WO2024152598A1 - 一种衣物处理设备 - Google Patents
一种衣物处理设备 Download PDFInfo
- Publication number
- WO2024152598A1 WO2024152598A1 PCT/CN2023/120655 CN2023120655W WO2024152598A1 WO 2024152598 A1 WO2024152598 A1 WO 2024152598A1 CN 2023120655 W CN2023120655 W CN 2023120655W WO 2024152598 A1 WO2024152598 A1 WO 2024152598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moisture absorption
- dehumidification
- drying module
- area
- drying
- Prior art date
Links
- 238000001035 drying Methods 0.000 claims abstract description 228
- 238000010521 absorption reaction Methods 0.000 claims abstract description 189
- 238000007791 dehumidification Methods 0.000 claims abstract description 137
- 230000008929 regeneration Effects 0.000 claims abstract description 57
- 238000011069 regeneration method Methods 0.000 claims abstract description 57
- 238000012545 processing Methods 0.000 claims description 51
- 238000001914 filtration Methods 0.000 claims description 23
- 239000010410 layer Substances 0.000 claims description 20
- 238000005192 partition Methods 0.000 claims description 18
- 238000009413 insulation Methods 0.000 claims description 10
- 238000004140 cleaning Methods 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 9
- 230000003014 reinforcing effect Effects 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 239000011241 protective layer Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005406 washing Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F25/00—Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F58/00—Domestic laundry dryers
- D06F58/20—General details of domestic laundry dryers
- D06F58/26—Heating arrangements, e.g. gas heating equipment
Definitions
- the present invention belongs to the technical field of electrical appliances, and in particular relates to a clothing processing device.
- wash-dryers are especially suitable for families in the south during the rainy season, families in the north where the air quality is poor and it is not suitable for outdoor drying of clothes, and people who want to wear clothes immediately after washing or pursue more fluffy and comfortable clothes.
- the present invention provides a clothes processing device with a drying function, which can reduce its power consumption. And the drying effect is better.
- the present disclosure provides a clothes processing device, comprising: a drying module and a drum, wherein the drum has at least one drum air outlet and one drum air inlet, the drum air outlet and the drum air inlet are respectively connected to the drying module airflow to form a drying airflow passage;
- the drying module comprises: a first drying module shell having a first space, a second drying module shell having a second space, and a moisture absorption and dehumidification component arranged between the first drying module shell and the second drying module shell;
- the second space at least comprises a dehumidification area 3b and a regeneration area 3a, and a first airflow inlet is arranged in the dehumidification area 3b; at least part of the moisture absorption and dehumidification component periodically passes through the dehumidification area 3b and the regeneration area 3a; there is a distance in the vertical direction from the bottom plate of the second drying module shell to the corresponding surface of the moisture absorption and dehumidification component, and in the dehumidification
- the clothes processing device sets the partial space formed by the second drying module shell and the moisture absorption and dehumidification component to be: there is a distance in the vertical direction from the bottom plate of the second drying module shell to the corresponding surface of the moisture absorption and dehumidification component, and in the dehumidification area 3b, the distance near the first airflow inlet is different from at least part of the distance at other positions away from the first airflow inlet, so that the shape of the air path in the direction of gas flow can be converged, so that when the moisture in the dry airflow is continuously adsorbed and the density of the dry airflow is reduced, the pressure loss of the airflow can be effectively compensated, the pressure and flow rate of the airflow can be kept stable, and it can be fully in contact with the moisture absorption and dehumidification component. Therefore, the moisture absorption and dehumidification component can achieve a better adsorption effect on the dry airflow flowing therein.
- FIG1 is a schematic structural diagram of a clothes processing device according to some embodiments of the present disclosure.
- FIG2 shows a schematic diagram of assembling a drying module on a clothes processing device
- FIG3 is a schematic diagram showing the three-dimensional structure of the drying module in FIG2 ;
- FIG4 shows a schematic diagram of the exploded structure of the drying module in FIG1 ;
- FIG5 shows a schematic diagram of a first drying module housing
- FIG6 shows a schematic diagram of a second drying module housing
- Fig. 7(a) is a schematic cross-sectional view along line B-B in Fig. 3;
- FIG7( b ) is a schematic cross-sectional view along line BB in FIG3 ;
- Fig. 8(a) is a schematic cross-sectional view along line C-C in Fig. 3;
- Fig. 8(b) is a schematic cross-sectional view along line C-C in Fig. 3;
- FIG9 shows a cross-sectional schematic diagram of a drying module when it is horizontally arranged according to other embodiments of the present disclosure
- FIG10 shows a schematic structural diagram of the upper cover plate of FIG1 ;
- FIG11 shows a schematic cross-sectional view of FIG10 ;
- FIG12 shows a partial cross-sectional view of FIG1 ;
- FIG13 shows a schematic diagram of the interior of the air outlet duct in FIG12 ;
- FIG14 shows a partial cross-sectional view of the filter assembly
- FIG15 shows a schematic structural diagram of a moisture absorption and moisture discharge component
- FIG16 shows a schematic structural diagram of a drum
- FIG. 17 shows a schematic structural diagram of the drum from another perspective.
- the term “regeneration” refers to the restoration of a relatively dry object to a relatively dry state by at least partially dehumidifying after absorbing moisture.
- upstream and downstream are used to indicate the relative position of a second element encountered by an airflow after passing through a first element when flowing in a flow path starting from the system air inlet, wherein the first element is “upstream” of the second element, and the second element is “downstream” of the first element.
- the present disclosure provides a clothing processing device 1, comprising: a drying module 3 and a drum 2, wherein the drum 2 has at least one drum air outlet 202 and one drum air inlet 203, and the drum air outlet 202 and the drum air inlet 203 are respectively connected to the drying module 3 by airflow to form a drying airflow passage.
- the drying module 3 is arranged above the drum 2, and comprises a first air outlet 32 and a first air inlet 33, and is connected to the drum air outlet 202 through the first air inlet 33, and is connected to the drum air inlet 203 through the first air outlet 32. Based on this, the drying module 3 and the drum 2 form a circulation passage, thereby achieving drying of the hot and humid air circulating therein.
- the drying airflow is guided from the drum 2 to the drying module 3 through the first air inlet 33 of the drying module 3, the drying module 3 dehumidifies and heats the drying airflow from the drum 2, and then guides the drying airflow back to the drum 2 through the first air outlet 32 of the drying module 3, and this cycle is repeated to dry the clothes.
- the drying module 3 includes a first drying module shell 310, a second drying module shell 320, and a moisture absorption and dehumidification component 300.
- the moisture absorption and dehumidification component 300 can be made of a material with good moisture absorption and desorption properties, such as zeolite, lithium chloride, silica gel, modified silica gel or 13X (sodium X type) molecular sieve.
- the moisture absorption and dehumidification component 300 can also be set to different shapes, such as a circular turntable, a strip-shaped moisture absorption belt, a container with openings of different shapes, etc.
- the drying module 3 can also include a drive component, which can include a motor, and the motor can drive the turntable to rotate.
- the pore size of the moisture absorption and moisture dissipation member 300 generally represents the diameter of the member pore structure.
- the pore size can be the side length of the rectangle, the height of the triangle, the diameter of the circle or elliptical, the wave height of the corrugated hole, etc.
- the pore size can be characterized by the wave height in the moisture absorption and moisture dissipation member, such as the wave height of the corrugated hole; the pore size can also be characterized by the diameter of the circumscribed circle of the moisture absorption hole of the moisture absorption and moisture dissipation member.
- the first drying module housing 310 has a first space
- the second drying module housing 320 has a second space
- the moisture absorption and dehumidification member 300 is disposed between the first drying module housing 310 and the second drying module housing 320.
- a gap is provided between the first surface 3001 of the moisture absorption and dehumidification member 300 and a portion of the top wall of the first drying module housing 310 to form a first airflow channel;
- a gap is provided between the second surface 3002 of the moisture absorption and dehumidification member and a portion of the bottom plate of the second drying module housing 320 to form a second airflow channel; the second airflow channel, the moisture absorption and dehumidification member 300 and the first airflow channel form an airflow passage.
- the second drying module housing 320 includes a second drying module housing bottom plate 3201 and a circumferential side wall protruding from the bottom plate, and the recessed portion formed is the second space.
- two second partitions 321 are arranged radially along the second drying module shell 320 to divide the second space into a dehumidification area 3b and a regeneration area 3a; thus, it is beneficial for the moisture absorption and dehumidification component 300 to circulate through the dehumidification area 3b and the regeneration area 3a during the rotation process, and continuously absorb and desorb moisture, so that the moisture absorption and dehumidification component 300 always has a good water absorption capacity, thereby improving the efficiency and effect of moisture absorption.
- the two second partitions 321 are arranged in a V shape, and the dehumidification area 3b and the regeneration area 3a are generally fan-shaped.
- the first drying module housing 310 includes a first drying module housing top wall 3101 and a circumferential side wall, and the recessed portion formed is the first space.
- two first partitions 311 are correspondingly arranged along the radial direction of the first drying module housing to separate the first space into a dehumidification area 3b and a regeneration module installation area 3c; the recessed portion structures of the first drying module housing 310 and the second drying module housing 320 are arranged oppositely, and when the first drying module housing 310 and the second drying module housing 320 are connected in cooperation, the first space and the second space can form a accommodating cavity of the moisture absorption and dehumidification component 300.
- the first drying module housing 310 and the second drying module housing 320 can be set to be sealed.
- the moisture absorption and dehumidification component 300 is located between the second partition 311 and the first partition 321.
- the second partition 321 and the first partition 311 can form a dynamic sealing effect with the moisture absorption and dehumidification component 300, so that the moisture absorption and dehumidification component 300 can continuously absorb moisture and dehydrate and dry through the dehumidification area 3b and the regeneration area 3a during the rotation process, so that the moisture absorption and dehumidification component 300 always has a good water absorption capacity, thereby improving the efficiency and effect of moisture absorption.
- the two first partitions 311 are arranged in a V shape, and the dehumidification area 3b and the regeneration module installation area 3c are generally fan-shaped.
- partitions referred to here refer to each separate partition radially connected and arranged from the circumferential side wall of the first drying module shell 310 or the second drying module shell 320 to the center of the shell.
- the at least two first partitions 311 and the at least two second partitions 321 can be integrally formed or manufactured and installed separately. The construction method does not affect the definition of the separator.
- a first air flow inlet 301 is provided in the second space, and a first air flow outlet 304 is provided in the first space.
