JP3394000B2 - Modular semiconductor device and power conversion device using the same - Google Patents

Modular semiconductor device and power conversion device using the same

Info

Publication number
JP3394000B2
JP3394000B2 JP34271698A JP34271698A JP3394000B2 JP 3394000 B2 JP3394000 B2 JP 3394000B2 JP 34271698 A JP34271698 A JP 34271698A JP 34271698 A JP34271698 A JP 34271698A JP 3394000 B2 JP3394000 B2 JP 3394000B2
Authority
JP
Japan
Prior art keywords
semiconductor device
type semiconductor
module
insulating
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34271698A
Other languages
Japanese (ja)
Other versions
JP2000174198A (en
Inventor
功 奥富
敦史 山本
貴史 草野
隆宣 西村
裕 石渡
明 田中
浩二 荒木
寛 福吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34271698A priority Critical patent/JP3394000B2/en
Publication of JP2000174198A publication Critical patent/JP2000174198A/en
Application granted granted Critical
Publication of JP3394000B2 publication Critical patent/JP3394000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、モジュール型半導
体装置及びこれを用いた電力変換装置に係り、特に、熱
抵抗を低減し得るモジュール型半導体装置及びこれを用
いた電力変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a module type semiconductor device and a power converter using the same, and more particularly to a module type semiconductor device capable of reducing thermal resistance and a power converter using the same.

【0002】[0002]

【従来の技術】一般に、IGBT(insulated gate bipo
lar transistor) 並びにIEGT(injection enhanced
gate transistor)などの半導体スイッチング素子は、保
護用のケースに収容されてモジュール型半導体装置とし
て用いられる。また、この種のモジュール型半導体装置
は、放熱用の冷却器などに取付けられて電力変換装置と
して用いられる。
2. Description of the Related Art Generally, an IGBT (insulated gate bipo)
lar transistor) and IEGT (injection enhanced)
A semiconductor switching element such as a gate transistor) is housed in a protective case and used as a module type semiconductor device. Further, this type of module type semiconductor device is attached to a heat dissipation cooler or the like and used as a power conversion device.

【0003】図4は一般的な片側冷却タイプのモジュー
ル型半導体装置とこれを用いた電力変換装置の断面構成
を示す模式図である。このモジュール型半導体装置は、
周囲部を残して両面に金属薄膜層1,2が付けられた絶
縁基板3の上面の金属薄膜層1上に複数のSiチップ
(半導体素子)4がはんだ付けされ、各Siチップ4が
互いにボンディングワイヤ5(又は金属薄板)を介して
電気的に接続されている。
FIG. 4 is a schematic view showing a cross-sectional structure of a general one-side cooling type module type semiconductor device and a power conversion device using the same. This modular semiconductor device
A plurality of Si chips (semiconductor elements) 4 are soldered on the metal thin film layer 1 on the upper surface of the insulating substrate 3 having the metal thin film layers 1 and 2 on both sides except the peripheral portion, and the Si chips 4 are bonded to each other. It is electrically connected via a wire 5 (or a thin metal plate).

【0004】ここで、金属薄膜層1,2はCu(又はA
lでもよい)が使用され、Siチップ側がSiチップ4
の機能に対応してパターニングされている。絶縁基板3
は、通常、窒化アルミニウム(AlN)又は酸化アルミ
ニウム(Al)等のセラミックスが使用され、そ
の厚さが定格電圧から余裕をみた絶縁耐圧に対応して設
定されている。具体的には絶縁基板3は、AlN基板の
両面にCu板を張合せて高熱伝導性を持たせた構造とな
っている。
Here, the metal thin film layers 1 and 2 are made of Cu (or A
1) may be used, and the Si chip side is the Si chip 4
Is patterned to correspond to the function of. Insulating substrate 3
Is usually made of ceramics such as aluminum nitride (AlN) or aluminum oxide (Al 2 O 3 ), and its thickness is set corresponding to the withstand voltage with a margin from the rated voltage. Specifically, the insulating substrate 3 has a structure in which a Cu plate is attached to both surfaces of an AlN substrate so as to have high thermal conductivity.

【0005】絶縁基板3の底面は、金属薄膜層2を介し
て金属製の放熱板6の中央部にはんだ付けされ、放熱板
6の周囲部上には絶縁基板3の周囲全体を囲うように外
囲器7が取付けられている。放熱板6は、ここではCu
が使用される。
The bottom surface of the insulating substrate 3 is soldered to the central portion of the metal heat sink 6 through the metal thin film layer 2 so that the entire periphery of the insulating substrate 3 is surrounded on the peripheral portion of the heat sink 6. An envelope 7 is attached. The heat sink 6 is Cu here.
Is used.

【0006】また、外囲器7の内側上部には、外部端子
用リード線8及び開口部(図示せず)を有する端子保持
部9が外囲器7に蓋をするように取付けられている。な
お、外部端子用リード線8は、外囲器7内のSiチップ
4と外部との間で電気的に導通をとるための部材であ
る。
Further, a lead wire 8 for an external terminal and a terminal holding portion 9 having an opening (not shown) are attached to the inner upper portion of the envelope 7 so as to cover the envelope 7. . The external terminal lead wire 8 is a member for electrically connecting the Si chip 4 in the envelope 7 and the outside.

【0007】ここで、放熱板6、外囲器7、端子保持部
9で囲まれたモジュール内部には、前述した開口部を介
して絶縁性のSiゲル10が流し込まれ、Siゲル10
の硬化の後、開口部が封止部材にて密封されている。
Here, the insulating Si gel 10 is poured into the inside of the module surrounded by the heat dissipation plate 6, the envelope 7, and the terminal holding portion 9 through the above-mentioned opening, and the Si gel 10 is filled.
After curing, the opening is sealed with a sealing member.

【0008】以上のようなモジュール型半導体装置は、
熱伝導性を有する熱伝導グリース等が放熱板6における
冷却器(ヒートシンク)11との対向部に塗布された
後、放熱板6の四隅の貫通孔6aを通してボルト12に
より冷却器11に固定される。これにより、電力変換装
置が作成される。
The module type semiconductor device as described above is
After a heat conductive grease having heat conductivity is applied to a portion of the heat dissipation plate 6 facing the cooler (heat sink) 11, it is fixed to the cooler 11 by bolts 12 through the through holes 6a at the four corners of the heat dissipation plate 6. . As a result, the power conversion device is created.

【0009】モジュール型半導体装置内のSiチップ4
で発生した熱は、絶縁基板3並びに放熱板6を通って冷
却器11に流出する。このように、従来のモジュール型
半導体装置は、Siチップ3の片面のみを冷却する。
Si chip 4 in a module type semiconductor device
The heat generated in 1 flows out to the cooler 11 through the insulating substrate 3 and the heat dissipation plate 6. Thus, the conventional module-type semiconductor device cools only one side of the Si chip 3.

【0010】一方、図5は両面冷却タイプのモジュール
型半導体装置を用いた電力変換装置の断面構成を示す模
式図である。図示するように、Siチップ4の下側は、
図4に示した装置と同様に構成されている。Siチップ
4の上面は、配線部材13が接合されている。配線部材
13の上側は、絶縁材14及び補助放熱板15が順次接
合されている。補助放熱板15と(主)放熱板6との間
は、絶縁材14、Siチップ4及び絶縁基板3を囲むよ
うに外囲器7が取付けられている。
On the other hand, FIG. 5 is a schematic diagram showing a cross-sectional structure of a power conversion device using a double-sided cooling type module type semiconductor device. As shown, the lower side of the Si chip 4 is
It is configured similarly to the device shown in FIG. The wiring member 13 is joined to the upper surface of the Si chip 4. On the upper side of the wiring member 13, the insulating material 14 and the auxiliary heat dissipation plate 15 are sequentially joined. An envelope 7 is attached between the auxiliary heat dissipation plate 15 and the (main) heat dissipation plate 6 so as to surround the insulating material 14, the Si chip 4, and the insulating substrate 3.

