharged through the first liquid outlet and the liquid discharge port in sequence.
  • the excess reaction liquid in the second reaction chamber 211 can be discharged through the second liquid outlet and the liquid discharge port in sequence
  • the reaction liquid in the third reaction chamber 221 can be discharged through the third liquid outlet and the liquid discharge port in sequence.
  • first liquid outlets there are multiple first liquid outlets, multiple second liquid outlets and multiple third liquid outlets
  • multiple first liquid outlets are arranged at intervals along the circumference of the first reaction chamber 20
  • multiple second liquid outlets are arranged at intervals along the circumference of the second reaction chamber 211
  • multiple third liquid outlets are arranged at intervals along the circumference of the third reaction chamber 221.
  • the absorption tower for gas capture of the embodiment of the present disclosure further includes a first vent pipe 51, a second vent pipe 52 and a third vent pipe 53.
  • the first end of the first vent pipe 51 is arranged on the bottom wall of the first reaction chamber 20 and is connected to the air inlet 132, and the second end of the first vent pipe 51 extends in a direction away from the bottom wall of the first reaction chamber 20.
  • the first end of the second vent pipe 52 is arranged on the bottom wall of the second reaction chamber 211 and is connected to the air inlet 132, and the second end of the second vent pipe 52 extends in a direction away from the bottom wall of the second reaction chamber 211.
  • the first end of the third vent pipe 53 is arranged on the bottom wall of the third reaction chamber 211.
  • the third vent pipe 53 is disposed on the bottom wall of the third reaction chamber 221 and is connected to the air inlet 132 .
  • the second end of the third vent pipe 53 extends in a direction away from the bottom wall of the third reaction chamber 221
  • the lower end of the first vent pipe 51 is connected to the bottom wall of the first reaction chamber 20 and communicated with the air inlet 132, and the upper end of the first vent pipe 51 is located in the first reaction chamber 20, so that the upper end of the first vent pipe 51 is higher than the bottom wall of the first reaction chamber 20 to prevent the smoke in the first reaction chamber 20 from leaking out from the first liquid outlet when the first liquid outlet is used for draining.
  • the second vent pipe 52 can prevent the smoke in the second reaction chamber 211 from leaking out from the second liquid outlet when the second liquid outlet is used for draining
  • the third vent pipe 53 can prevent the smoke in the third reaction chamber 221 from leaking out from the third liquid outlet when the third liquid outlet is used for draining.
  • first reaction chamber 20 between the upper end port of the first vent pipe 51 and the bottom wall of the first reaction chamber 20 forms a first liquid collector so as to collect the liquid in the first reaction chamber 20.
  • second reaction chamber 211 between the upper end port of the second vent pipe 52 and the bottom wall of the second reaction chamber 21 forms a second liquid collector so as to collect the liquid in the second reaction chamber 211.
  • the second reaction chamber 20 between the upper end port of the third vent pipe 53 and the bottom wall of the third reaction chamber 221 forms a second liquid collector so as to collect the liquid in the third reaction chamber 221.
  • first ventilation tubes 51 there are multiple first ventilation tubes 51, second ventilation tubes 52 and third ventilation tubes 53, multiple first ventilation tubes 51 are arranged at intervals along the circumference of the first reaction chamber 20, multiple second ventilation tubes 52 are arranged at intervals along the circumference of the second reaction chamber 211, and multiple third ventilation tubes 53 are arranged at intervals along the circumference of the third reaction chamber 221.
  • orientation or positional relationship indicated by “outer” or “circumferential” is based on the orientation or positional relationship shown in the drawings and is only for the convenience of describing the present disclosure and simplifying the description. It does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation. Therefore, it should not be understood as a limitation on the present disclosure.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • a feature defined as “first” or “second” may explicitly or implicitly include at least one of the features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in the present disclosure can be understood according to specific circumstances.
  • a first feature "on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature "above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or It simply means that the first feature is higher than the second feature.
  • the first feature being “below”, “below” or “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower than the second feature.
  • the terms “one embodiment”, “some embodiments”, “examples”, “specific examples”, or “some examples” and the like mean that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present disclosure.
  • the schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.
  • those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, unless they are contradictory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

提供了一种用于气体捕集的吸收塔。所述吸收塔包括:吸收塔本体、反应室、第一输送组件和第二输送组件,吸收塔本体内具有腔室,吸收塔本体上设有进气口、排气口、进液口和排液口,腔室包括反应室,进液口和排气口位于反应室上方,进气口和排液口位于反应室下方,反应室包括第一反应室、第二反应室和第三反应室,进气口与第一反应室、第二反应室、第三反应室连通,进液口与第一反应室连通,排气口和排液口与第三反应室连通,第一输送组件与第一反应室相连,且第一输送组件与第二反应室相连,第二输送组件与第二反应室相连,且第二输送组件与第三反应室相连。