- the drying air flow passes through the first air flow inlet 301, and passes through the second space, the moisture absorption and dehumidification component 300 and the first space in sequence, and finally flows out through the first air flow outlet 304.
- FIG7(a) is a cross-sectional schematic diagram of the dehumidification area 3b when a drying module according to the present disclosure is horizontally arranged.
- the schematic diagram is a schematic illustration of the cross-sectional structure, and the schematic diagram is only for illustrating the structure of the dehumidification area 3b, and does not represent the actual shape.
- the second drying module housing 320 has a second space 3202. In the dehumidification area 3b of the second space 3202, there is a distance d in the vertical direction from the bottom plate 3201 of the second drying module housing to the second surface 3002 of the moisture absorption and dehumidification component.
- the distance d near the first airflow inlet 301 is different from at least part of the distance d at other positions away from the first airflow inlet 301.
- the "overall flow direction" of the drying airflow in the second space 3202 refers to the general flow direction of the drying airflow formed by taking the airflow flowing through the space between the second surface 3002 of the moisture absorption and dehumidification component and the bottom plate 3201 of the second drying module shell as a whole, that is, the direction roughly from the first airflow inlet 301 to the first airflow outlet 304, as shown by the arrow in Figure 6. It should be noted that in the second space 3202, there will be a small part of the drying airflow with a flow direction different from the overall flow direction. For example, the drying airflow passes through the moisture absorption and dehumidification component 300 from the second space 3202 to the first space 3102, and this part of the drying airflow does not cause the "overall flow direction" to change.
- the shape of the air path through which the drying airflow flows can be converged, thereby being able to effectively compensate for the pressure loss of the airflow when the moisture in the drying airflow is continuously adsorbed, resulting in a decrease in the density of the drying airflow.
- the distance d at the first airflow inlet 301 is greater than the distance d at least partially away from the first airflow inlet 301 .
- the distance d gradually decreases in the direction from the first airflow inlet 301 to a direction gradually away from the first airflow inlet 301 .
- the second surface 3002 of the moisture absorption and dehumidification member is substantially a plane, and in the second space 3202, there is an angle in the range of 0° to 45° between the plane where the second drying module housing bottom plate 3201 is located and the plane where the moisture absorption and dehumidification member second surface 3002 is located. Preferably, there is an angle in the range of 5° to 15° between the plane where at least part of the second drying module housing bottom plate 3201 is located and the plane where the moisture absorption and dehumidification member second surface 3002 is located.
- the distance is between 15-50 mm; at the farthest point from the first airflow inlet 301, the distance is between 8-40 mm.
- the distance is preferably between 20-40 mm; at the farthest point from the first airflow inlet 301, the distance is preferably between 10-26 mm.
- the farthest point referred to here refers to the distance along the entire flow of the drying airflow in the second space 3202. In the direction, at the end position of the moisture absorption area in the second space 3202, that is, the boundary position between the moisture absorption area and the regeneration area 3a.
- the shape of the air path through which the drying airflow flows can be converged, so that when the moisture in the drying airflow is continuously adsorbed and the density of the drying airflow is reduced, the pressure loss of the airflow can be effectively compensated, and the pressure and flow rate of the airflow can be kept stable, so as to fully contact the moisture absorption and dehumidification component 300.
- the technical solution provided by the present disclosure can enable the drying airflow to achieve a relatively uniform adsorption effect at various locations of the moisture absorption and dehumidification component 300 .
- first drying module shell 310, the moisture absorption and dehumidification component 300 and the second drying module shell 5320 can also be arranged in a vertical manner. Their structure and the drying principle implemented correspond one-to-one with the first drying module shell 310, the moisture absorption and dehumidification component 300 and the second drying module shell 320 horizontally arranged in Figure 7(a), and will not be repeated here.
- first drying module shell top wall 3101 and the second drying module shell bottom plate 3201 may gradually tilt and extend after a certain distance from the first air flow inlet 301, in other embodiments, the first drying module shell top wall 3101 and/or the second drying module shell bottom plate 3201 may be directly tilted and extended near the first air flow inlet 301.
- both the first drying module housing 310 and the second drying module housing 320 have a gradually inclined and extended bottom plate or top wall
- first drying module housing 310 may have a gradually inclined and extended first drying module housing top wall 3101
- second drying module housing 320 may have a gradually inclined and extended second drying module housing bottom plate 3201.
- the drying module further includes: a regeneration module 31, which is connected to the first drying module housing 310, and a regeneration module accommodating portion having a roughly fan-shaped shape is formed on the first drying module housing 310; the regeneration module 31 is installed in the regeneration module accommodating portion, and the regeneration module 31 is located above the moisture absorption and dehumidification component 300, and the regeneration module 31 is used, for example, to heat the regeneration airflow to desorb the moisture adsorbed by the moisture absorption and dehumidification component 300.
- a regeneration module 31 which is connected to the first drying module housing 310, and a regeneration module accommodating portion having a roughly fan-shaped shape is formed on the first drying module housing 310; the regeneration module 31 is installed in the regeneration module accommodating portion, and the regeneration module 31 is located above the moisture absorption and dehumidification component 300, and the regeneration module 31 is used, for example, to heat the regeneration airflow to desorb the moisture adsorbed by the moisture absorption and dehumidification component 300.
- the regeneration module 31 may include a heating component for heating the regeneration airflow, and the moisture absorption and dehumidification component 300 passes through the dehumidification zone and the regeneration zone during the rotation process, thereby continuously performing a cycle of adsorbing and desorbing moisture.
- the heating component may use a heating element such as a heating wire, a PTC heater, or the like having a heating function.
- the area of the dehumidification region 3b of the second space 3202 is greater than or equal to the area of the regeneration region 3a, and the ratio of the area of the dehumidification region 3b to the area of the regeneration region 3a is approximately 5:1 to 1:1.
- a circulation fan 6 is provided between the first air inlet 33 of the drying module and the drum air outlet 202, which can accelerate the flow speed of the circulating moisture-absorbing airflow.
- the speed of the circulation fan 6 can be adjusted according to the drying process.
- the rotation speed of the circulation fan 6 can be adjusted according to the air flow temperature at the first air outlet 32 of the drying module.
- the drying module 3, the first air inlet 33 and the first air outlet 32 are all located at the clothing.
- Such an arrangement can make full use of the upper space of the drum 2, making the overall arrangement of the laundry processing device very compact.
- a flow divider 322 is also provided on the second drying module housing 320 in the moisture absorption area of the second space 3202 along the direction of the flow of the drying airflow, and the flow divider 322 is configured to separate the drying airflow flowing in the moisture absorption area.
- one or more flow dividers 322 can be provided. When there are two or more flow dividers 322, they can be offset to separate the space into a plurality of flow divider areas.
- the drying airflow flowing into the moisture absorption area of the second space 3202 can be diverted, with one part entering the area near the center of the circle and the other part entering the area near the periphery of the moisture absorption and dehumidification component 300, so that the drying airflow flowing into the circulation path is more dispersed and uniform, and the airflow can contact the moisture absorption and dehumidification component 300 over a larger area, thereby improving the moisture absorption efficiency of the moisture absorption and dehumidification component 300.
- the first drying module shell 320, the moisture absorption and dehumidification component 300 and the second drying module shell 310 are arranged in a horizontal manner.
- the regeneration area 3a there is a gap between the first surface 3001 of the moisture absorption and dehumidification component 300 and at least a portion of the second drying module shell 310 to form a third space 3302; there is a gap between the second surface 2002 of the moisture absorption and dehumidification component 300 and at least a portion of the first drying module shell 320 to form a fourth space 3402.
- the top wall 3101 of the first drying module shell is parallel or substantially parallel to the first surface 3001 of the moisture absorption and dehumidification component along the direction of airflow
- the bottom plate 3201 of the second drying module shell is parallel or substantially parallel to the second surface 3002 of the moisture absorption and dehumidification component, so that the height of the third space 3302 and the fourth space 3402 remain unchanged.
- the flow height of the dry airflow remains unchanged, so that the heat received by each part of the moisture absorption and dehumidification component 300 rotating through the regeneration area 3a is uniform, and a substantially identical regeneration effect is achieved, while avoiding the phenomenon of local overheating in the regeneration area 3a.
- the first drying module housing 320 , the moisture absorption and dehumidification member 300 and the second drying module housing 310 may also be arranged vertically.
- the distances between the top wall 3101 of the first drying module shell, the bottom plate 3201 of the second drying module shell and the corresponding surfaces of the moisture absorption and dehumidification component remain unchanged.
- a section of inclined wall 3103 is radially arranged at a position near the first air flow outlet 304 in the dehumidification area 3b of the first space.
- the inclined wall 3103 smoothly and gradually moves away from the first surface 3001 of the moisture absorption and dehumidification component, so that the top wall 3101 of the first drying module shell forms an approximately stepped shape in the direction in which the inclined wall 3103 extends.
- the second drying module housing 320 includes a second drying module housing bottom plate 3201 and a circumferential side wall protruding from the bottom plate 3201, and the recessed portion formed is the second space.
- Three second partitions 321 are arranged in the second space to divide the second space into a dehumidification area 3b, a cooling area, and a regeneration area 3a.
- the first drying module housing 310 includes a first drying module housing top wall 3101 and a circumferential side wall, and the recessed portion formed is the first space.
- three first partitions 311 are arranged along the radial direction of the first drying module shell 310 to divide the first drying module shell 310 into a dehumidification area 3b, a cooling area, and a regeneration module installation area 3c.
- the recessed structures of the first drying module shell 310 and the second drying module shell 320 are arranged relative to each other, so that the first drying module shell 310 and the second drying module shell 320 are sealed.
- the moisture absorption and dehumidification component 300 is used to absorb moisture from the circulating airflow in the moisture absorption area during rotation, cool the moisture absorption and dehumidification component 300 in the cooling area, and discharge the moisture absorbed in the moisture absorption area through the dehumidification airflow of the regeneration area 3a.
- the dehumidification area 3b, the cooling area, the regeneration area 3a, and the regeneration module installation area 3c are generally fan-shaped.
- the regeneration module installation area 3c is installed with a regeneration module 31, and the structure and installation method of the regeneration module 31 are the same as those described above, and will not be repeated here.
- the area of the dehumidification zone 3b of the second space 3202 is greater than or equal to the area of the cooling zone and the area of the regeneration zone 3a, and the ratio of the area of the dehumidification zone 3b to the area of the cooling zone and the area of the regeneration zone 3a is approximately 4:1:1 to 1:1:1.