【0011】このような電力変換装置は、片面冷却タイ
プと両面冷却タイプのいずれも大容量化が図られてお
り、大容量化の観点から、高耐圧化、低熱抵抗化、機械
的信頼性の向上といったことが要求されている。
[0012] Such a power converter is designed to have a large capacity in both the single-sided cooling type and the double-sided cooling type. From the viewpoint of increasing the capacity, a high withstand voltage, a low thermal resistance, and a mechanical reliability are provided. There is a demand for improvement.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、以上の
ようなモジュール型半導体装置及び電力変換装置では、
高耐圧化、低熱抵抗化、機械的信頼性向上といった要求
が互いに相反する内容であるため、大容量化の実現が困
難となっている。例えば図4に示す構成の場合、高耐圧
化のためには、絶縁基板3中のセラミックスの厚さを増
大する必要があるが、この場合、セラミックスの厚さに
比例して熱抵抗を増大させてしまう。
However, in the above-described module type semiconductor device and power conversion device,
Since requirements such as high breakdown voltage, low thermal resistance, and improvement in mechanical reliability conflict with each other, it is difficult to realize a large capacity. For example, in the case of the structure shown in FIG. 4, it is necessary to increase the thickness of the ceramic in the insulating substrate 3 in order to increase the withstand voltage. In this case, the thermal resistance is increased in proportion to the thickness of the ceramic. Will end up.

【0013】また、セラミックスの厚さの増大に併せて
放熱板6の厚みも増大させる必要がある。放熱板6の厚
みを増大させない場合、セラミックスとCuなどを用い
た放熱板6との熱膨張差により、両者のはんだ付け時に
そりを生じ、セラミックス表面の引張応力によりセラミ
ックスにクラックを生じ易くなり、機械的信頼性を低下
させるからである。しかし、放熱板6の厚さを増大させ
ると、放熱板6の厚さに比例してさらに熱抵抗を増大さ
せてしまう。また、モジュール型半導体装置は、放熱板
6が冷却器11にボルト12で固定されるが、最も冷却
すべきSiチップ4直下において、放熱板6と冷却器1
1との間に数ミクロンの隙間が生じて接触熱抵抗が大き
くなり、十分な熱伝導が確保されない。
Further, it is necessary to increase the thickness of the heat dissipation plate 6 as the thickness of the ceramics increases. If the thickness of the heat dissipation plate 6 is not increased, the thermal expansion difference between the ceramics and the heat dissipation plate 6 made of Cu or the like causes warpage during soldering of the two, and the tensile stress on the ceramic surface easily causes cracks in the ceramics. This is because it lowers the mechanical reliability. However, when the thickness of the heat dissipation plate 6 is increased, the thermal resistance is further increased in proportion to the thickness of the heat dissipation plate 6. Further, in the module type semiconductor device, the heat sink 6 is fixed to the cooler 11 with the bolts 12, but the heat sink 6 and the cooler 1 are provided immediately below the Si chip 4 to be cooled most.
A gap of several microns is generated between the two and the contact thermal resistance increases, and sufficient heat conduction cannot be ensured.

【0014】ここで、接触熱抵抗を低減させる観点か
ら、Siチップ4直下の放熱板6表面に膨らみを持たせ
る方式が考えられる。しかし、この方式は、ボルト締め
時に絶縁基板3やSiチップ4に曲げ応力が加わるた
め、クラックを生じ易くなり、機械的信頼性を低下させ
てしまう。
Here, from the viewpoint of reducing the contact thermal resistance, a method in which the surface of the heat dissipation plate 6 directly below the Si chip 4 has a bulge can be considered. However, in this method, since bending stress is applied to the insulating substrate 3 and the Si chip 4 when tightening the bolt, cracks are likely to occur and mechanical reliability is lowered.

【0015】なお、放熱板6と冷却器11との間には熱
伝導グリースが存在するが、熱伝導グリースの熱伝導率
が金属と比べて非常に小さいので、接触熱抵抗の低減が
不十分となっている。
Although heat-conducting grease exists between the radiator plate 6 and the cooler 11, the thermal conductivity of the heat-conducting grease is much smaller than that of metal, so that the contact heat resistance is not sufficiently reduced. Has become.

【0016】一方、両面冷却タイプの図5に示す構成
は、外囲器7と、(主)放熱板6から補助放熱板15ま
で接合された部材3,4,13,14との熱膨張差並び
に接合された各部材6,3,4,13,14,15間の
熱膨張差により、組立時や使用時に熱応力が発生し易
く、熱応力が過大な場合、Siチップ4又は絶縁基板3
の破損等が発生する可能性がある。
On the other hand, the structure shown in FIG. 5 of the double-sided cooling type has a difference in thermal expansion between the envelope 7 and the members 3, 4, 13, 14 joined from the (main) heat dissipation plate 6 to the auxiliary heat dissipation plate 15. In addition, due to the difference in thermal expansion between the joined members 6, 3, 4, 13, 14, 15, the thermal stress is likely to occur during assembly or use, and when the thermal stress is excessive, the Si chip 4 or the insulating substrate 3 is used.
May be damaged.

【0017】まとめると、モジュール型半導体装置及び
電力変換装置は、高耐圧化、低熱抵抗化、機械的信頼性
の向上といった相反する要求を満たせないため、大容量
化の実現が困難となっている。
In summary, the module type semiconductor device and the power conversion device cannot satisfy the contradictory requirements such as high breakdown voltage, low thermal resistance, and improved mechanical reliability, so that it is difficult to realize a large capacity. .

【0018】本発明は上記実情を考慮してなされたもの
で、耐圧の向上、熱抵抗の低減及び機械的信頼性の向上
により、大容量化を実現し得るモジュール型半導体装置
及びこれを用いた電力変換装置を提供することを目的と
する。
The present invention has been made in consideration of the above circumstances, and uses a module type semiconductor device capable of realizing a large capacity by improving withstand voltage, reducing thermal resistance and improving mechanical reliability, and a module type semiconductor device using the same. An object is to provide a power conversion device.

【0019】[0019]

【課題を解決するための手段】請求項1に対応する発明
は、主放熱板と、前記主放熱板上に接合され、両面に導
電性薄膜を有する高熱伝導性の絶縁基板と、前記絶縁基
板における前記主放熱板とは反対面の導電性薄膜に接合
された半導体素子と、前記半導体素子に接合された低熱
膨張部材と、前記低熱膨張部材に接合されて前記半導体
素子に電気的に接続された薄板状の配線部材と、前記低
熱膨脹部材に対向して前記配線部材上に配置された絶縁
部材と、前記絶縁部材上に配置され、前記絶縁部材より
も軟質の軟質部材と、前記絶縁基板を囲うように前記主
放熱板上に設けられた外囲器と、前記軟質部材上に配置
され、前記主放熱板に対向して蓋をするように前記外囲
器に取付けられた補助放熱板と、前記外囲器を貫通して
保持され、前記配線部材に電気的に接続された外部端子
と、前記主放熱板、前記補助放熱板及び前記外囲器で囲
まれた内部に充填される充填部材とを備えたモジュール
型半導体装置である。
The invention according to claim 1 is characterized in that a main heat dissipation plate, an insulating substrate having a high thermal conductivity bonded to the main heat dissipation plate and having conductive thin films on both surfaces thereof, and the insulating substrate. In the semiconductor element bonded to the conductive thin film on the surface opposite to the main heat dissipation plate, a low thermal expansion member bonded to the semiconductor element, and a low thermal expansion member bonded to the semiconductor element and electrically connected to the semiconductor element. A thin plate-shaped wiring member, an insulating member arranged on the wiring member facing the low thermal expansion member, a soft member arranged on the insulating member and softer than the insulating member, and the insulating substrate. An enclosure provided on the main radiator plate so as to surround the main radiator plate, and an auxiliary radiator plate arranged on the soft member and attached to the envelope so as to cover the main radiator plate and cover the enclosure. And penetrated through the envelope and held, And an external terminal electrically connected to a member, the main heat radiating plate, a module type semiconductor device and a filling member filled in said enclosed by the auxiliary heat dissipation plate and the envelope.