Description

一种用于气体捕集的吸收塔
相关申请的交叉引用
本申请要求在2023年01月31日在中国提交的中国专利申请号2023100480493的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及吸收塔技术领域,具体涉及一种用于气体捕集的吸收塔。
背景技术
化学吸收法气体捕集系统包括吸收单元,贫富液热交换单元和解吸单元三个主要部分。其中,吸收单元主要是吸收塔,塔体内有吸收段和水洗段。例如二氧化碳吸收过程中,溶液从吸收塔的吸收段上部进入,自上向下流动。含二氧化碳气体从吸收塔塔底进入吸收塔内部,均匀上升到填料区。液体和气体二者对流接触发生反应,从而实现二氧化碳的吸收。
相关技术中,吸收塔采用堆叠式布置,保证气体在吸收塔中充分反应或者被充分吸收,但堆叠式布置会导致吸收塔的高度较高(高度会超过40米),不利于有高度限制的场景中,例如建筑物或者船只上设置。
发明内容
本公开实施例旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的实施例提出一种用于气体捕集的吸收塔,该吸收塔的高度远低于现有技术中吸收塔的高度,方便在船只、建筑内使用。
本公开实施例的用于气体捕集的吸收塔包括:
吸收塔本体,所述吸收塔本体内具有腔室,所述吸收塔本体上设有进气口、排气口、进液口和排液口,所述腔室包括在位于所述吸收塔本体的高度方向上的中间位置的反应室,所述进液口和所述排气口位于所述反应室上方,所述进气口和所述排液口位于所述反应室下方,
所述反应室包括在第一方向上间隔布置的第一反应室、第二反应室和第三反应室,所述第一方向正交于所述吸收塔本体的高度方向,所述进气口与所述第一反应室、所述第二反应室、所述第三反应室连通以便烟气分别通入到所述第一反应室、所述第二反应室和所 述第三反应室,所述进液口与所述第一反应室连通以便反应液体通入到所述第一反应室内,所述排气口和所述排液口与所述第三反应室连通;
第一输送组件,所述第一输送组件与所述第一反应室的下部相连,且所述第一输送组件与所述第二反应室的上部相连,以用于将所述烟气和所述反应液体在所述第一反应室内反应后的反应液体输送至所述第二反应室,从而便于反应后的反应液体与通入所述第二反应室内的烟气发生反应;和
第二输送组件,所述第二输送组件与所述第二反应室的下部相连,且所述第二输送组件与所述第三反应室的上部相连,以用于将在所述第二反应室内反应后的反应液体输送至所述第三反应室,从而便于反应后的反应液体与通入所述第三反应室内的烟气发生反应;
第一筒体和第二筒体,所述第一筒体设在所述腔室内,所述第一筒体的周壁和所述吸收塔本体的周壁之间形成所述第一反应室,
所述第二筒体设在所述第一筒体的空腔内,所述第二筒体的周壁和所述第一筒体的周壁之间形成所述第二反应室,所述第二筒体的空腔形成所述第三反应室。
本公开实施例的用于气体捕集的吸收塔中的第一反应室、第二反应室和第三反应室在第一方向上依次布置,避免堆叠设置导致的吸收塔整体高度过高,从而方便在船只上以及建筑内建造使用,应用范围广。
在一些实施例中,所述第一筒体、所述第二筒体和所述吸收塔本体在正交于所述吸收塔本体的高度方向上的投影轮廓相似,所述第一筒体、所述第二筒体和所述吸收塔本体在正交于所述吸收塔本体的高度方向上的所述投影轮廓为圆形或正多边形。
在一些实施例中,所述第一反应室在正交于所述吸收塔本体的高度方向上的投影面积小于所述第二反应室在正交于所述吸收塔本体的高度方向上的投影面积,
所述第二反应室在正交于所述吸收塔本体的高度方向上的投影面积小于所述第三反应室在正交于所述吸收塔本体的高度方向上的投影面积。
在一些实施例中,所述第一反应室和所述第二反应室的每一者与所述排气口和所述排液口中的每一者连通。
在一些实施例中,所述第一输送组件还包括第一管道、第一泵和第一换热器,所述第一管道的第一端与所述第一反应室相连,所述第一管道的第二端与所述第二反应室相连,所述第一泵设在所述第一管道上,所述第一换热器设在所述第一泵与所述第一管道的第二端之间;
所述第二输送组件还包括第二管道、第二泵和第二换热器,所述第二管道的第一端与所述第二反应室相连,所述第二管道的第二端与所述第三反应室相连,所述第二泵设在所述第二管道上,所述第二换热器设在所述第二泵与所述第二管道的第二端之间。
在一些实施例中,还包括第一喷淋件、第二喷淋件和第三喷淋件,所述第一喷淋件设在所述第一反应室内且与所述第一反应室的顶壁相连,所述第一喷淋件与所述进液口连通;
所述第二喷淋件设在所述第二反应室内且与所述第二反应室的顶壁相连,所述第二喷淋件与所述第一管道的第二端连通;
所述第三喷淋件设在所述第三反应室内且与所述第三反应室的顶壁相连,所述第三喷淋件与所述第二管道的第二端连通。
在一些实施例中,所述第一喷淋件、所述第二喷淋件和所述第三喷淋件均为多个,多个所述第一喷淋件沿所述第一反应室的周向间隔布置,多个所述第二喷淋件沿所述第二反应室的周向间隔布置,多个所述第三喷淋件沿所述第三反应室的周向间隔布置。
在一些实施例中,还包括第一通气管、第二通气管和第三通气管,所述第一通气管的第一端设在所述第一反应室的底壁上且与所述进气口连通,所述第一通气管的第二端沿远离所述第一反应室的底壁的方向延伸;
所述第二通气管的第一端设在所述第二反应室的底壁上且与所述进气口连通,所述第二通气管的第二端沿远离所述第二反应室的底壁的方向延伸;
所述第三通气管的第一端设在所述第三反应室的底壁上且与所述进气口连通,所述第三通气管的第二端沿远离所述第三反应室的底壁的方向延伸。
在一些实施例中,还包括第一出液口、第二出液口和第三出液口,所述第一出液口设在所述第一反应室的底壁,所述第一出液口用于连通所述第一反应室和排液段;
所述第二出液口设在所述第二反应室的底壁,所述第二出液口用于连通所述第二反应室和所述排液段;
所述第三出液口设在所述第三反应室的底壁,所述第三出液口用于连通所述第三反应室和所述排液段。
附图说明
图1是本公开实施例的用于气体捕集的吸收塔的结构示意图。
图2是本公开实施例的用于气体捕集的吸收塔在俯视视角的剖视示意图。
图3是本公开其他实施例的用于气体捕集的吸收塔在俯视视角的剖视示意图。
附图标记:
吸收塔本体1;排气段11;排气口111;反应段12;进液口121;排液段13;排液口
131;进气口132;
第一反应室20;第一筒体21;第二反应室211;第二筒体22;第三反应室221;
第一输送组件31;第一管道311;第一泵312;第一换热器313;
第二输送组件32;第二管道321;第二泵322;第二换热器323;
第一喷淋件41;第二喷淋件42;第三喷淋件43;
第一通气管51;第二通气管52;第三通气管53。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例的用于气体捕集的吸收塔包括:吸收塔本体1、第一输送组件31和第二输送组件32。
吸收塔本体1内具有腔室,吸收塔本体1上设有进气口132、排气口111、进液口121和排液口,腔室包括在位于吸收塔本体1的高度方向(如图1中的上下方向)上的中间位置的反应室,进液口121和排气口111位于反应室上方,进气口132和排液口位于反应室下方。在一些具体实施例中,如图1所示,吸收塔本体1沿自上而下的方向依次设置有排气段11、反应段12和排液段13,排气口111开设在排气段11,以便用于排出反应后的烟气,排液口开设在排液段13,以便用于排出反应后的反应液体。
反应室包括在第一方向上间隔布置的第一反应室20、第二反应室211和第三反应室221,第一方向正(如图1中的左右方向)交于吸收塔本体1的高度方向,进气口132与第一反应室20、第二反应室211、第三反应室221连通以便烟气分别通入到第一反应室20、第二反应室211和第三反应室221,进液口121与第一反应室20连通以便反应液体通入到第一反应室20内,排气口111和排液口与第三反应室221连通。
第一输送组件31与第一反应室20的下部相连,且第一输送组件31与第二反应室211的上部相连,以用于将烟气和反应液体在第一反应室20内反应后的反应液体输送至第二反应室211,从而便于反应后的反应液体与通入第二反应室211内的烟气发生反应。
第二输送组件32与第二反应室211的下部相连,且第二输送组件32与第三反应室221的上部相连,以用于将第二反应室211内反应后的反应液体输送至第三反应室221,从而便于反应后的反应液体与通入第三反应室221内的烟气发生反应。
在一些具体实施例中,如图1所示,第一反应室20、第二反应室211和第三反应室221沿左右方向布置,从而可以避免吸收塔整体的高度过高,从而方便应用在船只、建筑等场景内。第一输送组件31连接在第一反应室20和第二反应室211之间,以便能够利用第一输送组件31将第一反应室20内与烟气发生反应后的反应液体抽出并通入第二反应室211内,使进入第二反应室211内的反应液体在第二反应室211内与通入第二反应室211 的烟气进行反应。同理,第二输送组件32将第二反应室211内反应后的反应液体通入第三反应室221,使进入第三反应室221内的反应液体在第三反应室221内与通入第三反应室221的烟气进行反应。
