JP4192396B2 - Semiconductor switching module and semiconductor device using the same - Google Patents

Semiconductor switching module and semiconductor device using the same Download PDF

Info

Publication number
JP4192396B2
JP4192396B2 JP2000118093A JP2000118093A JP4192396B2 JP 4192396 B2 JP4192396 B2 JP 4192396B2 JP 2000118093 A JP2000118093 A JP 2000118093A JP 2000118093 A JP2000118093 A JP 2000118093A JP 4192396 B2 JP4192396 B2 JP 4192396B2
Authority
JP
Japan
Prior art keywords
side plate
semiconductor
low
switching module
semiconductor switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000118093A
Other languages
Japanese (ja)
Other versions
JP2001308263A (en
Inventor
靖之 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000118093A priority Critical patent/JP4192396B2/en
Priority to EP10006258.7A priority patent/EP2234154B1/en
Priority to EP10006259.5A priority patent/EP2244289B1/en
Priority to EP06022504.2A priority patent/EP1742265B1/en
Priority to EP01109620.3A priority patent/EP1148547B8/en
Priority to US09/837,382 priority patent/US6542365B2/en
Publication of JP2001308263A publication Critical patent/JP2001308263A/en
Priority to US10/314,139 priority patent/US6845012B2/en
Priority to US10/756,340 priority patent/US7027302B2/en
Priority to US10/946,210 priority patent/US7106592B2/en
Priority to US11/325,331 priority patent/US7250674B2/en
Priority to US11/452,328 priority patent/US7248478B2/en
Application granted granted Critical
Publication of JP4192396B2 publication Critical patent/JP4192396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】
【発明の属する技術分野】
本発明は、電力用三相インバ−タ回路のコンパクト化に好適な半導体スイッチングモジュ−ル及びそれを用いた電力用三相インバ−タ回路用の半導体装置の改良に関する。
【0002】
【従来の技術】
特開平6ー291223号公報は、半導体チップの両面から放熱を行う半導体装置を提案している。この半導体装置を図7に示す。(a)はその平面図、(b)はそのGーG線矢視断面図、(c)はそのHーH線矢視断面図である。
【0003】
この半導体装置は、一対のヒ−トシンク兼用の伝熱部材J2、J3が、それぞれ半導体チップJ1の両面に熱的かつ電気的に接続され、伝熱部材J2、J3はそれぞれ半導体チップへの給電部材としての機能と、ヒ−トシンク及び伝熱部材としての機能とを兼用している。以下、この種の半導体装置を両面冷却型半導体装置ともいう。
【0004】
この半導体装置では、少なくとも半導体チップJ1の側面は樹脂J5により封止されてカ−ド状のモジュ−ル(カ−ドモジュ−ルともいう)となっており、伝熱部材J2、J3の反チップ側の主面は冷却のために露出するとともに半導体チップの主電極に給電する主電極端子をなし、半導体チップの制御電極に給電する制御端子J4はカ−ドモジュ−ルの側面から封止樹脂を貫通して外部に突出している。
【0005】
J6は絶縁板、J7は半導体チップのボンディングパッドに接合される半田バンプである。
【0006】
【発明が解決しようとする課題】
しかしながら、上記した従来の両面冷却型半導体装置では、伝熱部材J2、J3を半導体チップJ1の両主面に接合することにより、これら伝熱部材J2、J3を通じて半導体チップの両面から良好に放熱できるものの、伝熱部材J2、J3は半導体チップの両主面に個別に形成された主電極面に接合されるので、モジュ−ルに単純なトランジスタ又はダイオ−ドを一個乃至並列に複数個内蔵することが困難であり、複雑な電力スイッチング回路をモジュ−ル化することが困難であるという問題点があった。
【0007】
特に、この種の半導体スイッチングモジュ−ルの重要な用途として交流モ−タ制御用の三相インバ−タ回路があるが、上記従来技術では、6つのカ−ドモジュ−ルをそれぞれブスバ−などで接続する必要があり、部品点数、組み付け工程の増大と、組み付け部位の緩みが問題となる。
【0008】
本発明は、上記問題点に鑑みなされたものであり、電力用三相インバ−タ回路をコンパクトに構成できる半導体スイッチングモジュ−ル及びそれを用いた半導体装置を提供することをその目的としている。
【0009】
【課題を解決するための手段】
請求項1記載の半導体スイッチングモジュールは、ハイサイド側の半導体スイッチング素子が形成されたハイサイド側の半導体チップと、ロ−サイド側の半導体スイッチング素子が形成されたロ−サイド側の半導体チップとを有し、前記両半導体スイッチング素子を直列接続してなるインバ−タ回路を内蔵する半導体スイッチングモジュ−ルにおいて、
それぞれ金属板からなるハイサイド板、ミドルサイド板、ローサイド板を有し、前記両半導体チップの出力側の主電極面は、互いに離れて前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、前記ハイサイド側の半導体チップの高位電源側の主電極面は、前記ハイサイド板の内側主面に直接あるいは導電部材を介して接合され、前記ロ−サイド側の半導体チップの低位電源側の主電極面は、前記ローサイド板の内側主面に直接あるいは導電部材を介して接合され、前記両半導体チップは、前記ミドルサイド板、ハイサイド板及びローサイド板の外主面を露出させてモ−ルドされる封止樹脂部により一体に被覆され、前記ハイサイド板(1)、ローサイド板(2)及びミドルサイド板(3)は、前記封止樹脂部(8)から面方向に突出する突出端子部(10、20、30)と、前記半導体チップ(4a、4b)に背向する部位にて前記封止樹脂部(8)から前記半導体チップ(4a、4b)の厚さ方向に突出して露出する外主面(10、11、12)とを有することを特徴としている。
【0010】
本構成によれば、半導体チップの両面冷却機能を維持しつつ、単相インバ−タ回路を単一モジュ−ル化することができ、コンパクト化及び組み付け工数の低減を図り、車両振動などに対する締結部の緩みなどに対する懸念を軽減することができる。
【0011】
また、ミドルサイド板(単相インバ−タ回路の出力電極配線又はその一部)が両半導体チップの共通基板を兼ねるので、両半導体チップの高密度配置を実現することができ、更に配線部品点数の低減及び接続工数の低減と配線損失の低減とを図ることができる。
【0012】
請求項2記載の構成によれば請求項1記載の半導体スイッチングモジュ−ルにおいて更に、前記ハイサイド板及びローサイド板の外主面は、略同一平面をなすことを特徴としている。
【0013】
本構成によれば、ハイサイド板及びローサイド板を薄い電気絶縁材を介して同じ冷却部材の同一平面に密着させることができ、簡素な構造で良好な両面冷却を図ることができる。
【0014】
請求項3記載の構成によれば請求項2記載の半導体スイッチングモジュ−ルにおいて更に、前記ローサイド板又はハイサイド板の一方と前記両半導体チップの一方との間、及び、前記ミドルサイド板と前記両半導体チップの他方との間に良熱伝導性かつ良電導性のスペ−サが介設され、前記両スペ−サは、前記両半導体チップの厚さの差を吸収する厚さの差を有することを特徴としている。
【0015】
本構成によれば、両半導体チップの厚さの差をスペ−サにより吸収できるので、ハイサイド板、ミドルサイド板、ローサイド板を簡単な平板とし、かつ、ハイサイド板とローサイド板とを同一厚さの部材とすることができる。
【0016】
請求項4記載の構成によれば請求項3記載の半導体スイッチングモジュ−ルにおいて更に、前記両半導体チップの制御電極は、前記半導体チップのスペ−サ側の主面に形成されているので、このスペ−サの分だけ、ハイサイド板又はローサイド板とミドルサイド板との間にギャップを余計に確保することができるので、たとえば半導体チップの制御電極と制御電極端子とを接続する接続部材たとえばボンデディングワイヤの配置スペ−スなどを無理なく確保することができる。
【0017】
請求項5記載の構成によれば請求項1乃至4のいずれか記載の半導体スイッチングモジュ−ルにおいて更に、前記ハイサイド板、ローサイド板及びミドルサイド板の外主面は、前記半導体チップに背向する部位にて電気絶縁膜を介してそれぞれ冷却部材に密着し、前記ハイサイド板、ローサイド板及びミドルサイド板は、前記封止樹脂部から略面方向へ延設されて端子をなす突出端子部を有することを特徴としている。
【0018】
本構成によれば、これらハイサイド板、ローサイド板及びミドルサイド板は、半導体チップと冷却部材とを最短距離で熱的に結合するとともに、それぞれ端子を兼ねることができるので、良好な冷却と、簡素で信頼性に優れた端子構造を実現することができる。
【0019】