【0020】また、請求項2に対応する発明は、請求項
1に対応するモジュール型半導体装置において、前記軟
質部材が前記絶縁部材及び前記補助放熱板の両者に接合
され、前記絶縁部材が前記配線部材上に摺動自在に配置
されているモジュール型半導体装置である。
According to a second aspect of the invention, in the module type semiconductor device according to the first aspect, the soft member is joined to both the insulating member and the auxiliary heat dissipation plate, and the insulating member is the wiring. A modular semiconductor device slidably arranged on a member.

【0021】さらに、請求項3に対応する発明は、請求
項1又は請求項2に対応するモジュール型半導体装置に
おいて、前記軟質部材が活性金属ろうを介して前記絶縁
部材に接合されているモジュール型半導体装置である。
Further, the invention according to claim 3 is the module type semiconductor device according to claim 1 or 2, wherein the soft member is joined to the insulating member through an active metal solder. It is a semiconductor device.

【0022】また、請求項4に対応する発明は、請求項
1乃至請求項3のいずれか1項に対応するモジュール型
半導体装置において、前記絶縁部材としては、前記配線
部材側又は前記軟質部材側、あるいはこれら両部材側に
金属板を備えたモジュール型半導体装置である。
The invention according to claim 4 is the module-type semiconductor device according to any one of claims 1 to 3, wherein the insulating member is the wiring member side or the soft member side. Alternatively, the module-type semiconductor device is provided with a metal plate on both sides of these members.

【0023】さらに、請求項5に対応する発明は、請求
項1乃至請求項4のいずれか1項に対応するモジュール
型半導体装置において、前記軟質部材としては、Al又
はAl合金が材料であるモジュール型半導体装置であ
る。
Further, the invention according to claim 5 is the module-type semiconductor device according to any one of claims 1 to 4, wherein the soft member is a module made of Al or Al alloy. Type semiconductor device.

【0024】また、請求項6に対応する発明は、請求項
1乃至請求項5のいずれか1項に対応するモジュール型
半導体装置において、前記主放熱板及び前記補助放熱板
としては、Cu、Al、Cu合金又はAl合金が材料で
あるモジュール型半導体装置である。
The invention according to claim 6 is the module type semiconductor device according to any one of claims 1 to 5, wherein the main heat dissipation plate and the auxiliary heat dissipation plate are Cu and Al. , A Cu-based alloy or an Al-based alloy is a material for a module-type semiconductor device.

【0025】さらに、請求項7に対応する発明は、請求
項1乃至請求項6のいずれか1項に対応するモジュール
型半導体装置において、前記低熱膨張部材としては、
W、Mo、WとCuとの複合材料、MoとCuとの複合
材料、又はWとMoとCuとの複合材料からなるモジュ
ール型半導体装置である。
Further, the invention according to claim 7 is the module-type semiconductor device according to any one of claims 1 to 6, wherein the low thermal expansion member is
A modular semiconductor device made of W, Mo, a composite material of W and Cu, a composite material of Mo and Cu, or a composite material of W, Mo and Cu.

【0026】また、請求項8に対応する発明は、請求項
1乃至請求項7のいずれか1項に対応するモジュール型
半導体装置において、前記外囲器としては、弾力性及び
絶縁性を有し、少なくとも一部に設けられた応力吸収部
材を備えたモジュール型半導体装置である。
The invention according to claim 8 is the module-type semiconductor device according to any one of claims 1 to 7, wherein the envelope has elasticity and insulation. , A module-type semiconductor device having a stress absorbing member provided at least at a part thereof.

【0027】さらに、請求項9に対応する発明は、請求
項1乃至請求項8のいずれか1項に対応するモジュール
型半導体装置を用いた電力変換装置において、前記モジ
ュール型半導体装置本体を挟む1対の冷却器と、前記1
対の冷却器を互いに近づけるように圧接するための圧接
部材とを備えた電力変換装置である。
Furthermore, the invention corresponding to claim 9 is a power conversion device using the module-type semiconductor device according to any one of claims 1 to 8, wherein the module-type semiconductor device main body is sandwiched between 1 and 2. A pair of coolers and the above 1
It is an electric power converter provided with a press contact member for press contacting a pair of coolers so that they approach each other.

【0028】また、請求項10に対応する発明は、請求
項1乃至請求項8のいずれか1項に対応するモジュール
型半導体装置を用いた電力変換装置において、n台の前
記モジュール型半導体装置本体を個別に挟む(n+1)
台の冷却器と、前記(n+1)台の冷却器のうち、両端
に位置した1対の冷却器を互いに近づけるように圧接す
るための圧接部材とを備えた電力変換装置である。(作
用)従って、請求項1に対応する発明は以上のような手
段を講じたことにより、半導体素子の上面に、この面に
接合された低熱膨張部材を介して配線部材を配置し、さ
らに配線部材上に絶縁部材、軟質部材及び補助放熱板が
積層されている。
According to a tenth aspect of the present invention, there is provided a power conversion device using the module-type semiconductor device according to any one of the first to eighth aspects, wherein n module-type semiconductor device bodies are provided. Are individually sandwiched (n + 1)
It is an electric power converter provided with a cooler of a stand and a pressure contact member for pressing a pair of coolers located at both ends among the coolers of the (n + 1) stand so as to approach each other. (Operation) Therefore, in the invention corresponding to claim 1, by taking the above-mentioned means, the wiring member is arranged on the upper surface of the semiconductor element through the low thermal expansion member joined to this surface, and further wiring is performed. An insulating member, a soft member, and an auxiliary heat dissipation plate are laminated on the member.

【0029】このように、軟質部材が両放熱板間に配置
されたので、両側の放熱板を一対の冷却器で圧接しなが
ら挟み込んで電力変換装置を構成した場合、半導体素子
直上及び直下の位置において放熱板と冷却器が密着して
接触熱抵抗を低減できるので、極めて高い冷却効率を実
現でき、もって、耐圧の向上、熱抵抗の低減及び機械的
信頼性の向上を達成して大容量化を実現させることがで
きる。
In this way, since the soft member is arranged between both heat radiating plates, when the power radiating device is constructed by sandwiching the heat radiating plates on both sides while pressing them with a pair of coolers, the position directly above and directly below the semiconductor element. Since the heat sink and the cooler can be in close contact with each other to reduce the contact thermal resistance, extremely high cooling efficiency can be realized, thereby improving the pressure resistance, reducing the thermal resistance, and improving the mechanical reliability to achieve a large capacity. Can be realized.

【0030】また、請求項2に対応する発明は、軟質部
材が絶縁部材及び補助放熱板の両者に接合され、絶縁部
材が配線部材上に摺動自在に配置されているので、請求
項1に対応する作用に加え、絶縁部材/軟質部材間及び
軟質部材/補助放熱板間の熱抵抗を非接合の場合に比
べ、大幅に低減させることができる。
The invention according to claim 2 is characterized in that the soft member is joined to both the insulating member and the auxiliary heat radiating plate, and the insulating member is slidably arranged on the wiring member. In addition to the corresponding action, the thermal resistance between the insulating member / soft member and between the soft member / auxiliary heat dissipation plate can be significantly reduced as compared with the case of non-bonding.