- the structure of the clothes processing device 1 is substantially the same as that in Embodiment 1, and will not be described in detail herein.
- the second space 3202 has a first air flow inlet 301, the drying air flow passes through the first air flow inlet 301, and passes through the second space 3202, the moisture absorption and dehumidification component 300 and the first space 3102 in sequence; along the overall flow direction of the drying air flow in the second space 3202, in the moisture absorption area, at least part of the position away from the first air flow inlet 301 has an area of the cross section different from that at the first air flow inlet 301.
- the "overall flow direction" of the drying airflow in the second space 3202 refers to the general flow direction of the drying airflow formed by taking the airflow flowing through the space between the second surface 3002 of the moisture absorption and dehumidification component and the bottom plate 3201 of the second drying module shell as a whole, that is, the direction roughly from the first airflow inlet 301 to the first airflow outlet 304, which can be shown by the arrow in Figure 6. It should be noted that in the second space 3202, there will be a small part of the drying airflow with a flow direction different from the overall flow direction. For example, the drying airflow passes through the moisture absorption and dehumidification component 300 from the second space 3202 to the first space 3102, and this part of the drying airflow does not cause the "overall flow direction" to change.
- the shape of the air path through which the drying airflow flows can be converged, thereby being able to effectively compensate for the pressure loss of the airflow when the moisture in the drying airflow is continuously adsorbed, resulting in a decrease in the density of the drying airflow.
- the cross-sectional area at the first airflow inlet 301 is larger than the cross-sectional area at least partially away from the first airflow inlet 301 .
- the area of the cross section gradually decreases in the direction from the first airflow inlet 301 to gradually away from the first airflow inlet 301 .
- the dehumidification In the area 3b from the overall flow direction of the drying airflow in the second space 3202, the dehumidification In the area 3b, at least a portion of the second drying module shell bottom plate 3201 gradually tilts upward and extends, so that the cross-section of the second space 3202 along the radial direction of the moisture absorption and dehumidification member 300 is approximately a right-angled trapezoid.
- cross-section refers to the cross-section in the vertical direction of the space formed by the second drying module shell bottom plate 3201, the side wall and the corresponding surface of the moisture absorption and dehumidification component 300, when viewed from the overall flow direction of the drying air flow in the second space 3202.
- the shape of the air path through which the drying airflow flows can be converged, so that when the moisture in the drying airflow is continuously adsorbed and the density of the drying airflow is reduced, the pressure loss of the airflow can be effectively compensated, and the pressure and flow rate of the airflow can be kept stable, so as to fully contact the moisture absorption and dehumidification component 300.
- the technical solution disclosed in the present invention can enable the drying airflow to achieve a relatively uniform adsorption effect at various locations of the moisture absorption and dehumidification component 300 .
- the clothes processing device provided by the present disclosure can effectively compensate for the pressure loss of the airflow when the moisture in the dry airflow is continuously adsorbed, resulting in a decrease in the density of the dry airflow, by setting the moisture absorption area located in the second space to converge in the shape of the air path through which the gas flows, so that the pressure and flow rate of the airflow are kept stable and fully contacted with the moisture absorption and dehumidification component. Therefore, the moisture absorption and dehumidification component can achieve a better adsorption effect on the dry airflow flowing therein.
- the flow height of the drying airflow in the regeneration area 3a of the drying module remains unchanged, so that the heat received by various parts of the moisture absorption and dehumidification component rotating through the regeneration area 3a is uniform, thereby achieving basically the same regeneration effect and avoiding the phenomenon of local overheating of the regeneration area 3a.
- the drying airflow flowing into the moisture absorption area can be diverted, with one part entering the area close to the center of the circle and the other part entering the area close to the periphery of the moisture absorption and dehumidification component.
- the clothing processing device provided by the present disclosure also includes an upper cover structure 4, which is arranged above the drying module 3 to cover the drying module 3.
- the upper cover structure 4 includes a frame 41 and a cover 42 surrounded by the frame 41, and the cover 42 includes at least one insulation layer 421.
- the clothing processing device provided by the present disclosure arranges the drying module 3 above the drum 2, and arranges an insulating layer 421 in the washing machine shell panel above the drying module 3. This arrangement can fully utilize the upper space of the drum 2, making the overall layout of the clothing processing device very compact.
- the cover plate 42 includes a heat insulating layer 421, a protective layer 422 disposed above the heat insulating layer 421, and an insulating layer 423 disposed below the heat insulating layer 421.
- the frame body 41 includes an inner frame 411, an outer frame 412, and a connecting surface 413 connecting the inner frame 411 and the outer frame 412. In some embodiments, a plurality of reinforcing ribs may be further disposed between the inner frame 411 and the outer frame 412.
- the upper cover plate structure 4 can also be integrally formed by the cover plate 42 and the fixing parts around the cover plate 42.
- the cover plate 42 can also include only the heat insulation layer 421, or include the heat insulation layer 421 and the protective layer 422 arranged above the heat insulation layer 421, or include the heat insulation layer 421 and the insulating layer 423 arranged below the heat insulation layer, or include the heat insulation layer 421, the protective layer 422 arranged above the heat insulation layer 421, and the insulating layer 423 arranged below the heat insulation layer 421.
- the clothes processing device further comprises an air outlet duct 5, which is connected to the drum air outlet 202 of the drum 2 at one end and to the first air inlet 33 at the other end.
- a filter 50 may be provided in the air outlet duct 5 to filter inclusions such as lint in the air flow to prevent the inclusions from entering the drying module 3 and causing problems such as clogging of the drying module.
- the air outlet duct 5 is configured to guide the wet circulating air flow from the drum 2 to the first air inlet 33 of the drying module 3.
- the filter screen 50 may be obliquely disposed in the air outlet duct 5.
- the filter screen 50 may be detachably fixed in the air outlet duct 5 by a filter screen bracket.
- the filter screen 50 may optionally span the entire cross-section of the air outlet duct 5, so that at least most of the wet circulating airflow flowing out of the drum 2 passes through the filter screen 50, so as to filter the airflow flowing through the air outlet duct.
- the filter screen 50 may be in a circular, elliptical, rectangular or other shape.
- the filter screen 50 may be tilted in the outlet pipe 5, that is, there is a certain angle between the normal line of the filter screen 50 and the extension direction of the outlet pipe 5.
- the filtering area is S1
- the cross-sectional area of the outlet pipe 5 in the section where the filter screen 50 exists is S2, wherein S1:S2 is in the range of 5:1 to 1:1, so that the filtering area of the filter screen is maximized, thereby improving the filtering efficiency.
- S1:S2 is preferably approximately 3:1, for example, the filtering area of the filter screen 50 is 15000 mm2 , and the cross-sectional area of the outlet pipe 5 is 5000 mm2.
- the filter screen 50 is a porous structure, and its material can be metal, plastic, etc., without limitation, as long as the filtering effect can be achieved.
- the definition of the filter screen aperture is the same as the definition of the aperture of the moisture absorption and dehumidification component 300, and will not be repeated here.
- the filter screen 50 includes a filtering surface 501 close to the drum air outlet 202 and a non-filtering surface 502 away from the drum air outlet 202 , and one or more reinforcing ribs 51 are provided on one side of the filtering surface 501 and/or the non-filtering surface 502 .
- the clothing processing device further includes a filter cleaning device 52, which can guide the cleaning fluid to the filtering surface 501 and/or the non-filtering surface 502 of the filter 50 to clean the filter 50.
- a filter cleaning device 52 can guide the cleaning fluid to the filtering surface 501 and/or the non-filtering surface 502 of the filter 50 to clean the filter 50.
- the filter 50 in the air outlet duct 5 will be deformed to a certain extent by the force F of the air flow and has a tendency to relax. As shown in FIG. 14 , the filter 50 is subjected to the upward force F of the air flow.
- the filter is kept tight during operation and will not be loosened due to the increase in the number of flushing times and the impact of airflow, thereby extending the life of the filter.
- the fluff 500 adsorbed on the filter is more easily removed by the cleaning fluid sprayed by the cleaning device. The particles fall off the filter screen 50 under the flushing action of the fluid, thereby achieving a better cleaning effect.
- the pore size of the moisture absorption and dissipation member 300 is the wave height of the moisture absorption and dissipation member, or the pore size of the moisture absorption and dissipation member 300 is the diameter of the circumscribed circle of the moisture absorption and dissipation member 300 .
- the present disclosure specifically sets the apertures of the moisture absorption holes of the moisture absorption and dehumidification component 300 and the apertures of the filter mesh to improve the service life of the moisture absorption and dehumidification component 300 and the clothes processing device. Specific solutions can be found below.
- the clothing processing equipment was operated in a conventional washing and drying mode to continuously wash and dry pure cotton clothing. It was operated continuously for 12 hours a day, and 4 kg of clothing was washed and dried each time, which took about 3 hours.
- the automatic cleaning function of the filter was started, and other components such as the moisture absorption turntable were not cleaned and maintained.
- the moisture absorption turntable component was disassembled and its blockage rate was measured. It should be noted that the blockage rate is the proportion of the area of blocked moisture absorption holes to the total moisture absorption area. When the blockage rate is greater than or equal to 25%, it is considered that the blockage rate exceeds the stable working threshold of the clothing processing device, which will greatly affect the drying efficiency. In other words, under normal use of the clothing processing device, there is a risk of blockage in the moisture absorption turntable component.
- a molecular sieve dehumidification turntable can be selected as the moisture absorption and dehumidification component 300, with a static water absorption rate greater than 15% and a regeneration rate greater than 85% after moisture absorption (treated at 250°C for 4 hours).
- the material selected for the moisture absorption and dehumidification component 300 is not particularly limited, as long as the water absorption rate and regeneration rate of the material are within this range.
- the moisture absorption turntable component can be set to a turntable diameter of 327mm and a thickness of 25mm.
- the moisture absorption holes are roughly arranged in a regular corrugated shape, with a wave height b and a wavelength 2b (the wavelength is roughly twice the wave height), so the wave height b can be used as the aperture of the moisture absorption hole.
- Example 2 The wave height b of the moisture absorption holes in the moisture absorption turntable is 1.7 mm, and the wavelength is 3.4 mm.
- the converted service life of the clothing treatment device is 16.0 years.
- the present disclosure provides a clothing processing device, which optimizes the structural parameters of the moisture absorption turntable in the drying module, such as the moisture absorption hole size and the mesh size of the filter in the filter assembly, to achieve the best drying effect while ensuring the reliable operation of the system.