請求項6記載の構成によれば請求項3又は4記載の半導体スイッチングモジュ−ルにおいて更に、前記スペ−サは、前記封止樹脂部から略面方向へ延設されて端子をなす突出端子部を有することを特徴としている。
【0020】
本構成によれば、スペ−サが封止樹脂部から面方向へ飛び出して端子を兼ねるので、簡素で信頼性に優れた端子構造を実現することができる。
【0021】
請求項7記載の構成によれば請求項1乃至6のいずれか記載の半導体スイッチングモジュ−ルにおいて更に、 前記スペ−サよりも幅広に形成された前記ハイサイド板、ローサイド板及びミドルサイド板の内側主面に接合されて面方向外側へ突出する主電極端子を有することを特徴としている。
【0022】
このようにすれば、たとえば銅など、電気抵抗がMOやWなどより格段に小さく安価な端子を用いることができ、また、スペ−サやミドルサイド板として線膨張係数が半導体チップに近い金属材料を用いる場合でも、その形状加工が容易となり、材料費や形状加工費を低減することができる。
【0023】
請求項8記載の構成によれば請求項4及び7記載の半導体スイッチングモジュ−ルにおいて更に、前記両半導体チップの制御電極に電気的に接続されて面方向外部に突出する制御電極端子は、前記主電極端子と反対方向に突設されることを特徴としている。
【0024】
本構成によれば、制御電極端子と主電極端子とを反対側に突出させているので、両端子間の電気絶縁の確保が容易となり、配線(ブスバ−)引き回しが容易となる。
【0025】
請求項9記載の構成によれば請求項4及び7記載の半導体スイッチングモジュ−ルにおいて更に、前記半導体チップは、前記ハイサイド板及びローサイド板の一方と前記ミドルサイド板との間に互いに離れて並列に介設されるスイッチングトランジスタチップ及びフライホイルダイオ−ドチップからなることを特徴としている。
【0026】
本構成によれば、各半導体チップはそれぞれIGBT(絶縁ゲ−トバイポ−ラトランジスタ)や、MOST(絶縁ゲートトランジスタ)や、BPT(バイポ−ラトランジスタ)とフライホイルダイオ−ドとを並列接続した2チップ構造をもつので、更に、冷却性及び小型の単相大電流インバ−タ回路を実現することができる。
【0027】
なお、IGBTチップ又はBPTチップとフライホイルダイオ−ドチップとは通常厚さが異なるので、このチップ間厚さの差は異なる厚さの一対のスペ−サを、ハイサイド板とミドルサイド板との間、及びローサイド板とミドルサイド板との間にそれぞれ介設することが好ましい。
【0028】
請求項10記載の構成は、前記ハイサイド板、ローサイド板及びミドルサイド板の外主面は、前記半導体チップに背向する部位にて電気絶縁膜を介してそれぞれ冷却部材に密着し、前記冷却部材は、前記半導体スイッチングモジュ−ルを挟んで厚さ方向に挟圧されることを特徴とする請求項1乃至9のいずれか記載の半導体スイッチングモジュ−ルを用いる半導体装置である。
【0029】
本構成によれば、ハイサイド板及びローサイド板とミドルサイド板とは、両側の冷却部材を挟圧することにより密着される。すなわち、両冷却部材は、締め付け部材を兼ねるので、各部品間の厚さ方向の密着性は良好となり、耐振性なども向上する。
【0030】
請求項11記載の半導体スイッチングモジュールは、ハイサイド側の半導体スイッチング素子が形成されたハイサイド側の半導体チップと、ロ−サイド側の半導体スイッチング素子が形成されたロ−サイド側の半導体チップとを有し、前記両半導体スイッチング素子を直列接続してなるインバ−タ回路を内蔵する半導体スイッチングモジュ−ルにおいて、
それぞれ金属板からなるハイサイド板、ミドルサイド板、ローサイド板を有し、前記両半導体チップの出力側の主電極面は、互いに離れて前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、前記ハイサイド側の半導体チップの高位電源側の主電極面は、前記ハイサイド板の内側主面に直接あるいは導電部材を介して接合され、前記ロ−サイド側の半導体チップの低位電源側の主電極面は、前記ローサイド板の内側主面に直接あるいは導電部材を介して接合され、前記両半導体チップは、前記ミドルサイド板、ハイサイド板及びローサイド板の外主面を露出させてモ−ルドされる封止樹脂部により一体に被覆され、前記ハイサイド板及びローサイド板の外主面は、同一平面をなし、前記ローサイド板又はハイサイド板の一方と前記両半導体チップの一方との間、及び、前記ミドルサイド板と前記両半導体チップの他方との間に良熱伝導性かつ良電導性のスペ−サが介設され、前記両スペ−サは、前記両半導体チップの厚さの差を吸収する厚さの差を有し、前記スペ−サは、前記封止樹脂部から面方向へ延設されて端子をなす突出端子部を有することを特徴としている。
請求項12記載の構成によれば請求項1又は11において更に、ハイサイド側の半導体スイッチング素子が形成されたハイサイド側の半導体チップと、ロ−サイド側の半導体スイッチング素子が形成されたロ−サイド側の半導体チップとを有し、前記両半導体スイッチング素子を直列接続してなる単相インバ−タ回路を三個並列接続してなる請求項1又は請求項11記載の半導体スイッチングモジュ−ルにおいて、それぞれ金属板からなるハイサイド板及びローサイド板と、U相、V相、W相のミドルサイド板とを有し、
U相の前記両半導体チップの出力側の主電極面は、互いに離れてU相の前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、V相の前記両半導体チップの出力側の主電極面は、互いに離れてV相の前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、W相の前記両半導体チップの出力側の主電極面は、互いに離れてW相の前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、
各相の前記ハイサイド側の半導体チップの高位電源側の主電極面は、前記ハイサイド板の内側主面に直接あるいは導電部材を介して接合され、各相の前記ロ−サイド側の半導体チップの低位電源側の主電極面は、前記ローサイド板の内側主面に直接あるいは導電部材を介して接合され、前記両半導体チップは、前記各相のミドルサイド板、ハイサイド板及びローサイド板の外主面を露出させてモ−ルドされる封止樹脂部により一体に被覆されていることを特徴としている。
【0031】
本構成によれば、スペ−サ以外に合計5本のブスバ−状のハイサイド板、ローサイド板、ミドルサイド板を用いて三相インバ−タ回路を内蔵し、かつ、各半導体チップがマトリックス状に一定間隔で配置されたモジュ−ルを実現することができ、装置構成の格段の簡素化を図ることができ、かつ両面冷却により小型大出力化を実現することができる。
発明の実施の形態】
本発明の半導体装置の好適な実施態様を図面を参照して以下説明する。
【0032】
【実施例1】
図1は半導体スイッチングモジュ−ルの厚さ方向断面図を示し、図2はこの半導体スイッチングモジュ−ルを用いた半導体装置の厚さ方向断面図を示す。
(半導体スイッチングモジュ−ルの構成)
図1において、1はハイサイド板、2はローサイド板、2aはスペ−サ、3はミドルサイド板、3aはスペ−サ、4aはハイサイド側の半導体チップ、4bはロ−サイド側の半導体チップ、5ははんだ層、6aは制御電極端子、7a、7bはボンディングワイヤ、8は封止樹脂部、10はローサイド板2の外主面、11はハイサイド板1の外主面、12はミドルサイド板3の外主面である。
【0033】
ハイサイド板1、ローサイド板2、スペ−サ2a、ミドルサイド板3、スペ−サ3aは、タングステン、モリブデン等で形成された金属平板からなるが、銅又はアルミ合金などで形成された金属平板で構成してもよい。
【0034】
半導体チップ4aは、ハイサイド板1の内主面とスペ−サ3aの一対の主面の一方との間に介設されて、これら両者にはんだ層5により接合されている。スペ−サ3aの一対の主面の他方は、ミドルサイド板3の内主面にはんだ接合されている。
【0035】
半導体チップ4bは、ミドルサイド板3の内主面とスペ−サ2aの一対の主面の一方との間に介設されて、これら両者にはんだ層5により接合されている。スペ−サ2aの一対の主面の他方は、ローサイド板2の内主面にはんだ接合されている。
【0036】
スペ−サ2a、3aは、互いに厚さが異なる半導体チップ4a、4bの厚さの差を吸収する厚さの差を有し、これによりハイサイド板1の外主面と、ローサイド板2の外主面は同一高さとされている。
【0037】
各板1〜3は、図1における紙面奥方向又は手前方向に延設されて外部ブスバ−(図示せず)に締結される突出端子部10、20、30(図3、図4参照)を有している。図3は、スペ−サ2a、3aと半導体チップ4a、4bとの接合前を示す分解図であり、図4は、スペ−サ2a、3aと半導体チップ4a、4bとの接合後を示す分解図である。
【0038】
なお、この実施例では、制御電極端子6aは最初、各板1、3と一体に形成されており、ワイヤボンディング後又は樹脂モ−ルド後、各板1、3から切り離される。このような手法は通常のリ−ドフレ−ム樹脂モ−ルド技術において一般駅であるので詳細な説明は省略する。制御電極端子6aは、1つの半導体チップについて5本図示しているが、この内訳はゲ−ト端子、ドレイン端子、カレントミラーセンス端子、及び半導体チップの温度を検出する温度検出端子2本である。センサ類が必要でなければ、最低限ゲ−ト端子とドレイン端子の2本あれば良い。
【0039】
なお、各板1〜3は、スペ−サ2a、2bよりも幅広に形成されており、スペ−サ2a、2bの周縁より更に面方向外側にはみ出しているので、各板1〜3の内側の主面に端子の基部をそれぞれ接合し、面方向外側に突出させてもよい。
【0040】
ボンディングワイヤ7a、7bは、半導体チップ4a、4bの制御電極をなすボンディングパッドと制御電極端子6aとを接続し、制御電極端子6aは面方向外側へ突出している。
【0041】
封止樹脂部8は、たとえばエポキシモ−ルド樹脂であり、半導体チップ4a、4bをモ−ルドしている。封止樹脂部8は、各板1〜3及び半導体チップ4a、4bの側面を覆うが、各板1〜3の外主面10〜12は露出し、封止樹脂部8の厚さ方向)の端部は外主面10〜12よりも内側に制限されている。これにより、外主面10〜12は冷却部材の平坦な表面に容易に密着することができる。
【0042】
はんだ層5は、ロー材や導電性接着剤などに置換することができ、また、スペ−サ2a、3aと各板1〜3との接合もこれら導電接合材料を用いることができる。スペ−サ2a、3aと各板1、3とを一体化してもよい。
【0043】