【0031】また、絶縁部材/軟質部材/補助放熱板が
一体化されているため、装置組立て時の作業が容易とな
り、製造コストを低減させることができる。
Further, since the insulating member / soft member / auxiliary heat dissipation plate is integrated, the work for assembling the device is facilitated, and the manufacturing cost can be reduced.

【0032】さらに、絶縁部材/配線部材間は非接合に
して摺動自在としたことにより、組立て時の機械的な応
力や稼動時の熱応力が半導体素子及び絶縁基板の面方向
には加わらないので、機械的信頼性を向上させることが
できる。
Furthermore, since the insulating member / wiring member is not joined and slidable, mechanical stress during assembly and thermal stress during operation are not applied in the surface direction of the semiconductor element and the insulating substrate. Therefore, mechanical reliability can be improved.

【0033】さらに、請求項3に対応する発明は、軟質
部材が活性金属ろうを介して絶縁部材に接合されている
ので、請求項1又は請求項2に対応する作用に加え、絶
縁部材をセラミックスとし、軟質部材を金属とした場
合、両者の接合を実現させることができる。
Further, in the invention according to claim 3, since the soft member is joined to the insulating member through the active metal brazing, in addition to the action corresponding to claim 1 or 2, the insulating member is made of ceramics. When the soft member is made of metal, it is possible to join the two.

【0034】また、請求項4に対応する発明は、絶縁部
材としては、配線部材側又は軟質部材側、あるいはこれ
ら両部材側に金属板を備えたので、請求項1乃至請求項
3のいずれかに対応する作用に加え、絶縁部材の配線部
材側に金属板を予め設けておくことにより、配線部材と
絶縁部材間の接触熱抵抗を低減でき、一方、絶縁部材の
軟質部材側に金属板を設けることにより、軟質部材との
接合をより容易に行なうことができる。
Further, in the invention corresponding to claim 4, since the insulating member is provided with the metal plate on the wiring member side or the soft member side, or both of these member sides, any one of claims 1 to 3 is provided. In addition to the action corresponding to the above, by providing a metal plate in advance on the wiring member side of the insulating member, the contact thermal resistance between the wiring member and the insulating member can be reduced, while the metal plate is placed on the soft member side of the insulating member. By providing it, the joining with the soft member can be performed more easily.

【0035】さらに、請求項5に対応する発明は、軟質
部材としては、Al又はAl合金が材料であるので、請
求項1乃至請求項4のいずれかの作用に加え、このよう
な軟質の材料を用いることにより、半導体素子や絶縁基
板などを損傷するような過度な圧接力を生ずることな
く、容易且つ確実に、放熱板と冷却器を密着させること
ができる。また、Al又はAl合金は、高熱伝導性金属
でもあるので、軟質部材自体の熱抵抗を低減させること
ができる。
Further, in the invention corresponding to claim 5, since the soft member is made of Al or Al alloy, in addition to the action of any one of claims 1 to 4, such soft material is used. By using, the heat dissipation plate and the cooler can be brought into close contact with each other easily and surely without generating an excessive pressure contact force that damages the semiconductor element or the insulating substrate. Further, since Al or Al alloy is also a high thermal conductive metal, it is possible to reduce the thermal resistance of the soft member itself.

【0036】また、請求項6に対応する発明は、主放熱
板及び補助放熱板としては、Cu、Al、Cu合金又は
Al合金が材料であるので、請求項1乃至請求項5のい
ずれかに対応する作用に加え、主放熱板及び補助放熱板
が高熱伝導かつ軟質となるので、軟質部材による放熱板
の面垂直方向の圧接力により、各放熱板と各冷却器との
密接を図ることができる。
In the invention corresponding to claim 6, since Cu, Al, a Cu alloy or an Al alloy is a material for the main heat dissipation plate and the auxiliary heat dissipation plate, any one of claims 1 to 5 can be used. In addition to the corresponding action, the main heat dissipation plate and the auxiliary heat dissipation plate have high heat conduction and are soft, so the pressure contact force of the soft member in the direction perpendicular to the surface of the heat dissipation plate allows close contact between each heat dissipation plate and each cooler. it can.

【0037】さらに、請求項7に対応する発明は、低熱
膨張部材としては、W、Mo、WとCuとの複合材料、
MoとCuとの複合材料、又はWとMoとCuとの複合
材料からなるので、請求項1乃至請求項6のいずれかの
作用に加え、半導体素子と配線部材との間の接合部の熱
疲労を軽減させることができる。また、この部分が過渡
的な熱吸収源となり、瞬間的な半導体素子の発熱によっ
て半導体素子が過大に温度上昇して破壊に至る現象を抑
制することができる。
Further, in the invention according to claim 7, as the low thermal expansion member, W, Mo, a composite material of W and Cu,
Since it is made of a composite material of Mo and Cu or a composite material of W, Mo and Cu, in addition to the action of any one of claims 1 to 6, the heat of the joint portion between the semiconductor element and the wiring member is increased. Fatigue can be reduced. In addition, this portion serves as a transient heat absorption source, and it is possible to suppress a phenomenon in which the temperature of the semiconductor element is excessively increased and the semiconductor element is destroyed due to momentary heat generation of the semiconductor element.

【0038】また、請求項8に対応する発明は、外囲器
としては、弾力性及び絶縁性を有し、少なくとも一部に
設けられた応力吸収部材を備えたので、請求項1乃至請
求項7のいずれかに対応する作用に加え、両側から1対
の冷却器で各放熱板を圧接した際に、各放熱板と各冷却
器との間を密着させるのに十分な応力を軟質部材に作用
させることができる。
The invention according to claim 8 is characterized in that the envelope has elasticity and insulating properties and includes a stress absorbing member provided in at least a part thereof. In addition to the action corresponding to any one of 7 above, when the heat radiation plates are pressed against each other with a pair of coolers from both sides, sufficient stress is applied to the soft member to bring the heat radiation plates and the coolers into close contact with each other. Can be operated.

【0039】さらに、請求項9に対応する発明は、前述
したモジュール型半導体装置を1対の冷却器で挟みつつ
圧接部材で圧接する構成により、請求項1乃至請求項8
のいずれかの作用を奏する電力変換装置を実現すること
ができる。
Furthermore, the invention corresponding to claim 9 is characterized in that the above-mentioned module type semiconductor device is sandwiched between a pair of coolers and pressed against each other by a press contact member.
It is possible to realize a power conversion device that exhibits any one of the above actions.

【0040】また、請求項10に対応する発明は、n台
のモジュール型半導体装置を(n+1)台の冷却器で個
別に挟み、圧接部材によって両端の冷却器を圧接するの
で、請求項1乃至請求項8のいずれかの作用に加え、電
力変換装置のコンパクト化を図ることができる。
The invention according to claim 10 is characterized in that n module-type semiconductor devices are individually sandwiched by (n + 1) coolers, and the coolers at both ends are pressure-contacted by the pressure contact members. In addition to the effect of any of the eighth aspects, the power converter can be made compact.