需要说明的是,以下均以捕集二氧化碳为例,则反应液体为能够吸收二氧化碳的液体,烟气为具有二氧化碳的气体,当烟气和反应液体通入第一反应室20后,烟气中的部分二氧化碳能够溶于反应液体并使反应液体的温度升高,再利用第一传输组件将第一反应室20内反应后的反应液体输送至第二反应室211,以便与第二反应室211内烟气中的二氧化碳发生反应,最后利用第二传输组件将第二反应室211内的反应液体输送至第三反应室221,以便与第三反应室221内烟气中的二氧化碳发生反应。
其中,发明人发现,在第一反应室20内的反应液体发生反应后,反应液体的温度会升高,在利用第一传输组件将第一反应室20内的反应液体与第二反应室211中的烟气发生反应室,会影响二氧化碳的吸收率。
由此,在一些实施例中,第一输送组件31还包括第一管道311、第一泵312和第一换热器313,第一管道311的第一端与第一反应室20相连,第一管道311的第二端与第二反应室211相连,第一泵312设在第一管道311上,第一换热器313设在第一泵312与第一管道311的第二端之间。
第二输送组件32还包括第二管道321、第二泵322和第二换热器323,第二管道321的第一端与第二反应室211相连,第二管道321的第二端与第三反应室221相连,第二泵322设在第二管道321上,第二换热器323设在第二泵322与第二管道321的第二端之间。
也就是说,第一换热器313和第二换热器323可以分别改变第一管道311和第二管道321内的反应液体的温度,从而提高反应液体对二氧化碳的吸收率,有利于对烟气中二氧化碳的捕集。
换言之,本公开实施例的用于气体捕集的吸收塔中的第一反应室20、第二反应室211和第三反应室221在第一方向上依次布置,避免堆叠设置导致的吸收塔整体高度过高,从而方便在船只上以及建筑内建造使用,应用范围广。
此外,还可以利用第一输送组件31和第二输送组件32在输送反应液体时,改变反应液体的温度,以使反应液体具有一定的二氧化碳吸收率,以更好的捕集烟气中二氧化碳。
因此,本公开实施例的用于气体捕集的吸收塔具有应用范围广、捕集效果好的优点。
当然,本公开实施例的用于气体捕集的吸收塔还能应用于捕集二氧化硫等其它气体。
在一些实施例中,本公开实施例的用于气体捕集的吸收塔还包括第一筒体21和第二筒体22,第一筒体21设在腔室内,第一筒体21的周壁和吸收塔本体1的周壁之间形成 第一反应室20,第二筒体22设在第一筒体21的空腔内,第二筒体22的周壁和第一筒体21的周壁之间形成第二反应室211,第二筒体22的空腔形成第三反应室221。
可以理解的是,如图2和图3所示,第二反应室211环绕第三反应室221设置,第一反应室20环绕第二反应室211设置,由此,能够更好的保证第一反应室20、第二反应室211和第三反应室221在使用过程中,反应室内的温度均匀,有效的防止在使用过程中受外部环形的影响,而导致反应室内的温度不均匀,影响反应效果。
在一些实施例中,第一筒体21、第二筒体22和吸收塔本体1在正交于吸收塔本体1的高度方向上的投影轮廓相似,第一筒体21、第二筒体22和吸收塔本体1在正交于吸收塔本体1的高度方向上的投影轮廓为圆形或正多边形。
可以理解的是,如图2和图3所示,在俯视视角下,第一筒体21、第二筒体22和吸收塔本体1的边缘轮廓可以为圆形或者正多边形。也就是说,本公开实施例的吸收塔可以根据使用场景的不同,设计为不同的外形,例如圆形或者长方形,有利于更好的适用在不同的环境。
在一些实施例中,第一反应室20在正交于吸收塔本体1的高度方向上的投影面积小于第二反应室211在正交于吸收塔本体1的高度方向上的投影面积,第二反应室211在正交于吸收塔本体1的高度方向上的投影面积小于第三反应室221在正交于吸收塔本体1的高度方向上的投影面积。
可以理解的是,当第一反应室20内的反应液体在与烟气反应后,通入第二反应室211继续与第二反应室211内的烟气继续反应,那么,在第二反应室211中的反应效果要弱于第一反应室20内的反应效果(即反应液体在第二反应室对二氧化碳的吸收效率相对于在第一反应室对二氧化碳的吸收效率有所降低),在第三反应室221中的反应效果又弱于第二反应室211内的反应新效果,由此,可以将反应场所的空间增加,以提高反应时长。因此,设置第二反应室211的容积大于第一反应室20的容积,设置第三反应室221的容积大于第二反应室211的容积。
在一些实施例中,第一反应室20和第二反应室211的每一者与排气口111和排液口中的每一者连通。
可以理解的是,第一反应室20和排气口111连通且和排液口连通,第二反应室211和排气口111连通且和排液口连通。
也就是说,由于反应液体在第二反应室211和第三反应室221中的反应效率相较于在第一反应室20中的反应效率,因此,在持续进行捕集二氧化碳时,会导致第一反应室20、第二反应室211中的反应液体越来越多,由此,可以利用排液口将多余的反应液体排 出。同理,可以利用排气口111将第一反应室20和第二反应室211还有第三反应室221中的气体排出。
在一些实施例中,本公开实施例用于气体捕集的吸收塔还包括第一喷淋件41、第二喷淋件42和第三喷淋件43,第一喷淋件41设在第一反应室20内且与第一反应室20的顶壁相连,第一喷淋件41与进液口121连通。第二喷淋件42设在第二反应室211内且与第二反应室211的顶壁相连,第二喷淋件42与第一管道311的第二端连通。第三喷淋件43设在第三反应室221内且与第三反应室221的顶壁相连,第三喷淋件43与第二管道321的第二端连通。
在一些具体实施例中,如图1所示,第一喷淋件41设在第一反应室20的顶部,通过第一喷淋件41的反应液体能够与烟气更充分的反应,提高捕集效果。同理,第二喷淋件42和第三喷淋件43分别能够提高第二反应室211和第三反应室221内的捕集效率。
在一些实施例中,第一喷淋件41、第二喷淋件42和第一喷淋件41均为多个,多个第一喷淋件41沿第一反应室20的周向间隔布置,多个第二喷淋件42沿第二反应室211的周向间隔布置,多个第三喷淋件43沿第三反应室221的周向间隔布置。
在一些实施例中,本公开实施例的用于气体捕集的吸收塔还包括第一出液口、第二出液口和第三出液口,第一出液口设在第一反应室20的底壁,第一出液口用于连通第一反应室20和排液段13。第二出液口设在第二反应室211的底壁,第二出液口用于连通第二反应室211和排液段13。第三出液口设在第三反应室221的底壁,第三出液口用于连通第三反应室221和排液段13。
可以理解的是,第一反应室20的底壁设有第一出液口,第一出液口与排液口连通,以便第一反应室20内多余的反应液体能够依次通过第一出液口和排液口排出。同理,第二反应室211内多余的反应液体能够依次通过第二出液口和排液口排出,第三反应室221内的反应液体能够依次通过第三出液口和排液口排出。
在一些实施例中,第一出液口、第二出液口和第三出液口均为多个,多个第一出液口沿第一反应室20的周向间隔布置,多个第二出液口沿第二反应室211的周向间隔布置,多个第三出液口沿第三反应室221的周向间隔布置。
在一些实施例中,本公开实施例的用于气体捕集的吸收塔还包括第一通气管51、第二通气管52和第三通气管53,第一通气管51的第一端设在第一反应室20的底壁上且与进气口132连通,第一通气管51的第二端沿远离第一反应室20的底壁的方向延伸。第二通气管52的第一端设在第二反应室211的底壁上且与进气口132连通,第二通气管52的第二端沿远离第二反应室211的底壁的方向延伸。第三通气管53的第一端设在第三反应室 221的底壁上且与进气口132连通,第三通气管53的第二端沿远离第三反应室221的底壁的方向延伸。
在一些具体实施例中,如图1所示,第一通气管51的下端与第一反应室20的底壁相连且与进气口132连通,第一通气管51的上端位于第一反应室20内,则第一通气管51的上端高于第一反应室20的底壁,以避免利用第一出液口排液时,第一反应室20内的烟气从第一出液口泄漏出去。同理,第二通气管52能够避免利用第二出液口排液时,第二反应室211内的烟气从第二出液口泄漏出去,第三通气管53能够避免利用第三出液口排液时,第三反应室221内的烟气从第三出液口泄漏出去。
可以理解的是,第一通气管51的上端端口与第一反应室20的底壁之间的第一反应室20形成第一集液器,以便能够收集第一反应室20内的液体,同理,第二通气管52的上端端口与第二反应室21的底壁之间的第二反应室211形成第二集液器,以便收集第二反应室211内的液体,第三通气管53的上端端口与第三反应室221的底壁之间的第二反应室20形成第二集液器,以便收集第三反应室221内的液体。
在一些实施例中,第一通气管51、第二通气管52和第三通气管53均多个,多个第一通气管51沿第一反应室20的周向间隔布置,多个第二通气管52沿第二反应室211的周向间隔布置,多个第三通气管53沿第三反应室221的周向间隔布置。
在本公开的描述中,需要理解的是,术语“高度”、“上”、“下”、“顶”、“底”“内”、
“外”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或 仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了上述实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域普通技术人员对上述实施例进行的变化、修改、替换和变型均在本公开的保护范围内。

Claims (9)

  1. 一种用于气体捕集的吸收塔,其特征在于,包括:
    吸收塔本体,所述吸收塔本体内具有腔室,所述吸收塔本体上设有进气口、排气口、进液口和排液口,所述腔室包括在位于所述吸收塔本体的高度方向上的中间位置的反应室,所述进液口和所述排气口位于所述反应室上方,所述进气口和所述排液口位于所述反应室下方,
    所述反应室包括在第一方向上间隔布置的第一反应室、第二反应室和第三反应室,所述第一方向正交于所述吸收塔本体的高度方向,所述进气口与所述第一反应室、所述第二反应室、所述第三反应室连通以便烟气分别通入到所述第一反应室、所述第二反应室和所述第三反应室,所述进液口与所述第一反应室连通以便反应液体通入到所述第一反应室内,所述排气口和所述排液口与所述第三反应室连通;
    第一输送组件,所述第一输送组件与所述第一反应室的下部相连,且所述第一输送组件与所述第二反应室的上部相连,以用于将所述烟气和所述反应液体在所述第一反应室内反应后的反应液体输送至所述第二反应室,从而便于反应后的反应液体与通入所述第二反应室内的烟气发生反应;和
    第二输送组件,所述第二输送组件与所述第二反应室的下部相连,且所述第二输送组件与所述第三反应室的上部相连,以用于将在所述第二反应室内反应后的反应液体输送至所述第三反应室,从而便于反应后的反应液体与通入所述第三反应室内的烟气发生反应;
    第一筒体和第二筒体,所述第一筒体设在所述腔室内,所述第一筒体的周壁和所述吸收塔本体的周壁之间形成所述第一反应室,
    所述第二筒体设在所述第一筒体的空腔内,所述第二筒体的周壁和所述第一筒体的周壁之间形成所述第二反应室,所述第二筒体的空腔形成所述第三反应室。
  2. 根据权利要求1所述的用于气体捕集的吸收塔,其特征在于,所述第一筒体、所述第二筒体和所述吸收塔本体在正交于所述吸收塔本体的高度方向上的投影轮廓相似,所述第一筒体、所述第二筒体和所述吸收塔本体在正交于所述吸收塔本体的高度方向上的所述投影轮廓为圆形或正多边形。
  3. 根据权利要求1或2所述的用于气体捕集的吸收塔,其特征在于,所述第一反应室在正交于所述吸收塔本体的高度方向上的投影面积小于所述第二反应室在正交于所述吸收塔本体的高度方向上的投影面积,
    所述第二反应室在正交于所述吸收塔本体的高度方向上的投影面积小于所述第三反应室在正交于所述吸收塔本体的高度方向上的投影面积。
  4. 根据权利要求1至3中任一项所述的用于气体捕集的吸收塔,其特征在于,所述第一反应室和所述第二反应室的每一者与所述排气口和所述排液口中的每一者连通。
  5. 根据权利要求1至4中任一项所述的用于气体捕集的吸收塔,其特征在于,所述第一输送组件还包括第一管道、第一泵和第一换热器,所述第一管道的第一端与所述第一反应室相连,所述第一管道的第二端与所述第二反应室相连,所述第一泵设在所述第一管道上,所述第一换热器设在所述第一泵与所述第一管道的第二端之间;
    所述第二输送组件还包括第二管道、第二泵和第二换热器,所述第二管道的第一端与所述第二反应室相连,所述第二管道的第二端与所述第三反应室相连,所述第二泵设在所述第二管道上,所述第二换热器设在所述第二泵与所述第二管道的第二端之间。
  6. 根据权利要求5所述的用于气体捕集的吸收塔,其特征在于,还包括第一喷淋件、第二喷淋件和第三喷淋件,所述第一喷淋件设在所述第一反应室内且与所述第一反应室的顶壁相连,所述第一喷淋件与所述进液口连通;
    所述第二喷淋件设在所述第二反应室内且与所述第二反应室的顶壁相连,所述第二喷淋件与所述第一管道的第二端连通;
    所述第三喷淋件设在所述第三反应室内且与所述第三反应室的顶壁相连,所述第三喷淋件与所述第二管道的第二端连通。
  7. 根据权利要求6所述的用于气体捕集的吸收塔,其特征在于,所述第一喷淋件、所述第二喷淋件和所述第三喷淋件均为多个,多个所述第一喷淋件沿所述第一反应室的周向间隔布置,多个所述第二喷淋件沿所述第二反应室的周向间隔布置,多个所述第三喷淋件沿所述第三反应室的周向间隔布置。
  8. 根据权利要求1至7中任一项所述的用于气体捕集的吸收塔,其特征在于,还包括第一通气管、第二通气管和第三通气管,所述第一通气管的第一端设在所述第一反应室的底壁上且与所述进气口连通,所述第一通气管的第二端沿远离所述第一反应室的底壁的方向延伸;
    所述第二通气管的第一端设在所述第二反应室的底壁上且与所述进气口连通,所述第二通气管的第二端沿远离所述第二反应室的底壁的方向延伸;
    所述第三通气管的第一端设在所述第三反应室的底壁上且与所述进气口连通,所述第三通气管的第二端沿远离所述第三反应室的底壁的方向延伸。
  9. 根据权利要求1至8中任一项所述的用于气体捕集的吸收塔,其特征在于,还包括第一出液口、第二出液口和第三出液口,所述第一出液口设在所述第一反应室的底壁,所述第一出液口用于连通所述第一反应室和排液段;
    所述第二出液口设在所述第二反应室的底壁,所述第二出液口用于连通所述第二反应室和所述排液段;
    所述第三出液口设在所述第三反应室的底壁,所述第三出液口用于连通所述第三反应室和所述排液段。
PCT/CN2024/075005 2023-01-31 2024-01-31 一种用于气体捕集的吸收塔 WO2024160238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310048049.3A CN115920619B (zh) 2023-01-31 2023-01-31 一种用于气体捕集的吸收塔
CN202310048049.3 2023-01-31

Publications (1)

Publication Number Publication Date
WO2024160238A1 true WO2024160238A1 (zh) 2024-08-08

Family

ID=85836688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/075005 WO2024160238A1 (zh) 2023-01-31 2024-01-31 一种用于气体捕集的吸收塔

Country Status (2)

Country Link
CN (1) CN115920619B (zh)
WO (1) WO2024160238A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115920619B (zh) * 2023-01-31 2023-05-16 中国华能集团清洁能源技术研究院有限公司 一种用于气体捕集的吸收塔

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182147A (ja) * 1992-12-21 1994-07-05 Babcock Hitachi Kk スプレ塔式湿式排煙脱硫装置
US6235256B1 (en) * 1995-09-07 2001-05-22 Austrian Energy & Environment Scp/Waagner-Biro Gmbh Process and device for the scrubbing acidic gases
CN201244430Y (zh) * 2008-05-30 2009-05-27 西安热工研究院有限公司 燃煤电厂烟气中二氧化碳捕集装置
CN202387366U (zh) * 2011-12-26 2012-08-22 湖北驰顺化工有限公司 一种卧式硫化氢尾气吸收塔
CN209093091U (zh) * 2018-10-23 2019-07-12 上海汇舸环保科技有限公司 一种用于船舶尾气清洗系统的新型卧式脱硫塔
CN113663483A (zh) * 2021-10-22 2021-11-19 南通鸿富达利化工有限公司 一种用于频呐酮生产过程中的尾气回收设备
CN114632402A (zh) * 2020-12-16 2022-06-17 中冶京诚工程技术有限公司 烟气二氧化碳捕集系统及捕集方法
CN218249411U (zh) * 2022-06-10 2023-01-10 华能国际电力股份有限公司上海石洞口第二电厂 一种用于二氧化碳捕集的卧式吸收塔
CN115920619A (zh) * 2023-01-31 2023-04-07 中国华能集团清洁能源技术研究院有限公司 一种用于气体捕集的吸收塔

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201912887U (zh) * 2011-01-26 2011-08-03 云南冶金(美国)科技有限公司 一种水平卧式脱硫塔
JP5998915B2 (ja) * 2012-12-19 2016-09-28 富士電機株式会社 排ガス処理装置
CN204522714U (zh) * 2014-11-13 2015-08-05 武汉科技大学 一种克劳斯含硫尾气处理装置
CN204710084U (zh) * 2014-11-13 2015-10-21 武汉科技大学 一种卧式液硫槽尾气氧化吸收装置
CN211913331U (zh) * 2019-12-31 2020-11-13 河南圆方环保设备有限公司 一种pp卧式喷淋塔
CN115591392A (zh) * 2022-11-11 2023-01-13 山东大学(Cn) 一种船舶尾气脱硫脱硝脱碳一体化系统及处理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182147A (ja) * 1992-12-21 1994-07-05 Babcock Hitachi Kk スプレ塔式湿式排煙脱硫装置
US6235256B1 (en) * 1995-09-07 2001-05-22 Austrian Energy & Environment Scp/Waagner-Biro Gmbh Process and device for the scrubbing acidic gases
CN201244430Y (zh) * 2008-05-30 2009-05-27 西安热工研究院有限公司 燃煤电厂烟气中二氧化碳捕集装置
CN202387366U (zh) * 2011-12-26 2012-08-22 湖北驰顺化工有限公司 一种卧式硫化氢尾气吸收塔
CN209093091U (zh) * 2018-10-23 2019-07-12 上海汇舸环保科技有限公司 一种用于船舶尾气清洗系统的新型卧式脱硫塔
CN114632402A (zh) * 2020-12-16 2022-06-17 中冶京诚工程技术有限公司 烟气二氧化碳捕集系统及捕集方法
CN113663483A (zh) * 2021-10-22 2021-11-19 南通鸿富达利化工有限公司 一种用于频呐酮生产过程中的尾气回收设备
CN218249411U (zh) * 2022-06-10 2023-01-10 华能国际电力股份有限公司上海石洞口第二电厂 一种用于二氧化碳捕集的卧式吸收塔
CN115920619A (zh) * 2023-01-31 2023-04-07 中国华能集团清洁能源技术研究院有限公司 一种用于气体捕集的吸收塔

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN, JIAN; HUI, RUN-TANG; YANG, AI-YONG: "The Absorber Module in Wet FGD System", ELECTRIC POWER TECHNOLOGY AND ENVIRONMENTAL PROTECTION, CN, vol. 22, no. 5, 30 October 2006 (2006-10-30), CN, pages 13 - 17, XP009556694, ISSN: 1674-8069 *

Also Published As

Publication number Publication date
CN115920619B (zh) 2023-05-16
CN115920619A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024160238A1 (zh) 一种用于气体捕集的吸收塔
CN100460795C (zh) 一种u形管式热交换器
CN210268299U (zh) 一种烟气换热器
CN113339086B (zh) 一种空气冷却加湿装置、方法及湿空气透平循环系统
CN210154087U (zh) 一种复合型冷凝式热交换器
CN103933859B (zh) 一种用于丙烯腈装置尾气处理的scr脱硝系统
CN218166538U (zh) 废气排放节能减排装置
CN212663108U (zh) 烟气冷却器
CN205424884U (zh) 火力厂烟气余热回收装置
WO2024027080A1 (zh) 一种树脂柱装置
CN204704841U (zh) 一种热管预热器
CN207894276U (zh) 高效率钛管式换热器
CN109289229B (zh) 一种开放式冷凝回流装置
CN217383899U (zh) 一种烟气换热装置及具有其的消白系统
CN206008437U (zh) 焚烧炉废气处理系统
CN208032301U (zh) 发酵尾气处理装置
CN106178897A (zh) 焚烧炉废气处理系统
CN110898656A (zh) 一种高效废气处理环保设备
CN206613202U (zh) 一种烟气脱白装置以及烟气处理设备
CN218673233U (zh) 一种用于scr脱硝稀释风加热的高效蒸汽换热装置
CN213408236U (zh) 一种增湿干粉喷枪
CN212538288U (zh) 一种冷凝锅炉
CN103498715B (zh) 柴油发动机废气净化消声器
CN205481077U (zh) 一种烟气余热回收系统
CN211147360U (zh) 一种列管式冷凝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24749717

Country of ref document: EP

Kind code of ref document: A1