WO2024154426A1 - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
WO2024154426A1
WO2024154426A1 PCT/JP2023/041355 JP2023041355W WO2024154426A1 WO 2024154426 A1 WO2024154426 A1 WO 2024154426A1 JP 2023041355 W JP2023041355 W JP 2023041355W WO 2024154426 A1 WO2024154426 A1 WO 2024154426A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
load
dissipation member
pair
semiconductor device
Prior art date
Application number
PCT/JP2023/041355
Other languages
French (fr)
Japanese (ja)
Inventor
ひろみ 島津
円丈 露野
高志 平尾
拓朗 金澤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024154426A1 publication Critical patent/WO2024154426A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a power semiconductor device.
  • Patent Document 1 discloses a power semiconductor device in which a power module is provided with a cooler via a heat conductive member, and a leaf spring is provided on the outside of the power module, and pressure is applied to the power module, heat conductive member, and cooler, thereby realizing miniaturization and improving the mountability of components.
  • the object of the present invention is to provide a highly reliable power semiconductor device that is compact, has a reduced number of components, and has improved heat dissipation, and can be efficiently pressurized in the stacking direction.
  • FIG. 1 is a cross-sectional view showing a semiconductor module of a power semiconductor device;
  • FIG. 1 is an overall perspective view of a power semiconductor device according to a first embodiment of the present invention;
  • 3 is a cross-sectional view of the power semiconductor device of FIG.
  • FIG. 1 is an explanatory diagram showing problems with the structure of a conventional power semiconductor device.
  • FIG. 1 is an explanatory diagram showing the structure of a power semiconductor device to which the present invention is applied;
  • FIG. 1 is a plan view of a power semiconductor device showing a first embodiment of the present invention; AA cross-sectional view of FIG. BB cross-sectional view of FIG. FIG.
  • FIG. 13 is a plan view of a biasing member according to a fifth embodiment of the present invention
  • 15 - C-C cross-sectional view of FIG. 13 is a cross-sectional view of a biasing member according to a sixth embodiment of the present invention
  • FIG. 13 is a cross-sectional view of a biasing member according to a seventh embodiment of the present invention
  • FIG. 13 is a plan view of a biasing member according to an eighth embodiment of the present invention
  • 13 is a cross-sectional view of a power semiconductor device according to a ninth embodiment of the present invention.
  • a plurality of semiconductor modules 100 (power modules 100) included in the power semiconductor device according to the embodiment of the present invention includes a power semiconductor element 1, and a first conductor 3 and a second conductor 3b which are conductor plates joined to the power semiconductor element 1.
  • the power semiconductor element 1, the first conductor 3, and the second conductor 3b are joined to each other by a joining material 2.
  • the surface electrode of the power semiconductor element 1 is connected to the second conductor 3b by the joining material 2.
  • the first conductor 3 and the second conductor 3b are, for example, copper, a copper alloy, aluminum, an aluminum alloy, or the like.
  • the joining material 2 is, for example, a solder material, a sintered material, or the like.
  • the semiconductor module 100 is molded and sealed with sealing resin 10 so that the insulating layer 4 is exposed on the surface.
  • the surface of the insulating layer 4 exposed from the sealing resin 10 is the heat dissipation surface of the semiconductor module 100.
  • the semiconductor module 100 has external terminals 3c for electrically connecting the power semiconductor element 1 to external wiring, etc. The external terminals 3c protrude from the sealing resin 10 to the outside.
  • FIG. 2 illustrates a state in which the first heat dissipation member 7 and the second heat dissipation member 7b contact the semiconductor module 100 so as to sandwich the semiconductor module 100 from both sides of the semiconductor module 100.
  • the semiconductor module 100 faces the fixing flange 8 with the first heat dissipation member 7 sandwiched therebetween.
  • the semiconductor module 100 also faces the spring plate member 9 with the second heat dissipation member 7b sandwiched therebetween.
  • the spring plate member 9 is an elastically deformable biasing member that presses the heat dissipation member 7b toward the semiconductor module 100.
  • the present invention is not limited to the double-sided cooling semiconductor module 100 illustrated in the figure, but can also be applied to a single-sided cooling semiconductor module 100.
  • the spring plate member 9 has a pair of pressure portions 9a, 9b that come into contact with the heat dissipation member 7b.
  • the pressure portions 9a, 9b are generated when the spring plate member 9 presses the heat dissipation member 7b.
  • a first fixing member 13 is inserted into each of the holes formed at the ends of the spring plate member 9.
  • the fixing flange 8 becomes a member that supports the spring plate member 9 when it is fixed by connecting it to each of the second fixing members 12.
  • the first fixing member 13 is connected to the fixing flange 8 by being inserted into the second fixing members 12 that correspond to each hole of the spring plate member 9.
  • the spring plate member 9 receives a load at each position where the fixing members 13 are inserted, and as a result, the spring plate member 9 presses the heat dissipation member 7b.
  • the insulating layer 4 is in contact with the thermally conductive layer 5 on the surface opposite to the surface in contact with the first conductor 3 and the second conductor 2.
  • the thermally conductive layer 5 is in contact with the heat dissipation members 7, 7b on the surface opposite to the surface in contact with the insulating layer 4.
  • the thermally conductive layer 5 is a thermally conductive member such as thermally conductive grease, a TIM (Thermal Interface Material), or a heat dissipation sheet.
  • the first heat dissipation member 7 and the second heat dissipation member 7b are members having thermal conductivity, such as composite materials such as Cu, Cu alloy, Cu-C, and Cu-CuO, or composite materials such as Al, Al alloy, AlSiC, and Al-C.
  • the pair of pressure members 9a, 9b are preferably positioned between the center of the thermally conductive layer 5 and both ends of the thermally conductive layer 5 in the cross section of FIG. 3. This allows for uniform and overall surface pressure to be generated on the thermally conductive layer 5 when the spring plate member 9 presses against the heat dissipation member 7b, preventing the semiconductor module 100 and the heat dissipation member 7b from coming apart, and realizing a reliable power semiconductor device with high heat dissipation performance.
  • the spring plate member 9 has an intermediate portion 9c between a pair of pressure applying portions 9a, 9b.
  • the spring plate member 9 also has a plurality of load receiving portions 11 that are provided on the outside of the pair of pressure applying portions 9a, 9b and receive a load from a fixing member 13.
  • the pair of pressure applying portions 9a, 9b are formed in a position that overlaps the placement area of the power semiconductor element 1 on the cross section.
  • the pair of pressure applying portions 9a, 9b do not necessarily have to be formed in a position that overlaps the placement area of the power semiconductor element 1, but by forming them in a position that overlaps the placement area of the power semiconductor element 1, the pressing force of the heat dissipation member 7b on the semiconductor module 100 becomes higher than in other areas, making it possible to improve the heat dissipation performance of the placement area of the power semiconductor element 1 that requires the most heat dissipation, thereby realizing a power semiconductor device with high overall heat dissipation performance.
  • the intermediate portion 9c between the pair of pressure members 9a, 9b has a greater bending rigidity than the conventional structure.
  • a bending stress corresponding to the load from the fixing member 13 is generated in the intermediate portion 9c.
  • this bending stress causes the intermediate portion 9c to elastically deform in a direction away from the surface of the heat dissipation member 7b.
  • a reaction force (restoring force) is generated in the intermediate portion 9c in the opposite direction to the elastic deformation force acting in a direction away from the surface of the heat dissipation member 7b, and a force acts to make the intermediate portion 9c in surface contact as much as possible.
  • This allows the spring plate member 9 to efficiently press against the heat dissipation member 7 and the semiconductor module 100, realizing a power semiconductor device with high heat dissipation performance and high reliability.
  • the semiconductor modules 100 are arranged along the extending direction of the pair of pressure members 9 a, 9 b.
  • the pair of pressure members 9 a, 9 b are formed at positions overlapping with the region in which the semiconductor element 1 is arranged when viewed from the direction in which the spring plate member 9 presses the heat dissipation member 7 b (when viewed in a plan view).
  • the spring plate member 9 is formed with a pair of pressure applying portions 9a, 9b so as to straddle the three-phase semiconductor module 100.
  • a pair of load bearing portions 11 is provided on both the outer sides of the pair of pressure applying portions 9a, 9b in the vertical direction in a plan view.
  • the load bearing portions 11 are formed so as to protrude outward in a position away from the installation position of the semiconductor module 100 on the plane.
  • load bearing portions 11a those provided at the four corners are referred to as load bearing portions 11a, and those provided other than at the four corners are referred to as load bearing portions 11b.
  • the heat dissipation member 7, 7b As shown in the cross-sectional views of the heat dissipation member 7 (7b) shown in Fig. 7, which is a cross-sectional view taken along line A-A in Fig. 6, and Fig. 8, which is a cross-sectional view taken along line B-B in Fig. 6, the heat dissipation member 7, 7b has a hollow refrigerant flow passage in which heat dissipation fins 7e are arranged.
  • the heat dissipation member 7, 7b has a region in which the fins 7e are formed and a hollow region 7f in which the fins 7e are not formed.
  • the hollow flow passage of the heat dissipation member 7, 7b may be an air-cooling flow passage through which air flows.
  • the pair of pressure applying portions 9a, 9b be provided within the range of the fin forming region 7d, which is the region where the heat dissipation fins 7e are arranged, when viewed from the direction in which the spring plate member 9 presses the heat dissipation member 7b (when viewed in a plan view). This allows compressive stress to be efficiently generated throughout the heat conduction layer 5.
  • the pair of inclined portions 11d are formed to extend in a direction away from the heat dissipation member 7b with the pair of pressure portions 9a, 9b as a reference in a cross section (see FIG. 5) perpendicular to the extending direction of the pressure portions 9a, 9b.
  • a plurality of flange portions 11f are provided on the upper and lower outer sides in the planar direction of the intermediate portion 9c and the pressure portions 9a, 9b, the flange portions 11f being formed to extend outward from both ends of the pair of inclined portions 11d.
  • the multiple protrusions 11g each have a hole 11c to which the fixing member 13 is fixed.
  • the load-bearing portions 11a and 11b are formed on the tip side of the multiple protrusions 11g and have holes 11c into which the fixing member 13 is inserted.
  • FIG. 11 shows a spring plate member 9 in a simplified shape.
  • the load-bearing portions 11a and 11b are formed to correspond to the four corners of the arrangement area 100b of the semiconductor module 100 for one phase, respectively. This allows the load-bearing portions 11a and 11b to generate a compressive stress in the entire heat conduction layer 5 of the semiconductor module 100.
  • the plate thickness of the intermediate portion 9c has been shown to be uniform with the plate thickness of the load-bearing portion 11 and other regions, but the plate thickness T2 of the intermediate portion 9c may be configured to be thicker than the plate thickness T1 of the load-bearing portion 11 and other regions.
  • the bending rigidity of the intermediate portion 9c can be increased more than in the first embodiment described above, and when the spring plate member 9 presses the heat dissipation member 7b, the center of the intermediate portion 9c can be prevented from separating from the heat dissipation member 7b, making it possible to apply a load over a wider range.
  • the seventh embodiment aims to achieve the same effect as the sixth embodiment, but the manufacturing method of the thick intermediate portion 9c is different from that of the sixth embodiment, and the intermediate portion 9c is formed thick on the surface opposite to the heat dissipation member 7b.
  • the figure shows that the thickness T4 of the intermediate portion 9c, which is thickened so as to be laminated on the surface opposite to the surface in contact with the heat dissipation member 7b, is thicker than the thickness T3 of the load bearing portion 11 and other regions. In this way, the same effect as the sixth embodiment can be obtained.
  • the thickened portion of the intermediate portion 9c may be made of the same material as the spring plate member 9, or may be made of a material different from the spring plate member 9 laminated and connected.
  • the sealing resin 10 seals the semiconductor module 100 including the insulating layer 4 except for the heat dissipation surface, but the semiconductor module 100 may be one in which the insulating layers 4, 4b are not sealed and only the first conductor 3 and the second conductor 3b are sealed.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the spirit of the present invention.
  • a power semiconductor device including a plurality of semiconductor modules 100 formed by molding and sealing a semiconductor element 1 and conductive plates 3, 3b joined to the semiconductor element 1, heat dissipation members 7, 7b that contact at least one surface of the semiconductor module 100 via a thermally conductive member 5, and an elastically deformable biasing member 9 that presses the heat dissipation members 7, 7b toward the semiconductor module 100, in which the biasing member 9 has a pair of pressure portions 9a, 9b that abut the heat dissipation member 7b, a plurality of load-bearing portions 11a, 11b that are provided outside the pair of pressure portions 9a, 9b and receive a load from a fixing member 13, and an intermediate portion 9c that is provided between the pair of pressure portions 9a, 9b and generates a bending stress according to the load.
  • the plurality of semiconductor modules 100 are arranged along the extension direction of the pair of pressure portions 9a, 9b.
  • the intermediate portion 9c elastically deforms in a direction away from the heat dissipation member 7b due to the bending stress when the biasing member 9 presses the heat dissipation member 7b.
  • the pair of pressure applying portions 9a, 9b are in contact with the heat dissipation member 7b at positions between the center of the heat conduction member 5 and both ends of the heat conduction member 5. In this way, it is possible to generate uniform and overall surface pressure on the heat conduction layer 5, and a reliable power semiconductor device with high heat dissipation performance can be realized.
  • the heat dissipation member 7b has a hollow refrigerant flow path in which the heat dissipation fins 7e are arranged, and the pair of pressure sections 9a, 9b are formed within the area in which the heat dissipation fins 7e are arranged when viewed from the direction in which the biasing member 9 presses the heat dissipation member 7b. In this way, compressive stress can be efficiently generated throughout the thermal conduction layer 5.
  • the biasing member 9 has a pair of inclined portions 11d formed to extend in a direction away from the heat dissipating member 7b with respect to the pair of pressure portions 9a, 9b, and a plurality of flange portions 11f formed to extend outward from both ends of the pair of inclined portions 11d.
  • the plurality of flange portions 11f each have a fixing member 13 fixed thereto, and have a plurality of protruding portions 11g formed in a direction away from the semiconductor modules 100 at positions between the arrangement of the plurality of semiconductor modules 100 as viewed from the direction in which the biasing member 9 presses the heat dissipating member 7b, and a connecting portion 11e formed between the inclined portions 11d and the protruding portions 11g and formed along the extending direction.
  • the load bearing portions 11a, 11b are formed on the tip side of the plurality of protruding portions 11g. In this way, the biasing member 9 elastically deforms in response to the load, realizing miniaturization, a reduction in the number of parts, and improved heat dissipation, and enabling efficient pressure application in the stacking direction.
  • the intermediate portion 9c has a flat plate shape and is parallel to the heat dissipation member 7b when the biasing member 9 is in contact with the heat dissipation member 7b before it is pressed against the heat dissipation member 7b under load. This prevents damage to the heat dissipation member 7b and improves vibration resistance. In addition, compressive stress can be generated throughout the heat dissipation member 7b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Disclosed is a power semiconductor device which is provided with an elastically deformable urging member that presses a heat dissipation member toward a plurality of power modules. The urging member comprises: a pair of pressing parts which come into contact with the heat dissipation member; a plurality of load-receiving parts which are provided on the outside of the pair of pressing parts and each receive a load with a fixation member; and an intermediate part which is provided between the pair of pressing parts, and at which a bending stress is generated in accordance with the load. The plurality of power modules are arranged in the extending direction of the pair of pressing parts. The intermediate part is elastically deformed by the bending stress in the direction away from the heat dissipation member when the urging member presses the heat dissipation member.