【0041】[0041]

【発明の実施の形態】以下、本発明の各実施形態につい
て図面を参照して説明する。 (第1の実施形態)図1は本発明の第1の実施形態に係
るモジュール型半導体装置及びこれを用いた電力変換装
置の断面構成を示す模式図であり、図5と同一要素には
同一符号を付してその詳しい説明を省略し、ここでは異
なる部分について主に述べる。なお、以下の各実施形態
も同様にして重複した説明を省略する。本実施形態は、
耐圧の向上、熱抵抗の低減及び機械的信頼性の向上を図
るものであり、具体的には図1に示すように、補助放熱
板15の外側に配置された補助冷却器21と、補助放熱
板15に接合された軟質金属部22と、軟質金属部22
の先端に活性金属ろうを介して接合され、配線部材13
上に摺動自在に配置された絶縁性熱緩衝板23と、この
絶縁性熱緩衝板23に配線部材13を介して対向配置さ
れ、配線部材13とSiチップ4との両者に接合された
導電性熱緩衝板24と、外囲器25に設けられた端子取
付部26並びに圧接力吸収部27と、補助冷却器21と
(主)冷却器11とを互いに押圧しながら締結するため
の締結ボルト部28とを備えている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a schematic view showing a cross-sectional structure of a module type semiconductor device and a power conversion device using the same according to the first embodiment of the present invention. Reference numerals are given and detailed explanations thereof are omitted, and different portions will be mainly described here. It should be noted that in each of the following embodiments as well, duplicated description will be omitted. In this embodiment,
It is intended to improve the withstand voltage, reduce the thermal resistance, and improve the mechanical reliability. Specifically, as shown in FIG. 1, the auxiliary cooler 21 disposed outside the auxiliary heat radiating plate 15 and the auxiliary heat radiating device are provided. The soft metal portion 22 joined to the plate 15 and the soft metal portion 22
The wiring member 13 is joined to the tip of
An insulating heat buffer plate 23 slidably arranged on the upper side, and an insulating heat buffer plate 23 facing the insulating heat buffer plate 23 via a wiring member 13 and electrically connected to both the wiring member 13 and the Si chip 4. Bolts for fastening the heat resistant buffer plate 24, the terminal mounting portion 26 and the pressure contact force absorbing portion 27 provided on the envelope 25, and the auxiliary cooler 21 and the (main) cooler 11 while pressing each other. And part 28.

【0042】ここで、補助放熱板15はCuから形成さ
れ、軟質金属部22はAlから形成されている。但し、
補助放熱板15及び放熱板6は、Cuに代えて、Cu合
金、Al又はAl合金から形成されてもよく、軟質金属
部22は、Alに代えて、Al合金から形成されてもよ
い。
Here, the auxiliary heat dissipation plate 15 is made of Cu, and the soft metal portion 22 is made of Al. However,
The auxiliary heat dissipation plate 15 and the heat dissipation plate 6 may be formed of Cu alloy, Al, or Al alloy instead of Cu, and the soft metal portion 22 may be formed of Al alloy instead of Al.

【0043】絶縁性熱緩衝板23は、配線部材13側又
は軟質金属部22側、あるいはこれら両側に金属板を備
えてもよい。
The insulating heat buffer plate 23 may be provided with a metal plate on the wiring member 13 side or the soft metal portion 22 side, or on both sides thereof.

【0044】導電性熱緩衝板(低熱膨張部材)24はM
oから形成されているが、Moに代えて、W、WとCu
との複合材料、MoとCuとの複合材料、又はWとMo
とCuとの複合材料から形成されてもよい。
The conductive heat buffer plate (low thermal expansion member) 24 is M
It is formed from o, but instead of Mo, W, W and Cu
Composite material with, composite material of Mo and Cu, or W and Mo
It may be formed from a composite material of Cu and Cu.

【0045】端子取付部26は、端子を取付けるため、
機械的な応力に強い有機性絶縁物から形成されている。
圧接力吸収部(応力吸収部材)27は、圧接時の圧縮力
を吸収するため、弾性を有する有機性絶縁物から形成さ
れている。
The terminal mounting portion 26 is for mounting the terminal,
It is formed from an organic insulator that is strong against mechanical stress.
The pressure contact force absorption portion (stress absorption member) 27 is formed of an organic insulating material having elasticity in order to absorb the compression force at the time of pressure contact.

【0046】次に、以上のように構成されたモジュール
型半導体装置及びこれを用いた電力変換装置の作用につ
いて説明する。いま、配線部材13を介して電力が通電
され、Siチップ4が動作して熱を生じたとする。この
熱は、Siチップ4から下方に向かって絶縁基板3及び
(主)放熱板6を介して(主)冷却器11に流出される
一方、Siチップ4から上方に向かって導電性熱緩衝板
24、配線部材13、絶縁性熱緩衝板23、軟質金属部
22及び補助放熱板15を介して補助冷却器21に流出
される。
Next, the operation of the module type semiconductor device configured as described above and the power conversion device using the same will be described. Now, it is assumed that electric power is supplied through the wiring member 13 and the Si chip 4 operates to generate heat. This heat is discharged downward from the Si chip 4 to the (main) cooler 11 via the insulating substrate 3 and the (main) heat dissipation plate 6, while the conductive thermal buffer plate is expanded upward from the Si chip 4. It flows out to the auxiliary cooler 21 via the wiring member 24, the wiring member 13, the insulating heat buffer plate 23, the soft metal part 22, and the auxiliary heat dissipation plate 15.

【0047】すなわち、この電力変換装置では、モジュ
ール型半導体装置のSiチップ4で発生した熱を上下両
面から流出させてSiチップ4を冷却できるため、大容
量化に伴う温度上昇を抑制することができる。
That is, in this power converter, the heat generated in the Si chip 4 of the module type semiconductor device can be discharged from both upper and lower surfaces to cool the Si chip 4, so that the temperature rise due to the increase in capacity can be suppressed. it can.

【0048】また、ボルト締めによる圧接力が軟質金属
部22を介してSiチップ4直上に作用する。このた
め、Siチップ4直下での放熱板6と冷却器11との密
着性を改善して接触熱抵抗を低減でき、もって、Siチ
ップ4の冷却効率を向上させることができる。
Further, the pressure contact force due to bolt tightening acts on the Si chip 4 directly through the soft metal portion 22. Therefore, the contact between the heat dissipation plate 6 and the cooler 11 immediately below the Si chip 4 can be improved to reduce the contact thermal resistance, and thus the cooling efficiency of the Si chip 4 can be improved.

【0049】さらに、配線部材13と絶縁性熱緩衝板2
3との間が非接合であって熱応力に応じて摺動するた
め、従来の両面冷却タイプとは異なり、熱応力による破
損等の可能性が生じない。上述したように本実施形態に
よれば、軟質金属部22が両放熱板6,15間に配置さ
れたので、両側の放熱板6,15を一対の冷却器11,
21で圧接しながら挟み込んで電力変換装置を構成した
場合、Siチップ4直上及び直下の位置において放熱板
15,6と冷却器21,11が密着して接触熱抵抗を低
減できるので、極めて高い冷却効率を実現でき、もっ
て、耐圧の向上、熱抵抗の低減及び機械的信頼性の向上
を達成して大容量化を実現させることができる。
Further, the wiring member 13 and the insulating heat buffer plate 2
Since it is not joined to the No. 3 and slides according to thermal stress, unlike the conventional double-sided cooling type, there is no possibility of damage due to thermal stress. As described above, according to the present embodiment, since the soft metal part 22 is disposed between the radiator plates 6 and 15, the radiator plates 6 and 15 on both sides are connected to the pair of coolers 11, 15.
When the power conversion device is configured by sandwiching it while pressing it with 21, the heat dissipation plates 15 and 6 and the coolers 21 and 11 can be in close contact with each other at positions immediately above and below the Si chip 4, so that the contact thermal resistance can be reduced. The efficiency can be realized, and thus the breakdown voltage can be improved, the thermal resistance can be reduced, and the mechanical reliability can be improved to realize a large capacity.