- the drum 2 of the laundry processing device includes an inner drum 2a, an outer drum 2b and a drum driving part 2c, and the drum driving part 2c is drivingly connected to the inner drum 2a of the drum 2 to drive the inner drum 2a of the drum 2 to rotate along the rotation axis.
- At least one drum air inlet 203 and at least one drum air outlet 202 are formed at different positions on the outer drum 2b.
- the inner cylinder 2a of the drum 2 has a diameter D2
- the moisture absorption and dehumidification member 300 is a disc-shaped member with a diameter D1.
- the diameter D1 of the moisture absorption and dehumidification member 300 is smaller than the diameter D2 of the inner cylinder of the drum, and the ratio of D1:D2 ranges from 1:2 to 3:4.
- the ratio of D1:D2 is preferably 3:5.
- the moisture absorption and discharge member 300 has a thickness H, and the ratio of the thickness H to the diameter D1 is in the range of 1:20 to 1:4. Preferably, the ratio of the thickness H to the diameter D1 is in the range of 1:15 to 1:10.
- the drying module can have a drying capacity corresponding to the drum, thereby improving the drying efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Detail Structures Of Washing Machines And Dryers (AREA)
Abstract
一种衣物处理设备,属于家用电器技术领域,包括烘干模组(3)及滚筒(2),滚筒(2)具有至少一滚筒出气口(202)和一滚筒进气口(203),滚筒出气口(202)与滚筒进气口(203)分别与烘干模组(3)气流连通,形成烘干气流通路,烘干模组(3)包括具有第一空间(3102)的第一烘干模组壳体(310)、具有第二空间(3202)的第二烘干模组壳体(320)及设置于第一烘干模组壳体(310)和第二烘干模组壳体(320)之间的吸湿排湿构件(300),第二空间(3202)至少设置有除湿区域(3b)和再生区域(3a),并在除湿区域(3b)设有第一气流入口(301);吸湿排湿构件的至少部分周期性地经过除湿区域(3b)和再生区域(3a);第二烘干模组壳体(320)的底板到吸湿排湿构件(300)相应表面在垂直方向上具有一距离,在除湿区域(3b)中,第一气流入口(301)处附近的距离与远离第一气流入口(301)处的其他位置处的至少部分距离大小不同。该衣物处理设备能够使吸湿排湿构件对在其中流动的烘干气流实现更好的吸附效果。
Description
相关申请的交叉引用
本申请要求于2023年1月17日提交、申请号为202320222943.3且名称为“一种具有烘干功能的衣物处理装置”的中国专利申请、2023年1月17日提交、申请号为202310095219.3且名称为“一种具有烘干功能的衣物处理装置、2023年1月17日提交、申请号为202320168175.8且名称为“一种具有烘干功能的衣物处理装置”、2023年1月17日提交、申请号为202320168388.0且名称为“一种具有烘干功能的衣物处理装置”、202310108656.4且名称为“一种衣物处理设备”以及于2023年1月17日提交、申请号为202320202935.2且名称为“一种衣物处理设备”的优先权,其全部内容通过引用合并于此。
本公开属于电器技术领域,具体涉及一种衣物处理设备。
在人们对健康品质生活的追求愈加高涨、城市居民生活节奏不断加快等因素的助推下,洗烘一体机横空出世并深受广大消费者的喜爱,洗烘一体机尤其适合梅雨季节时期的南方家庭、空气质量差不适合户外晒衣的北方家庭,以及想要衣物即洗即穿或追求衣物更加蓬松舒适的使用人群。
现有的具有烘干功能的衣物处理设备大多数都是利用蒸发器对洗烘机内筒的潮湿空气进行加热吸湿,得到高温空气之后,再重新进入洗烘机内筒,从而使衣物中的水分得以蒸发。但是,蒸发器的整体温度一致,在潮湿空气蒸发的过程中,蒸发器对潮湿空气的吸湿能力下降,导致吸湿效率低、烘干时间长,功耗高。此外,也有部分采用冷凝水喷淋或冷凝器直接对湿气流除湿的方式,但该方式处理过的气流仍然含有很高比例的水分,且循环利用还需要对气流进行“升温-降温除湿-再升温”,除湿效率较低,功耗较大。
因此亟需设计一种克服上述缺陷的衣物处理设备,能使得功耗合理,且烘干效果更好。
发明内容
为了克服上述缺陷,本公开提供一种具有烘干功能的衣物处理设备,能使其功耗合
理,且烘干效果更好。
本公开所提供的一种衣物处理设备,包括:烘干模组及滚筒,其中,所述滚筒具有至少一滚筒出气口和一滚筒进气口,所述滚筒出气口与所述滚筒进气口分别与所述烘干模组气流连通,形成烘干气流通路;所述烘干模组包括:具有第一空间的第一烘干模组壳体、具有第二空间的第二烘干模组壳体及设置于所述第一烘干模组壳体和所述第二烘干模组壳体之间的吸湿排湿构件;所述第二空间至少包括除湿区域3b和再生区域3a,并在所述除湿区域3b设有第一气流入口;所述吸湿排湿构件的至少部分周期性地经过所述除湿区域3b和所述再生区域3a;所述第二烘干模组壳体的底板到所述吸湿排湿构件相应表面在垂直方向上具有一距离,在所述除湿区域3b中,所述第一气流入口处附近的所述距离与远离第一气流入口处的其他位置处的至少部分所述距离大小不同。
本公开所提供的衣物处理设备,通过将第二烘干模组壳体与吸湿排湿构件形成的部分空间设置为:第二烘干模组壳体的底板到所述吸湿排湿构件相应表面在垂直方向上具有一距离,在除湿区域3b中,第一气流入口处附近的所述距离与远离第一气流入口处的其他位置处的至少部分所述距离大小不同,可以使得在气体流经的方向上气路形状收敛,从而能够在烘干气流中的水分被持续吸附导致烘干气流密度降低的情况下,有效补偿气流的压力损失,使气流的压强及流速保持稳定,并能充分与吸湿排湿构件接触。因此,能够使吸湿排湿构件对在其中流动的烘干气流实现更好的吸附效果。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图中:
图1示出了根据本公开的一些实施例中的衣物处理设备的结构示意图;
图2示出了烘干模组装配在衣物处理设备的装配示意图;
图3示出了图2中的烘干模组的立体结构示意图;
图4示出了图1中的烘干模组的爆炸结构示意图;
图5示出了一种第一烘干模组壳体的示意图;
图6示出了一种第二烘干模组壳体的示意图;
图7(a)是图3中沿B-B的剖面示意图;
图7(b)是图3中沿B-B的剖面示意图;
图8(a)是图3中沿C-C的剖面示意图;
图8(b)是图3中沿C-C的剖面示意图;
图9示出了根据本公开的另一些实施例的一种烘干模组水平设置时的剖面示意图;
图10示出了图1的上盖板的结构示意图;
图11示出了图10的横截面示意图;
图12示出了图1的局部剖面图;
图13示出了图12中的出风管道的内部示意图;
图14示出了过滤组件的局部剖面图;
图15示出了吸湿排湿构件的结构示意图;
图16示出了滚筒的结构示意图;
图17示出了滚筒的另一视角的结构示意图。
如本文使用的,术语“再生”是指原本相对干燥的物体在吸收水分之后通过至少部分地脱湿而恢复相对干燥的状态。术语“上游”和“下游”用于指示在以系统进风口为起点的流动路径中流动时,气流流经第一元件后所遇到的第二元件的相对位置,其中第一元件在第二元件的“上游”,并且第二元件在第一元件的“下游”。
如图1-4、图14以及图17所示,本公开提供了一种衣物处理设备1,包括:烘干模组3及滚筒2,滚筒2具有至少一滚筒出气口202和一滚筒进气口203,滚筒出气口202与滚筒进气口203分别与烘干模组3气流连通,形成烘干气流通路。烘干模组3设置于滚筒2的上方,其包括第一出气口32以及第一进气口33,并通过第一进气口33与滚筒出气口202连通,以及通过第一出气口32与滚筒进气口203连通。基于此,烘干模组3与滚筒2形成循环通路,从而实现对其中循环流动的湿热空气的烘干。
在烘干模式中,从滚筒2引导,通过烘干模组3的第一进气口33将烘干气流引导到烘干模组3,烘干模组3对来自滚筒2的烘干气流进行除湿和加热,而后将烘干气流通过烘干模组3的第一出气口32引回滚筒2,如此循环往复,从而实现烘干衣物。
如图4所示,该烘干模组3包括第一烘干模组壳体310和第二烘干模组壳体320、以及吸湿排湿构件300。吸湿排湿构件300可选用吸湿性能好且脱附性能好的材料制作,例如可以是沸石、氯化锂、硅胶、改性硅胶或13X(钠X型)分子筛等。吸湿排湿构件300还可以设置为不同的形状,例如设置为圆形的转盘、条形的吸湿带、具有不同形状开口的容器等。此外,当吸湿排湿构件300选用转盘时,烘干模组3中还可包括驱动组件,该驱动组件可以包括电机,电机可驱动转盘旋转。
可以理解的是,吸湿排湿构件300的孔径通常代表构件孔结构的直径,当孔形状是规则时,例如矩形、三角形、圆形、椭圆形、瓦楞孔形等,相应地孔径可以为矩形的边长、三角形的高、圆形或椭圆形的直径、瓦楞孔的波高等。一些实施例中,孔径可以用吸湿排湿构件中的波高表征,如瓦楞孔形的波高;孔径也可以用吸湿排湿构件的吸湿孔的外接圆的直径表征。