Description

パワー半導体装置Power Semiconductor Devices
 本発明は、パワー半導体装置に関する。 The present invention relates to a power semiconductor device.
 近年、環境への負荷低減のため、ハイブリッド自動車や電気自動車の普及がすすめられているが、ハイブリッド自動車や電気自動車において搭載される部品について、小型化や低コスト化が重要視されている。その中でも、電力変換装置のパワー半導体装置は、小型化や低コスト化が求められ、かつ電力変換装置を構成する電子部品の中で発熱量が大きいパワー半導体装置を小型化するためには、同時に冷却性能を向上させる必要がある。 In recent years, hybrid and electric vehicles have become more popular in order to reduce the burden on the environment, and there is a growing emphasis on miniaturization and cost reduction for the components installed in hybrid and electric vehicles. Among these, power semiconductor devices in power conversion equipment are required to be miniaturized and cost reduced. At the same time, in order to miniaturize power semiconductor devices, which generate a large amount of heat among the electronic components that make up a power conversion equipment, it is necessary to simultaneously improve their cooling performance.
 例えば、特許文献1には、パワーモジュールが熱伝導部材を介して冷却器が設けられ、その外側に板バネを備え、パワーモジュール、熱伝導部材、冷却器が加圧されることで、小型化を実現して部品の搭載性を高めたパワー半導体装置について開示されている。 For example, Patent Document 1 discloses a power semiconductor device in which a power module is provided with a cooler via a heat conductive member, and a leaf spring is provided on the outside of the power module, and pressure is applied to the power module, heat conductive member, and cooler, thereby realizing miniaturization and improving the mountability of components.
特開2021-005603号公報JP 2021-005603 A
 特許文献1に記載のパワー半導体装置の板バネ構造の場合、パワーモジュールの外側に形成されている荷重負荷部に荷重が負荷された場合、加圧点が水平方向に変位するため、積層方向に効率よく加圧できない課題が生じる。つまり、従来の構造では、冷却性能を向上するためには、さらに広い放熱面全体的に効率よく加圧する必要があった。これを鑑みて本発明は、小型化、部品点数の削減、放熱性の向上、を実現し、効率よく積層方向に加圧可能な信頼性の高いパワー半導体装置を提供することが目的である。 In the case of the leaf spring structure of the power semiconductor device described in Patent Document 1, when a load is applied to the load-bearing portion formed on the outside of the power module, the pressure point is displaced in the horizontal direction, which creates the problem of not being able to apply pressure efficiently in the stacking direction. In other words, in the conventional structure, in order to improve cooling performance, it was necessary to apply pressure efficiently over the entire, even wider, heat dissipation surface. In view of this, the object of the present invention is to provide a highly reliable power semiconductor device that is compact, has a reduced number of components, and has improved heat dissipation, and can be efficiently pressurized in the stacking direction.
 半導体素子と、前記半導体素子と接合される導体板と、をモールド封止して形成されている複数のパワーモジュールと、前記パワーモジュールの少なくとも一方の面に熱伝導部材を介して接触する放熱部材と、前記放熱部材を前記パワーモジュールに向かって押圧する弾性変形可能な付勢部材と、を備えるパワー半導体装置であって、前記付勢部材は、前記放熱部材に当接する一対の加圧部と、前記一対の加圧部の外側に設けられかつ固定部材により荷重を受ける複数の被荷重部と、前記一対の加圧部の間に設けられかつ前記荷重に応じた曲げ応力が生じる中間部と、を有し、前記複数のパワーモジュールは、前記一対の加圧部の延在方向に沿って配置され、前記中間部は、前記付勢部材が前記放熱部材を押圧するときに前記曲げ応力によって前記放熱部材から離れる方向に弾性変形する。 A power semiconductor device comprising: a plurality of power modules formed by molding a semiconductor element and a conductor plate joined to the semiconductor element; a heat dissipation member contacting at least one surface of the power module via a thermally conductive member; and an elastically deformable biasing member pressing the heat dissipation member toward the power module, the biasing member having a pair of pressure sections that contact the heat dissipation member, a plurality of load-bearing sections that are provided outside the pair of pressure sections and receive a load from a fixing member, and an intermediate section that is provided between the pair of pressure sections and generates a bending stress according to the load, the plurality of power modules are arranged along the extension direction of the pair of pressure sections, and the intermediate section elastically deforms in a direction away from the heat dissipation member due to the bending stress when the biasing member presses the heat dissipation member.
 本発明によれば、小型化、部品点数の削減、放熱性の向上、を実現し、効率よく積層方向に加圧可能な信頼性の高いパワー半導体装置を提供できる。 The present invention provides a highly reliable power semiconductor device that is compact, has a reduced number of parts, and has improved heat dissipation, and can be efficiently pressurized in the stacking direction.
パワー半導体装置の半導体モジュールを示す断面図1 is a cross-sectional view showing a semiconductor module of a power semiconductor device; 本発明の第1の実施形態に係る、パワー半導体装置の全体斜視図FIG. 1 is an overall perspective view of a power semiconductor device according to a first embodiment of the present invention; 図2のパワー半導体装置の断面図3 is a cross-sectional view of the power semiconductor device of FIG. 従来のパワー半導体装置の構造の課題を示す説明図FIG. 1 is an explanatory diagram showing problems with the structure of a conventional power semiconductor device. 本発明を適用したパワー半導体装置の構造を示す説明図FIG. 1 is an explanatory diagram showing the structure of a power semiconductor device to which the present invention is applied; 本発明の第1の実施形態を示すパワー半導体装置の平面図FIG. 1 is a plan view of a power semiconductor device showing a first embodiment of the present invention; 図6のA-A断面図AA cross-sectional view of FIG. 図6のB-B断面図BB cross-sectional view of FIG. 本発明の第1の実施形態に係る、付勢部材の平面説明図FIG. 2 is a plan view illustrating a biasing member according to the first embodiment of the present invention; パワー半導体装置をパワーモジュール配列方向から見た断面図Cross-sectional view of a power semiconductor device viewed from the power module arrangement direction 本発明の第1の実施形態に係る、付勢部材の被荷重部の平面説明図FIG. 1 is a plan view illustrating a load-bearing portion of a biasing member according to a first embodiment of the present invention; 本発明の第2の実施形態に係る、パワー半導体装置の断面図1 is a cross-sectional view of a power semiconductor device according to a second embodiment of the present invention; 本発明の第3の実施形態に係る、パワー半導体装置の断面図1 is a cross-sectional view of a power semiconductor device according to a third embodiment of the present invention; 本発明の第4の実施形態に係る、パワー半導体装置の断面図1 is a cross-sectional view of a power semiconductor device according to a fourth embodiment of the present invention; 本発明の第5の実施形態に係る、付勢部材の平面図FIG. 13 is a plan view of a biasing member according to a fifth embodiment of the present invention; 図15のC-C断面図15 - C-C cross-sectional view of FIG. 本発明の第6の実施形態に係る、付勢部材の断面図13 is a cross-sectional view of a biasing member according to a sixth embodiment of the present invention; 本発明の第7の実施形態に係る、付勢部材の断面図FIG. 13 is a cross-sectional view of a biasing member according to a seventh embodiment of the present invention; 本発明の第8の実施形態に係る、付勢部材の平面図FIG. 13 is a plan view of a biasing member according to an eighth embodiment of the present invention; 本発明の第9の実施形態に係る、パワー半導体装置の断面図13 is a cross-sectional view of a power semiconductor device according to a ninth embodiment of the present invention.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Below, an embodiment of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and some parts have been omitted or simplified as appropriate for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings.
(本発明の第1の実施形態と全体構成)
 (図1)
 本発明の実施形態に係るパワー半導体装置が有する複数の半導体モジュール100(パワーモジュール100)は、パワー半導体素子1と、パワー半導体素子1と接合される導体板である第1の導体3および第2の導体3bと、を有している。パワー半導体素子1と第1の導体3および第2の導体3bは、互いに接合材2によって接合されている。パワー半導体素子1の表面電極は、接合材2によって第2の導体3bと接続されている。第1の導体3および第2の導体3bは、例えば、銅、銅合金、あるいはアルミニウム、アルミニウム合金などである。接合材2は、例えば、はんだ材、焼結材などである。
(First embodiment of the present invention and overall configuration)
(Figure 1)
A plurality of semiconductor modules 100 (power modules 100) included in the power semiconductor device according to the embodiment of the present invention includes a power semiconductor element 1, and a first conductor 3 and a second conductor 3b which are conductor plates joined to the power semiconductor element 1. The power semiconductor element 1, the first conductor 3, and the second conductor 3b are joined to each other by a joining material 2. The surface electrode of the power semiconductor element 1 is connected to the second conductor 3b by the joining material 2. The first conductor 3 and the second conductor 3b are, for example, copper, a copper alloy, aluminum, an aluminum alloy, or the like. The joining material 2 is, for example, a solder material, a sintered material, or the like.
 第1の導体3は、パワー半導体素子1と接続されている面とは反対の面で、熱伝導性の部材である絶縁層4と接続されている。また同様に、第2の導体3bは、パワー半導体素子1と接続されている面とは反対の面で、熱伝導性の部材である絶縁層4と接続されている。絶縁層4は、パワー半導体素子1から発生する熱を、後述する放熱部材7,7bに熱伝導させるものであり、熱伝導率が高く、かつ、絶縁耐圧が大きい材料で形成されている。絶縁層4は、例えば、酸化アルミニウム(アルミナ)、窒化アルミニウム、窒化ケイ素等のセラミックス、あるいは、これらの微粉末を含有する絶縁シートまたは接着剤などである。 The first conductor 3 is connected to an insulating layer 4, which is a thermally conductive member, on the side opposite to the side connected to the power semiconductor element 1. Similarly, the second conductor 3b is connected to an insulating layer 4, which is a thermally conductive member, on the side opposite to the side connected to the power semiconductor element 1. The insulating layer 4 conducts heat generated from the power semiconductor element 1 to the heat dissipation members 7, 7b, which will be described later, and is made of a material that has high thermal conductivity and high dielectric strength. The insulating layer 4 is, for example, ceramics such as aluminum oxide (alumina), aluminum nitride, silicon nitride, etc., or an insulating sheet or adhesive containing fine powders of these materials.
 半導体モジュール100は、絶縁層4が表面に露出するように封止樹脂10でモールド封止されて形成されている。封止樹脂10から露出している絶縁層4の表面は、半導体モジュール100の放熱面である。半導体モジュール100は、パワー半導体素子1と外部の配線等を電気的に接続するための外部端子3cを有する。外部端子3cは、封止樹脂10から外部に突出している。 The semiconductor module 100 is molded and sealed with sealing resin 10 so that the insulating layer 4 is exposed on the surface. The surface of the insulating layer 4 exposed from the sealing resin 10 is the heat dissipation surface of the semiconductor module 100. The semiconductor module 100 has external terminals 3c for electrically connecting the power semiconductor element 1 to external wiring, etc. The external terminals 3c protrude from the sealing resin 10 to the outside.
(図2)
 半導体モジュール100は、少なくとも一方の面において、前述の絶縁層4を介して接触する放熱部材7(7b)を有している。図2では、半導体モジュール100の両面から半導体モジュール100を挟むようにして、第1放熱部材7および第2放熱部材7bが半導体モジュール100に接触している様子を図示した。半導体モジュール100は、第1放熱部材7を間に挟んで固定フランジ8と対向している。また、半導体モジュール100は、第2放熱部材7bを間に挟んでばね板部材9と対向している。ばね板部材9は、半導体モジュール100に向かって放熱部材7bを押圧する弾性変形可能な付勢部材である。なお、図示したような両面冷却の半導体モジュール100に限らず、片面冷却の半導体モジュール100にも適用できる。
(Figure 2)
The semiconductor module 100 has a heat dissipation member 7 (7b) that contacts the semiconductor module 100 on at least one surface via the insulating layer 4. FIG. 2 illustrates a state in which the first heat dissipation member 7 and the second heat dissipation member 7b contact the semiconductor module 100 so as to sandwich the semiconductor module 100 from both sides of the semiconductor module 100. The semiconductor module 100 faces the fixing flange 8 with the first heat dissipation member 7 sandwiched therebetween. The semiconductor module 100 also faces the spring plate member 9 with the second heat dissipation member 7b sandwiched therebetween. The spring plate member 9 is an elastically deformable biasing member that presses the heat dissipation member 7b toward the semiconductor module 100. The present invention is not limited to the double-sided cooling semiconductor module 100 illustrated in the figure, but can also be applied to a single-sided cooling semiconductor module 100.
 ばね板部材9は、放熱部材7bに当接する一対の加圧部9a,9bを有している。加圧部9a,9bは、ばね板部材9が放熱部材7bを押圧することで発生する。ばね板部材9の複数の端部に形成されている各穴には、第1の固定部材13が挿入される。固定フランジ8は、各第2固定部材12と接続されることで、ばね板部材9を固定したときに支持する部材になる。第1の固定部材13は、ばね板部材9の各穴に対応する第2の固定部材12に挿入されることで、固定フランジ8と接続される。これにより、ばね板部材9は固定部材13が挿入される各位置で荷重を受け、これに伴って、ばね板部材9が放熱部材7bを押圧している。 The spring plate member 9 has a pair of pressure portions 9a, 9b that come into contact with the heat dissipation member 7b. The pressure portions 9a, 9b are generated when the spring plate member 9 presses the heat dissipation member 7b. A first fixing member 13 is inserted into each of the holes formed at the ends of the spring plate member 9. The fixing flange 8 becomes a member that supports the spring plate member 9 when it is fixed by connecting it to each of the second fixing members 12. The first fixing member 13 is connected to the fixing flange 8 by being inserted into the second fixing members 12 that correspond to each hole of the spring plate member 9. As a result, the spring plate member 9 receives a load at each position where the fixing members 13 are inserted, and as a result, the spring plate member 9 presses the heat dissipation member 7b.
(図3)
 絶縁層4は、第1の導体3および第2の導体2と接触する面とは反対側の面で熱伝導層5と接触している。熱伝導層5は、絶縁層4と接触する面とは反対側の面で放熱部材7,7bと接触している。熱伝導層5は、熱伝導グリス、TIM(Thermal Interface Material)、あるいは放熱シートなどの熱伝導する部材である。第1放熱部材7および第2放熱部材7bは、熱伝導性を有する部材、例えばCu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などである。
(Figure 3)
The insulating layer 4 is in contact with the thermally conductive layer 5 on the surface opposite to the surface in contact with the first conductor 3 and the second conductor 2. The thermally conductive layer 5 is in contact with the heat dissipation members 7, 7b on the surface opposite to the surface in contact with the insulating layer 4. The thermally conductive layer 5 is a thermally conductive member such as thermally conductive grease, a TIM (Thermal Interface Material), or a heat dissipation sheet. The first heat dissipation member 7 and the second heat dissipation member 7b are members having thermal conductivity, such as composite materials such as Cu, Cu alloy, Cu-C, and Cu-CuO, or composite materials such as Al, Al alloy, AlSiC, and Al-C.
 一対の加圧部9a,9bの位置は、図3の断面において、熱伝導層5の中心位置と熱伝導層5の両端部との間の位置であることが好ましい。これにより、ばね板部材9が放熱部材7bに対して押圧する際に、熱伝導層5に対して均等かつ全体的に面圧を発生させることができ、半導体モジュール100と放熱部材7bが乖離することなく、放熱性能が高い信頼性のあるパワー半導体装置が実現できる。 The pair of pressure members 9a, 9b are preferably positioned between the center of the thermally conductive layer 5 and both ends of the thermally conductive layer 5 in the cross section of FIG. 3. This allows for uniform and overall surface pressure to be generated on the thermally conductive layer 5 when the spring plate member 9 presses against the heat dissipation member 7b, preventing the semiconductor module 100 and the heat dissipation member 7b from coming apart, and realizing a reliable power semiconductor device with high heat dissipation performance.
 ばね板部材9は、一対の加圧部9a,9b間に中間部9cを有する。また、ばね板部材9は、一対の加圧部9a,9bの外側に設けられかつ固定部材13により荷重を受ける複数の被荷重部11を有している。 The spring plate member 9 has an intermediate portion 9c between a pair of pressure applying portions 9a, 9b. The spring plate member 9 also has a plurality of load receiving portions 11 that are provided on the outside of the pair of pressure applying portions 9a, 9b and receive a load from a fixing member 13.
 一対の加圧部9a,9bは、断面上でパワー半導体素子1の配置領域に重なる位置に形成されている。一対の加圧部9a,9bの位置は、必ずしもパワー半導体素子1の配置領域に重なる位置に形成されている必要はないが、パワー半導体素子1の配置領域に重なる位置に形成されていることにより、放熱部材7bの半導体モジュール100への押圧力がその他の領域に比べて高くなり、最も放熱が必要なパワー半導体素子1の配置領域の放熱性能を向上させることが可能になるため、全体として放熱性能の高いパワー半導体装置が実現できる。 The pair of pressure applying portions 9a, 9b are formed in a position that overlaps the placement area of the power semiconductor element 1 on the cross section. The pair of pressure applying portions 9a, 9b do not necessarily have to be formed in a position that overlaps the placement area of the power semiconductor element 1, but by forming them in a position that overlaps the placement area of the power semiconductor element 1, the pressing force of the heat dissipation member 7b on the semiconductor module 100 becomes higher than in other areas, making it possible to improve the heat dissipation performance of the placement area of the power semiconductor element 1 that requires the most heat dissipation, thereby realizing a power semiconductor device with high overall heat dissipation performance.
(従来の構造と本発明の構造との比較)
(図4、図5)
 図4(a)は従来のばね板部材50が放熱部材7bを押圧する前の状態を表す図、図4(b)は従来のばね板部材50が放熱部材7bを押圧した状態を表す図である。また、図5(a)は本発明のばね板部材9が放熱部材7bを押圧する前の状態を表す図、図5(b)は本発明のばね板部材9が放熱部材7bを押圧した状態を表す図である。
(Comparison between conventional structure and structure of the present invention)
(Fig. 4, Fig. 5)
Fig. 4(a) is a diagram showing a state before a conventional spring plate member 50 presses against the heat dissipation member 7b, and Fig. 4(b) is a diagram showing a state after the conventional spring plate member 50 presses against the heat dissipation member 7b. Fig. 5(a) is a diagram showing a state before a spring plate member 9 of the present invention presses against the heat dissipation member 7b, and Fig. 5(b) is a diagram showing a state after the spring plate member 9 of the present invention presses against the heat dissipation member 7b.
 図4(a)に示す従来の構造では、従来のばね板部材50が放熱部材7bを押圧する前の状態において、一対の従来の加圧部50a,50bが放熱部材7bと断面奥側に向かって線で接触(断面上では点で接触)している。従来の加圧部50a,50b間は、放熱部材7bとの間に所定の空間を有する形状であり、従来の加圧部50a,50bそれぞれから、中心線50cに向かって鋭角θ1が形成されている。 In the conventional structure shown in FIG. 4(a), before the conventional spring plate member 50 presses the heat dissipation member 7b, a pair of conventional pressure members 50a, 50b are in line contact with the heat dissipation member 7b toward the rear side of the cross section (point contact on the cross section). The conventional pressure members 50a, 50b are shaped to have a predetermined space between them and the heat dissipation member 7b, and an acute angle θ1 is formed from each of the conventional pressure members 50a, 50b toward the center line 50c.
 このような従来の構造の場合、従来の加圧部50a,50bよりも断面左右方向の外側に形成されている従来の被荷重部51a,51bに対して下向きの力60を負荷して荷重する場合、従来の加圧部50a,50bの位置は、図4(b)に図示するように、中心線50cに向かって、矢印の水平方向に横ずれが生じる。よって、従来のばね板部材50は、放熱部材7bを効率的に押圧しづらくなる。また、従来の加圧部50a,50bは、放熱部材7bと線で接触しているため、放熱部材7bの内側にかかる圧縮応力が分布する範囲が狭くなる。 In the case of such a conventional structure, when a downward force 60 is applied to the conventional loaded portions 51a, 51b, which are formed further outboard in the cross-sectional left-right direction than the conventional pressure applying portions 50a, 50b, the positions of the conventional pressure applying portions 50a, 50b shift laterally in the horizontal direction of the arrow toward the center line 50c, as shown in FIG. 4(b). This makes it difficult for the conventional spring plate member 50 to efficiently press the heat dissipation member 7b. In addition, because the conventional pressure applying portions 50a, 50b are in line contact with the heat dissipation member 7b, the range in which the compressive stress applied to the inside of the heat dissipation member 7b is distributed is narrowed.
 これを鑑みて本発明では、図5に示すように、一対の加圧部9a,9bの間に中間部9cを形成する。中間部9cは放熱部材7bと面で接触する平板形状を有している。図5(a)に示すように、ばね板部材9が荷重を受けて放熱部材7bに押圧される前に放熱部材7bに接触した状態では、放熱部材7bと平行である。 In consideration of this, in the present invention, as shown in Figure 5, an intermediate portion 9c is formed between a pair of pressure portions 9a, 9b. The intermediate portion 9c has a flat plate shape that comes into surface contact with the heat dissipation member 7b. As shown in Figure 5(a), when the spring plate member 9 is in contact with the heat dissipation member 7b before being pressed against the heat dissipation member 7b under load, it is parallel to the heat dissipation member 7b.
 このようにすることで、ばね板部材9の断面外側に突出した被荷重部11が荷重を受けたときに、加圧部9a,9b間に対して水平方向の力が作用しても、中間部9cにより加圧部9a,9bの横ずれが抑制されるため、放熱部材7bへの損傷の防止と、耐振性の向上を実現できる。また、これにより、ばね板部材9にかかる荷重を、中間部9cの面接触部分に広げて荷重を分散させていることで、放熱部材7b内の圧縮応力が分布する範囲を広げることができ、放熱部材7bの全体に圧縮応力を発生させることができる。 By doing this, even if a horizontal force acts between the pressure applying parts 9a, 9b when the load-bearing part 11 protruding outside the cross section of the spring plate member 9 receives a load, the intermediate part 9c suppresses lateral displacement of the pressure applying parts 9a, 9b, preventing damage to the heat dissipation member 7b and improving vibration resistance. In addition, by spreading the load applied to the spring plate member 9 over the surface contact part of the intermediate part 9c and dispersing the load, the range in which the compressive stress is distributed within the heat dissipation member 7b can be expanded, and compressive stress can be generated throughout the entire heat dissipation member 7b.
 一対の加圧部9a,9b間の中間部9cは、従来構造よりも曲げ剛性が大きい。つまり、加圧部9a,9bよりも外側に設けられた被荷重部11が荷重を受けた際に、中間部9cには固定部材13による荷重に応じた曲げ応力が生じる。図5(b)に示すように、中間部9cは、この曲げ応力によって放熱部材7bの面から離れる方向に弾性変形しようとする。これに伴い、中間部9cには、放熱部材7bの面から離れる方向に作用する弾性変形する力に対して反対側の方向に反力(復元力)が発生し、中間部9cをできるだけ面接触させようとする力が働く。これによって、ばね板部材9は、放熱部材7および半導体モジュール100に対して効率よく押圧でき、放熱性能が高く信頼性の高いパワー半導体装置が実現できる。 The intermediate portion 9c between the pair of pressure members 9a, 9b has a greater bending rigidity than the conventional structure. In other words, when the load-bearing portion 11, which is provided on the outer side of the pressure members 9a, 9b, receives a load, a bending stress corresponding to the load from the fixing member 13 is generated in the intermediate portion 9c. As shown in FIG. 5(b), this bending stress causes the intermediate portion 9c to elastically deform in a direction away from the surface of the heat dissipation member 7b. Accordingly, a reaction force (restoring force) is generated in the intermediate portion 9c in the opposite direction to the elastic deformation force acting in a direction away from the surface of the heat dissipation member 7b, and a force acts to make the intermediate portion 9c in surface contact as much as possible. This allows the spring plate member 9 to efficiently press against the heat dissipation member 7 and the semiconductor module 100, realizing a power semiconductor device with high heat dissipation performance and high reliability.
 なお、本発明の作用効果を実現するため、ばね板部材9において放熱部材7b側とは反対側の中間部9cの両端に形成され、かつ、中間部9cと被荷重部11との間に形成されている一対の傾斜部11dと、中間部9cと、が形成する角θ2は、鈍角であるほうがよい。また、ばね板部材9において、一対の加圧部9a,9b、一対の傾斜部11d、一対の被荷重部11について上述で図示したが、生じる作用効果が同様であれば、それぞれ対になっている部分が同一形状であることに限定はされない。 In order to achieve the effects of the present invention, it is preferable that the angle θ2 formed by the pair of inclined portions 11d formed at both ends of the intermediate portion 9c on the side of the spring plate member 9 opposite the heat dissipation member 7b and between the intermediate portion 9c and the load-bearing portion 11, and the intermediate portion 9c, is an obtuse angle. Also, in the spring plate member 9, the pair of pressure applying portions 9a, 9b, the pair of inclined portions 11d, and the pair of load-bearing portions 11 are illustrated above, but as long as the effects produced are similar, the paired portions are not limited to being of the same shape.
(図6)
 複数の半導体モジュール100は、一対の加圧部9a,9bの延在方向に沿って配置されている。また、一対の加圧部9a,9bは、ばね板部材9が放熱部材7bを押圧する方向から見て(平面図で見て)、半導体素子1が配置される領域に重なる位置に形成されている。
(Figure 6)
The semiconductor modules 100 are arranged along the extending direction of the pair of pressure members 9 a, 9 b. The pair of pressure members 9 a, 9 b are formed at positions overlapping with the region in which the semiconductor element 1 is arranged when viewed from the direction in which the spring plate member 9 presses the heat dissipation member 7 b (when viewed in a plan view).
 ばね板部材9は、3相の半導体モジュール100にまたがるように、一対の加圧部9a,9bが形成されている。そして、一対の加圧部9a,9bの平面図の上下方向の両外側には、一対の被荷重部11が設けられている。被荷重部11は、平面上で、半導体モジュール100の設置位置から離れた位置で、外側に突き出すように形成されている。なお、複数の被荷重部11のうち、四隅に設けられるものを被荷重部11a、四隅以外に設けられるものを被荷重部11bとした。 The spring plate member 9 is formed with a pair of pressure applying portions 9a, 9b so as to straddle the three-phase semiconductor module 100. A pair of load bearing portions 11 is provided on both the outer sides of the pair of pressure applying portions 9a, 9b in the vertical direction in a plan view. The load bearing portions 11 are formed so as to protrude outward in a position away from the installation position of the semiconductor module 100 on the plane. Of the multiple load bearing portions 11, those provided at the four corners are referred to as load bearing portions 11a, and those provided other than at the four corners are referred to as load bearing portions 11b.
(図7、図8)
 図6のA-A断面図である図7と、図6のB-B断面図である図8と、にそれぞれ示されている放熱部材7(7b)の断面図が表すように、放熱部材7,7bは、内部に放熱フィン7eが配置された中空状の冷媒流路を有している。放熱部材7,7bは、フィン7eが形成される領域と、フィン7eが形成されない中空の領域7fと、を有している。フィン7eが形成されない中空の領域7fには冷媒が流通しているが、同様の効果が得られるのであれば、放熱部材7,7bが有する中空状の流路は、空気を流通させる空冷流路であってもよい。
(Fig. 7, Fig. 8)
As shown in the cross-sectional views of the heat dissipation member 7 (7b) shown in Fig. 7, which is a cross-sectional view taken along line A-A in Fig. 6, and Fig. 8, which is a cross-sectional view taken along line B-B in Fig. 6, the heat dissipation member 7, 7b has a hollow refrigerant flow passage in which heat dissipation fins 7e are arranged. The heat dissipation member 7, 7b has a region in which the fins 7e are formed and a hollow region 7f in which the fins 7e are not formed. A refrigerant flows through the hollow region 7f in which the fins 7e are not formed, but as long as a similar effect can be obtained, the hollow flow passage of the heat dissipation member 7, 7b may be an air-cooling flow passage through which air flows.
 加圧部9a,9bは、図8のような中空の領域7fに設けると、ばね板部材9により加圧した場合、第2放熱部材7bのカバーがへこむため、熱伝導層5に効率よく圧縮応力を生じさせることができない。そのため、図6に示すように、一対の加圧部9a,9bは、ばね板部材9が放熱部材7bを押圧する方向から見て(平面図で見て)、放熱フィン7eが配置される領域であるフィン形成領域7dの範囲内に設けられることが好ましい。これにより、熱伝導層5全体に効率よく圧縮応力を発生させることができる。 If the pressure applying portions 9a, 9b are provided in the hollow region 7f as shown in FIG. 8, when pressure is applied by the spring plate member 9, the cover of the second heat dissipation member 7b will be dented, and compressive stress cannot be efficiently generated in the heat conduction layer 5. Therefore, as shown in FIG. 6, it is preferable that the pair of pressure applying portions 9a, 9b be provided within the range of the fin forming region 7d, which is the region where the heat dissipation fins 7e are arranged, when viewed from the direction in which the spring plate member 9 presses the heat dissipation member 7b (when viewed in a plan view). This allows compressive stress to be efficiently generated throughout the heat conduction layer 5.
(図9)
 一対の傾斜部11dは、加圧部9a,9b延在方向に対して垂直の断面(図5参照)において、一対の加圧部9a,9bを基準にして、放熱部材7bから離れる方向に延びて形成されている。ばね板部材9において、中間部9cおよび加圧部9a,9bの平面方向の上下外側には、一対の傾斜部11dの両端部から外側に向かってそれぞれ延びて形成されている複数のフランジ部11fが設けられている。
(Figure 9)
The pair of inclined portions 11d are formed to extend in a direction away from the heat dissipation member 7b with the pair of pressure portions 9a, 9b as a reference in a cross section (see FIG. 5) perpendicular to the extending direction of the pressure portions 9a, 9b. In the spring plate member 9, a plurality of flange portions 11f are provided on the upper and lower outer sides in the planar direction of the intermediate portion 9c and the pressure portions 9a, 9b, the flange portions 11f being formed to extend outward from both ends of the pair of inclined portions 11d.
 フランジ部11fは、中間部11cから外部方向に突出する複数の突出部11gを有している。複数の突出部11gは、ばね板部材9が放熱部材11bを押圧する方向から見て(平面図で見て)、複数の半導体モジュール100の配置の間の位置において、半導体モジュール100から離れる方向に形成されている。また、フランジ部11fは、傾斜部11dと突出部11gとの間に形成され、かつ加圧部9a,9bの延在方向に沿って形成されている一対の連結部11eを有する。 The flange portion 11f has multiple protrusions 11g that protrude outward from the intermediate portion 11c. When viewed from the direction in which the spring plate member 9 presses the heat dissipation member 11b (when viewed in a plan view), the multiple protrusions 11g are formed in a direction away from the semiconductor modules 100 at positions between the arrangement of the multiple semiconductor modules 100. The flange portion 11f also has a pair of connecting portions 11e that are formed between the inclined portion 11d and the protrusions 11g and that are formed along the extension direction of the pressure portions 9a, 9b.
 複数の突出部11gは、それぞれ固定部材13が固定される穴11cを有している。つまり、被荷重部11a,11bは、複数の突出部11gの先端側に形成され、かつ固定部材13を挿入する穴11cを有している。 The multiple protrusions 11g each have a hole 11c to which the fixing member 13 is fixed. In other words, the load-bearing portions 11a and 11b are formed on the tip side of the multiple protrusions 11g and have holes 11c into which the fixing member 13 is inserted.
(図10)
 半導体モジュール100は、パワー半導体装置に3相分並べて配置されているが、1相ごとに封止樹脂10で封止されていてもよい。1相ごとに封止樹脂10で封止された半導体モジュール1003相分を、まとめて断面上下方向から第1放熱部材7および第2放熱部材7bで挟むように押圧して固定することで、半導体モジュール100の放熱を実現している。なお、半導体モジュール100の配列数は一例であり、3相に限らず配列個数に限定されない。
(Figure 10)
The semiconductor modules 100 are arranged in three phases in the power semiconductor device, but each phase may be sealed with the sealing resin 10. The three semiconductor modules 100, each sealed with the sealing resin 10, are pressed and fixed together from above and below the cross section between the first heat dissipation member 7 and the second heat dissipation member 7b, thereby realizing heat dissipation of the semiconductor modules 100. Note that the number of semiconductor modules 100 arranged is an example, and is not limited to three phases or the number of arrangements.
(図11)
 図11には、簡易形状にしたばね板部材9を示した。被荷重部11a,11bは、1相分の半導体モジュール100の配置領域100bの4隅にそれぞれ対応するように形成されている。これにより、被荷重部11a,11bは、半導体モジュール100の熱伝導層5の全体に圧縮応力を発生させることができる。
(Figure 11)
11 shows a spring plate member 9 in a simplified shape. The load-bearing portions 11a and 11b are formed to correspond to the four corners of the arrangement area 100b of the semiconductor module 100 for one phase, respectively. This allows the load-bearing portions 11a and 11b to generate a compressive stress in the entire heat conduction layer 5 of the semiconductor module 100.
 また、複数の被荷重部11a,11bのうち、ばね板部材9の四隅の位置に形成されている被荷重部11aの第1バネ定数は、四隅以外の位置に形成されている被荷重部11bにおける第2バネ定数よりも小さく、かつ第2バネ定数は第1バネ定数の2倍以下である。つまり、ばね板部材9の四隅の位置に形成されている被荷重部11aにかかる荷重よりも、四隅以外の位置に形成されている被荷重部11bにかかる荷重の方が大きい。このようにすることで、ばね板部材9が放熱部材7bを押圧するときに、各半導体モジュール100に発生する圧縮応力のばらつきを小さくできる。なお、被荷重部11a,11bの曲げ剛性は互いに近い方が好ましい。 Furthermore, among the multiple load bearing parts 11a, 11b, the first spring constant of the load bearing parts 11a formed at the four corners of the spring plate member 9 is smaller than the second spring constant of the load bearing parts 11b formed at positions other than the four corners, and the second spring constant is less than twice the first spring constant. In other words, the load applied to the load bearing parts 11b formed at positions other than the four corners is greater than the load applied to the load bearing parts 11a formed at the four corners of the spring plate member 9. In this way, the variation in the compressive stress generated in each semiconductor module 100 when the spring plate member 9 presses the heat dissipation member 7b can be reduced. It is preferable that the bending rigidities of the load bearing parts 11a, 11b are close to each other.
(第2の実施形態)
(図12)
 中間部9cは、押圧する放熱部材7bに対して、直接面接触した場合について示したが、ばね板部材9と放熱部材7bの間に中間層15を設けてもよい。中間層15の材料は、放熱部材7bの材料やばね板部材9の材料よりもヤング率(縦弾性率)の低い材料を用いることで、放熱部材7bとばね板部材9の中間部9cの表面に微小な凹凸があった場合でも、隙間を埋めることができ、放熱部材7bに対してばね板部材9は均等に加圧できるというメリットがある。また、中間層15の材料が、放熱部材7bの材料よりもヤング率の高い材料を用いた場合は、加圧部9a,9bにより放熱部材7bが微小に変形するのを防止するメリットを得られる。
Second Embodiment
(Figure 12)
Although the intermediate portion 9c is in direct surface contact with the heat dissipation member 7b to be pressed, an intermediate layer 15 may be provided between the spring plate member 9 and the heat dissipation member 7b. By using a material having a lower Young's modulus (modulus of longitudinal elasticity) than the material of the heat dissipation member 7b and the material of the spring plate member 9 for the intermediate layer 15, even if there are minute irregularities on the surfaces of the heat dissipation member 7b and the intermediate portion 9c of the spring plate member 9, the gap can be filled, and the spring plate member 9 can apply pressure evenly to the heat dissipation member 7b. In addition, when the material of the intermediate layer 15 is a material having a higher Young's modulus than the material of the heat dissipation member 7b, the advantage of preventing minute deformation of the heat dissipation member 7b by the pressure portions 9a and 9b is obtained.
 また、ばね板部材9を放熱部材7bに押圧する前の状態で、ばね板部材9の中間部9cの放熱部材7bとの接触面の全面が、放熱部材7bに接触する場合について上述したが、ばね板部材9に荷重をかけた後に中間部9cの平面の一部が放熱部材7bから離れている状態(図5参照)であったとしても、中間層15の材料が配置されていることにより、第1の実施形態と同様の効果が得られる。 In addition, the above description has been given of a case in which the entire contact surface of the intermediate portion 9c of the spring plate member 9 with the heat dissipation member 7b comes into contact with the heat dissipation member 7b before the spring plate member 9 is pressed against the heat dissipation member 7b. However, even if a part of the flat surface of the intermediate portion 9c is separated from the heat dissipation member 7b after a load is applied to the spring plate member 9 (see FIG. 5), the same effect as in the first embodiment can be obtained due to the arrangement of the material of the intermediate layer 15.
(第3の実施形態)
(図13)
 半導体モジュール100は、一体のモールド封止ではなく、複数の小片のモールド封止体101で構成されていてもよく、このような場合であっても同様の効果を得られる。
Third Embodiment
(Figure 13)
The semiconductor module 100 may be configured with a plurality of small mold sealing pieces 101, rather than being an integrated mold sealing, and even in this case, the same effects can be obtained.
(第4の実施形態)
(図14)
 ばね板部材9と接する放熱部材7bの一部に凹み70がある場合であっても、加圧部9a,9b間の中間部9cにおける放熱部材7b側の面と、放熱部材7bの上面であるばね板部材9側の面とが平行であることにより、上述した実施形態と同様の効果が得られる。
Fourth Embodiment
(Figure 14)
Even if there is a recess 70 in a part of the heat dissipation member 7b that contacts the spring plate member 9, the surface on the heat dissipation member 7b side at the intermediate portion 9c between the pressure portions 9a, 9b and the surface on the spring plate member 9 side, which is the upper surface of the heat dissipation member 7b, are parallel to each other, so that the same effect as in the above-described embodiment can be obtained.
(第5の実施形態)
(図15、図16)
 ばね板部材9において加圧部9a,9b間を接続する中間部9cは、前述した放熱部材7bと接触する面とは反対側の面において、複数の凸状のリブ9dを有していてもよい。図15に図示するように、リブ9dは平面図で見て加圧部9a,9bの形成方向(延在方向)に対して垂直方向に形成されている。これにより、上述の実施形態よりも中間部9cの曲げ剛性を増加させることができ、ばね板部材9を押圧したときに、中間部9cの中央部が放熱部材7bから離れる(図5参照)ことを防ぐことができ、より広い範囲の放熱部材7bを押圧できる。
Fifth Embodiment
(Fig. 15, Fig. 16)
In the spring plate member 9, the intermediate portion 9c connecting the pressure portions 9a and 9b may have a plurality of convex ribs 9d on the surface opposite to the surface that contacts the heat dissipation member 7b. As shown in Fig. 15, the ribs 9d are formed perpendicular to the formation direction (extension direction) of the pressure portions 9a and 9b in a plan view. This makes it possible to increase the bending rigidity of the intermediate portion 9c compared to the above-mentioned embodiment, and prevents the center portion of the intermediate portion 9c from moving away from the heat dissipation member 7b (see Fig. 5) when the spring plate member 9 is pressed, and a wider range of the heat dissipation member 7b can be pressed.
(第6の実施形態)
(図17)
 上述の中間部9cでは、中間部9cの板厚は、被荷重部11やその他の領域の板厚と一様である場合について示したが、中間部9cの板厚T2が、被荷重部11やその他の領域の板厚T1より厚く形成する構成を有していてもよい。このようにすることで、前述の第1の実施形態よりも中間部9cの曲げ剛性を増加させることができ、ばね板部材9が放熱部材7bを押圧する際に、中間部9cの中央部が、放熱部材7bから離れることを防ぐことができ、より広い範囲に荷重を負荷することが可能になる。
Sixth Embodiment
(Figure 17)
In the above-described intermediate portion 9c, the plate thickness of the intermediate portion 9c has been shown to be uniform with the plate thickness of the load-bearing portion 11 and other regions, but the plate thickness T2 of the intermediate portion 9c may be configured to be thicker than the plate thickness T1 of the load-bearing portion 11 and other regions. In this way, the bending rigidity of the intermediate portion 9c can be increased more than in the first embodiment described above, and when the spring plate member 9 presses the heat dissipation member 7b, the center of the intermediate portion 9c can be prevented from separating from the heat dissipation member 7b, making it possible to apply a load over a wider range.
(第7の実施形態)
(図18)
 第7の実施形態は、第6の実施形態とは同様の作用効果を狙ったものではあるが、板厚が厚い中間部9cの製造方法が第6の実施形態とは異なり、放熱部材7bとは反対側の面に中間部9cを厚く形成している構造である。放熱部材7bと接する面とは反対側の面に積層されるように板厚が厚くなった中間部9cの板厚T4が、被荷重部11やその他の領域の板厚T3よりも厚い様子が図示されている。このようにすることで、前述の第6の実施形態と同様の作用効果を得られる。なお、中間部9cを厚くしている部分は、ばね板部材9と同一材料でもよいし、ばね板部材9と異なる材料が積層され接続された構造でもあってもよい。
Seventh Embodiment
(Figure 18)
The seventh embodiment aims to achieve the same effect as the sixth embodiment, but the manufacturing method of the thick intermediate portion 9c is different from that of the sixth embodiment, and the intermediate portion 9c is formed thick on the surface opposite to the heat dissipation member 7b. The figure shows that the thickness T4 of the intermediate portion 9c, which is thickened so as to be laminated on the surface opposite to the surface in contact with the heat dissipation member 7b, is thicker than the thickness T3 of the load bearing portion 11 and other regions. In this way, the same effect as the sixth embodiment can be obtained. The thickened portion of the intermediate portion 9c may be made of the same material as the spring plate member 9, or may be made of a material different from the spring plate member 9 laminated and connected.
(第8の実施形態)
(図19)
 前述した実施形態では、フランジ部11fの形状が矩形状であって、フランジ形状の付け根の部分と先端の部分がほぼ同じ幅である場合を示したが、このフランジ形状がテーパ形状であってもよい。
Eighth embodiment
(Figure 19)
In the above embodiment, the flange portion 11f is rectangular and has approximately the same width at the base and tip of the flange, but the flange may be tapered.
 テーパ形状を有する被荷重部11は、フランジ部11fの付け根部分の幅W1が、フランジ部11fの先端部分の幅W2より大きくなっている。これにより、前述した実施形態と同一の効果が得られるだけでなく、放熱部材7bや半導体モジュール100に負荷する面圧を減少することなく、ばね板部材9の面積をより小さくすることができるため、軽量化を実現できる。また、フランジ部11fのテーパ形状の斜線の延長が半導体モジュール100の中央付近で重なるようにテーパが形成されていることで、半導体モジュール100の中央まで面圧をかけることが可能になる。 The tapered load bearing portion 11 has a width W1 at the base of the flange portion 11f that is greater than the width W2 at the tip of the flange portion 11f. This not only provides the same effect as the previously described embodiment, but also allows the area of the spring plate member 9 to be smaller without reducing the surface pressure applied to the heat dissipation member 7b or the semiconductor module 100, thereby achieving weight reduction. In addition, the taper is formed so that the extensions of the diagonal lines of the tapered shape of the flange portion 11f overlap near the center of the semiconductor module 100, making it possible to apply surface pressure all the way to the center of the semiconductor module 100.
(第9の実施形態)
(図20)
 放熱部材7bは、ばね板部材9と接する面に凸部70bを有している。これに伴い、ばね板部材9の中間部9cの中央の一部に、凸部70bの形状に合わせるように屈曲部9eが設けられている。屈曲部9e部分を除いた中間部9cの断面上の幅W5,W6は、それぞれ凸部9eの断面上幅W4に比べて大きい。これにより、第1の実施形態と同様の効果が得られる。
Ninth embodiment
(Figure 20)
The heat dissipation member 7b has a convex portion 70b on the surface that contacts the spring plate member 9. Accordingly, a bent portion 9e is provided in a central portion of an intermediate portion 9c of the spring plate member 9 so as to match the shape of the convex portion 70b. The cross-sectional widths W5 and W6 of the intermediate portion 9c excluding the bent portion 9e are each larger than the cross-sectional width W4 of the convex portion 9e. This provides the same effects as the first embodiment.
 以上説明した実施形態では、封止樹脂10は半導体モジュール100において絶縁層4を含んで放熱面以外を封止した例を示したが、絶縁層4,4bを封止せずに第1の導体3および第2の導体3bまでを封止した半導体モジュール100にしてもよい。その他、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で、種々変形して適用することが可能である。 In the above-described embodiment, the sealing resin 10 seals the semiconductor module 100 including the insulating layer 4 except for the heat dissipation surface, but the semiconductor module 100 may be one in which the insulating layers 4, 4b are not sealed and only the first conductor 3 and the second conductor 3b are sealed. In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the spirit of the present invention.
 以上説明した本発明の実施形態によれば、以下の作用効果を奏する。 The above-described embodiment of the present invention provides the following effects.
(1)半導体素子1と、半導体素子1と接合される導体板3,3bと、をモールド封止して形成されている複数の半導体モジュール100と、半導体モジュール100の少なくとも一方の面に熱伝導部材5を介して接触する放熱部材7,7bと、放熱部材7,7bを半導体モジュール100に向かって押圧する弾性変形可能な付勢部材9と、を備えるパワー半導体装置であって、付勢部材9は、放熱部材7bに当接する一対の加圧部9a,9bと、一対の加圧部9a,9bの外側に設けられかつ固定部材13により荷重を受ける複数の被荷重部11a,11bと、一対の加圧部9a,9bの間に設けられかつ荷重に応じた曲げ応力が生じる中間部9cと、を有する。複数の半導体モジュール100は、一対の加圧部9a,9bの延在方向に沿って配置される。中間部9cは、付勢部材9が放熱部材7bを押圧するときに曲げ応力によって放熱部材7bから離れる方向に弾性変形する。このようにしたことで、小型化、部品点数の低減、放熱性の向上、を実現し、効率よく積層方向に加圧可能な信頼性の高いパワー半導体装置を提供できる。 (1) A power semiconductor device including a plurality of semiconductor modules 100 formed by molding and sealing a semiconductor element 1 and conductive plates 3, 3b joined to the semiconductor element 1, heat dissipation members 7, 7b that contact at least one surface of the semiconductor module 100 via a thermally conductive member 5, and an elastically deformable biasing member 9 that presses the heat dissipation members 7, 7b toward the semiconductor module 100, in which the biasing member 9 has a pair of pressure portions 9a, 9b that abut the heat dissipation member 7b, a plurality of load-bearing portions 11a, 11b that are provided outside the pair of pressure portions 9a, 9b and receive a load from a fixing member 13, and an intermediate portion 9c that is provided between the pair of pressure portions 9a, 9b and generates a bending stress according to the load. The plurality of semiconductor modules 100 are arranged along the extension direction of the pair of pressure portions 9a, 9b. The intermediate portion 9c elastically deforms in a direction away from the heat dissipation member 7b due to the bending stress when the biasing member 9 presses the heat dissipation member 7b. This makes it possible to provide a highly reliable power semiconductor device that is compact, has a reduced number of components, and has improved heat dissipation, and can be efficiently compressed in the stacking direction.
(2)一対の加圧部9a,9bは、付勢部材9が放熱部材7bを押圧する方向から見て、半導体素子1が配置される領域に重なる位置に形成される。このようにしたことで、パワー半導体装置の放熱性能をさらに向上させることができる。 (2) The pair of pressure members 9a, 9b are formed in positions that overlap the area in which the semiconductor element 1 is disposed when viewed from the direction in which the biasing member 9 presses the heat dissipation member 7b. This can further improve the heat dissipation performance of the power semiconductor device.
(3)一対の加圧部9a,9bは、延在方向に対して垂直の断面において、熱伝導部材5の中心の位置と熱伝導部材5の両端部との間の位置で、それぞれ放熱部材7bと接触している。このようにしたことで、熱伝導層5に対して均等かつ全体的に面圧を発生させることができ、放熱性能が高い信頼性のあるパワー半導体装置が実現できる。 (3) In a cross section perpendicular to the extension direction, the pair of pressure applying portions 9a, 9b are in contact with the heat dissipation member 7b at positions between the center of the heat conduction member 5 and both ends of the heat conduction member 5. In this way, it is possible to generate uniform and overall surface pressure on the heat conduction layer 5, and a reliable power semiconductor device with high heat dissipation performance can be realized.
(4)放熱部材7bは、内部に放熱フィン7eが配置された中空状の冷媒流路を有し、一対の加圧部9a,9bは、付勢部材9が放熱部材7bを押圧する方向から見て、放熱フィン7eが配置される領域内に形成されている。このようにしたことで、熱伝導層5全体に効率よく圧縮応力を発生させることができる。 (4) The heat dissipation member 7b has a hollow refrigerant flow path in which the heat dissipation fins 7e are arranged, and the pair of pressure sections 9a, 9b are formed within the area in which the heat dissipation fins 7e are arranged when viewed from the direction in which the biasing member 9 presses the heat dissipation member 7b. In this way, compressive stress can be efficiently generated throughout the thermal conduction layer 5.
(5)付勢部材9は、延在方向に対して垂直の断面において、一対の加圧部9a,9bを基準にして、放熱部材7bから離れる方向に延びて形成されている一対の傾斜部11dと、一対の傾斜部11dの両端部から外側に向かってそれぞれ延びて形成されている複数のフランジ部11fと、を有する。複数のフランジ部11fは、それぞれ固定部材13が固定され、かつ、付勢部材9が放熱部材7bを押圧する方向から見て、複数の半導体モジュール100の配置の間の位置において、半導体モジュール100から離れる方向に形成されている複数の突出部11gと、傾斜部11dと突出部11gとの間に形成され、かつ延在方向に沿って形成されている連結部11eと、を有する。被荷重部11a,11bは、複数の突出部11gの先端側に形成されている。このようにしたことで、荷重を受けることに対する付勢部材9の弾性変形が起こり、小型化、部品点数の削減、放熱性の向上、を実現し、効率よく積層方向に加圧可能になる。 (5) In a cross section perpendicular to the extending direction, the biasing member 9 has a pair of inclined portions 11d formed to extend in a direction away from the heat dissipating member 7b with respect to the pair of pressure portions 9a, 9b, and a plurality of flange portions 11f formed to extend outward from both ends of the pair of inclined portions 11d. The plurality of flange portions 11f each have a fixing member 13 fixed thereto, and have a plurality of protruding portions 11g formed in a direction away from the semiconductor modules 100 at positions between the arrangement of the plurality of semiconductor modules 100 as viewed from the direction in which the biasing member 9 presses the heat dissipating member 7b, and a connecting portion 11e formed between the inclined portions 11d and the protruding portions 11g and formed along the extending direction. The load bearing portions 11a, 11b are formed on the tip side of the plurality of protruding portions 11g. In this way, the biasing member 9 elastically deforms in response to the load, realizing miniaturization, a reduction in the number of parts, and improved heat dissipation, and enabling efficient pressure application in the stacking direction.
(6)中間部9cは、平板形状を有し、かつ付勢部材9が荷重を受けて放熱部材7bに押圧される前に放熱部材7bに接触した状態では、放熱部材7bと平行である。このようにしたことで、放熱部材7bへの損傷の防止と、耐振性の向上を実現できる。また、放熱部材7bの全体に圧縮応力を発生させることができる。 (6) The intermediate portion 9c has a flat plate shape and is parallel to the heat dissipation member 7b when the biasing member 9 is in contact with the heat dissipation member 7b before it is pressed against the heat dissipation member 7b under load. This prevents damage to the heat dissipation member 7b and improves vibration resistance. In addition, compressive stress can be generated throughout the heat dissipation member 7b.
(7)中間部9cは、放熱部材7bと接触する面とは反対側の面に、複数の凸形状のリブ9dを有している。このようにしたことで、中間部9cの曲げ剛性を増加させることができ、より広い範囲の放熱部材7bを押圧できる。 (7) The intermediate portion 9c has multiple convex ribs 9d on the surface opposite to the surface that contacts the heat dissipation member 7b. This increases the bending rigidity of the intermediate portion 9c, allowing it to press a wider range of the heat dissipation member 7b.
(8)リブ9dは、加圧部9a,9bの延在方向に対して垂直方向に形成されている。このようにしたことで、中間部9cの曲げ剛性を増加させることができる。 (8) The rib 9d is formed perpendicular to the extension direction of the pressure sections 9a and 9b. This increases the bending rigidity of the middle section 9c.
(9)付勢部材9において、中間部9cの厚さT2(T4)は、その他の部分の厚さT1(T3)よりも厚く形成されている。このようにしたことで、中間部9cの曲げ剛性を増加させ、放熱部材7bのより広い範囲に荷重を負荷することが可能になる。 (9) In the biasing member 9, the thickness T2 (T4) of the middle portion 9c is made thicker than the thickness T1 (T3) of the other portions. This increases the bending rigidity of the middle portion 9c, making it possible to apply a load over a wider range of the heat dissipation member 7b.
(10)付勢部材9において、放熱部材7bと接する面とは反対側の面で中間部9cと傾斜部111dが形成する角θ2は、鈍角である。このようにしたことで、放熱部材7および半導体モジュール100に対して効率よく押圧でき、放熱性能が高く信頼性の高いパワー半導体装置が実現できる。 (10) In the biasing member 9, the angle θ2 formed by the middle portion 9c and the inclined portion 111d on the surface opposite to the surface in contact with the heat dissipation member 7b is an obtuse angle. This allows efficient pressing against the heat dissipation member 7 and the semiconductor module 100, realizing a power semiconductor device with high heat dissipation performance and high reliability.
(11)複数の被荷重部11a,11bのうち、付勢部材9の四隅の位置に形成されている被荷重部11aの第1バネ定数は、四隅以外の位置に形成されている被荷重部11bにおける第2バネ定数よりも小さく、第2バネ定数は、第1バネ定数の2倍以下である。このようにしたことで、ばね板部材9が放熱部材7bを押圧するときに、各半導体モジュール100に発生する圧縮応力のばらつきを小さくできる。 (11) Of the multiple load bearing parts 11a, 11b, the first spring constant of the load bearing parts 11a formed at the four corners of the biasing member 9 is smaller than the second spring constant of the load bearing parts 11b formed at positions other than the four corners, and the second spring constant is not more than twice the first spring constant. By doing so, it is possible to reduce the variation in the compressive stress generated in each semiconductor module 100 when the spring plate member 9 presses the heat dissipation member 7b.
(12)フランジ部11fは、テーパ形状を有している。このようにしたことで、軽量化を実現できる。 (12) The flange portion 11f has a tapered shape. This makes it possible to reduce weight.
(13)複数の被荷重部11a,11bのうち、付勢部材の四隅の位置に形成されている被荷重部11aにかかる荷重は、四隅以外の位置に形成されている被荷重部11bにかかる荷重よりも大きい。このようにしたことで、ばね板部材9が放熱部材7bを押圧するときに、各半導体モジュール100に発生する圧縮応力のばらつきを小さくできる。 (13) Of the multiple load bearing parts 11a, 11b, the load applied to the load bearing parts 11a formed at the four corners of the biasing member is greater than the load applied to the load bearing parts 11b formed at positions other than the four corners. This reduces the variation in the compressive stress generated in each semiconductor module 100 when the spring plate member 9 presses the heat dissipation member 7b.
 なお、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で様々な変形や他の構成を組み合わせることができる。また本発明は、上記の実施形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。 The present invention is not limited to the above-described embodiment, and various modifications and other configurations can be combined without departing from the spirit of the invention. Furthermore, the present invention is not limited to those having all of the configurations described in the above-described embodiment, and also includes those in which some of the configurations have been omitted.
1 パワー半導体素子
2 接合材
3 第1の導体
 3b 第2の導体
 3c 外部端子
4 絶縁層
5 熱伝導層
7 第1放熱部材
 7b 第2放熱部材
 7d フィン形成領域
 7e フィン
 7f 中空の領域
8 固定フランジ
9 ばね板部材
 9a、9b加圧部
 9c 中間部
 9d リブ
 9e 中間凸部
10 封止樹脂
11 被荷重部
 11a 四隅の被荷重部
 11b 四隅以外の被荷重部
 11c 第1の固定部材を通す穴
 11d 傾斜部
 11e 連結部
 11f フランジ部
 11g 突出部
12 第2の固定部材
13 第1の固定部材
15 中間層
50 従来のばね板部材
 50a、50b 従来の加圧部
 50c 中心線
 51a、51b 従来の被荷重部
60 荷重方向
70 凹部
 70b 凸部
100 半導体モジュール
 100b 半導体モジュールの配置領域
101 小片モールド封止体
1 Power semiconductor element 2 Bonding material 3 First conductor 3b Second conductor 3c External terminal 4 Insulating layer 5 Thermal conduction layer 7 First heat dissipation member 7b Second heat dissipation member 7d Fin forming region 7e Fin 7f Hollow region 8 Fixing flange 9 Spring plate member 9a, 9b Pressure portion 9c Middle portion 9d Rib 9e Middle convex portion 10 Sealing resin 11 Loaded portion 11a Loaded portion at four corners 11b Loaded portion other than four corners 11c Hole for passing first fixing member 11d Inclined portion 11e Connecting portion 11f Flange portion 11g Protruding portion 12 Second fixing member 13 First fixing member 15 Middle layer 50 Conventional spring plate member 50a, 50b Conventional pressure portion 50c Center line 51a, 51b Conventional load-bearing portion 60 Load direction 70 Concave portion 70b Convex portion 100 Semiconductor module 100b Placement area of semiconductor module 101 Small piece mold sealing body

Claims (13)

  1.  半導体素子と、前記半導体素子と接合される導体板と、をモールド封止して形成されている複数のパワーモジュールと、
     前記パワーモジュールの少なくとも一方の面に熱伝導部材を介して接触する放熱部材と、
     前記放熱部材を前記パワーモジュールに向かって押圧する弾性変形可能な付勢部材と、を備えるパワー半導体装置であって、
     前記付勢部材は、前記放熱部材に当接する一対の加圧部と、前記一対の加圧部の外側に設けられかつ固定部材により荷重を受ける複数の被荷重部と、前記一対の加圧部の間に設けられかつ前記荷重に応じた曲げ応力が生じる中間部と、を有し、
     前記複数のパワーモジュールは、前記一対の加圧部の延在方向に沿って配置され、
     前記中間部は、前記付勢部材が前記放熱部材を押圧するときに前記曲げ応力によって前記放熱部材から離れる方向に弾性変形する
     パワー半導体装置。
    A plurality of power modules formed by molding a semiconductor element and a conductor plate joined to the semiconductor element;
    a heat dissipation member in contact with at least one surface of the power module via a thermal conductive member;
    a biasing member that is elastically deformable and presses the heat dissipation member toward the power module,
    the biasing member has a pair of pressure sections in contact with the heat dissipation member, a plurality of load-bearing sections provided outside the pair of pressure sections and receiving a load from a fixing member, and an intermediate section provided between the pair of pressure sections and in which a bending stress corresponding to the load is generated,
    The plurality of power modules are arranged along an extension direction of the pair of pressure applying portions,
    the intermediate portion is elastically deformed in a direction away from the heat dissipation member by the bending stress when the biasing member presses the heat dissipation member.
  2.  請求項1に記載された電力変換装置であって、
     前記一対の加圧部は、前記付勢部材が前記放熱部材を押圧する方向から見て、前記半導体素子が配置される領域に重なる位置に形成される
     パワー半導体装置。
    The power conversion device according to claim 1,
    the pair of pressure applying portions are formed at positions overlapping a region in which the semiconductor element is disposed when viewed from a direction in which the biasing member presses the heat dissipation member.
  3.  請求項1に記載された電力変換装置であって、
     前記一対の加圧部は、前記延在方向に対して垂直の断面において、前記熱伝導部材の中心の位置と前記熱伝導部材の両端部との間の位置で、それぞれ前記放熱部材と接触している
     パワー半導体装置。
    The power conversion device according to claim 1,
    the pair of pressure applying portions are in contact with the heat dissipation member at positions between a center of the heat conducting member and both ends of the heat conducting member in a cross section perpendicular to the extending direction.
  4.  請求項1に記載されたパワー半導体装置であって、
     前記放熱部材は、内部に放熱フィンが配置された中空状の冷媒流路を有し、
     前記一対の加圧部は、前記付勢部材が前記放熱部材を押圧する方向から見て、前記放熱フィンが配置される領域内に形成されている
     パワー半導体装置。
    2. The power semiconductor device according to claim 1,
    The heat dissipation member has a hollow refrigerant flow passage with a heat dissipation fin disposed therein,
    the pair of pressure applying portions are formed within a region in which the heat dissipation fins are disposed when viewed from a direction in which the biasing member presses the heat dissipation member.
  5.  請求項1に記載されたパワー半導体装置であって、
     前記付勢部材は、前記延在方向に対して垂直の断面において、前記一対の加圧部を基準にして、前記放熱部材から離れる方向に延びて形成されている一対の傾斜部と、前記一対の傾斜部の両端部から外側に向かってそれぞれ延びて形成されている複数のフランジ部と、を有し、
     前記複数のフランジ部は、それぞれ前記固定部材が固定され、かつ、前記付勢部材が前記放熱部材を押圧する方向から見て、前記複数のパワーモジュールの配置の間の位置において、前記パワーモジュールから離れる方向に形成されている複数の突出部と、前記傾斜部と前記突出部との間に形成され、かつ前記延在方向に沿って形成されている連結部と、を有し、
     前記被荷重部は、前記複数の突出部の先端側に形成されている
     パワー半導体装置。
    2. The power semiconductor device according to claim 1,
    the biasing member has, in a cross section perpendicular to the extending direction, a pair of inclined portions formed to extend in a direction away from the heat dissipating member with respect to the pair of pressure portions as a reference, and a plurality of flange portions formed to extend outward from both ends of the pair of inclined portions,
    each of the plurality of flange portions includes a plurality of protruding portions to which the fixing member is fixed and which are formed in a direction away from the power modules at positions between the plurality of power modules when viewed from a direction in which the biasing member presses the heat dissipation member, and a connecting portion which is formed between the inclined portion and the protruding portion and which is formed along the extending direction;
    the load bearing portion is formed on a tip side of the plurality of protrusions.
  6.  請求項1に記載されたパワー半導体装置であって、
     前記中間部は、平板形状を有し、かつ前記付勢部材が前記荷重を受けて前記放熱部材に押圧される前に前記放熱部材に接触した状態では、前記放熱部材と平行である
     パワー半導体装置。
    2. The power semiconductor device according to claim 1,
    the intermediate portion has a flat plate shape and is parallel to the heat dissipation member when the biasing member is in contact with the heat dissipation member before being pressed against the heat dissipation member by receiving the load.
  7.  請求項1に記載されたパワー半導体装置であって、
     前記中間部は、前記放熱部材と接触する面とは反対側の面に、複数の凸形状のリブを有している
     パワー半導体装置。
    2. The power semiconductor device according to claim 1,
    the intermediate portion has a surface opposite to a surface in contact with the heat dissipation member, the surface having a plurality of convex ribs.
  8.  請求項7に記載されたパワー半導体装置であって、
     前記リブは、前記加圧部の延在方向に対して垂直方向に形成されている
     パワー半導体装置。
    8. A power semiconductor device according to claim 7,
    The rib is formed in a direction perpendicular to an extending direction of the pressure applying portion.
  9.  請求項1に記載されたパワー半導体装置であって、
     前記付勢部材において、前記中間部の厚さは、その他の部分の厚さよりも厚く形成されている
     パワー半導体装置。
    2. The power semiconductor device according to claim 1,
    The power semiconductor device, wherein the biasing member has a thickness at the intermediate portion that is greater than a thickness at any other portion.
  10.  請求項5に記載されたパワー半導体装置であって、
     前記付勢部材において、前記放熱部材と接する面とは反対側の面で前記中間部と前記傾斜部が形成する角は、鈍角である
     パワー半導体装置。
    6. A power semiconductor device according to claim 5,
    the angle formed by the intermediate portion and the inclined portion on a surface of the biasing member opposite to a surface in contact with the heat dissipation member is an obtuse angle.
  11.  請求項1に記載されたパワー半導体装置であって、
     複数の前記被荷重部のうち、前記付勢部材の四隅の位置に形成されている前記被荷重部の第1バネ定数は、前記四隅以外の位置に形成されている前記被荷重部における第2バネ定数よりも小さく、
     前記第2バネ定数は、前記第1バネ定数の2倍以下である
     パワー半導体装置。
    2. The power semiconductor device according to claim 1,
    a first spring constant of the load-bearing portions formed at the four corner positions of the biasing member among the plurality of load-bearing portions is smaller than a second spring constant of the load-bearing portions formed at the positions other than the four corners;
    The second spring constant is equal to or less than twice the first spring constant.
  12.  請求項5に記載されたパワー半導体装置であって、
     前記フランジ部は、テーパ形状を有している
     パワー半導体装置。
    6. A power semiconductor device according to claim 5,
    The flange portion has a tapered shape.
  13.  請求項1に記載されたパワー半導体装置であって、
     複数の前記被荷重部のうち、前記付勢部材の四隅の位置に形成されている前記被荷重部にかかる前記荷重は、前記四隅以外の位置に形成されている前記被荷重部にかかる前記荷重よりも大きい
     パワー半導体装置。
    2. The power semiconductor device according to claim 1,
    A power semiconductor device, wherein the load applied to the load-bearing portions formed at the four corner positions of the biasing member among the plurality of load-bearing portions is greater than the load applied to the load-bearing portions formed at positions other than the four corners.
PCT/JP2023/041355 2023-01-17 2023-11-16 Power semiconductor device WO2024154426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-005477 2023-01-17
JP2023005477A JP2024101473A (en) 2023-01-17 2023-01-17 Power semiconductor device

Publications (1)

Publication Number Publication Date
WO2024154426A1 true WO2024154426A1 (en) 2024-07-25

Family

ID=91955730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041355 WO2024154426A1 (en) 2023-01-17 2023-11-16 Power semiconductor device

Country Status (2)

Country Link
JP (1) JP2024101473A (en)
WO (1) WO2024154426A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070222A (en) * 1996-08-27 1998-03-10 Fujitsu Ltd Packaged component cooling structure
JP2013042115A (en) * 2011-07-20 2013-02-28 Daikin Ind Ltd Attachment structure of refrigerant pipeline
JP2014016026A (en) * 2012-06-13 2014-01-30 Toyota Industries Corp Plate spring and heat dissipation device
JP2014049586A (en) * 2012-08-31 2014-03-17 Toyota Industries Corp Leaf spring pressing member used to fix semiconductor module and semiconductor device
JP2021005603A (en) * 2019-06-25 2021-01-14 株式会社デンソー Power module and manufacturing method thereof
JP2021052443A (en) * 2019-09-20 2021-04-01 日立Astemo株式会社 Power conversion device and motor integrated power conversion device
JP2021097100A (en) * 2019-12-16 2021-06-24 株式会社東芝 Electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070222A (en) * 1996-08-27 1998-03-10 Fujitsu Ltd Packaged component cooling structure
JP2013042115A (en) * 2011-07-20 2013-02-28 Daikin Ind Ltd Attachment structure of refrigerant pipeline
JP2014016026A (en) * 2012-06-13 2014-01-30 Toyota Industries Corp Plate spring and heat dissipation device
JP2014049586A (en) * 2012-08-31 2014-03-17 Toyota Industries Corp Leaf spring pressing member used to fix semiconductor module and semiconductor device
JP2021005603A (en) * 2019-06-25 2021-01-14 株式会社デンソー Power module and manufacturing method thereof
JP2021052443A (en) * 2019-09-20 2021-04-01 日立Astemo株式会社 Power conversion device and motor integrated power conversion device
JP2021097100A (en) * 2019-12-16 2021-06-24 株式会社東芝 Electronic device

Also Published As

Publication number Publication date
JP2024101473A (en) 2024-07-29

Similar Documents

Publication Publication Date Title
US9455215B2 (en) Semiconductor device and method for manufacturing the same
US6690087B2 (en) Power semiconductor module ceramic substrate with upper and lower plates attached to a metal base
US7723839B2 (en) Semiconductor device, stacked semiconductor device, and manufacturing method for semiconductor device
US7557434B2 (en) Power electronic package having two substrates with multiple electronic components
US7768121B2 (en) Apparatus and methods for cooling semiconductor integrated circuit package structures
JP3406753B2 (en) Semiconductor device and semiconductor module
US20080101032A1 (en) Base Plate For A Power Semiconductor Module
JP2001203319A (en) Laminated semiconductor device
JP2008148530A (en) Inverter apparatus
WO2005112113A2 (en) Mounting with auxiliary bumps
JP6743542B2 (en) Semiconductor device and semiconductor device case
JP2014013878A (en) Electronic apparatus
EP3890009A1 (en) Power module of double-faced cooling with bonding layers including anti-tilting members
WO2024154426A1 (en) Power semiconductor device
CN115249666A (en) Chip packaging structure and electronic equipment
JP2001024125A (en) Flat semiconductor device
WO2021085006A1 (en) Power semiconductor device and method for manufacturing power semiconductor device
JP2004128265A (en) Semiconductor module and plate-like lead
CN113039636B (en) Power semiconductor device
CN114446899B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP3394000B2 (en) Modular semiconductor device and power conversion device using the same
WO2022209083A1 (en) Power semiconductor device
US20230245948A1 (en) Semiconductor device and manufacturing method thereof
JP6952824B2 (en) Power modules and power semiconductor devices using them
WO2023166635A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917638

Country of ref document: EP

Kind code of ref document: A1