【0050】また、軟質金属部22が絶縁性熱緩衝板2
3及び補助放熱板15の両者に接合され、絶縁性熱緩衝
板23が配線部材13上に摺動自在に配置されているの
で、絶縁性熱緩衝板23/軟質金属部22間及び軟質金
属部22/補助放熱板15間の熱抵抗を非接合の場合に
比べ、大幅に低減させることができる。
In addition, the soft metal portion 22 has the insulating heat buffer plate 2
3 and the auxiliary heat radiating plate 15, and the insulating heat buffer plate 23 is slidably arranged on the wiring member 13. Therefore, the insulating heat buffer plate 23 / the soft metal part 22 and the soft metal part 22 are connected. The thermal resistance between 22 and the auxiliary heat dissipation plate 15 can be greatly reduced as compared with the case of non-bonding.

【0051】また、補助放熱板15/軟質金属部22/
絶縁性熱緩衝板23が一体化されているため、装置組立
て時の作業が容易となり、製造コストを低減させること
ができる。
In addition, the auxiliary heat dissipation plate 15 / soft metal part 22 /
Since the insulating heat buffer plate 23 is integrated, the work at the time of assembling the device becomes easy and the manufacturing cost can be reduced.

【0052】さらに、絶縁性熱緩衝板23/配線部材1
3間を非接合にして摺動自在としたことにより、組立て
時の機械的な応力や稼動時の熱応力がSiチップ4及び
絶縁基板3の面方向には加わらないので、機械的信頼性
を向上させることができる。
Further, the insulating heat buffer plate 23 / wiring member 1
Since the three parts are not joined and slidable, mechanical stress during assembly and thermal stress during operation are not applied in the surface direction of the Si chip 4 and the insulating substrate 3, so that mechanical reliability is improved. Can be improved.

【0053】さらに、軟質金属部22が活性金属ろうを
介して絶縁性熱緩衝板23に接合されているので、絶縁
性熱緩衝板23をセラミックスとした場合、金属からな
る軟質金属部22との接合を実現させることができる。
Furthermore, since the soft metal part 22 is joined to the insulating heat buffer plate 23 through the active metal brazing material, when the insulating heat buffer plate 23 is made of ceramics, the soft metal part 22 is made of metal. Bonding can be realized.

【0054】また、絶縁性熱緩衝板23としては、配線
部材13側又は軟質金属部22側、あるいはこれら両部
材13,22側に金属板を備えた場合、絶縁性熱緩衝板
23の配線部材13側に金属板を予め設けたことによ
り、配線部材13と絶縁性熱緩衝板23間の接触熱抵抗
を低減でき、一方、絶縁性熱緩衝板23の軟質金属部2
2側に金属板を設けたことにより、軟質金属部22との
接合をより容易に行なうことができる。
As the insulating heat buffer plate 23, when a metal plate is provided on the wiring member 13 side or the soft metal portion 22 side, or both members 13 and 22 side, a wiring member of the insulating heat buffer plate 23. Since the metal plate is provided in advance on the 13 side, the contact thermal resistance between the wiring member 13 and the insulating heat buffer plate 23 can be reduced, while the soft metal portion 2 of the insulating heat buffer plate 23 is reduced.
By providing the metal plate on the second side, joining with the soft metal portion 22 can be performed more easily.

【0055】さらに、軟質金属部22としては、Al又
はAl合金が材料であるとき、このような軟質の材料を
用いることにより、Siチップ4や絶縁基板3などを損
傷するような過度な圧接力を生ずることなく、容易且つ
確実に、放熱板6,15と冷却器11,21を密着させ
ることができる。また、Al又はAl合金は、高熱伝導
性金属でもあるので、軟質金属部22自体の熱抵抗を低
減させることができる。
Further, when the soft metal portion 22 is made of Al or an Al alloy, by using such a soft material, excessive pressure contact force that damages the Si chip 4, the insulating substrate 3 and the like. The heat dissipation plates 6 and 15 and the coolers 11 and 21 can be brought into close contact with each other easily and reliably without causing the above. Further, since Al or Al alloy is also a highly heat conductive metal, it is possible to reduce the thermal resistance of the soft metal portion 22 itself.

【0056】また、(主)放熱板6及び補助放熱板15
としては、Cu、Al、Cu合金又はAl合金が材料で
あるので、放熱板6及び補助放熱板15が高熱伝導かつ
軟質となるので、軟質金属部22による放熱板6,15
の面垂直方向の圧接力により、各放熱板6,15と各冷
却器11,21との密接を図ることができる。
Further, the (main) heat dissipation plate 6 and the auxiliary heat dissipation plate 15
Since Cu, Al, a Cu alloy, or an Al alloy is a material, the heat dissipation plate 6 and the auxiliary heat dissipation plate 15 have high heat conduction and are soft, and therefore the heat dissipation plates 6 and 15 by the soft metal portion 22 are used.
Due to the pressure contact force in the direction perpendicular to the surface, the heat radiation plates 6 and 15 and the coolers 11 and 21 can be brought into close contact with each other.

【0057】さらに、導電性熱緩衝板(低熱膨張部材)
24としては、W、Mo、WとCuとの複合材料、Mo
とCuとの複合材料、又はWとMoとCuとの複合材料
からなるので、Siチップ4と配線部材13との間の接
合部の熱疲労を軽減させることができる。また、この部
分が過渡的な熱吸収源となり、瞬間的なSiチップ4の
発熱によってSiチップ4が過大に温度上昇して破壊に
至る現象を抑制することができる。
Further, a conductive heat buffer plate (low thermal expansion member)
24, W, Mo, a composite material of W and Cu, Mo
Since it is made of a composite material of Si and Cu or a composite material of W, Mo and Cu, thermal fatigue of the joint between the Si chip 4 and the wiring member 13 can be reduced. Further, this portion serves as a transient heat absorption source, and it is possible to suppress a phenomenon in which the temperature of the Si chip 4 excessively rises and is destroyed due to momentary heat generation of the Si chip 4.

【0058】また、外囲器25としては、弾力性及び絶
縁性を有し、少なくとも一部に設けられた圧接力吸収部
27を備えたので、両側から1対の冷却器11,21で
各放熱板6,15を圧接した際に、各放熱板6,15と
各冷却器11,21との間を密着させるのに十分な応力
を軟質部材に作用させることができる。
Further, since the envelope 25 has elasticity and insulation, and is provided with the pressure contact force absorbing portion 27 provided at least at a part thereof, a pair of coolers 11 and 21 are provided from both sides. When the heat dissipation plates 6 and 15 are pressed against each other, sufficient stress can be applied to the soft member so as to bring the heat dissipation plates 6 and 15 into close contact with the coolers 11 and 21.

【0059】なお、配線部材13と絶縁性熱緩衝板23
との間を接合し、さらに、絶縁性熱緩衝板23と軟質金
属部22との間あるいは軟質金属部22と補助放熱板1
5との間を非接合とした変形構成としても、本実施形態
と同様な効果を得ることができる。 (第2の実施形態)図2は本発明の第2の実施形態に係
るモジュール型半導体装置及びこれを用いた電力変換装
置の断面構成を示す模式図である。
The wiring member 13 and the insulating heat buffer plate 23
And the insulating heat buffer plate 23 and the soft metal part 22 or between the soft metal part 22 and the auxiliary heat dissipation plate 1
Even with a modified configuration in which the portion 5 and 5 are not joined, the same effect as this embodiment can be obtained. (Second Embodiment) FIG. 2 is a schematic diagram showing a cross-sectional structure of a module-type semiconductor device and a power converter using the same according to a second embodiment of the present invention.