半導体チップ4a、4bの制御電極と制御電極端子6aとはボンディングワイヤ7a、7bによるワイヤボンディングの他、バンプ接合などを用いることもできることはもちろんである。また、図4では、ローサイド板、ハイサイド板を一主辺に、その他、ミドルサイド板、制御電極を対向辺に配置しているが、例えばローサイド板とミドルサイド板とを一辺に並べたり、ローサイド板とミドルサイド板ととの位置を変更したりするなどの変更は当然可能である。
【0044】
(変形態様)
変形態様を図5に示す。
【0045】
上記実施例1では、半導体チップ4a、4bはMOSトランジスタとしたが、図5では、半導体チップ4a、4bとしてIGBTを採用する。IGBTを誘導性負荷のスイッチング制御に用いる場合はフライホイルダイオ−ドを逆並列接続する必要が有るので各板1、3の間、及び、各板2、3の間にそれぞれフライホイルダイオ−ドが形成された半導体チップ4c、4dが並列に介設されている。
【0046】
また、図5では、ミドルサイド板3の突出端子部30は、ハイサイド板1の突出端子部10、ローサイド板20の突出端子部20と同一方向に引き出されている。
【0047】
更に、この変形例では、制御電極端子6aは、各板1〜3の突出端子部10、20、30と反対側に突出している。これにより、配線引き回しや端子や配線間の電気絶縁が容易となる。制御電極端子6aなどへのスイッチングノイズ侵入を低減することができる。
【0048】
(半導体装置の構成)
この半導体スイッチングモジュ−ルを用いた半導体装置を図2に示す。
【0049】
21、22は放熱フィンである冷却部材、23は絶縁材、24はシリコングリス層である。
【0050】
絶縁材23は各板1、2の外主面10、11に密着しており、両者の間にシリコングリス層を塗布、介在させてもよい。 冷却部材21は、シリコングリス層24を介して冷却部材21、22の平坦な接触面に密着している。冷却部材21、22の外主面には多数の凹凸部すなわちフィンが形成されている。
【0051】
冷却部材21、22の図2中、左右両端部には貫通孔が形成され、これら貫通孔にスル−ボルト31が嵌入され、ナット32がスル−ボルト31に螺着されて半導体スイッチングモジュ−ルはこれら一対の冷却部材21、22により挟圧されている。すなわち、この実施例によれば、冷却部材21、22は冷却部材としての役割と、冷却部材21、22を半導体スイッチングモジュ−ルに良好に密着させるためのボルト、ナットによる挟圧力を接触面に伝達する力伝達部材としての役割を果たしている。放熱部材21、22を例えば冷媒チュ−ブなどに変更することも可能である。
【0052】
なお、図2では、冷却部材21、22は一相分の半導体スイッチングモジュ−ル(単相インバ−タ回路)のみ挟圧しているように図示されているが、図2の紙面の奥側に他の2つの相の半導体スイッチングモジュ−ルを同時に挟圧することができる。
【0053】
【実施例2】
他の実施例の半導体スイッチングモジュ−ル及びそれを用いた三相インバ−タ回路構成用の半導体装置を図6を参照して説明する。図6はこの半導体装置の要部平面図である。
【0054】
この実施例は、図5の単相インバ−タ回路を3相分、封止樹脂部8内に集積した三相インバ−タ回路内蔵の半導体スイッチングモジュ−ル300の断面図を示す。
【0055】
この実施例でも、半導体スイッチングモジュ−ル300は、図2に示す冷却部材21、22で両側から挟圧されて1モジュ−ル三相インバ−タ回路をなす半導体装置を実現している。
【0056】
なお、3UはU相のミドルサイド板、3VはU相のミドルサイド板、3WはW相のミドルサイド板であり、それぞれ平行に配置され、それらの一端は突出端子部30U、30V、30Wとなっている。
【0057】
4a、4bはIGBTが形成された半導体チップ、4c、4dはフライホイルダイオ−ドが形成された半導体チップであり、前述の単相インバ−タ回路内蔵の半導体スイッチングモジュ−ルと同様に、各フライホイルダイオ−ドは各IGBTに個別に逆並列接続されている。
【0058】
なお、制御電極端子は図示されていないが、いわゆリ−ドフレ−ム製造プロセスにより形成できることは明らかである。
【図面の簡単な説明】
【図1】実施例1の半導体スイッチングモジュ−ルの一部破断断面図である。
【図2】図1に示す半導体スイッチングモジュ−ルを用いた半導体装置の一部破断断面図である。
【図3】図1に示す半導体スイッチングモジュ−ル製造におけるスペ−サと半導体チップとの接合前を示す分解図である。
【図4】図1に示す半導体スイッチングモジュ−ル製造におけるスペ−サと半導体チップとの接合後を示す分解図である。
【図5】図1に示す半導体スイッチングモジュ−ルの変形態様を示す分解図である。
【図6】実施例2の半導体装置の要部平面図である。
【図7】従来の両面冷却型半導体カ−ドモジュ−ルを示す図である。(a)はその平面図、(b)はそのGーG線矢視断面図、(c)はそのHーH線矢視断面図である。
【符号の説明】
1:ハイサイド板
2:ローサイド板
2a:スペ−サ
3:ミドルサイド板
3a:スペ−サ
4a:半導体チップ
4b:半導体チップ
8:封止樹脂部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor switching module suitable for downsizing a power three-phase inverter circuit and an improvement in a semiconductor device for a power three-phase inverter circuit using the same.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 6-291223 proposes a semiconductor device that radiates heat from both sides of a semiconductor chip. This semiconductor device is shown in FIG. (A) is the top view, (b) is the GG arrow directional cross-sectional view, (c) is the HH directional arrow cross-sectional view.
[0003]
In this semiconductor device, a pair of heat sinks J2 and J3 also serving as heat sinks are thermally and electrically connected to both surfaces of the semiconductor chip J1, respectively, and the heat transfer members J2 and J3 are respectively power supply members to the semiconductor chip And a function as a heat sink and a heat transfer member. Hereinafter, this type of semiconductor device is also referred to as a double-sided cooling type semiconductor device.
[0004]
In this semiconductor device, at least the side surface of the semiconductor chip J1 is sealed with a resin J5 to form a card-like module (also referred to as a card module), and the anti-chip of the heat transfer members J2 and J3. The main surface on the side is exposed for cooling and serves as a main electrode terminal for supplying power to the main electrode of the semiconductor chip. The control terminal J4 for supplying power to the control electrode of the semiconductor chip is provided with sealing resin from the side surface of the card module. It penetrates and protrudes to the outside.
[0005]
J6 is an insulating plate, and J7 is a solder bump bonded to the bonding pad of the semiconductor chip.
[0006]
[Problems to be solved by the invention]
However, in the conventional double-sided cooling type semiconductor device described above, the heat transfer members J2 and J3 can be favorably dissipated from both sides of the semiconductor chip through the heat transfer members J2 and J3 by joining the two main surfaces of the semiconductor chip J1. However, since the heat transfer members J2 and J3 are joined to the main electrode surfaces individually formed on both main surfaces of the semiconductor chip, one or a plurality of simple transistors or diodes are built in the module. There is a problem that it is difficult to modularize a complicated power switching circuit.