结合图6,第一烘干模组壳体310具有第一空间,第二烘干模组壳体320具有第二空间,吸湿排湿构件300设置于第一烘干模组壳体310和第二烘干模组壳体320之间。吸湿排湿构件300的第一面3001与第一烘干模组壳体310的部分顶壁之间具有间隙,以形成第一气流通道;吸湿排湿构件第二面3002与第二烘干模组壳体320的部分底板之间具有间隙,以形成第二气流通道;第二气流通道、吸湿排湿构件300和第一气流通道形成气流通路。第二烘干模组壳体320包括第二烘干模组壳体底板3201和突出于底板的环周侧壁,形成的凹陷部为第二空间。在第二空间内,沿第二烘干模组壳体320径向设置有两个第二分隔件321,以将第二空间分隔为除湿区域3b和再生区域3a;因此有利于吸湿排湿构件300在旋转的过程中,循环经过除湿区域3b和再生区域3a,不断地进行吸附水分和脱附水分,从而使吸湿排湿构件300一直具有良好的吸水能力,从而提高了吸湿的效率及效果。在一些实施例中,该两个第二分隔件321成V形布置,该除湿区域3b和再生区域3a大体为扇形。
结合图5,第一烘干模组壳体310包括第一烘干模组壳体顶壁3101以及周向侧壁,形成的凹陷部为第一空间。在第一空间内对应于两个第二分隔件321的位置处,沿第一烘干模组壳体径向对应设置有两个第一分隔件311,以将第一空间分隔为除湿区域3b和再生模组安装区域3c;第一烘干模组壳体310与第二烘干模组壳体320的凹陷部结构相对设置,第一烘干模组壳体310与第二烘干模组壳体320配合连接时可使第一空间和第二空间形成吸湿排湿构件300的容纳腔,由于吸湿排湿构件300的容纳腔内有气流通过,所以第一烘干模组壳体310与第二烘干模组壳体320之间可设为密封连接。该吸湿排湿构件300位于第二分隔件311与第一分隔件321之间,为了防止滚筒内排出的烘干气流与再生气流互相窜通,第二分隔件321和第一分隔件311均与吸湿排湿构件300之间可形成动态密封的效果,因此有利于吸湿排湿构件300在旋转的过程中,经过除湿区域3b和再生区域3a,不断地进行吸附水分和脱水烘干,从而使吸湿排湿构件300一直具有良好的吸水能力,从而提高了吸湿的效率及效果。在一些实施例中,该两个第一分隔件311成V形布置,除湿区域3b和再生模组安装区域3c大体为扇形。
需要说明的是,这里所指的分隔件是指从第一烘干模组壳体310或第二烘干模组壳体320环周侧壁向壳体中心位置之间径向连接设置的每个单独分隔件。该至少两个第一分隔件311、以及至少两个第二分隔件321两者可以一体成型,也可以分别制造安装,该制
造方式不影响分隔件的定义。
如图4-6所示,在第二空间设有第一气流入口301,在第一空间设有第一气流出口304,烘干气流经过第一气流入口301,并依次通过第二空间、吸湿排湿构件300以及第一空间,最后通过第一气流出口304流出。
图7(a)是根据本公开的一种烘干模组水平设置时除湿区域3b的剖面示意图。需要说明的是,该示意图是对该剖面结构示意性的说明,该示意图仅是为了说明除湿区域3b的结构,其并不代表实际形状。如图7(a)所示,第二烘干模组壳体320具有第二空间3202,在第二空间3202的除湿区域3b中,第二烘干模组壳体底板3201到吸湿排湿构件第二表面3002在垂直方向上具有一距离d,从沿着烘干气流在第二空间3202中的整体流动方向上看,在第二空间3202,该第一气流入口301处附近的距离d与远离第一气流入口301处的其他位置处的至少部分距离d大小不同。
可以理解的是,该烘干气流在第二空间3202的“整体流动方向”,是指在吸湿排湿构件第二表面3002与第二烘干模组壳体底板3201之间的空间中,将流经的气流当做一个整体来看,所形成的烘干气流大致流向,即大致从第一气流入口301流向第一气流出口304的方向,如图6中的箭头所示。需要说明的是,在第二空间3202,会有少部分烘干气流的流向不同于整体流动方向,如烘干气流从第二空间3202穿过吸湿排湿构件300到达第一空间3102,该部分烘干气流并不导致“整体流动方向”发生变化。
通过该设置,可以使得烘干气流流经的气路形状收敛,从而能够在烘干气流中的水分被持续吸附导致烘干气流密度降低的情况下,有效补偿气流的压力损失。
在一些实施例中,从沿着烘干气流在第二空间3202中的整体流动方向上看,在除湿区域3b中,在第一气流入口301处的距离d比至少部分远离第一气流入口处301的距离d大。
在一些实施例中,从沿着烘干气流在第二空间3202中的整体流动方向上看,在除湿区域3b中,从第一气流入口301处向逐渐远离第一气流入口301的方向上,距离d逐渐变小。
在一些实施例中,吸湿排湿构件第二表面3002大致为平面,在第二空间3202,第二烘干模组壳体底板3201所处的平面与吸湿排湿构件第二表面3002所处的平面之间具有0°~45°范围的夹角。优选地,至少部分第二烘干模组壳体底板3201所处的平面与吸湿排湿构件第二表面3002所处的平面之间具有5°~15°范围的夹角。
在一些实施例中,在第二空间3202的第一气流入口301附近处,所述距离为15-50mm之间;在离第一气流入口301最远处,所述距离为8-40mm之间。在第二空间3202的第一气流入口301处,该距离最好为20-40mm之间;在离第一气流入口301最远处,该距离最好为10-26mm之间。此处所指的最远处是指沿着烘干气流在第二空间3202中的整体流动
方向上,在第二空间3202的吸湿区域的尽头位置,即吸湿区域与再生区域3a的边界位置。
通过上述实施方式,可以使得烘干气流流经的气路形状收敛,从而能够在烘干气流中的水分被持续吸附导致烘干气流密度降低的情况下,有效补偿气流的压力损失,使气流的压强及流速保持稳定,充分与吸湿排湿构件300接触。
本公开所提供的技术方案能够使烘干气流在吸湿排湿构件300的各个部位达到相对均匀的吸附效果。
此外,如图7(b)所示,第一烘干模组壳体310、吸湿排湿构件300以及第二烘干模组壳体5320还可以垂直的方式进行设置,其结构以及所实现的烘干原理与图7(a)中水平设置的第一烘干模组壳体310、吸湿排湿构件300以及第二烘干模组壳体320一一对应,此处不再赘述。
需要说明的是,尽管可如图7(a)和图7(b)所示,该第一烘干模组壳体顶壁3101和第二烘干模组壳体底板3201可在距离第一气流入口301处一段距离后才逐渐倾斜并延伸,但在其他实施例中,第一烘干模组壳体顶壁3101和/或第二烘干模组壳体底板3201可在第一气流入口301附近处直接进行倾斜并延伸。
此外,尽管如图7(a)以及图7(b)所示,第一烘干模组壳体310以及第二烘干模组壳体320均具有逐渐倾斜并延伸的底板或顶壁。但在实际中,可仅第一烘干模组壳体310中具有逐渐倾斜并延伸的第一烘干模组壳体顶壁3101、或仅第二烘干模组壳体320中具有逐渐倾斜并延伸的第二烘干模组壳体底板3201。
此外,如图4所示,烘干模组还包括:再生模组31,其与第一烘干模组壳体310配合连接,第一烘干模组壳体310上形成有大致扇形的再生模组容纳部;再生模组31安装于再生模组容纳部,再生模组31位于吸湿排湿构件300的上方,再生模组31例如用于对再生气流进行加热,以对吸湿排湿构件300吸附的水分进行脱附。再生模组31可包括加热组件,用于对再生气流进行加热,吸湿排湿构件300在旋转的过程中,经过除湿区和再生区,从而不断地进行吸附水分和脱附水分的循环过程。优选地,该加热组件可采用电热丝、PTC加热器等具有加热功能的元件。
在一些实施例中,第二空间3202的除湿区域3b的面积大于等于再生区域3a的面积,除湿区域3b的面积与再生区域3a的面积的比大致为5:1~1:1。
在一些实施例中,在烘干模组第一进气口33与滚筒出气口202之间还设置有循环风扇6,其能够加速循环的吸湿气流的流动速度。该循环风扇6的转速可根据烘干进程进行调整。
在一些实施例中,该循环风扇6的转速可根据烘干模组第一出气口32处的气流温度进行调整。
如图1和图2所示,烘干模组3、第一进气口33以及第一出气口32均位于衣物处
理装置的顶部,这样的布置方式可以充分利用滚筒2的上部空间,使得衣物处理装置的整体布置非常紧凑。
如图6所示,在第二空间3202的吸湿区域中的第二烘干模组壳体320上沿着烘干气流流动的方向上还设置有分流件322,分流件322被配置为分隔在吸湿区域中流动的烘干气流。具体地,可以设置一个或多个分流件322。当分流件322为两个或两个以上时,可以偏移设置,从而将该空间分隔为多个分流区。通过在第二烘干模组壳体底板3201上设置分流件322,可对流入第二空间3202的吸湿区域的烘干气流进行分流,一部分进入靠近圆心的区域,另一部分则进入靠近吸湿排湿构件300外周的区域,使得流入循环通路的烘干气流更为分散和均匀,气流与吸湿排湿构件300可以更大面积地接触,提高吸湿排湿构件300的吸湿效率。
如图8(a)所示的一个实施例中,第一烘干模组壳体320、吸湿排湿构件300以及第二烘干模组壳体310以水平的方式进行设置,在再生区域3a,吸湿排湿构件300的第一面3001与至少部分第二烘干模组壳体310之间具有间隙,以形成第三空间3302;吸湿排湿构件300的第二面2002与至少部分第一烘干模组壳体320之间具有间隙,以形成第四空间3402。
在再生区域3a内,第一烘干模组壳体顶壁3101沿气流流动的方向与吸湿排湿构件第一面3001平行或大致平行,第二烘干模组壳体底板3201与吸湿排湿构件第二面3002平行或大致平行,以使第三空间3302及第四空间3402的高度保持不变。通过将位于再生区域3a扇形区域的第一烘干模组壳体顶壁3101与吸湿排湿构件第一面3001之间、以及第二烘干模组壳体底板3201与吸湿排湿构件第二面3002之间均设置为彼此平行,使得烘干气流的流经高度保持不变,从而使旋转经过再生区域3a的吸湿排湿构件300的各个部位所受的热量均匀,达到基本相同的再生效果,同时避免发生再生区域3a局部过热的现象。
如图8(b)所示的一个实施例中,第一烘干模组壳体320、吸湿排湿构件300以及第二烘干5模组壳体310还可以垂直的方式进行设置。
通过该垂直设置,同样使得在再生区域3a,第一烘干模组壳体顶壁3101、第二烘干模组壳体底板3201与吸湿排湿构件的对应表面之间的距离均保持不变。
此外,如图9所示,在第一空间的除湿区域3b靠近第一气流出口304的位置处,径向设置有一段斜壁3103,斜壁3103平滑地逐渐远离吸湿排湿构件第一面3001,使得第一烘干模组壳体顶壁3101在斜壁3103延伸的方向上形成近似阶梯状。
第二烘干模组壳体320包括第二烘干模组壳体底板3201和突出于底板3201的环周侧壁,形成的凹陷部为第二空间。在第二空间内设置有三个第二分隔件321,以将第二空间分隔为除湿区域3b、降温区域以及再生区域3a。相应地,第一烘干模组壳体310包括第一烘干模组壳体顶壁3101以及周向侧壁,形成的凹陷部为第一空间。在第一空间内3102
对应于三个第二分隔件321的位置处,沿第一烘干模组壳体310径向对应设置有三个第一分隔件311,以将第一烘干模组壳体310分隔为除湿区域3b、降温区域以及再生模组安装区域3c。第一烘干模组壳体310与第二烘干模组壳体320的凹陷部结构相对设置,使得第一烘干模组壳体310与第二烘干模组壳体320之间为密封连接。该吸湿排湿构件300用于在旋转的过程中,分别在吸湿区域吸收其中循环气流的水分,在降温区域对吸湿排湿构件300进行降温、以及将在吸湿区域吸收的水分通过再生区域3a的排湿气流排出。优选地,该除湿区域3b、降温区域、再生区域3a以及再生模组安装区域3c大体为扇形。同理,在该实施方式中的再生模组安装区域3c安装有再生模组31,该再生模组31的结构以及安装方式与之前所述的相同,在此不再赘述。
在一些实施例中,第二空间3202的除湿区域3b的面积大于等于降温区域的面积以及再生区域3a的面积,除湿区域3b的面积与降温区域的面积以及再生区域3a的面积的比大致为4:1:1~1:1:1。
在另外一些实施例中,衣物处理设备1的结构与实施例1中的基本相同,在此不再赘述。
在另外一些实施例中,第二空间3202具有第一气流入口301,烘干气流经过第一气流入口301,并依次通过第二空间3202、吸湿排湿构件300以及第一空间3102;沿着烘干气流在第二空间3202的整体流动方向看,在吸湿区域中,至少部分远离第一气流入口301的位置处具有比第一气流入口301处不同的横截面的面积。
可以理解的是,该烘干气流在第二空间3202的“整体流动方向”,是指在吸湿排湿构件第二表面3002与第二烘干模组壳体底板3201之间的空间中,将流经的气流当做一个整体来看,所形成的烘干气流大致流向,即大致从第一气流入口301流向第一气流出口304的方向,可以如图6中的箭头所示。需要说明的是,在第二空间3202,会有少部分烘干气流的流向不同于整体流动方向,如烘干气流从第二空间3202穿过吸湿排湿构件300到达第一空间3102,该部分烘干气流并不导致“整体流动方向”发生变化。
通过该设置,可以使得烘干气流流经的气路形状收敛,从而能够在烘干气流中的水分被持续吸附导致烘干气流密度降低的情况下,有效补偿气流的压力损失。
在一些实施例中,从沿着烘干气流在第二空间3202中的整体流动方向上看,在吸湿区域中,第一气流入口301处的横截面的面积比至少部分远离第一气流入口处301的横截面的面积大。
在一些实施例中,从沿着烘干气流在第二空间中的整体流动方向上看,在吸湿区域中,从第一气流入口301处向逐渐远离第一气流入口301的方向上,横截面的面积逐渐变小。
在一些实施例中,从沿着烘干气流在第二空间3202中的整体流动方向上看,在除湿
区域3b中,至少部分第二烘干模组壳体底板3201逐渐向上倾斜并延伸,以使第二空间3202沿吸湿排湿构件300径向方向上的横截面大致呈直角梯形。
可以理解的是,此处所指的“横截面”是指从沿着烘干气流在第二空间3202的整体流动方向上看过去,由第二烘干模组壳体底板3201、侧壁与吸湿排湿构件300的对应表面之间形成的空间在竖直方向上的截面。
通过上述实施方式,可以使得烘干气流流经的气路形状收敛,从而能够在烘干气流中的水分被持续吸附导致烘干气流密度降低的情况下,有效补偿气流的压力损失,使气流的压强及流速保持稳定,充分与吸湿排湿构件300接触。
本公开的技术方案能够使烘干气流在吸湿排湿构件300的各个部位达到相对均匀的吸附效果。
综上所述,本公开所提供一种衣物处理设备,通过将位于第二空间的吸湿区域设置为在气体流经的气流通路中流经的气路形状收敛,从而能够在烘干气流中的水分被持续吸附导致烘干气流密度降低的情况下,有效补偿气流的压力损失,使气流的压强及流速保持稳定,充分与吸湿排湿构件接触。因此,能够使吸湿排湿构件对在其中流动的烘干气流实现更好的吸附效果。
此外,通过将位于第二空间的再生区域3a的第二烘干模组壳体320的底板与吸湿排湿构件300对应表面之间的距离保持不变,使得烘干模组的再生区域3a中烘干气流的流经高度保持不变,从而使旋转经过再生区域3a的吸湿排湿构件的各个部位所受的热量均匀,实现基本相同的再生效果,同时避免发生再生区域3a局部过热的现象。
另外,通过在吸湿区域的第二烘干模组壳体320的底板沿着烘干气流流动的方向上还设置有分流件,可对流入吸湿区域的烘干气流进行分流,一部分进入靠近圆心的区域,另一部分则进入靠近吸湿排湿构件外周的区域,使得流入气流通道的烘干气流更分散和更均匀,与吸湿排湿构件可以接触得更加均匀,从而提高吸湿排湿构件的吸湿效率。
如图10-11所示,本公开所提供的衣物处理设备还包括上盖板结构4,上盖板结构4设置在烘干模组3上方,以将烘干模组3覆盖装置,该上盖板结构4包括框体41以及框体41所围绕的盖板42,该盖板42包括至少一隔热层421。
本公开所提供的衣物处理设备通过将烘干模组3设置于滚筒2的上方,并在烘干模组3上方的洗衣机外壳面板内设置有隔热层421,该设置方式可以充分利用滚筒2的上部空间,使得衣物处理装置的整体布置非常紧凑。
如图10-11所示,该盖板42包括隔热层421、以及设置在隔热层421上方的保护层422、设置在隔热层421下方的绝缘层423。框体41包括内框411、外框412以及连接内框411和外框412的连接面413。在一些实施例中,内框411和外框412之间还可设置有多个加强肋。
可以理解,该上盖板结构4也可由盖板42以及盖板42周围的固定件一体成型。该盖板42还可仅包括隔热层421,也可包括隔热层421以及设置在隔热层421上方的保护层422、或者包括隔热层421以及设置在隔热层下方的绝缘层423,还可包括隔热层421、设置在隔热层421上方的保护层422以及设置在隔热层421下方的绝缘层423。
如图1-图14所示,该衣物处理装置还包括出气管道5,出气管道5在一端处连接至滚筒2的滚筒出气口202,并且在另一端处连接到第一进气口33。可以在出气管道5内设置滤网50,以过滤气流中的毛絮等夹杂物,防止该杂物其进入烘干模组3,造成烘干模组堵塞等问题。出气管道5被配置为将来自所述滚筒2的湿循环气流引导至烘干模组3的第一进气口33。
如图14所示,在一些实施例中,滤网50可以倾斜地设置在出气管道5内。例如,滤网50可通过滤网支架可拆卸地固定于出气管道5中。滤网50可选地横跨出气管道5的整个截面,使得从滚筒2流出的湿循环气流至少大部分穿过滤网50,以用于对流经出气管道的气流进行过滤。
在一些实施例中,滤网50可以为圆形、椭圆形、矩形等形状。为增大滤网50的过滤面积,可将滤网50倾斜设置于出气管道5内,即,滤网50的法线与所处出气管道5的延伸方向之间存在一定夹角。例如,过滤面积为S1,在出气管道5中滤网50存在的区段,出气管道5的横截面积为S2,其中S1:S2在5:1~1:1的范围内,使得滤网过滤面积最大化,从而提高过滤效率。S1:S2优选为大致3:1,例如,滤网50的过滤面积为15000mm2,出气管道5的横截面积为5000mm2。
如图13所示,滤网50结构为多孔结构,其材质可以为金属、塑料等材料,在此不做限制,可以达到过滤效果即可。滤网孔径的定义与吸湿排湿构件300的孔径的定义相同,在此不做赘述。
如图14所示,滤网50包括靠近滚筒出气口202的过滤面501和远离滚筒出气口202的非过滤面502,在过滤面501和/或非过滤面502一侧设置一个或多个加强筋51。
如图14所示,衣物处理装置还包括滤网清洁装置52,其能够将清洁流体引导到至滤网50的过滤面501和/或非过滤面502以清洁滤网50。通过设置滤网清洁装置52自动清洁出气管道5内的滤网50,可以将附着在滤网50上的毛絮等杂物清除,从而可以减少滤网50被堵塞的可能性,保证衣物处理装置进行烘干的过程中,滤网的过滤效率。由于在烘干过程中,湿热空气从滚筒2被引导至出气管道5,之后进入第一进气口33,出气管道5中的滤网50会受到气流的作用力F发生一定的形变并具有松弛的趋势,如图14所示,滤网50受到气流向上的作用力F。通过在滤网50的过滤面501和/或非过滤面502一侧设置加强筋51,使滤网在工作过程中紧绷,不会因冲洗次数的增加和气流的冲击造成滤网松弛,延长了滤网的寿命;同时,使吸附在滤网上的毛絮500更容易在清洁装置喷出的清洁
流体的冲刷作用下从滤网50脱落,实现更好的清洁效果。
如图15所示,吸湿排湿构件300的吸湿孔孔径为吸湿排湿构件的波高,或吸湿排湿构件300的吸湿孔孔径为吸湿排湿构件300的吸湿孔的外接圆的直径。
本公开对吸湿排湿构件300的吸湿孔孔径与滤网网孔孔径进行了特定设置,以提高吸湿排湿构件300及衣物处理装置的使用寿命的影响。具体方案可参见下文。
在25℃室温下,使衣物处理设备按照常规洗烘模式连续清洗、烘干纯棉材质衣物。每日连续运行12小时,每次清洗、烘干衣物4kg,约用时3小时。整个试验过程中,启动滤网自动清洗功能,不对吸湿转盘等其他部件进行清洗维护。工作30天后拆卸吸湿转盘构件并测量其堵塞率,需要说明的是,堵塞率为被堵塞的吸湿孔面积占吸湿总面积的比例。当堵塞率大于等于25%,则认为堵塞率超出衣物处理装置的稳定工作阈值,此时会大幅影响到烘干效率。也就是说,在衣物处理装置正常使用情况下,吸湿转盘构件存在被堵塞的风险。
假定衣物处理设备在额定条件下可靠运转5000次,每周使用3次约9小时,来估算其工作寿命。根据国家标准化委员会颁布的《家用和类似用途电器的安全使用年限和再生利用通则》的规定,洗衣机产品安全使用参考年限为8年。
在一些实施例中,可选用分子筛型除湿转盘作为吸湿排湿构件300,静态吸水率大于15%,吸湿后再生率大于85%(250℃处理4小时),需要说明的是,该吸湿排湿构件300所选用的材料不做特别限定,只要该材料吸水率、再生率在该范围内即可。该吸湿转盘构件可设置为转盘直径为327mm,厚度为25mm。吸湿孔大致呈规则的瓦楞形排列,具有波高b及波长2b(波长大致为波高的2倍),因此,波高b可作为吸湿孔的孔径。
实施例1:吸湿转盘构件中的吸湿孔波高b为1.7mm,波长为3.4mm。选用150目滤网,滤网网孔为近似正方形,边长a为106μm。计算得b/a=16.0。工作30天后,吸湿转盘构件堵塞率为1.5%。衣物处理装置的折算使用年限为12.8年。
实施例2:吸湿转盘中的吸湿孔波高b为1.7mm,波长为3.4mm。滤网选用200目滤网,滤网网孔为近似正方形,边长a为74μm。计算得b/a=23.0。工作30天后,转盘堵塞率为1.2%。衣物处理装置的折算使用年限为16.0年。
实施例3:吸湿转盘中的吸湿孔波高b为1.7mm,波长为3.4mm。选用120目滤网,滤网网孔为近似正方形,边长a为120μm。计算得b/a=14.2。工作30天后,转盘堵塞率为2.1%。衣物处理装置的折算使用年限为9.1年。
实施例4:吸湿转盘中的吸湿孔波高b为1.5mm,波长为3.0mm。选用150目滤网,滤网网孔为近似正方形,边长a为106μm。计算得b/a=14.2。工作30天后,转盘堵塞率为2.2%。衣物处理装置的折算使用年限为8.7年。
实施例5:吸湿转盘中的吸湿孔波高b为1.5mm,波长为3.0mm。选用200目滤网,
滤网网孔为近似正方形,边长a为74μm。计算得b/a=20.3。工作30天后,转盘堵塞率为1.3%。衣物处理装置的折算使用年限为14.8年。
实施例6:吸湿转盘中的吸湿孔波高b为1.5mm,波长为3.0mm。选用120目滤网,滤网网孔为近似正方形,边长a为120μm。计算得b/a=12.5。工作30天后,转盘堵塞率为2.2%。衣物处理装置的折算使用年限为8.7年。
实施例7:吸湿转盘中的吸湿孔波高b为2.0mm,波长为4.0mm。选用150目滤网,滤网网孔为近似正方形,边长a为106μm。计算得b/a=18.9。工作30天后,转盘堵塞率为1.3%。衣物处理装置的折算使用年限为14.8年。
实施例8:吸湿转盘中的吸湿孔波高b为2.0mm,波长为4.0mm。选用200目滤网,滤网网孔为近似正方形,边长a为74μm。计算得b/a=27.0。工作30天后,转盘堵塞率为0.9%。衣物处理装置的折算使用年限为21.3年。
实施例9:吸湿转盘中的吸湿孔波高b为2.0mm,波长为4.0mm。选用120目滤网,滤网网孔为近似正方形,边长a为120μm。计算得b/a=16.7。工作30天后,转盘堵塞率为1.4%。衣物处理装置的折算使用年限为13.7年。
实施例10:吸湿转盘中的吸湿孔波高b为1.5mm,波长为3.0mm。选用75目滤网,滤网网孔为近似正方形,边长a为200μm。计算得b/a=7.5。工作30天后,转盘堵塞率为2.4%。衣物处理装置的折算使用年限为8.0年。
实施例11:吸湿转盘中的吸湿孔波高b为2.5mm,波长为5.0mm。选用近400目滤网,滤网网孔为近似正方形,边长a为40μm。计算得b/a=62.5。工作30天后,转盘堵塞率为0.7%。衣物处理装置的折算使用年限为27.4年。
实施例12:吸湿转盘中的吸湿孔波高b为2.0mm,波长为4.0mm。选用近400目滤网,滤网网孔为近似正方形,边长a为40μm。计算得b/a=50.0。工作30天后,转盘堵塞率为0.7%。衣物处理装置的折算使用年限为27.4年。
实施例13:吸湿转盘中的吸湿孔波高b为1.6mm,波长为3.2mm。选用120目滤网,滤网网孔为近似正方形,边长a为120μm。计算得b/a=13.3。工作30天后,转盘堵塞率为0.7%。衣物处理装置的折算使用年限为9.1年。
实施例14:吸湿转盘中的吸湿孔波高b为1.8mm,波长为3.6mm。选用近180目滤网,滤网网孔为近似正方形,边长a为80μm。计算得b/a=22.5。工作30天后,转盘堵塞率为1.0%。衣物处理装置的折算使用年限为19.2年。
以上14个实施例的参数对比见表1。
表1实施例中的转盘堵塞率对比表
对比例1:吸湿转盘中的吸湿孔波高b为1.5mm,波长为3.0mm。选用60目滤网,滤网网孔为近似正方形,边长a为250μm。计算得b/a=6.0。工作30天后,转盘堵塞率为2.8%。衣物处理装置的折算使用年限为6.9年。
对比例2:吸湿转盘中的吸湿孔波高b为2.0mm,波长为4.0mm。选用50目滤网,滤网网孔为近似正方形,边长a为270μm。计算得b/a=7.4。工作30天后,转盘堵塞率为2.5%。衣物处理装置的折算使用年限为7.7年。
对比例3:吸湿转盘中的吸湿孔波高为1.7mm,波长为3.4mm。选用50目滤网,滤网网孔为近似正方形,边长a为270μm。计算得b/a=6.8。工作30天后,转盘堵塞率为2.8%。衣物处理装置的折算使用年限为6.9年。
对比例4:吸湿转盘中的吸湿孔波高为2.7mm,波长为5.4mm。选用400目滤网,滤网网孔为近似正方形,边长38μm。计算得b/a=71.1。工作24小时后,滤网处存在大量毛絮堆积,无法使进气通道内产生流速稳定的湿循环气流。此时,转盘堵塞率为0.2%。因此,必须定时对滤网进行人工清理,烘干程序无法自动持续。
对比例5:吸湿转盘中的吸湿孔波高b为3.0mm,波长为6.0mm。选用400目滤网,滤网网孔为近似正方形,边长a为38μm。计算得b/a=79.0。工作24小时后,滤网处存在大量毛絮堆积,无法使进气通道内产生流速稳定的湿循环气流。此时,转盘堵塞率为0.1%。因此,必须定时对滤网进行人工清理,烘干程序无法自动持续。
对比例6:吸湿转盘中的吸湿孔波高b为2.0mm,波长为4.0mm。选用500目滤网,滤网网孔为近似正方形,边长a为25μm。计算得b/a=80.0。工作12小时后,滤网处存在
大量毛絮堆积,无法使进气通道内产生流速稳定的湿循环气流。此时,转盘堵塞率为0.1%。因此,必须定时对滤网进行人工清理,烘干程序无法自动持续。
以上6个比较例的参数对比见表2。
表2对比例中的转盘堵塞率对比表
综上所述,本公开所提供一种衣物处理设备,其通过将烘干模组中的吸湿转盘的结构参数,例如吸湿孔尺寸与过滤组件中的滤网的网孔尺寸进行优化设计,在保证系统运行可靠的前提下,达到最佳的烘干效果。
结合图16、图17,本公开所提供的衣物处理装置的滚筒2包括内筒2a、外筒2b以及滚筒驱动部2c,滚筒驱动部2c与滚筒2的内筒2a传动连接以驱动滚筒2的内筒2a沿旋转轴旋转旋转。外筒2b上不同位置上形成有至少一个滚筒进气口203和至少一个滚筒出气口202。
如图12所示,该滚筒2的内筒2a具有一直径D2,吸湿排湿构件300为具有直径D1的圆盘状构件。吸湿排湿构件300的直径D1小于滚筒内筒的直径D2,且D1:D2的比值范围为1:2~3:4之间。D1:D2的比值最好为3:5。
吸湿排湿构件300具有厚度H,该厚度H与直径D1的比值范围为1:20~1:4之间。优选地,该厚度H与直径D1的比值范围为1:15~1:10之间。
通过将洗衣机中滚筒的尺寸与实现烘干功能的转盘构件的尺寸设定为相互匹配的比例关系,从而能够使得烘干模组具有与滚筒对应的烘干能力,从而提高了烘干效率。
尽管已描述了本申请的优选实施例,但本领域内的普通技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (26)
- 一种衣物处理设备,其特征在于,包括烘干模组及滚筒,其中:所述滚筒具有至少一滚筒出气口和一滚筒进气口,所述滚筒出气口与所述滚筒进气口分别与所述烘干模组气流连通,形成烘干气流通路;所述烘干模组包括:具有第一空间的第一烘干模组壳体、具有第二空间的第二烘干模组壳体及设置于所述第一烘干模组壳体和所述第二烘干模组壳体之间的吸湿排湿构件;所述第二空间至少设置有除湿区域和再生区域,并在所述除湿区域设有第一气流入口;所述吸湿排湿构件的至少部分周期性地经过所述除湿区域和所述再生区域;所述第二烘干模组壳体的底板到所述吸湿排湿构件相应表面在垂直方向上具有一距离,在所述除湿区域中,所述第一气流入口处附近的所述距离与远离第一气流入口处的其他位置处的至少部分所述距离大小不同。
- 根据权利要求1所述的衣物处理设备,其中,在所述第二空间内,沿所述第二烘干模组壳体径向设置有至少两个第二分隔件,以将所述第二空间分隔为所述除湿区域和所述再生区域。
- 根据权利要求2所述的衣物处理设备,其中,从沿着所述烘干气流在所述第二空间中的整体流动方向上看,在所述除湿区域中,在所述第一气流入口处的所述距离比至少部分远离所述第一气流入口处的所述距离大。
- 根据权利要求1-3任一项所述的衣物处理设备,其中,在所述除湿区域的所述第一气流入口处,所述距离为15-50mm之间;在离所述第一气流入口最远处,所述距离为8-40mm之间。
- 根据权利要求1所述的衣物处理设备,其中,在所述再生区域内,所述第二烘干模组壳体的底板与所述吸湿排湿构件对应表面之间的距离保持不变。
- 一种衣物处理设备,其中,包括烘干模组及滚筒,其中,所述滚筒具有至少一滚筒出气口和一滚筒进气口,所述滚筒出气口与所述滚筒进气口分别与所述烘干模组气流连通,形成烘干气流通路;所述烘干模组包括:具有第一空间的第一烘干模组壳体、具有第二空间的第二烘干模组壳体及设置于所述第一烘干模组壳体和所述第二烘干模组壳体之间的吸湿排湿构件;所述第二空间至少包括除湿区域和再生区域,并在所述除湿区域设有第一气流入口;所述吸湿排湿构件的至少部分周期性地经过所述除湿区域和所述再生区域;所述第二烘干模组壳体的底板到所述吸湿排湿构件相应表面在垂直方向上具有一距离,在所述除湿区域中,至少部分远离所述第一气流入口的位置处具有比所述第一气流入口处不同的横截面的面积。
- 根据权利要求6所述的衣物处理设备,其中,在所述第二空间内,沿所述第二烘干模组壳体径向设置有至少两个第二分隔件,以将所述第二空间分隔为所述除湿区域和所述再生区域。
- 根据权利要求7所述的衣物处理设备,其中,从沿着所述烘干气流在所述第二空间中的整体流动方向上看,在所述吸湿区域中,所述第一气流入口处的所述横截面的面积比至少部分远离所述第一气流入口处的所述横截面的面积大。
- 根据权利要求6-8任一项权利要求所述的衣物处理设备,其中,在所述除湿区域的所述第一气流入口处,所述距离为15-50mm之间;在离所述第一气流入口最远处,所述距离为8-40mm之间。
- 根据权利要求6所述的衣物处理设备,其中,在所述再生区域内,所述第二烘干模组壳体的底板与所述吸湿排湿构件对应表面之间的距离保持不变。
- 根据权利要求1-10任一项所述的衣物处理设备,其中,所述烘干模组上方设置有壳体上盖板结构,所述壳体上盖板结构包括框体以及框体所围绕的盖板,该盖板包括至少一隔热层。
- 根据权利要求11所述的衣物处理设备,其中,所述盖板结构还包括设置在隔热层上方的保护层。
- 根据权利要求13所述的衣物处理装置,其中,所述盖板结构还包括在隔热层下方的绝缘层。
- 根据权利要求11所述的衣物处理装置,其中,所述框体包括内框、外框,内框和外框之间设置有多个加强肋。
- 根据权利要求1-14任一项所述的衣物处理装置,其中,在所述烘干模组第一进气口与滚筒出气口之间还进一步设置有循环风扇。
- 根据权利要求1-15任一项所述的衣物处理装置,其中,还包括出气管道,所述滚筒、所述出气管道与所述烘干模组依次连通,所述烘干模组包括具有多个吸湿孔的吸湿排湿构件,所述出气管道被配置为将来自所述滚筒的湿气流引导至所述烘干模组的吸湿排湿构件,所述出气管道内设置有具有多个网孔的滤网,从所述滚筒流出的所述湿气流至少大部分穿过所述滤网;其中,所述吸湿构件的吸湿孔孔径b与所述滤网的网孔孔径比a满足7.5≤b/a≤62.5。
- 根据权利要求16所述的衣物处理装置,其中,所述吸湿排湿构件的吸湿孔孔径b与所述滤网的网孔孔径a的比值范围满足13.3≤b/a≤22.5。
- 根据权利要求16或17所述的衣物处理装置,其中,所述吸湿排湿构件的吸湿孔孔径b在1.5~2.5mm之间。
- 根据权利要求18所述的衣物处理装置,其中,所述吸湿排湿构件的吸湿孔孔径b 在1.6~1.8mm之间。
- 根据权利要求16或17所述的衣物处理装置,其中,所述吸湿排湿构件的吸湿孔孔径为吸湿排湿构件的波高,或所述吸湿排湿构件的吸湿孔孔径为所述吸湿排湿构件的吸湿孔的外接圆的直径。
- 根据权利要求16或17所述的衣物处理装置,其中,所述滤网倾斜设置于所述出气管道中。
- 根据权利要求21所述的衣物处理装置,其中,所述滤网通过滤网支架可拆卸地固定于所述出气管道中。
- 根据权利要求22所述的衣物处理装置,其中,所述滤网的过滤面积S1为与所述出气管道中所述滤网设置区段的横截面积S2的比值S1:S2在5:1~1:1的范围内。
- 根据权利要求23所述的衣物处理装置,其中,所述滤网的过滤面积S1与所述出气管道中所述滤网设置区段的横截面积S2的比值为3:1。
- 根据权利要求16或17所述的衣物处理装置,其中,所述滤网包括靠近所述滚筒出气口的过滤面和远离所述滚筒出气口的非过滤面,在所述过滤面一侧和/或所述非过滤面一侧设置有加强筋。
- 根据权利要求16或17所述的衣物处理装置,其中,还包括滤网清洁装置,其能够将清洁流体引导到至所述滤网的过滤面和/或非过滤面以清洁所述滤网。
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320202935.2U CN219861989U (zh) | 2023-01-17 | 2023-01-17 | 一种衣物处理设备 |
CN202320168388.0U CN219861988U (zh) | 2023-01-17 | 2023-01-17 | 一种具有烘干功能的衣物处理装置 |
CN202310095219.3A CN118498015A (zh) | 2023-01-17 | 2023-01-17 | 一种具有烘干功能的衣物处理装置 |
CN202320168175.8U CN219861987U (zh) | 2023-01-17 | 2023-01-17 | 一种具有烘干功能的衣物处理装置 |
CN202310108656.4 | 2023-01-17 | ||
CN202320222943.3U CN220149896U (zh) | 2023-01-17 | 2023-01-17 | 一种具有烘干功能的衣物处理装置 |
CN202310095219.3 | 2023-01-17 | ||
CN202320202935.2 | 2023-01-17 | ||
CN202310108656.4A CN118441457A (zh) | 2023-01-17 | 2023-01-17 | 一种衣物处理设备 |
CN202320168175.8 | 2023-01-17 | ||
CN202320222943.3 | 2023-01-17 | ||
CN202320168388.0 | 2023-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024152598A1 true WO2024152598A1 (zh) | 2024-07-25 |
Family
ID=91955260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/120655 WO2024152598A1 (zh) | 2023-01-17 | 2023-09-22 | 一种衣物处理设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024152598A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11182890A (ja) * | 1997-12-24 | 1999-07-06 | Mitsubishi Electric Corp | 空気加工装置 |
JP2003269746A (ja) * | 2002-03-13 | 2003-09-25 | Matsushita Ecology Systems Co Ltd | 除湿装置 |
JP2012205777A (ja) * | 2011-03-30 | 2012-10-25 | Panasonic Corp | 衣類処理装置 |
KR20150022437A (ko) * | 2013-08-23 | 2015-03-04 | 삼성전자주식회사 | 식기세척기 |
CN112539508A (zh) * | 2020-12-02 | 2021-03-23 | 木林森股份有限公司 | 一种空气净化用紫外杀菌装置 |
CN113981647A (zh) * | 2021-09-01 | 2022-01-28 | 北京石头世纪科技股份有限公司 | 一种洗烘一体机 |
CN115247341A (zh) * | 2022-08-31 | 2022-10-28 | 深圳洛克创新科技有限公司 | 洗烘一体机 |
-
2023
- 2023-09-22 WO PCT/CN2023/120655 patent/WO2024152598A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11182890A (ja) * | 1997-12-24 | 1999-07-06 | Mitsubishi Electric Corp | 空気加工装置 |
JP2003269746A (ja) * | 2002-03-13 | 2003-09-25 | Matsushita Ecology Systems Co Ltd | 除湿装置 |
JP2012205777A (ja) * | 2011-03-30 | 2012-10-25 | Panasonic Corp | 衣類処理装置 |
KR20150022437A (ko) * | 2013-08-23 | 2015-03-04 | 삼성전자주식회사 | 식기세척기 |
CN112539508A (zh) * | 2020-12-02 | 2021-03-23 | 木林森股份有限公司 | 一种空气净化用紫外杀菌装置 |
CN113981647A (zh) * | 2021-09-01 | 2022-01-28 | 北京石头世纪科技股份有限公司 | 一种洗烘一体机 |
CN115198476A (zh) * | 2021-09-01 | 2022-10-18 | 深圳洛克创新科技有限公司 | 一种洗烘一体机 |
CN115287866A (zh) * | 2021-09-01 | 2022-11-04 | 深圳洛克创新科技有限公司 | 烘干模组和洗烘一体机 |
CN115247341A (zh) * | 2022-08-31 | 2022-10-28 | 深圳洛克创新科技有限公司 | 洗烘一体机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107504605B (zh) | 空气处理装置和具有其的立式空调器 | |
TWI844464B (zh) | 烘乾模組和衣物處理裝置 | |
CN220183633U (zh) | 一种衣物处理设备 | |
CN210373814U (zh) | 空气净化模块、空调室内机以及空调器 | |
CN107923635A (zh) | 除加湿装置 | |
WO2024152598A1 (zh) | 一种衣物处理设备 | |
WO2024169189A1 (zh) | 衣物处理设备 | |
TW202421880A (zh) | 衣物處理設備及其控制方法 | |
CN205747198U (zh) | 空气净化器 | |
CN114543176B (zh) | 一种空气调节设备 | |
CN114543171B (zh) | 一种空调器 | |
CN219861988U (zh) | 一种具有烘干功能的衣物处理装置 | |
CN219861989U (zh) | 一种衣物处理设备 | |
CN219889675U (zh) | 空气处理装置 | |
TW202430747A (zh) | 衣物處理設備 | |
CN118498015A (zh) | 一种具有烘干功能的衣物处理装置 | |
CN219913287U (zh) | 加除湿一体机 | |
CN221279568U (zh) | 空气调节设备 | |
CN118441457A (zh) | 一种衣物处理设备 | |
CN218565603U (zh) | 一种带自动清洗的除湿机 | |
TW202430264A (zh) | 過濾器清潔裝置以及衣物處理設備 | |
CN221301449U (zh) | 空气处理装置 | |
CN220952605U (zh) | 烘干模组和衣物处理设备 | |
CN219908179U (zh) | 一种具有烘干功能的衣物处理装置 | |
CN219861987U (zh) | 一种具有烘干功能的衣物处理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23917066 Country of ref document: EP Kind code of ref document: A1 |