【0060】本実施形態は、第1の実施形態の変形形態
であり、主冷却器と補助冷却器との熱負荷の均一化を図
るものであって、具体的には第1の実施形態に述べた構
成を2つ用い、且つ共有化した補助冷却器21を中心に
互いに上下を逆にして組合せた構成となっている。
The present embodiment is a modification of the first embodiment and is intended to equalize the heat loads of the main cooler and the auxiliary cooler. Specifically, the first embodiment is different from the first embodiment. Two of the above-mentioned configurations are used, and the configuration is such that the shared auxiliary cooler 21 is centered upside down and combined.

【0061】以上のような構成により、第1の実施形態
の効果に加え、(主)冷却器11と補助冷却器21との
2つの冷却器11,21における夫々の熱負荷が均質化
し、さらに、熱損失を低減させることができる。 (第3の実施形態)図3は本発明の第3の実施形態に係
るモジュール型半導体装置及びこれを用いた電力変換装
置の断面構成を示す模式図である。本実施形態は、第1
の実施形態の変形形態であり、装置のより一層のコンパ
クト化を図るものであって、具体的には、第1の実施形
態に述べた構成を4つ用い、各電力変換装置を順次積層
し、且つ補助冷却器21上に(主)冷却器11が積層さ
れる場合、補助冷却器21を省略するようにして組合せ
た構成となっている。
With the above-described structure, in addition to the effects of the first embodiment, the respective heat loads of the two coolers 11, 21 (main) cooler 11 and auxiliary cooler 21 are homogenized. The heat loss can be reduced. (Third Embodiment) FIG. 3 is a schematic diagram showing a cross-sectional structure of a module-type semiconductor device and a power converter using the same according to a third embodiment of the present invention. This embodiment is the first
It is a modification of the embodiment of the present invention, and is intended to further reduce the size of the device. Specifically, four power conversion devices described in the first embodiment are used and the power conversion devices are sequentially stacked. When the (main) cooler 11 is stacked on the auxiliary cooler 21, the auxiliary cooler 21 is omitted and combined.

【0062】以上のような構成により、第1の実施形態
の効果に加え、第1実施形態の装置をn台設けた場合と
比べ、(n−1)台の補助冷却器21を省略できる分だ
け、装置の一層のコンパクト化を図ることができる。
With the above configuration, in addition to the effects of the first embodiment, (n-1) auxiliary coolers 21 can be omitted as compared with the case where n devices of the first embodiment are provided. Only, the device can be made more compact.

【0063】その他、本発明はその要旨を逸脱しない範
囲で種々変形して実施できる。
In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

【0064】[0064]

【発明の効果】以上説明したように本発明によれば、耐
圧の向上、熱抵抗の低減及び機械的信頼性の向上によ
り、大容量化を実現できるモジュール型半導体装置及び
これを用いた電力変換装置を提供できる。
As described above, according to the present invention, a module type semiconductor device capable of realizing a large capacity by improving withstand voltage, reducing thermal resistance and improving mechanical reliability, and power conversion using the same. A device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態に係るモジュール型半
導体装置及びこれを用いた電力変換装置の断面構成を示
す模式図
FIG. 1 is a schematic diagram showing a cross-sectional configuration of a module-type semiconductor device and a power conversion device using the same according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係るモジュール型半
導体装置及びこれを用いた電力変換装置の断面構成を示
す模式図
FIG. 2 is a schematic diagram showing a cross-sectional configuration of a module-type semiconductor device and a power conversion device using the same according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態に係るモジュール型半
導体装置及びこれを用いた電力変換装置の断面構成を示
す模式図
FIG. 3 is a schematic diagram showing a cross-sectional configuration of a module-type semiconductor device and a power conversion device using the same according to a third embodiment of the present invention.

【図4】一般的な片側冷却タイプのモジュール型半導体
装置とこれを用いた電力変換装置の断面構成を示す模式
FIG. 4 is a schematic view showing a cross-sectional configuration of a general one-side cooling type module type semiconductor device and a power conversion device using the same.

【図5】従来の両面冷却タイプのモジュール型半導体装
置を用いた電力変換装置の断面構成を示す模式図
FIG. 5 is a schematic diagram showing a cross-sectional configuration of a power conversion device using a conventional double-sided cooling type module type semiconductor device.

【符号の説明】[Explanation of symbols]

1,2…金属薄膜層 3…絶縁基板 4…Siチップ 6…放熱板 8…外部端子用リード線 10…Siゲル 11…冷却器 13…配線部材 15…補助放熱板 21…補助冷却器 22…軟質金属部 23…絶縁性熱緩衝板 24…導電性熱緩衝板 25…外囲器 26…端子取付部 27…圧接力吸収部 28…締結ボルト部 1, 2 ... Metal thin film layer 3 ... Insulating substrate 4 ... Si chip 6 ... Heat sink 8 ... Lead wire for external terminals 10 ... Si gel 11 ... Cooler 13 ... Wiring member 15 ... Auxiliary heat sink 21 ... Auxiliary cooler 22 ... Soft metal part 23 ... Insulating heat buffer plate 24 ... Conductive heat buffer plate 25 ... Enclosure 26 ... Terminal mounting part 27 ... Pressing force absorption part 28 ... Fastening bolt part

フロントページの続き (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (72)発明者 西村 隆宣 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (72)発明者 石渡 裕 神奈川県横浜市鶴見区末広町2丁目4番 地 株式会社東芝京浜事業所内 (72)発明者 田中 明 神奈川県横浜市鶴見区末広町2丁目4番 地 株式会社東芝京浜事業所内 (72)発明者 荒木 浩二 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝多摩川工場内 (72)発明者 福吉 寛 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝多摩川工場内 (56)参考文献 特開 平10−247720(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 23/34 - 23/473 H01L 25/00 - 25/18 Front Page Continuation (72) Inventor Takashi Kusano 1st in Toshiba Fuchu, Fuchu-shi, Tokyo Inside Toshiba Fuchu factory (72) Inventor Takanobu Nishimura 1st in Toshiba Fuchu, Tokyo Fuchu factory (72) ) Inventor Hiroshi Ishiwata 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa, Toshiba Keihin Office (72) Inventor Akira Tanaka 2-4, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Keihin Office (72) Inventor Koji Araki, Komukai-Toshiba-cho, 1 Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Tamagawa Plant Co., Ltd. (56) References JP-A-10-247720 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 23 / 34-23 / 473 H01L 25 / 00-25 / 18