[0007]
In particular, there is a three-phase inverter circuit for controlling an AC motor as an important application of this type of semiconductor switching module. In the above prior art, each of the six card modules is a bus bar or the like. It is necessary to connect, and the number of parts, an increase in the assembly process, and looseness of the assembly site are problems.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor switching module and a semiconductor device using the semiconductor switching module that can compactly form a power three-phase inverter circuit.
[0009]
[Means for Solving the Problems]
The semiconductor switching module according to claim 1 includes a high-side semiconductor chip in which a high-side semiconductor switching element is formed and a low-side semiconductor chip in which a low-side semiconductor switching element is formed. A semiconductor switching module including an inverter circuit formed by connecting the two semiconductor switching elements in series;
Each has a high-side plate, a middle-side plate, and a low-side plate made of a metal plate, and the main electrode surfaces on the output side of the two semiconductor chips are separated from each other directly on the inner main surface of the middle-side plate or through a conductive member. The main electrode surface on the high power supply side of the high-side semiconductor chip is bonded to the inner main surface of the high-side plate directly or via a conductive member, and the low-side semiconductor chip on the low-side side is bonded to the low-side semiconductor chip. The main electrode surface on the power supply side is joined to the inner main surface of the low side plate directly or via a conductive member, and the two semiconductor chips expose the outer main surfaces of the middle side plate, the high side plate and the low side plate. Te mode - by the sealing resin portion that is field are integrally covered, the high-side plate (1), the low-side plate (2) and middle side plate (3), the sealing resin portion (8) Thickness of the semiconductor chip (4a, 4b) from the sealing resin portion (8) at the projecting terminal portion (10, 20, 30) projecting in the direction and the portion facing away from the semiconductor chip (4a, 4b) It has an outer main surface (10, 11, 12) that protrudes in the vertical direction and is exposed .
[0010]
According to this configuration, the single-phase inverter circuit can be made into a single module while maintaining the double-sided cooling function of the semiconductor chip. It is possible to reduce concerns about loosening of the parts.
[0011]
Moreover, since the middle side plate (the output electrode wiring of the single-phase inverter circuit or a part thereof) also serves as a common substrate for both semiconductor chips, a high-density arrangement of both semiconductor chips can be realized, and the number of wiring components It is possible to reduce the number of connections, the number of connection steps, and the wiring loss.
[0012]
According to a second aspect of the present invention, in the semiconductor switching module according to the first aspect, the outer main surfaces of the high side plate and the low side plate are substantially in the same plane.
[0013]
According to this configuration, the high-side plate and the low-side plate can be brought into close contact with the same plane of the same cooling member via the thin electrical insulating material, and good double-sided cooling can be achieved with a simple structure.
[0014]
According to the configuration of claim 3, in the semiconductor switching module according to claim 2, further, between one of the low side plate or the high side plate and one of the two semiconductor chips, and between the middle side plate and the A spacer having good thermal conductivity and good conductivity is interposed between the other of the two semiconductor chips, and the two spacers absorb the difference in thickness to absorb the difference in thickness between the two semiconductor chips. It is characterized by having.
[0015]
According to this configuration, since the difference in thickness between the two semiconductor chips can be absorbed by the spacer, the high side plate, the middle side plate, and the low side plate are made simple, and the high side plate and the low side plate are the same. It can be a member having a thickness.
[0016]
According to the configuration of claim 4, in the semiconductor switching module according to claim 3, the control electrodes of both the semiconductor chips are formed on the main surface on the spacer side of the semiconductor chip. Since an extra gap can be secured between the high side plate or the low side plate and the middle side plate by the amount of the spacer, for example, a connecting member for connecting the control electrode and the control electrode terminal of the semiconductor chip, for example, a bonder It is possible to secure the space for arranging the ding wires without difficulty.
[0017]
According to the configuration of claim 5, in the semiconductor switching module according to any one of claims 1 to 4, the outer main surfaces of the high side plate, the low side plate, and the middle side plate are further away from the semiconductor chip. The projecting terminal portion that is in close contact with the cooling member through the electrical insulating film at the site where the high-side plate, the low-side plate, and the middle-side plate extend from the sealing resin portion in a substantially plane direction to form a terminal. It is characterized by having.
[0018]
According to this configuration, these high-side plate, low-side plate and middle-side plate can thermally combine the semiconductor chip and the cooling member at the shortest distance and can also serve as terminals, respectively. A simple and highly reliable terminal structure can be realized.
[0019]
According to the structure of the sixth aspect, in the semiconductor switching module according to the third or fourth aspect, the spacer further includes a protruding terminal portion extending from the sealing resin portion in a substantially plane direction to form a terminal. It is characterized by having.
[0020]
According to this configuration, since the spacer protrudes from the sealing resin portion in the surface direction and serves as a terminal, a simple and highly reliable terminal structure can be realized.
[0021]
According to the configuration of claim 7, in the semiconductor switching module according to any one of claims 1 to 6, the high-side plate, the low-side plate, and the middle-side plate formed wider than the spacer. It has a main electrode terminal that is joined to the inner main surface and protrudes outward in the surface direction.
[0022]
In this way, it is possible to use an inexpensive terminal having an electric resistance much smaller than MO or W, such as copper, and a metal material having a linear expansion coefficient close to that of a semiconductor chip as a spacer or a middle side plate. Even when using, the shape processing becomes easy, and the material cost and the shape processing cost can be reduced.
[0023]
According to the configuration of claim 8, in the semiconductor switching module according to claims 4 and 7, the control electrode terminal that is electrically connected to the control electrodes of both the semiconductor chips and protrudes outward in the plane direction, It is characterized by projecting in a direction opposite to the main electrode terminal.
[0024]
According to this configuration, since the control electrode terminal and the main electrode terminal are projected to the opposite side, it is easy to ensure electrical insulation between the two terminals, and wiring (bus bar) can be easily routed.
[0025]
According to a ninth aspect of the present invention, in the semiconductor switching module according to the fourth and seventh aspects, the semiconductor chip is further separated from one of the high side plate and the low side plate and the middle side plate. It is characterized by comprising a switching transistor chip and a flywheel diode chip interposed in parallel.
[0026]
According to this configuration, each semiconductor chip has an IGBT (insulated gate bipolar transistor), a MOST (insulated gate transistor), a BPT (bipolar transistor) and a flywheel diode connected in parallel. Since it has a chip structure, it is possible to realize a cooling and a small single-phase high-current inverter circuit.
[0027]
Since the IGBT chip or BPT chip and the flywheel diode chip usually have different thicknesses, the difference in thickness between the chips is obtained by connecting a pair of spacers having different thicknesses between the high side plate and the middle side plate. It is preferable to interpose between the low side plate and the middle side plate.
[0028]
The configuration according to claim 10 is such that the outer main surfaces of the high side plate, the low side plate, and the middle side plate are in close contact with the cooling member through an electric insulating film at a portion facing away from the semiconductor chip, respectively. 10. The semiconductor device using a semiconductor switching module according to claim 1, wherein the member is pressed in the thickness direction with the semiconductor switching module interposed therebetween.
[0029]
According to this configuration, the high side plate, the low side plate, and the middle side plate are brought into close contact with each other by sandwiching the cooling members on both sides. That is, since both the cooling members also serve as the fastening members, the adhesion in the thickness direction between the components becomes good, and the vibration resistance and the like are improved.
[0030]
The semiconductor switching module according to claim 11 includes a high-side semiconductor chip in which a high-side semiconductor switching element is formed and a low-side semiconductor chip in which a low-side semiconductor switching element is formed. A semiconductor switching module including an inverter circuit formed by connecting the two semiconductor switching elements in series;
Each has a high-side plate, a middle-side plate, and a low-side plate made of a metal plate, and the main electrode surfaces on the output side of the two semiconductor chips are separated from each other directly on the inner main surface of the middle-side plate or through a conductive member. The main electrode surface on the high power supply side of the high-side semiconductor chip is bonded to the inner main surface of the high-side plate directly or via a conductive member, and the low-side semiconductor chip on the low-side side is bonded to the low-side semiconductor chip. The main electrode surface on the power supply side is joined to the inner main surface of the low side plate directly or via a conductive member, and the two semiconductor chips expose the outer main surfaces of the middle side plate, the high side plate and the low side plate. Te mode - by the sealing resin portion that is field are integrally covered, an outer main surface of the high-side plate and low-side plate, forms a same plane, of the low-side plate or a high-side plate A spacer having good thermal conductivity and good conductivity is interposed between the semiconductor chip and one of the two semiconductor chips and between the middle side plate and the other of the two semiconductor chips. Sa, the have a difference in thickness to absorb the difference in thickness of the two semiconductor chips, the space - Sa is the extended to the sealing resin portion or et plane direction protruding terminal portions forming the terminal It is characterized by having.
According to a twelfth aspect of the present invention, in the first or eleventh aspect, a high-side semiconductor chip on which a high-side semiconductor switching element is formed, and a low-side semiconductor switching element on which a low-side semiconductor switching element is formed. 12. The semiconductor switching module according to claim 1, comprising three single-phase inverter circuits connected in parallel, each having a semiconductor chip on a side side and connecting both semiconductor switching elements in series. , Each having a high side plate and a low side plate made of a metal plate, and a U-side, V-phase, and W-phase middle side plate,
The main electrode surfaces on the output side of the U-phase semiconductor chips are separated from each other and joined to the inner main surface of the U-phase middle side plate directly or via a conductive member. The main electrode surfaces on the side are separated from each other and joined to the inner main surface of the V-phase middle side plate directly or via a conductive member, and the main electrode surfaces on the output side of the W-phase semiconductor chips are separated from each other. And joined to the inner main surface of the W-phase middle side plate directly or through a conductive member,
The main electrode surface on the high power supply side of the high-side semiconductor chip of each phase is joined to the inner main surface of the high-side plate directly or via a conductive member, and the low-side semiconductor chip of each phase The main electrode surface on the lower power supply side is joined to the inner main surface of the low side plate directly or via a conductive member, and the two semiconductor chips are connected to the middle side plate, the high side plate and the low side plate of each phase. It is characterized in that it is integrally covered with a sealing resin portion that is molded by exposing the main surface.
[0031]
According to this configuration, in addition to the spacer, a total of five busbar-shaped high side plates, low side plates, and middle side plates are used to incorporate a three-phase inverter circuit, and each semiconductor chip is in a matrix form the module being arranged at regular intervals - can be realized le, it is possible to greatly simplify the device structure, and Ru can be made smaller large output by double-sided cooling.
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the semiconductor device of the present invention will be described below with reference to the drawings.
[0032]
[Example 1]
FIG. 1 is a sectional view in the thickness direction of a semiconductor switching module, and FIG. 2 is a sectional view in the thickness direction of a semiconductor device using the semiconductor switching module.
(Configuration of semiconductor switching module)
In FIG. 1, 1 is a high side plate, 2 is a low side plate, 2a is a spacer, 3 is a middle side plate, 3a is a spacer, 4a is a semiconductor chip on the high side, and 4b is a semiconductor on the low side. Chip, 5 is a solder layer, 6a is a control electrode terminal, 7a and 7b are bonding wires, 8 is a sealing resin portion, 10 is an outer main surface of the low side plate 2, 11 is an outer main surface of the high side plate 1, and 12 is This is the outer main surface of the middle side plate 3.
[0033]
The high side plate 1, the low side plate 2, the spacer 2a, the middle side plate 3, and the spacer 3a are made of a metal flat plate made of tungsten, molybdenum or the like, but are made of copper or aluminum alloy. You may comprise.
[0034]
The semiconductor chip 4a is interposed between the inner main surface of the high side plate 1 and one of the pair of main surfaces of the spacer 3a, and is joined to both by a solder layer 5. The other of the pair of main surfaces of the spacer 3 a is soldered to the inner main surface of the middle side plate 3.
[0035]
The semiconductor chip 4b is interposed between the inner main surface of the middle side plate 3 and one of the pair of main surfaces of the spacer 2a, and is joined to both by a solder layer 5. The other of the pair of main surfaces of the spacer 2 a is soldered to the inner main surface of the low side plate 2.
[0036]
The spacers 2a and 3a have a thickness difference that absorbs the difference in thickness between the semiconductor chips 4a and 4b having different thicknesses, whereby the outer main surface of the high-side plate 1 and the low-side plate 2 The outer main surface has the same height.
[0037]
Each of the plates 1 to 3 has protruding terminal portions 10, 20, and 30 (see FIGS. 3 and 4) that extend in the back direction or the near side in FIG. 1 and are fastened to an external bus bar (not shown). Have. FIG. 3 is an exploded view showing before joining the spacers 2a, 3a and the semiconductor chips 4a, 4b. FIG. 4 is an exploded view showing after joining the spacers 2a, 3a and the semiconductor chips 4a, 4b. FIG.
[0038]
In this embodiment, the control electrode terminal 6a is formed integrally with the plates 1 and 3 at first, and is separated from the plates 1 and 3 after wire bonding or resin molding. Since such a method is a general station in the ordinary lead frame resin mold technology, detailed description thereof is omitted. Although five control electrode terminals 6a are shown for one semiconductor chip, the breakdown is a gate terminal, a drain terminal, a current mirror sense terminal, and two temperature detection terminals for detecting the temperature of the semiconductor chip. . If sensors are not required, at least two gate terminals, that is, a gate terminal and a drain terminal are sufficient.
[0039]
Each of the plates 1 to 3 is formed wider than the spacers 2a and 2b and protrudes further outward in the surface direction than the peripheral edges of the spacers 2a and 2b. The bases of the terminals may be joined to the main surfaces of the, and projected outward in the surface direction.
[0040]
The bonding wires 7a and 7b connect the bonding pads forming the control electrodes of the semiconductor chips 4a and 4b and the control electrode terminal 6a, and the control electrode terminal 6a protrudes outward in the surface direction.
[0041]
The sealing resin portion 8 is, for example, an epoxy mold resin and molds the semiconductor chips 4a and 4b. The sealing resin portion 8 covers the side surfaces of the plates 1 to 3 and the semiconductor chips 4a and 4b, but the outer main surfaces 10 to 12 of the plates 1 to 3 are exposed and the thickness direction of the sealing resin portion 8). Is limited to the inside of the outer main surfaces 10 to 12. Thereby, the outer main surfaces 10 to 12 can be easily adhered to the flat surface of the cooling member.
[0042]
The solder layer 5 can be replaced with a brazing material, a conductive adhesive, or the like, and these conductive bonding materials can also be used for bonding the spacers 2a, 3a and the plates 1 to 3. The spacers 2a and 3a and the plates 1 and 3 may be integrated.
[0043]
Of course, the control electrodes and the control electrode terminals 6a of the semiconductor chips 4a and 4b can use bump bonding or the like in addition to wire bonding using the bonding wires 7a and 7b. In FIG. 4, the low side plate and the high side plate are arranged on one main side, and in addition, the middle side plate and the control electrode are arranged on the opposite side. Of course, changes such as changing the positions of the low side plate and the middle side plate are possible.
[0044]
(Modification)
A modification is shown in FIG.
[0045]
In the first embodiment, the semiconductor chips 4a and 4b are MOS transistors. In FIG. 5, IGBTs are used as the semiconductor chips 4a and 4b. When the IGBT is used for inductive load switching control, the flywheel diodes need to be connected in reverse parallel, so that the flywheel diodes are connected between the plates 1 and 3 and between the plates 2 and 3, respectively. The semiconductor chips 4c and 4d on which are formed are interposed in parallel.
[0046]
In FIG. 5, the protruding terminal portion 30 of the middle side plate 3 is drawn out in the same direction as the protruding terminal portion 10 of the high side plate 1 and the protruding terminal portion 20 of the low side plate 20.
[0047]
Furthermore, in this modification, the control electrode terminal 6a protrudes on the opposite side to the protruding terminal portions 10, 20, and 30 of the plates 1 to 3. This facilitates wiring routing and electrical insulation between terminals and wiring. Switching noise intrusion into the control electrode terminal 6a and the like can be reduced.
[0048]
(Configuration of semiconductor device)
A semiconductor device using this semiconductor switching module is shown in FIG.
[0049]
21 and 22 are cooling members which are heat radiation fins, 23 is an insulating material, and 24 is a silicon grease layer.
[0050]
The insulating material 23 is in close contact with the outer main surfaces 10 and 11 of the plates 1 and 2, and a silicon grease layer may be applied and interposed between them. The cooling member 21 is in close contact with the flat contact surfaces of the cooling members 21 and 22 via the silicon grease layer 24. A large number of uneven portions, that is, fins are formed on the outer main surfaces of the cooling members 21 and 22.
[0051]
In FIG. 2, the cooling members 21 and 22 are formed with through holes at both left and right end portions thereof, through bolts 31 are fitted into the through holes, and nuts 32 are screwed into the through bolts 31 to switch the semiconductor switching module. Is sandwiched between the pair of cooling members 21 and 22. That is, according to this embodiment, the cooling members 21 and 22 serve as a cooling member, and the contact pressure by the bolts and nuts for bringing the cooling members 21 and 22 into good contact with the semiconductor switching module is applied to the contact surface. It plays a role as a force transmission member. It is also possible to change the heat radiating members 21 and 22 to, for example, a refrigerant tube.
[0052]
In FIG. 2, the cooling members 21 and 22 are illustrated as sandwiching only one phase of the semiconductor switching module (single-phase inverter circuit), but on the far side of the paper surface of FIG. 2. The other two phase semiconductor switching modules can be clamped simultaneously.
[0053]
[Example 2]
A semiconductor switching module according to another embodiment and a semiconductor device for a three-phase inverter circuit configuration using the same will be described with reference to FIG. FIG. 6 is a plan view of the main part of the semiconductor device.
[0054]
This embodiment shows a cross-sectional view of a semiconductor switching module 300 incorporating a three-phase inverter circuit in which three phases of the single-phase inverter circuit of FIG. 5 are integrated in the sealing resin portion 8.
[0055]
Also in this embodiment, the semiconductor switching module 300 realizes a semiconductor device which is sandwiched between the cooling members 21 and 22 shown in FIG. 2 to form a one-module three-phase inverter circuit.
[0056]
In addition, 3U is a U-phase middle side plate, 3V is a U-phase middle side plate, and 3W is a W-phase middle side plate, which are arranged in parallel, and one end of each of the protruding terminal portions 30U, 30V, 30W and It has become.
[0057]
4a and 4b are semiconductor chips on which IGBTs are formed, and 4c and 4d are semiconductor chips on which flywheel diodes are formed. Each of the semiconductor switching modules having a built-in single-phase inverter circuit, The flywheel diodes are individually connected in reverse parallel to each IGBT.
[0058]
Although the control electrode terminals are not shown, it is obvious that they can be formed by a so-called lead frame manufacturing process.
[Brief description of the drawings]
FIG. 1 is a partially cutaway sectional view of a semiconductor switching module according to a first embodiment.
2 is a partially cutaway sectional view of a semiconductor device using the semiconductor switching module shown in FIG.
FIG. 3 is an exploded view showing a state before joining a spacer and a semiconductor chip in manufacturing the semiconductor switching module shown in FIG. 1;
4 is an exploded view showing a state after joining a spacer and a semiconductor chip in manufacturing the semiconductor switching module shown in FIG. 1; FIG.
FIG. 5 is an exploded view showing a modification of the semiconductor switching module shown in FIG.
6 is a plan view of the principal part of the semiconductor device of Example 2. FIG.
FIG. 7 is a view showing a conventional double-sided cooling type semiconductor card module. (A) is the top view, (b) is the GG arrow directional cross-sectional view, (c) is the HH directional arrow cross-sectional view.
[Explanation of symbols]
1: High side plate 2: Low side plate 2a: Spacer 3: Middle side plate 3a: Spacer 4a: Semiconductor chip 4b: Semiconductor chip 8: Sealing resin portion

Claims (12)

ハイサイド側の半導体スイッチング素子が形成されたハイサイド側の半導体チップと、ロ−サイド側の半導体スイッチング素子が形成されたロ−サイド側の半導体チップとを有し、前記両半導体スイッチング素子を直列接続してなるインバ−タ回路を内蔵する半導体スイッチングモジュ−ルにおいて、
それぞれ金属板からなるハイサイド板、ミドルサイド板、ローサイド板を有し、
前記両半導体チップの出力側の主電極面は、互いに離れて前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、
前記ハイサイド側の半導体チップの高位電源側の主電極面は、前記ハイサイド板の内側主面に直接あるいは導電部材を介して接合され、
前記ロ−サイド側の半導体チップの低位電源側の主電極面は、前記ローサイド板の内側主面に直接あるいは導電部材を介して接合され、
前記両半導体チップは、前記ミドルサイド板、ハイサイド板及びローサイド板の外主面を露出させてモ−ルドされる封止樹脂部により一体に被覆され、
前記ハイサイド板(1)、ローサイド板(2)及びミドルサイド板(3)は、前記封止樹脂部(8)から面方向に突出する突出端子部(10、20、30)と、前記半導体チップ(4a、4b)に背向する部位にて前記封止樹脂部(8)から前記半導体チップ(4a、4b)の厚さ方向に突出して露出する外主面(10、11、12)とを有することを特徴とする半導体スイッチングモジュ−ル。
A high-side semiconductor chip on which a high-side semiconductor switching element is formed; and a low-side semiconductor chip on which a low-side semiconductor switching element is formed. In a semiconductor switching module containing a connected inverter circuit,
Each has a high side plate, a middle side plate, and a low side plate made of a metal plate,
The main electrode surfaces on the output side of the two semiconductor chips are joined to the inner main surface of the middle side plate away from each other directly or via a conductive member,
The main electrode surface on the high power supply side of the high-side semiconductor chip is joined to the inner main surface of the high-side plate directly or via a conductive member,
The main electrode surface on the lower power supply side of the low-side semiconductor chip is joined to the inner main surface of the low-side plate directly or via a conductive member,
The two semiconductor chips are integrally covered with a sealing resin portion that is molded by exposing the outer main surfaces of the middle side plate, the high side plate, and the low side plate,
The high-side plate (1), the low-side plate (2), and the middle-side plate (3) include protruding terminal portions (10, 20, 30) protruding in the surface direction from the sealing resin portion (8), and the semiconductor An outer main surface (10, 11, 12) that protrudes in the thickness direction of the semiconductor chip (4a, 4b) from the sealing resin portion (8) at a portion facing away from the chip (4a, 4b); A semiconductor switching module comprising:
請求項1記載の半導体スイッチングモジュ−ルにおいて、
前記ハイサイド板及びローサイド板の外主面は、同一平面をなすことを特徴とする半導体スイッチングモジュ−ル。
The semiconductor switching module according to claim 1, wherein
2. A semiconductor switching module according to claim 1, wherein outer main surfaces of the high side plate and the low side plate are coplanar.
請求項2記載の半導体スイッチングモジュ−ルにおいて、
前記ローサイド板又はハイサイド板の一方と前記両半導体チップの一方との間、及び、前記ミドルサイド板と前記両半導体チップの他方との間に良熱伝導性かつ良電導性のスペ−サが介設され、
前記両スペ−サは、前記両半導体チップの厚さの差を吸収する厚さの差を有することを特徴とする半導体スイッチングモジュ−ル。
The semiconductor switching module according to claim 2, wherein
Spacers with good thermal conductivity and good conductivity are provided between one of the low side plate or the high side plate and one of the two semiconductor chips and between the middle side plate and the other of the two semiconductor chips. Intervened,
2. The semiconductor switching module according to claim 1, wherein the two spacers have a thickness difference that absorbs a difference in thickness between the two semiconductor chips.
請求項3記載の半導体スイッチングモジュ−ルにおいて、
前記両半導体チップの制御電極は、前記半導体チップのスペ−サ側の主面に形成されていることを特徴とする半導体スイッチングモジュ−ル。
The semiconductor switching module according to claim 3, wherein
The semiconductor switching module according to claim 1, wherein the control electrodes of the two semiconductor chips are formed on a spacer-side main surface of the semiconductor chip.
請求項1乃至4のいずれか記載の半導体スイッチングモジュ−ルにおいて、
前記ハイサイド板、ローサイド板及びミドルサイド板の前記外主面は、前記半導体チップに背向する部位にて電気絶縁膜を介してそれぞれ冷却部材に密着し、
前記ハイサイド板、ローサイド板及びミドルサイド板は、前記封止樹脂部から略面方向へ延設されて端子をなす前記突出端子部を有することを特徴とする半導体スイッチングモジュ−ル。
The semiconductor switching module according to any one of claims 1 to 4,
The outer main surfaces of the high-side plate, the low-side plate, and the middle-side plate are in close contact with the cooling member through an electrical insulating film at a portion facing away from the semiconductor chip,
The high-side plate, the low-side plate, and the middle-side plate have the protruding terminal portion that extends from the sealing resin portion in a substantially planar direction to form a terminal, and is a semiconductor switching module.
請求項3又は4記載の半導体スイッチングモジュ−ルにおいて、
前記スペ−サは、前記封止樹脂部から略面方向へ延設されて端子をなす突出端子部を有することを特徴とする半導体スイッチングモジュ−ル。
The semiconductor switching module according to claim 3 or 4,
2. The semiconductor switching module according to claim 1, wherein the spacer has a projecting terminal portion extending from the sealing resin portion in a substantially plane direction to form a terminal.
請求項1乃至6のいずれか記載の半導体スイッチングモジュ−ルにおいて、
前記スペ−サよりも幅広に形成された前記ハイサイド板、ローサイド板及びミドルサイド板の内側主面に接合されて面方向外側へ突出する主電極端子を有することを特徴とする半導体スイッチングモジュ−ル。
The semiconductor switching module according to any one of claims 1 to 6,
A semiconductor switching module comprising: main electrode terminals that are joined to inner main surfaces of the high-side plate, the low-side plate, and the middle-side plate that are formed wider than the spacer and project outward in the surface direction. Le.
請求項4及び7記載の半導体スイッチングモジュ−ルにおいて、
前記両半導体チップの制御電極に電気的に接続されて面方向外部に突出する制御電極端子は、前記主電極端子と反対方向に突設されることを特徴とする半導体スイッチングモジュ−ル。
The semiconductor switching module according to claim 4 and 7,
2. A semiconductor switching module according to claim 1, wherein the control electrode terminals electrically connected to the control electrodes of the two semiconductor chips and projecting outward in the surface direction are projected in the opposite direction to the main electrode terminals.
請求項4及び7記載の半導体スイッチングモジュ−ルにおいて、
前記半導体チップは、前記ハイサイド板及びローサイド板の一方と前記ミドルサイド板との間に互いに離れて並列に介設されるスイッチングトランジスタチップ及びフライホイルダイオ−ドチップからなることを特徴とする半導体スイッチングモジュ−ル。
The semiconductor switching module according to claim 4 and 7,
The semiconductor chip comprises a switching transistor chip and a flywheel diode chip that are disposed in parallel and spaced apart from each other between one of the high side plate and the low side plate and the middle side plate. Module.
前記ハイサイド板、ローサイド板及びミドルサイド板の前記外主面は、前記半導体チップに背向する部位にて電気絶縁膜を介してそれぞれ冷却部材に密着し、
前記冷却部材は、前記半導体スイッチングモジュ−ルを挟んで厚さ方向に挟圧されることを特徴とする請求項1乃至9のいずれか記載の半導体スイッチングモジュ−ルを用いる半導体装置。
The outer main surfaces of the high-side plate, the low-side plate, and the middle-side plate are in close contact with the cooling member through an electrical insulating film at a portion facing away from the semiconductor chip,
10. The semiconductor device using a semiconductor switching module according to claim 1, wherein the cooling member is pressed in the thickness direction with the semiconductor switching module interposed therebetween.
ハイサイド側の半導体スイッチング素子が形成されたハイサイド側の半導体チップと、ロ−サイド側の半導体スイッチング素子が形成されたロ−サイド側の半導体チップとを有し、前記両半導体スイッチング素子を直列接続してなるインバ−タ回路を内蔵する半導体スイッチングモジュ−ルにおいて、
それぞれ金属板からなるハイサイド板、ミドルサイド板、ローサイド板を有し、
前記両半導体チップの出力側の主電極面は、互いに離れて前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、
前記ハイサイド側の半導体チップの高位電源側の主電極面は、前記ハイサイド板の内側主面に直接あるいは導電部材を介して接合され、
前記ロ−サイド側の半導体チップの低位電源側の主電極面は、前記ローサイド板の内側主面に直接あるいは導電部材を介して接合され、
前記両半導体チップは、前記ミドルサイド板、ハイサイド板及びローサイド板の外主面を露出させてモ−ルドされる封止樹脂部により一体に被覆され、
前記ハイサイド板及びローサイド板の外主面は、同一平面をなし、
前記ローサイド板又はハイサイド板の一方と前記両半導体チップの一方との間、及び、前記ミドルサイド板と前記両半導体チップの他方との間に良熱伝導性かつ良電導性のスペ−サが介設され、
前記両スペ−サは、前記両半導体チップの厚さの差を吸収する厚さの差を有し、
前記スペ−サは、前記封止樹脂部から面方向へ延設されて端子をなす突出端子部を有することを特徴とする半導体スイッチングモジュ−ル。
A high-side semiconductor chip on which a high-side semiconductor switching element is formed; and a low-side semiconductor chip on which a low-side semiconductor switching element is formed. In a semiconductor switching module containing a connected inverter circuit,
Each has a high side plate, a middle side plate, and a low side plate made of a metal plate,
The main electrode surfaces on the output side of the two semiconductor chips are joined to the inner main surface of the middle side plate away from each other directly or via a conductive member,
The main electrode surface on the high power supply side of the high-side semiconductor chip is joined to the inner main surface of the high-side plate directly or via a conductive member,
The main electrode surface on the lower power supply side of the low-side semiconductor chip is joined to the inner main surface of the low-side plate directly or via a conductive member,
The two semiconductor chips are integrally covered with a sealing resin portion that is molded by exposing the outer main surfaces of the middle side plate, the high side plate, and the low side plate,
The outer major surface of the high-side plate and low-side plate, forms a same plane,
Spacers with good thermal conductivity and good conductivity are provided between one of the low side plate or the high side plate and one of the two semiconductor chips and between the middle side plate and the other of the two semiconductor chips. Intervened,
The spacers have a thickness difference that absorbs a difference in thickness between the semiconductor chips.
The space - Sa, the semiconductor switching module and having a projecting terminal portion said extending into the sealing resin portion or et plane direction forming a terminal - le.
ハイサイド側の半導体スイッチング素子が形成されたハイサイド側の半導体チップと、ロ−サイド側の半導体スイッチング素子が形成されたロ−サイド側の半導体チップとを有し、前記両半導体スイッチング素子を直列接続してなる単相インバ−タ回路を三個並列接続してなる請求項1又は請求項11記載の半導体スイッチングモジュ−ルにおいて、
それぞれ金属板からなるハイサイド板及びローサイド板と、U相、V相、W相のミドルサイド板とを有し、
U相の前記両半導体チップの出力側の主電極面は、互いに離れてU相の前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、
V相の前記両半導体チップの出力側の主電極面は、互いに離れてV相の前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、
W相の前記両半導体チップの出力側の主電極面は、互いに離れてW相の前記ミドルサイド板の内側主面に直接あるいは導電部材を介して接合され、
各相の前記ハイサイド側の半導体チップの高位電源側の主電極面は、前記ハイサイド板の内側主面に直接あるいは導電部材を介して接合され、
各相の前記ロ−サイド側の半導体チップの低位電源側の主電極面は、前記ローサイド板の内側主面に直接あるいは導電部材を介して接合され、
前記両半導体チップは、前記各相のミドルサイド板、ハイサイド板及びローサイド板の外主面を露出させてモ−ルドされる封止樹脂部により一体に被覆されていることを特徴とする半導体スイッチングモジュ−ル。
A high-side semiconductor chip on which a high-side semiconductor switching element is formed; and a low-side semiconductor chip on which a low-side semiconductor switching element is formed. The semiconductor switching module according to claim 1 or 11, wherein three connected single-phase inverter circuits are connected in parallel.
Each having a high side plate and a low side plate made of a metal plate, and a U-side, V-phase, and W-phase middle side plate,
The main electrode surfaces on the output side of the U-phase semiconductor chips are bonded to the inner main surface of the U-phase middle side plate directly or via a conductive member,
The main electrode surfaces on the output side of the V-phase semiconductor chips are separated from each other and joined to the inner main surface of the V-phase middle side plate directly or via a conductive member,
The main electrode surfaces on the output side of the W-phase semiconductor chips are separated from each other and joined to the inner main surface of the W-phase middle side plate directly or via a conductive member,
The main electrode surface on the high power supply side of the high-side semiconductor chip of each phase is joined directly or via a conductive member to the inner main surface of the high-side plate,
The main electrode surface on the low power supply side of the semiconductor chip on the low side of each phase is joined to the inner main surface of the low side plate directly or via a conductive member,
The semiconductor chips are integrally covered with a sealing resin portion which is molded by exposing the outer main surfaces of the middle side plate, high side plate and low side plate of each phase. Switching module.
JP2000118093A 2000-04-19 2000-04-19 Semiconductor switching module and semiconductor device using the same Expired - Lifetime JP4192396B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000118093A JP4192396B2 (en) 2000-04-19 2000-04-19 Semiconductor switching module and semiconductor device using the same
EP10006258.7A EP2234154B1 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
EP10006259.5A EP2244289B1 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
EP06022504.2A EP1742265B1 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
EP01109620.3A EP1148547B8 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
US09/837,382 US6542365B2 (en) 2000-04-19 2001-04-19 Coolant cooled type semiconductor device
US10/314,139 US6845012B2 (en) 2000-04-19 2002-12-09 Coolant cooled type semiconductor device
US10/756,340 US7027302B2 (en) 2000-04-19 2004-01-14 Coolant cooled type semiconductor device
US10/946,210 US7106592B2 (en) 2000-04-19 2004-09-22 Coolant cooled type semiconductor device
US11/325,331 US7250674B2 (en) 2000-04-19 2006-01-05 Coolant cooled type semiconductor device
US11/452,328 US7248478B2 (en) 2000-04-19 2006-06-14 Coolant cooled type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118093A JP4192396B2 (en) 2000-04-19 2000-04-19 Semiconductor switching module and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2001308263A JP2001308263A (en) 2001-11-02
JP4192396B2 true JP4192396B2 (en) 2008-12-10

Family

ID=18629296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118093A Expired - Lifetime JP4192396B2 (en) 2000-04-19 2000-04-19 Semiconductor switching module and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4192396B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096809A (en) * 2009-10-29 2011-05-12 Denso Corp Semiconductor module and terminal connecting structure
US8884411B2 (en) 2011-04-19 2014-11-11 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US9312211B2 (en) 2012-03-07 2016-04-12 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US11647612B2 (en) * 2020-11-23 2023-05-09 Toyota Motor Engineering & Manufacturing North America, Inc. High-density integrated power electronic assembly including double-sided cooling structure

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719506B2 (en) * 2001-12-19 2005-11-24 株式会社デンソー Semiconductor device and manufacturing method thereof
EP2244289B1 (en) 2000-04-19 2014-03-26 Denso Corporation Coolant cooled type semiconductor device
EP1318547B1 (en) * 2001-12-06 2013-04-17 ABB Research Ltd. Power semiconductor module
DE10221082A1 (en) * 2002-05-11 2003-11-20 Bosch Gmbh Robert Semiconductor device
US7009291B2 (en) 2002-12-25 2006-03-07 Denso Corporation Semiconductor module and semiconductor device
JP3879688B2 (en) * 2003-03-26 2007-02-14 株式会社デンソー Semiconductor device
JP4120876B2 (en) 2003-05-26 2008-07-16 株式会社デンソー Semiconductor device
JP4559777B2 (en) * 2003-06-26 2010-10-13 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2005217072A (en) 2004-01-28 2005-08-11 Renesas Technology Corp Semiconductor device
JP2005237141A (en) * 2004-02-20 2005-09-02 Toyota Motor Corp Inverter and inverter manufacturing method
JP4158738B2 (en) 2004-04-20 2008-10-01 株式会社デンソー Semiconductor module mounting structure, card-like semiconductor module, and heat-receiving member for adhering to card-like semiconductor module
JP2005332863A (en) 2004-05-18 2005-12-02 Denso Corp Power stack
JP4532303B2 (en) * 2005-02-08 2010-08-25 トヨタ自動車株式会社 Semiconductor module
JP4284625B2 (en) 2005-06-22 2009-06-24 株式会社デンソー Three-phase inverter device
JP2007012857A (en) * 2005-06-30 2007-01-18 Renesas Technology Corp Semiconductor device
DE102005050534B4 (en) * 2005-10-21 2008-08-07 Semikron Elektronik Gmbh & Co. Kg The power semiconductor module
JP4564937B2 (en) * 2006-04-27 2010-10-20 日立オートモティブシステムズ株式会社 Electric circuit device, electric circuit module, and power conversion device
JP4829690B2 (en) * 2006-06-09 2011-12-07 本田技研工業株式会社 Semiconductor device
EP2202793A3 (en) 2006-06-09 2010-11-10 Honda Motor Co., Ltd. Semiconductor device
JP4977407B2 (en) * 2006-06-09 2012-07-18 本田技研工業株式会社 Semiconductor device
WO2008018332A1 (en) * 2006-08-09 2008-02-14 Honda Motor Co., Ltd. Semiconductor device
JP4840165B2 (en) * 2007-01-29 2011-12-21 株式会社デンソー Semiconductor device
JP4436843B2 (en) 2007-02-07 2010-03-24 株式会社日立製作所 Power converter
JP2008218688A (en) * 2007-03-05 2008-09-18 Denso Corp Semiconductor device
JP4705945B2 (en) * 2007-11-05 2011-06-22 ルネサスエレクトロニクス株式会社 Semiconductor device
JP4800290B2 (en) * 2007-12-10 2011-10-26 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5267021B2 (en) * 2008-09-30 2013-08-21 株式会社デンソー Semiconductor device and inverter circuit using the same
JP2010109000A (en) * 2008-10-28 2010-05-13 Denso Corp Semiconductor package
JP5287359B2 (en) * 2009-03-04 2013-09-11 株式会社デンソー Semiconductor module
CN102473653B (en) 2010-02-01 2016-05-04 丰田自动车株式会社 The manufacture method of semiconductor device and semiconductor device
JP5655339B2 (en) * 2010-03-26 2015-01-21 サンケン電気株式会社 Semiconductor device
JP5195828B2 (en) * 2010-06-15 2013-05-15 三菱電機株式会社 Semiconductor device
JP5447453B2 (en) * 2010-11-03 2014-03-19 株式会社デンソー Switching module
CN103534805B (en) 2011-05-16 2016-08-24 丰田自动车株式会社 Power model
US8804340B2 (en) 2011-06-08 2014-08-12 International Rectifier Corporation Power semiconductor package with double-sided cooling
JP2014199829A (en) 2011-07-29 2014-10-23 三洋電機株式会社 Semiconductor module and inverter mounting the same
JP2017055146A (en) * 2011-09-08 2017-03-16 ローム株式会社 Semiconductor device, manufacturing method of semiconductor device, mounting structure of semiconductor device, and power semiconductor device
WO2013065182A1 (en) 2011-11-04 2013-05-10 トヨタ自動車株式会社 Power module, power converter, and electric vehicle
WO2013069277A1 (en) * 2011-11-07 2013-05-16 ダイキン工業株式会社 Semiconductor device
JP5474128B2 (en) * 2012-05-18 2014-04-16 日立オートモティブシステムズ株式会社 Power converter
JP2014120638A (en) * 2012-12-18 2014-06-30 Rohm Co Ltd Power module semiconductor device, and method of manufacturing the same
JP6003624B2 (en) * 2012-12-26 2016-10-05 株式会社明電舎 Semiconductor module
JP5739956B2 (en) * 2013-09-09 2015-06-24 日立オートモティブシステムズ株式会社 Semiconductor module and power conversion device using the same
JP6037045B2 (en) * 2013-10-29 2016-11-30 富士電機株式会社 Semiconductor module
JP6194812B2 (en) 2014-02-18 2017-09-13 トヨタ自動車株式会社 Semiconductor module
JP6123722B2 (en) * 2014-03-26 2017-05-10 株式会社デンソー Semiconductor device
JP6047599B2 (en) * 2014-05-21 2016-12-21 日立オートモティブシステムズ株式会社 Semiconductor module and power conversion device including the same
KR101745201B1 (en) 2015-12-09 2017-06-09 현대자동차주식회사 Power module of double-faced cooling and method for producing thereof
JP6689708B2 (en) * 2016-08-10 2020-04-28 ルネサスエレクトロニクス株式会社 Electronic device
US11476179B2 (en) 2016-10-25 2022-10-18 Tesla, Inc. Inverter
US11183485B2 (en) * 2016-11-24 2021-11-23 Sumitomo Electric Industries, Ltd. Semiconductor module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096809A (en) * 2009-10-29 2011-05-12 Denso Corp Semiconductor module and terminal connecting structure
US8884411B2 (en) 2011-04-19 2014-11-11 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US9312211B2 (en) 2012-03-07 2016-04-12 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US11647612B2 (en) * 2020-11-23 2023-05-09 Toyota Motor Engineering & Manufacturing North America, Inc. High-density integrated power electronic assembly including double-sided cooling structure

Also Published As

Publication number Publication date
JP2001308263A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
JP4192396B2 (en) Semiconductor switching module and semiconductor device using the same
US7557434B2 (en) Power electronic package having two substrates with multiple electronic components
KR100430772B1 (en) A semiconductor device
US9673129B2 (en) Semiconductor device
US6563211B2 (en) Semiconductor device for controlling electricity
KR100616129B1 (en) High power mcm package
US8237260B2 (en) Power semiconductor module with segmented base plate
JP3674333B2 (en) Power semiconductor module and electric motor drive system using the same
JP7204770B2 (en) Double-sided cooling power module and manufacturing method thereof
US6642576B1 (en) Power semiconductor device having layered structure of power semiconductor elements and terminal members
JP7159620B2 (en) Semiconductor devices, cooling modules, power converters and electric vehicles
JP2000164800A (en) Semiconductor module
US20040089934A1 (en) Stacked semiconductor module and assembling method of the same
WO2005119896A1 (en) Inverter device
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JPH09139461A (en) Semiconductor power module
JP2019506753A (en) Power modules based on multilayer circuit boards
JP3643525B2 (en) Inverter device
US11915999B2 (en) Semiconductor device having a carrier, semiconductor chip packages mounted on the carrier and a cooling element
US6906935B2 (en) Inverter apparatus and method of manufacturing the same
CN116259594A (en) Semiconductor device and method for manufacturing semiconductor device
JP3673776B2 (en) Semiconductor module and power conversion device
JP7163583B2 (en) semiconductor equipment
JP2021158232A (en) Semiconductor module
JP2002050722A (en) Semiconductor package and application device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4192396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term