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主放熱板と、 前記主放熱板上に接合され、両面に導電性薄膜を有する
高熱伝導性の絶縁基板と、 前記絶縁基板における前記主放熱板とは反対面の導電性
薄膜に接合された半導体素子と、 前記半導体素子に接合された低熱膨張部材と、 前記低熱膨張部材に接合されて前記半導体素子に電気的
に接続された薄板状の配線部材と、 前記低熱膨脹部材に対向して前記配線部材上に配置され
た絶縁部材と、 前記絶縁部材上に配置され、前記絶縁部材よりも軟質の
軟質部材と、 前記絶縁基板を囲うように前記主放熱板上に設けられた
外囲器と、 前記軟質部材上に配置され、前記主放熱板に対向して蓋
をするように前記外囲器に取付けられた補助放熱板と、 前記外囲器を貫通して保持され、前記配線部材に電気的
に接続された外部端子と、 前記主放熱板、前記補助放熱板及び前記外囲器で囲まれ
た内部に充填される充填部材とを備えたことを特徴とす
るモジュール型半導体装置。
1. A main heat sink, an insulating substrate of high thermal conductivity, which is joined to the main heat sink and has conductive thin films on both sides, and a conductive thin film of the insulating substrate opposite to the main heat sink. A semiconductor element bonded to the semiconductor element, a low thermal expansion member bonded to the semiconductor element, a thin plate wiring member bonded to the low thermal expansion member and electrically connected to the semiconductor element, and the low thermal expansion member An insulating member disposed on the wiring member facing each other, a soft member disposed on the insulating member and softer than the insulating member, and provided on the main heat dissipation plate so as to surround the insulating substrate. An envelope, an auxiliary radiator plate arranged on the soft member and attached to the envelope so as to cover the main radiator plate so as to cover the main radiator plate; An external terminal electrically connected to the wiring member A module-type semiconductor device comprising: a main radiating plate, the auxiliary radiating plate, and a filling member filled in the interior surrounded by the envelope.
【請求項2】 請求項1に記載のモジュール型半導体装
置において、 前記軟質部材は、前記絶縁部材及び前記補助放熱板の両
者に接合され、 前記絶縁部材は、前記配線部材上に摺動自在に配置され
ていることを特徴とするモジュール型半導体装置。
2. The module-type semiconductor device according to claim 1, wherein the soft member is joined to both the insulating member and the auxiliary heat dissipation plate, and the insulating member is slidable on the wiring member. A module-type semiconductor device, which is arranged.
【請求項3】 請求項1又は請求項2に記載のモジュー
ル型半導体装置において、 前記軟質部材は、活性金属ろうを介して前記絶縁部材に
接合されていることを特徴とするモジュール型半導体装
置。
3. The module-type semiconductor device according to claim 1, wherein the soft member is joined to the insulating member via an active metal braze.
【請求項4】 請求項1乃至請求項3のいずれか1項に
記載のモジュール型半導体装置において、 前記絶縁部材は、前記配線部材側又は前記軟質部材側、
あるいはこれら両部材側に金属板を備えたことを特徴と
するモジュール型半導体装置。
4. The module-type semiconductor device according to claim 1, wherein the insulating member is the wiring member side or the soft member side,
Alternatively, a module type semiconductor device is provided with a metal plate on both sides of these members.
【請求項5】 請求項1乃至請求項4のいずれか1項に
記載のモジュール型半導体装置において、 前記軟質部材は、Al又はAl合金が材料であることを
特徴とするモジュール型半導体装置。
5. The module-type semiconductor device according to claim 1, wherein the soft member is made of Al or Al alloy.
【請求項6】 請求項1乃至請求項5のいずれか1項に
記載のモジュール型半導体装置において、 前記主放熱板及び前記補助放熱板は、Cu、Al、Cu
合金又はAl合金が材料であることを特徴とするモジュ
ール型半導体装置。
6. The module type semiconductor device according to claim 1, wherein the main heat dissipation plate and the auxiliary heat dissipation plate are made of Cu, Al or Cu.
A module-type semiconductor device, wherein an alloy or an Al alloy is a material.
【請求項7】 請求項1乃至請求項6のいずれか1項に
記載のモジュール型半導体装置において、 前記低熱膨張部材は、W、Mo、WとCuとの複合材
料、MoとCuとの複合材料、又はWとMoとCuとの
複合材料からなることを特徴とするモジュール型半導体
装置。
7. The module type semiconductor device according to claim 1, wherein the low thermal expansion member is W, Mo, a composite material of W and Cu, or a composite material of Mo and Cu. A module-type semiconductor device comprising a material or a composite material of W, Mo and Cu.
【請求項8】 請求項1乃至請求項7のいずれか1項に
記載のモジュール型半導体装置において、 前記外囲器は、弾力性及び絶縁性を有し、少なくとも一
部に設けられた応力吸収部材を備えたことを特徴とする
モジュール型半導体装置。
8. The module-type semiconductor device according to claim 1, wherein the envelope has elasticity and insulating properties, and stress absorption provided in at least a part thereof. A module type semiconductor device comprising a member.
【請求項9】 請求項1乃至請求項8のいずれか1項に
記載のモジュール型半導体装置を用いた電力変換装置に
おいて、 前記モジュール型半導体装置本体を挟む1対の冷却器
と、 前記1対の冷却器を互いに近づけるように圧接するため
の圧接部材とを備えたことを特徴とする電力変換装置。
9. A power conversion device using the module-type semiconductor device according to claim 1, wherein a pair of coolers sandwiching the module-type semiconductor device body, and the pair of coolers are provided. And a pressure contact member for press contacting the coolers so that they are close to each other.
【請求項10】 請求項1乃至請求項8のいずれか1項
に記載のモジュール型半導体装置を用いた電力変換装置
において、 n台の前記モジュール型半導体装置本体を個別に挟む
(n+1)台の冷却器と、 前記(n+1)台の冷却器のうち、両端に位置した1対
の冷却器を互いに近づけるように圧接するための圧接部
材とを備えたことを特徴とする電力変換装置。
10. A power conversion device using the module-type semiconductor device according to claim 1, wherein n module-type semiconductor device bodies are individually sandwiched between (n + 1) units. A power converter comprising: a cooler; and a press-contact member for press-contacting a pair of coolers located at both ends of the (n + 1) coolers so as to approach each other.
JP34271698A 1998-12-02 1998-12-02 Modular semiconductor device and power conversion device using the same Expired - Fee Related JP3394000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34271698A JP3394000B2 (en) 1998-12-02 1998-12-02 Modular semiconductor device and power conversion device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34271698A JP3394000B2 (en) 1998-12-02 1998-12-02 Modular semiconductor device and power conversion device using the same

Publications (2)

Publication Number Publication Date
JP2000174198A JP2000174198A (en) 2000-06-23
JP3394000B2 true JP3394000B2 (en) 2003-04-07

Family

ID=18355944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34271698A Expired - Fee Related JP3394000B2 (en) 1998-12-02 1998-12-02 Modular semiconductor device and power conversion device using the same

Country Status (1)

Country Link
JP (1) JP3394000B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110445A1 (en) * 2009-03-26 2010-09-30 本田技研工業株式会社 Semiconductor device, and apparatus and method for manufacturing semiconductor device
JP5404124B2 (en) * 2009-03-26 2014-01-29 本田技研工業株式会社 Semiconductor device
JP2010239033A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Semiconductor device, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2000174198A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
JP4192396B2 (en) Semiconductor switching module and semiconductor device using the same
JP2838625B2 (en) Semiconductor module
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2000164800A (en) Semiconductor module
US7605456B2 (en) Inverter unit
JP4645406B2 (en) Semiconductor device
JP2000174180A (en) Semiconductor device
US6906935B2 (en) Inverter apparatus and method of manufacturing the same
JP7163583B2 (en) semiconductor equipment
JP5899952B2 (en) Semiconductor module
JP2023085765A (en) Semiconductor device and method for manufacturing semiconductor device
WO2004112130A1 (en) Semiconductor device
JP3394000B2 (en) Modular semiconductor device and power conversion device using the same
JP2014053440A (en) Semiconductor module and semiconductor module manufacturing method
US11735557B2 (en) Power module of double-faced cooling
JPH06268027A (en) Semiconductor device
WO2020241239A1 (en) Semiconductor device
JP2015026667A (en) Semiconductor module
JP2000228491A (en) Semiconductor module and power converter
JP2004158489A (en) Pressure contact semiconductor device
JP2013236035A (en) Semiconductor module and manufacturing method of the same
JP3307145B2 (en) Power chip carrier and power semiconductor device using the same
JP2004128264A (en) Semiconductor module and flat lead
JPH11233696A (en) Power semiconductor module and bonded block of power semiconductor module and cooler
JPH10290000A (en) Pressure-connected semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140131

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees