WO2024143473A1 - 遷移金属用酸化剤の分解抑制剤 - Google Patents

遷移金属用酸化剤の分解抑制剤 Download PDF

Info

Publication number
WO2024143473A1
WO2024143473A1 PCT/JP2023/046949 JP2023046949W WO2024143473A1 WO 2024143473 A1 WO2024143473 A1 WO 2024143473A1 JP 2023046949 W JP2023046949 W JP 2023046949W WO 2024143473 A1 WO2024143473 A1 WO 2024143473A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transition metal
ion
semiconductor processing
processing solution
Prior art date
Application number
PCT/JP2023/046949
Other languages
English (en)
French (fr)
Inventor
雄山 鈴木
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2024143473A1 publication Critical patent/WO2024143473A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/40Alkaline compositions for etching other metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Definitions

  • the present invention relates to semiconductor processing solutions used in metal wiring processing during the manufacturing process of semiconductor devices.
  • wiring layers are formed for the purpose of extracting electrical signals generated by transistors to the outside.
  • Semiconductor elements are becoming finer year by year, and if a material with low electromigration resistance or high resistance is used, it will lead to a decrease in reliability of the semiconductor element and an impairment of high-speed operation. Therefore, materials with high electromigration resistance and low resistance are desired as wiring materials.
  • a material with high electromigration resistance and low resistance for example, aluminum and copper have been used so far, and recently, tungsten, cobalt, molybdenum, ruthenium, etc. have been considered.
  • a process of processing the wiring material is included, and this process uses dry or wet etching.
  • the more times the processing solution is reused and the longer the reuse time the more significant the decrease in the concentration of hypobromite ions due to the reaction between the dissolved transition metal oxide ions and hypobromite ions becomes, and the etching performance decreases. From the viewpoint of reuse of the processing solution, it is important to improve the stability of hypobromite ions in the processing solution in which transition metal oxides are present.
  • Patent Document 1 proposes a hypobromous acid solution of less than 30% by mass, containing cyanuric acid in an amount not exceeding 1 ppm by mass, as a stabilizer for hypobromous acid. It is described that the addition of low-concentration cyanuric acid stabilizes hypobromous acid, which is inherently unstable, and has a shelf life of up to 6 months (in a sealed, opaque container). However, it is described that the pH range of hypobromous acid solutions that are most stabilized by cyanuric acid and are most reactive is 8 to 9.
  • the object of the present invention is therefore to provide a decomposition inhibitor that, when added to a semiconductor processing solution, can inhibit the decomposition of a transition metal oxidizing agent caused by oxidized and dissolved transition metal oxides and/or oxide ions, thereby enabling the semiconductor processing solution to be reused.
  • transition metal oxides and/or oxide ions refer to one or more selected from transition metal oxides and transition metal oxide ions. Hereinafter, this will also be referred to as a transition metal oxidant.
  • the present inventors have conducted extensive research to solve the above problems, and have found that a compound having an electron-donating group and an aromatic group, a group having a carbon-carbon double bond, or a group having a carbon-carbon triple bond can act as an agent for inhibiting the decomposition of an oxidizing agent for a transition metal, thereby completing the present invention. That is, the present invention is configured as follows.
  • a decomposition inhibitor for a transition metal oxidizing agent comprising: A decomposition inhibitor comprising a compound represented by the following formula (1): A-(X) n (1) A: an aromatic group, a group having a carbon double bond, or a group having a carbon triple bond; X: an electron donating group; n: an integer; Item 2.
  • Item 3 The decomposition inhibitor according to item 1 or 2, wherein in formula (1), X is an amino group or an alkoxy group.
  • Item 11 The semiconductor processing solution according to Item 9 or 10, wherein the transition metal oxidizing agent is at least one halogen oxygen acid ion selected from the group consisting of a hypobromite ion, a hypochlorite ion, and a periodate ion, and the total concentration of all the transition metal oxidizing agents is 50 ppm by mass or more and 35% by mass or less with respect to the total mass of the semiconductor processing solution.
  • the transition metal oxidizing agent is at least one halogen oxygen acid ion selected from the group consisting of a hypobromite ion, a hypochlorite ion, and a periodate ion, and the total concentration of all the transition metal oxidizing agents is 50 ppm by mass or more and 35% by mass or less with respect to the total mass of the
  • the present invention provides a decomposition inhibitor for transition metal oxidizing agents that, when added to a semiconductor processing solution, inhibits the decomposition of the transition metal oxidizing agent by the transition metal oxidant, making it possible to reuse the semiconductor processing solution.
  • the decomposition inhibitor for the transition metal oxidizing agent of this embodiment (hereinafter also referred to as the decomposition inhibitor) is made of a compound represented by formula (1).
  • the mechanism is not clear, when a group having ⁇ electrons has a structure in which electrons are biased due to the electron donating group added, as in the compound represented by formula (1), it is easily oxidized by a specific oxidizing agent. As a result, it is presumed that the decomposition inhibitor is oxidized to a transition metal oxidant instead of the transition metal oxidizing agent, thereby suppressing the decomposition of the transition metal oxidizing agent.
  • the transition metal oxidizing agent is a transition metal oxidizing agent that gasifies, for example, RuO 4
  • RuO 4 is reduced by the decomposition inhibitor to generate RuO 2.
  • RuO 4 which is a transition metal oxidizing agent, exists in the semiconductor processing solution as RuO 2 that does not gasify, and as a result, RuO 4 gas is not released from the semiconductor processing solution. Therefore, when the transition metal is ruthenium, the decomposition inhibitor of this embodiment also has a gas suppression effect.
  • A-(X) n (1) A: aromatic group, group having a carbon double bond, or group having a carbon triple bond; X: electron donating group; n: integer;
  • A is an aromatic group, a group having a carbon double bond, or a group having a carbon triple bond.
  • A is most preferably an aromatic group from the standpoint of stability against an oxidizing agent for a transition metal.
  • the aromatic group include, when n is 1, an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group, and, when n is 2 or more, a group in which a hydrogen bonded to an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group is further substituted with n-1 X's.
  • A has a hydrophilic group other than X, some of the hydrogen atoms at a position other than the position to which X is bonded in the above aromatic group are substituted with the hydrophilic group.
  • the group having a carbon double bond is not particularly limited as long as it has a structure in which the electrons in the double bond are biased by the electron-donating group, but examples of groups that can be mentioned include, for example, when n is 1, vinyl groups, or groups derived from alkenes such as propenyl groups and butenyl groups.
  • the group having a carbon triple bond is not particularly limited as long as it has a structure in which the electrons in the triple bond are biased by the electron-donating group, but examples of groups that can be mentioned are those derived from alkynes, such as ethynyl and propynyl groups, when n is 1.
  • X is an electron-donating group, examples of which include an amino group, an alkoxy group, a methyl group, or a hydroxy group, and examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, or a phenoxy group.
  • the electron-donating group an amino group, a methoxy group, or an ethoxy group is preferred because of their strong electron-donating properties and high solubility in water.
  • an alkoxy group is selected as X, an alkylene group having 1 to 5 carbon atoms, or 2 to 5 carbon atoms, in which some methylene groups may be substituted with -O-, may be present between A and X. However, -O- is not present consecutively.
  • n is an integer, preferably 1 to 6, more preferably 1 to 2 from the viewpoint of electron bias due to electron donating properties, and most preferably 1.
  • Examples of compounds represented by formula (1) include aniline, methoxybenzene, ethoxybenzene, propyloxybenzene, diphenyl ether, phenol, toluene, 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2,3-diaminobenzoic acid, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 2,6-diaminobenzoic acid, 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4-aminobenzenesulfonic acid, 2,3-diaminobenzenesulfonic acid, 2,4-diaminobenz
  • benzoic acid 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 2,6-diaminobenzoic acid, 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4-aminobenzenesulfonic acid, 2-methoxybenzoic acid, 3-methoxybenzoic acid, 4-methoxybenzoic acid, phenoxyacetic acid, 2-phenoxypropionic acid, and 2-methoxyphenoxyacetic acid.
  • the solution containing the decomposition inhibitor for the transition metal oxidizing agent can be suitably used as a semiconductor processing solution (hereinafter, also referred to as a processing solution).
  • the semiconductor processing solution preferably contains a transition metal oxidizing agent in order to etch the transition metal.
  • the semiconductor wafer to be etched preferably contains at least one transition metal selected from Ru, Rh, Ti, Ta, Co, Cr, Hf, Os, Pt, Ni, Mn, Cu, Zr, La, Mo, and W, more preferably Ru, Mo, or W, and most preferably Ru.
  • concentration of hypochlorite ions is less than 50 mass ppm, Br - cannot be efficiently oxidized, and the etching rate of ruthenium decreases.
  • amount of hypochlorite ions added is more than 5.0 mass %, the stability of hypochlorite ions decreases and the decomposition of hypobromite ions due to the reaction between hypochlorite ions/hypobromite ions is promoted, which is not appropriate.
  • the concentration of hypochlorite ions is more preferably 50 mass ppm or more and 3.0 mass % or less, and most preferably 100 mass ppm or more and 1.0 mass % or less.
  • the pH of the semiconductor treatment liquid is preferably 8.5 to 11.0, and more preferably 9.0 to 10.0, from the viewpoints of dissolving ability, smoothness, and stability of etching performance. In this specification, pH is measured at 25°C.
  • the semiconductor processing liquid of this embodiment may contain onium ions as a filtration lubricant for increasing the efficiency of the filtration step for removing particles and impurities in the manufacturing method of semiconductor devices.
  • the surface tension of the semiconductor processing liquid containing onium ions as a filtration lubricant is important from the viewpoint of increasing the efficiency of the filtration step. If the surface tension of the semiconductor processing liquid containing the filtration lubricant is low, there is a possibility that the onium ions will be removed in the filtration step, so the surface tension of the semiconductor processing liquid containing the filtration lubricant is preferably 60 mN/m or more and 75 mN/m or less.
  • the surface tension of the semiconductor processing solution containing the filtration lubricant is the key. If the surface tension of the semiconductor processing solution containing the filtration lubricant is less than 60 mN/m, the onium ions are easily removed by the filtration process, so it is difficult to maintain the good surface smoothness and RuO4 gas suppression effect described above.
  • One method for increasing the surface tension is to add a large amount of salt, but when the semiconductor processing solution of this embodiment contains an oxidizing agent, the stability of the oxidizing agent may decrease due to the reaction between the salt and the oxidizing agent, or etching may be inhibited due to high concentration of salt.
  • the surface tension is preferably 75 mN/m or less.
  • the filtration step will be described.
  • the semiconductor processing liquid is filtered in order to remove particles from the semiconductor processing liquid.
  • the wiring width is very narrow, ranging from a few nm to a few tens of nm, and therefore the pore size of the filter used in the filtration step is required to be of a similar size.
  • the smaller the pore size of the filter the easier it is for the onium salt or onium ion to be adsorbed and removed. This reduces the onium ion concentration in the semiconductor processing liquid, impairing the function of the semiconductor processing liquid described above.
  • the surface tension of the semiconductor processing solution containing the filtration lubricant is around 73 mN/m at 25°C, and by approaching this value, it is possible to suppress the adsorption of onium salts or onium ions to the filter. That is, by controlling the surface tension of the semiconductor processing solution containing the filtration lubricant to 60 mN/m or more and 75 mN/m or less, the adsorption of onium salts or onium ions to the filter can be suppressed, and the semiconductor processing solution containing the filtration lubricant can be used without losing its function when used.
  • onium ions When onium ions are included as a filtration lubricant, not only do they make filtration more efficient, but by interacting with the metal surface of the semiconductor wafer, they can suppress roughness of the metal surface after etching. Although the mechanism is not clear, it is thought that onium ions adsorb to the metal surface of the semiconductor wafer and inhibit etching of the metal surface by an oxidizing agent. The etching speed of the metal of a semiconductor wafer varies depending on the crystal orientation, etc., and the difference in etching speed can cause the surface to lose its smoothness.
  • the semiconductor processing solution of the present embodiment can be used in a method for etching a semiconductor wafer.
  • the etching method includes a step of contacting a semiconductor wafer with the semiconductor processing solution of the present embodiment.
  • the semiconductor processing solution of this embodiment contains the above-described filter lubricant, it can be preferably used as an etching solution for semiconductor wafers.
  • the above-described conditions for the filter lubricant can be applied.
  • a wet etching method of ruthenium will be described. First, a substrate made of a semiconductor (e.g., Si) is prepared.
  • the processing temperature is high, for example, when etching ruthenium, the amount of RuO4 gas increases, and the stability of the halogen oxygen acid also decreases.
  • the temperature for etching metals such as ruthenium is preferably 10°C to 90°C, more preferably 15°C to 60°C, and most preferably 25°C to 45°C.
  • the surface tension at 25°C is preferably 60 mN/m or more and 75 mN/m or less.
  • the generation of RuO4 gas can be suppressed by adding the decomposition inhibitor of this embodiment to a ruthenium treatment solution used in an etching step, a residue removal step, a cleaning step, a CMP step, etc. in a semiconductor manufacturing process.
  • the generation of RuO4 gas can be suppressed by using the decomposition inhibitor of this embodiment when cleaning ruthenium attached to the inner wall of the chamber, piping, etc.
  • the stability of the oxidant concentration relative to the transition metal oxidant was evaluated by the above-mentioned method using the produced treatment solution. In addition, when ruthenium was used as the transition metal, the effect of suppressing the generation of RuO4 gas was evaluated. In addition, the stability of the oxidant concentration relative to the transition metal oxidant, surface tension, onium salt residual rate after filtration, and surface smoothness after etching when a filtration lubricant was added were also evaluated.
  • Examples 35 to 43 and Reference Examples 1 to 3 are compared in terms of surface tension, onium ion residual rate after filtration, and surface smoothness after etching.
  • the surface tension was almost the same as before the addition of the filtration lubricant, so the onium ion residual rate did not change even after filtration. Furthermore, the high onium ion residual rate after filtration improved the surface smoothness.
  • the surface tension was low, and the onium ions were removed by the filtration process. As a result, the surface smoothness did not improve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

式(1)で表される化合物からなる遷移金属用酸化剤の分解抑制剤を提供する。A-(X)n(1) A:芳香族基、炭素二重結合を有する基、または炭素三重結合を有する基であり、X:電子供与基であり、n:整数である。

Description

遷移金属用酸化剤の分解抑制剤
 本発明は、半導体素子の製造工程において、金属配線処理に用いる半導体用処理液等に関する。
 半導体素子中には、トランジスタが発する電気信号を外部に取り出す目的で、配線層が形成されている。半導体素子は年々微細化が進んでおり、エレクトロマイグレーション耐性が低い又は抵抗が高い材料を用いた場合、半導体素子の信頼性の低下や、高速動作の阻害を招く。そこで、配線材料としては、エレクトロマイグレーション耐性が高く、抵抗値の低い材料が所望されている。
 このようにエレクトロマイグレーション耐性が高く、抵抗値の低い材料としては、例えば、これまで、アルミニウムや銅が使用されており、最近では、タングステン、コバルト、モリブデン、ルテニウムなどが検討されている。半導体素子へ配線層を形成する場合、配線材料を加工する工程が含まれるが、この工程はドライ又はウェットのエッチングが用いられる。中でも、スループットが高くドライエッチングに比べて装置コストの安いウェットエッチングを次世代の配線形成工程に適用する検討が進められている。
 近年では、ウェットエッチングにおいて、さらなるコスト低減、環境への負荷低減といった観点から、ウエハ処理後の半導体用処理液を回収し、フィルターによる循環ろ過後に再利用することが求められている。半導体用処理液を再利用することによって、再利用しない場合と比較して、半導体用処理液の使用量及び廃液量を削減することが可能となる。
 しかしながら、半導体用処理液が酸化溶解により遷移金属をエッチングする場合、処理後の処理液中には遷移金属酸化物又は遷移金属酸化物イオンが存在する。次亜臭素酸イオンによるルテニウムのエッチングを例として説明すると、ルテニウムはアルカリ条件下では次亜臭素酸イオンにより酸化されRuО として処理液中に溶出する。こうして処理液中に溶出したRuО イオンは、RuО イオンの不均化反応によりRuОやRuОなどに変化し、これらが次亜臭素酸イオンと反応し、エッチングに有効な次亜臭素酸イオン濃度が減少してしまうといった問題点がある。そのため、処理液の再利用回数が多くなるほど、また、再利用時間が長くなるほど、溶出した遷移金属酸化物イオンと次亜臭素酸イオンの反応による次亜臭素酸イオン濃度の減少が顕著となり、エッチング性能は低下していく問題がある。処理液の再利用の観点から、遷移金属酸化物が存在する処理液中で次亜臭素酸イオンの安定性を向上させることが重要となる。
特開2010-189393号公報
 特許文献1では、次亜臭素酸の安定化剤として、1質量ppmを超えない量のシアヌル酸を含む、30質量%未満の次亜臭素酸溶液が提案されている。該溶液は低濃度のシアヌル酸の添加によって、本来不安定である次亜臭素酸を安定化し、最長6カ月の貯蔵寿命(密閉で不透光性の容器内で)を有することが記載されている。しかしながら、シアヌル酸によって最も安定化され、最も反応活性となる次亜臭素酸溶液のpHの範囲は8~9であることが記載されている。また、本発明者の検討によると、該pHの次亜臭素酸溶液を用いて遷移金属をエッチング処理し、そのエッチング処理後の処理液を再利用した場合には、遷移金属に対するエッチング性能が低下することがわかった。これはシアヌル酸の添加による効果が、次亜臭素酸の不均化による分解を抑制する効果であると考えられ、処理液中に酸化溶解した遷移金属酸化物による次亜臭素酸の分解を抑制出来なかったためであると推察される。
 したがって、本発明の目的は、半導体用処理液中に添加したときに、酸化溶解した遷移金属の酸化物及び/又は酸化物イオンによる遷移金属用酸化剤の分解を抑制でき、その半導体用処理液を再利用可能とする、分解抑制剤を提供することを課題とする。なお、本明細書において、遷移金属の酸化物及び/又は酸化物イオンとは遷移金属酸化物及び遷移金属酸化物イオンから選択される1種以上を意味する。以下、遷移金属酸化体とも記載する。
 本発明者らは上記課題を解決するために鋭意検討を行った。そして、電子供与基と、芳香族基、炭素二重結合を有する基、または、炭素三重結合を有する基を有する化合物が、遷移金属用酸化剤の分解抑制剤となることを見出し、本発明を完成させるに至った。
 すなわち、本発明の構成は以下の通りである。
項1 遷移金属用酸化剤の分解抑制剤であって、
下記式(1)で表される化合物からなる、分解抑制剤。
A-(X)   (1)
A:芳香族基、炭素二重結合を有する基、または炭素三重結合を有する基
X:電子供与基
n:整数
項2 前記式(1)において、Aが芳香族基であり、且つnが1または2である、項1に記載の分解抑制剤。
項3 前記式(1)において、Xがアミノ基またはアルコキシ基である、項1または2に記載の分解抑制剤。
項4 前記式(1)のAがXとは別に親水基を有する、項1~3のいずれか一項に記載の、遷移金属用酸化剤の分解抑制剤。
項5 前記親水基がカルボキシル基である、項4に記載の、遷移金属用酸化剤の分解抑制剤。
項6 半導体用処理液に添加され、且つ、半導体用処理液の再利用に用いられる、項1~5のいずれか一項に記載の分解抑制剤。
項7 遷移金属がRu、Rh、Ti、Ta、Co、Cr、Hf、Os、Pt、Ni、Mn、Cu、Zr、La、Mo、及びWからなる群から選択される少なくとも1種の金属を含む、項1~6のいずれか一項に記載の分解抑制剤。
項8 遷移金属がRuである、項1~7のいずれか一項に記載の、遷移金属用酸化剤の分解抑制剤。
項9 項1~8のいずれか一項に記載の遷移金属用酸化剤の分解抑制剤、及び遷移金属用酸化剤を含む、半導体用処理液。
項10 前記分解抑制剤の濃度が半導体用処理液全質量に対して1質量ppm以上10,000質量ppmである、項9に記載の半導体用処理液。
項11 遷移金属用酸化剤が、次亜臭素酸イオン、次亜塩素酸イオン、及び過ヨウ素酸イオンからなる群から選択される少なくとも1種のハロゲン酸素酸イオンであり、該遷移金属用酸化剤の全ての合計濃度が、半導体用処理液全質量に対して50質量ppm以上35質量%以下である、項9または10に記載の半導体用処理液。
項12 前記遷移金属用酸化剤が、次亜臭素酸イオン及び次亜塩素酸イオンである、項11に記載の半導体用処理液。
項13 さらに遷移金属酸化体を含む、項9~12のいずれか一項に記載の半導体用処理液。
項14 さらに濾過用円滑剤を含む、項9~13のいずれか一項に記載の半導体用処理液。
項15 濾過用円滑剤がオニウムイオンである、項14に記載の半導体用処理液。
項16 項9~15のいずれか一項に記載の半導体用処理液と、遷移金属を含む半導体ウエハとを接触させ、遷移金属をエッチングする半導体ウエハのエッチング方法。
項17 項16に記載のエッチング方法を工程中に含む、半導体素子の製造方法。
 本発明によれば、半導体用処理液に添加したときに、遷移金属酸化体による遷移金属用酸化剤の分解を抑制し、その半導体用処理液を再利用可能とする、遷移金属用酸化剤の分解抑制剤を提供できる。
半導体素子の製造方法におけるエッチング工程で用いられる、設備の概略を示す図である。
(遷移金属用酸化剤の分解抑制剤)
 本実施形態の、遷移金属用酸化剤の分解抑制剤(以下、分解抑制剤ともいう)は、式(1)で表される化合物からなる。メカニズムは明確ではないが、式(1)で表される化合物のように、π電子を持つ基が、付与された電子供与基によって電子の偏りが生じる構造を持つとき、特定の酸化剤に対して酸化されやすくなる。その結果、分解抑制剤が遷移金属用酸化剤の代わりに遷移金属酸化体に酸化されることで、遷移金属用酸化剤の分解を抑制するものと推察される。また、遷移金属酸化体が、ガス化してしまうような遷移金属酸化体である場合、例えばRuОである場合、分解抑制剤によってRuОが還元されてRuОが生成すると想定される。このとき、遷移金属酸化体であるRuОは、ガス化しないRuОとして半導体用処理液中に存在し、その結果、RuОガスは半導体用処理液中から放出されなくなる。そのため、遷移金属がルテニウムである場合、本実施形態の分解抑制剤はガス抑制効果も有する。
A-(X)   (1)
A:芳香族基、炭素二重結合を有する基、または炭素三重結合を有する基
X:電子供与基
n:整数
 式(1)中、Aは芳香族基、炭素二重結合を有する基、または炭素三重結合を有する基である。
 Aは、遷移金属用酸化剤に対する安定性の点から芳香族基が最も好ましい。
 芳香族基としては、nが1の場合、フェニル基、ナフチル基、及びフェナントリル基から選択されるアリール基、nが2以上の場合、例えば、フェニル基、ナフチル基、及びフェナントリル基から選択されるアリール基に結合する水素が、n-1個のXでさらに置換されている基を挙げることができる。
 後述するように、AがXとは別に親水基を有する場合、上記の芳香族基において、Xが結合する位置とは別の位置の一部の水素が親水基により置換される。
 炭素二重結合を有する基としては、電子供与基によって二重結合部分の電子に偏りが生じる構造であれば特に制限はされないが、例えば、nが1の場合、ビニル基、または、プロペニル基、ブテニル基のような、アルケンから誘導される基を挙げることができる。
 炭素三重結合を有する基としては、電子供与基によって三重結合部分の電子に偏りが生じる構造であれば特に制限されないが、例えばnが1の場合、エチニル基、プロピニル基のような、アルキンから誘導される基を挙げることができる。
 Xは電子供与基であり、例として、アミノ基、アルコキシ基、メチル基、またはヒドロキシ基が挙げられ、アルコキシ基は、メトキシ基、エトキシ基、プロピルオキシ基、またはフェノキシ基などが挙げられる。強い電子供与性を持ち、水に対する溶解度が高いことから、電子供与基としてはアミノ基、メトキシ基、またはエトキシ基が好ましい。
 前述のXとしてアルコキシ基が選択される場合、AとXの間に、一部のメチレン基が-O-で置換されてもよい、炭素数1以上5以下、または炭素数2以上5以下のアルキレン基を有してもよい。ただし、-O-は連続して存在しない。
前述のXとしてアルコキシ基が選択される場合、アルコキシ基中の炭化水素鎖の一部の水素を親水基に置換してもよい。アルコキシ基中のアルキル基の炭素数は1~3が好ましい。前記親水基を含むことでより効果的に遷移金属用酸化剤の分解を抑制できる。このような親水基としては、カルボキシル基、スルホ基、アルデヒド基、チオール基、シアノ基、またはアミド基等が挙げられる。遷移金属用酸化剤に対する安定性から、カルボキシル基、またはスルホ基が好ましい。
 nは整数であり、1以上6以下が好ましく、電子供与性による電子の偏りの観点から1以上2以下がより好ましく、1が最も好ましい。
 また、式(1)のAがXとは別に親水基を有していてもよい。親水基を有することでより効果的に遷移金属用酸化剤の分解を抑制できる。このような親水基としては、カルボキシル基、スルホ基、アルデヒド基、チオール基、シアノ基、またはアミド基等が挙げられる。遷移金属用酸化剤に対する安定性から、カルボキシル基、またはスルホ基が好ましい。
 式(1)で表される化合物を例示すれば、アニリン、メトキシベンゼン、エトキシベンゼン、プロピルオキシベンゼン、ジフェニルエーテル、フェノール、トルエン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2,3-ジアミノ安息香酸、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、2,6-ジアミノ安息香酸、3,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、2,3-ジアミノベンゼンスルホン酸、2,4-ジアミノベンゼンスルホン酸、2,5-ジアミノベンゼンスルホン酸、2,6-ジアミノベンゼンスルホン酸、3,4-ジアミノベンゼンスルホン酸、3,5-ジアミノベンゼンスルホン酸、2-アミノトルエン、3-アミノトルエン、4-アミノトルエン、2,3-ジアミノトルエン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、3,4-ジアミノトルエン、3,5-ジアミノトルエン、2-メトキシアニリン、3-メトキシアニリン、4-メトキシアニリン、2,3-ジメトキシアニリン、2,4-ジメトキシアニリン、2,5-ジメトキシアニリン、2,6-ジメトキシアニリン、3,4-ジメトキシアニリン、3,5-ジメトキシアニリン、2-エトキシアニリン、3-エトキシアニリン、4-エトキシアニリン、2,3-ジエトキシアニリン、2,4-ジエトキシアニリン、2,5-ジエトキシアニリン、2,6-ジエトキシアニリン、3,4-ジエトキシアニリン、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、1,4-ジメトキシベンゼン、2-メトキシ安息香酸、3-メトキシ安息香酸、4-メトキシ安息香酸、2,3-ジメトキシ安息香酸、2,4-ジメトキシ安息香酸、2,5-ジメトキシ安息香酸、2,6-ジメトキシ安息香酸、3,4-ジメトキシ安息香酸、3,5-ジメトキシ安息香酸、1,2-ジエトキシベンゼン、1,3-ジエトキシベンゼン、1,4-ジエトキシベンゼン、2-エトキシ安息香酸、3-エトキシ安息香酸、4-エトキシ安息香酸、2,3-ジエトキシ安息香酸、2,4-ジエトキシ安息香酸、2,5-ジエトキシ安息香酸、2,6-ジエトキシ安息香酸、3,4-ジエトキシ安息香酸、3,5-ジエトキシ安息香酸、2-メトキシベンゼンスルホン酸、3-メトキシベンゼンスルホン酸、4-メトキシベンゼンスルホン酸、2,3-メトキシベンゼンスルホン酸、2,4-ジメトキシベンゼンスルホン酸、2,5-ジメトキシベンゼンスルホン酸、2,6-ジメトキシベンゼンスルホン酸、3,4-ジメトキシベンゼンスルホン酸、3,5-ジメトキシベンゼンスルホン酸、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメトキシトルエン、2,4-ジメトキシトルエン、2,5-ジメトキシトルエン、2,6-ジメトキシトルエン、3,4-ジメトキシトルエン、3,5-ジメトキシトルエン、1-プロペン-1-アミン、1-ブテン-1-アミン、1-ペンテン-1-アミン、2-ブタン-2,3-ジアミン、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、エチニルアミン、メトキシエチン、1-メトキシプロピン、ジメトキシプロペン、ジメトキシブテン、及びジメトキシアセチレン等からなる群から選択される1種以上が挙げられる。好ましくは、アニリン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2,3-ジアミノ安息香酸、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、2,6-ジアミノ安息香酸、3,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、2,3-ジアミノベンゼンスルホン酸、2,4-ジアミノベンゼンスルホン酸、2,5-ジアミノベンゼンスルホン酸、2,6-ジアミノベンゼンスルホン酸、3,4-ジアミノベンゼンスルホン酸、3,5-ジアミノベンゼンスルホン酸、メトキシベンゼン、エトキシベンゼン、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、1,4-ジメトキシベンゼン、2-メトキシ安息香酸、3-メトキシ安息香酸、4-メトキシ安息香酸、2-エトキシ安息香酸、3-エトキシ安息香酸、4-エトキシ安息香酸、2,3-ジメトキシアニリン、2,4-ジメトキシアニリン、2,5-ジメトキシアニリン、2,6-ジメトキシアニリン、3,4-ジメトキシアニリン、3,5-ジメトキシアニリン、フェノキシ酢酸、2-フェノキシプロピオン酸、及び2-メトキシフェノキシ酢酸からなる群から選択される1種以上であることが好ましく、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2,3-ジアミノ安息香酸、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、2,6-ジアミノ安息香酸、3,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、2-メトキシ安息香酸、3-メトキシ安息香酸、4-メトキシ安息香酸、フェノキシ酢酸、2-フェノキシプロピオン酸、及び2-メトキシフェノキシ酢酸からなる群から選択される1種以上が最も好ましい。
 本実施形態の遷移金属用酸化剤の分解抑制剤は、上記のとおり式(1)で表される化合物からなるものであり、後述する半導体用処理液に添加されて用いられることが特に好ましく、使用済みの半導体用処理液の再利用にも用いることができる。
 また、後述するように、本実施形態の遷移金属用酸化剤の分解抑制剤、すなわち式(1)で表される化合物は、本実施形態の半導体用処理液を用いる対象物が遷移金属、特にルテニウムを含む場合、RuOガスの発生抑制剤としても用いることができる。
(半導体用処理液)
 上記の遷移金属用酸化剤の分解抑制剤を含む溶液は半導体用処理液(以下、処理液ともいう)として好適に用いることができる。半導体用処理液は、遷移金属をエッチングするために遷移金属用酸化剤を含むことが好ましい。エッチング対象とする半導体ウエハには、好適には、Ru、Rh、Ti、Ta、Co、Cr、Hf、Os、Pt、Ni、Mn、Cu、Zr、La、Mo、及びWから選択される少なくとも1種の遷移金属が含まれ、Ru、MoまたはWが更に好ましく、Ruが最も好ましい。
 分解抑制剤の濃度は、半導体用処理液の全質量に対して、1質量ppm以上10,000質量ppm以下であることが好ましい。分解抑制剤の添加量が少なすぎると、半導体用処理液として用いた場合、遷移金属酸化体と反応する確率が少なくなり、分解抑制剤としての効果が不十分となる。一方で、添加量が多すぎると、処理液中に含まれる遷移金属用酸化剤と反応してしまうことで、遷移金属用酸化剤の濃度低下の原因となる場合がある。したがって、本発明の処理液中に含まれる分解抑制剤の濃度は、1質量ppm以上10,000質量ppm以下が好ましく、10質量ppm以上5,000質量ppm以下がより好ましい。また、分解抑制剤を添加する場合には、1種のみを添加してもよいし、2種以上を組み合わせて添加してもよい。2種類以上の分解抑制剤を含む場合であっても、分解抑制剤の濃度の合計が上記の濃度範囲であれば、遷移金属酸化体による遷移金属用酸化剤の濃度低下を効果的に抑制できる。
 2種以上の分解抑制剤が含まれる場合、例えば、アミノ安息香酸及びメトキシ安息香酸について、2種以上の組み合わせを挙げることができ、具体的には、2-アミノ安息香酸と3-アミノ安息香酸、2-メトキシ安息香酸と3-メトキシ安息香酸、または2-アミノ安息香酸と2-メトキシ安息香酸の組み合わせを挙げることができる。
(半導体用処理液の再利用)
 本実施形態の半導体用処理液は、上記遷移金属に属する半導体ウエハを処理した後であっても、再度半導体用処理液として使用することができる。半導体ウエハに使用される遷移金属が、半導体用処理液中に酸化溶解したとしても、分解抑制剤によって遷移金属用酸化剤の分解を効果的に抑制できるためである。半導体用処理液の再利用回数は特に制限されないが、酸化剤濃度の減少によってエッチングレートの減少が許容範囲を超えるまで再利用してもよい。目安となる酸化剤濃度としては、添加時の濃度に対して残存率が60%以上であることが好ましく、75%以上であることがより好ましく、90%以上であることが最も好ましい。
(遷移金属用酸化剤)
 本実施形態の半導体用処理液には、遷移金属用酸化剤(本明細書では、単に酸化剤ともいう)として、次亜臭素酸イオン、次亜塩素酸イオン、および過ヨウ素酸イオンからなる群から選択される少なくとも1種のハロゲン酸素酸イオンを含むことが好ましく、次亜臭素酸イオン、および次亜塩素酸イオンからなる群から選択される少なくとも1種のハロゲン酸素酸イオンがより好ましい。
 本実施形態の半導体用処理液中に含まれる酸化剤の濃度は本発明の目的を逸脱しない限り特に制限されることはないが、50質量ppm以上35.0質量%以下が好ましい。
 本実施形態の半導体用処理液に含まれる酸化剤としてハロゲン酸素酸イオンを含む場合で、概ハロゲン酸素酸イオンとして次亜臭素酸イオン、または次亜塩素酸イオンが選択される場合、特に限定はされないが、遷移金属を溶解できる点から、処理液全質量に対して、次亜臭素酸イオン、または次亜塩素酸イオンの濃度は50質量ppm以上5.0質量%以下が好ましく、100質量ppm以上3.0質量%以下がより好ましい。
 本実施形態の半導体用処理液に含まれるハロゲン酸素酸イオンとして過ヨウ素酸イオンが選択される場合としては、特に限定はされないが、遷移金属を溶解できる点から、オルト過ヨウ素酸イオン、または、メタ過ヨウ素酸イオンを添加することが好ましい。また、水に溶かすことによってイオン化することからオルト過ヨウ素酸の塩、及び、メタ過ヨウ素酸の塩を添加してもよい。特に、Naなどを含まず、安定した組成である点から、オルト過ヨウ素酸イオンがより好ましい。
 半導体用処理液の溶解能から、過ヨウ素酸イオンの含有量は、半導体用処理液全質量に対して、0.5質量%以上35.0質量%が好ましく、2.0質量%以上8.0質量%以下がより好ましい。
 本実施形態の半導体用処理液に含まれる酸化剤が前記ハロゲン酸素酸イオンである場合、ハロゲン酸素酸イオンは1種であっても、2種以上であってもよい。複数種含まれることで、エッチング速度の安定化や、再利用の際の安定性を向上させる可能性がある。例として、1種目のハロゲン酸素酸イオンに次亜臭素酸イオンが含まれる場合、酸化による消費や不均化による分解が進むと、臭化物イオンが生成する。ハロゲン酸素酸イオンの濃度の減少はエッチング速度の減少を引き起こす。
 しかし、該処理液に2種目のハロゲン酸素酸イオンとして、次亜塩素酸イオンが含まれていれば、生成した臭化物イオンを酸化し、次亜臭素酸イオンへ変化させることができる。これによってエッチング速度の安定化が得られやすくなる。
 以上の理由から、本実施形態の半導体用処理液に次亜臭素酸イオンが含まれる場合、次亜塩素酸イオンが共存する事が好ましい。次亜塩素酸イオンの濃度は、本発明の趣旨を逸脱しない限り制限されないが、50質量ppm以上5.0質量%以下であることが好ましい。次亜塩素酸イオンの濃度が50質量ppmより小さいとBrを効率よく酸化することができず、ルテニウムのエッチングレートが低下する。一方、次亜塩素酸イオンの添加量が5.0質量%より大きいと、次亜塩素酸イオンの安定性が低下するとともに、次亜塩素酸イオン/次亜臭素酸イオン間の反応による次亜臭素酸イオンの分解を促進するため適当でない。次亜塩素酸イオンの濃度は、50質量ppm以上3.0質量%以下であることがより好ましく、100質量ppm以上1.0質量%以下であることが最も好ましい。
(分解生成物)
 本実施形態の処理液は、臭化物イオン、亜臭素酸イオン、臭素酸イオン、塩化物イオン、亜塩素酸イオン、塩素酸イオン、ヨウ化物イオン、三ヨウ化物イオン、およびヨウ素酸イオンからなる群から選択される少なくとも1種のイオンを含んでいてもよい。これらのイオンはそれぞれのハロゲン酸素酸イオンの分解生成物であり、ハロゲン酸素酸イオンを含む液の製造過程で混入してしまう可能性が非常に高いイオンである。しかし、これらのイオンの濃度は、本実施形態の酸化剤分解抑制効果に影響を与えない。そのため、これらの分解生成物であるイオンは、本発明の目的を逸脱しない範囲であればどれだけ含まれていてもよい。これらのイオンの濃度は特に限定はされないが、具体的な範囲を述べれば、1質量ppb以上1質量%以下の範囲で半導体用処理液に含まれていることが望ましく、ハロゲン酸素酸イオンの安定性を考慮するならば、1質量ppb以上100質量ppm以下の範囲がより好ましい。
(pH)
 本実施形態の半導体用処理液のpHは、8.5~13.0が好ましい。この範囲の中でも、選択されるハロゲン酸素酸イオンに応じて、好ましいpHの範囲が存在する。
 例えば、ハロゲン酸素酸イオンとして、次亜臭素酸イオン、および次亜塩素酸イオンのいずれか1種以上が選択されている場合、溶解能、平滑性、及び、エッチング性能の安定性の観点から、半導体用処理液のpHは、10.0~13.0が好ましく、12.0~12.6がより好ましい。
 本実施形態の半導体用処理液に含まれるハロゲン酸素酸イオンとして、過ヨウ素酸イオンが含まれている場合、溶解能、平滑性、及び、エッチング性能の安定性の観点から、半導体用処理液のpHは8.5~11.0が好ましく、9.0~10.0がより好ましい。
 なお、本明細書において、pHは25℃での値である。
(遷移金属酸化体)
 本実施形態の半導体用処理液により遷移金属をエッチングする場合、処理後の処理液中には遷移金属が遷移金属酸化体として酸化溶解する。遷移金属がルテニウムの場合、RuO、RuO 、RuO 2-、RuOが、遷移金属がタングステンの場合、WO、WO 2-が、遷移金属がモリブデンの場合、MоO、MоO 2-が遷移金属酸化体として処理液中に酸化溶解する。再利用後の処理液中の遷移金属酸化体の濃度は特に制限されないが、処理液中の遷移金属酸化体の濃度範囲としては、0.0001μmol/L~0.01mol/Lが好ましく、0.001μmol/L~100μmol/Lがより好ましい。遷移金属酸化体の濃度が0.0001μmol/Lよりも低いと、分解抑制剤と効率的に反応しない。遷移金属酸化体の濃度が0.01mol/Lよりも高いと、分解抑制剤による酸化剤の分解抑制効果が十分に得られない。
(その他)
 本実施形態の半導体用処理液には、本発明の目的を損なわない範囲で、従来から半導体用処理液に使用されているその他の添加剤を配合してもよい。例えば、その他の添加剤として、酸、金属防食剤、水溶性有機溶媒、フッ素化合物、還元剤、錯化剤、キレート剤、界面活性剤、消泡剤、pH調整剤、安定化剤などを加えることができる。これらの添加剤は単独で添加してもよいし、複数を組み合わせて添加してもよい。
 pH調整剤として、酸またはアルカリを本実施形態の半導体用処理液に添加することができる。アルカリとしては、半導体製造において問題となる金属イオンを含まないことから、有機アルカリを用いることが好ましい。なかでも、単位重量当たりの水酸化物イオン数が多く、高純度品が容易に入手可能であることから、該有機アルカリは水酸化テトラアルキルアンモニウムであることが好ましく、水酸化テトラメチルアンモニウムであることがより好ましい。
 本実施形態の半導体用処理液に含まれる水は、蒸留、イオン交換処理、フィルター処理、各種吸着処理などによって、金属イオンや有機不純物、パーティクル粒子などが除去された水が好ましく、特に純水、超純水が好ましい。このような水は、半導体製造に広く利用されている公知の方法で得ることができる。
 本実施形態の半導体用処理液は、低温及び/あるいは遮光して保存する事が好ましい。低温及び/あるいは遮光にて保存する事で、半導体用処理液中の酸化剤の分解を抑制する効果が期待できる。さらに、不活性ガスを封入した容器で半導体用処理液を保存し、二酸化炭素の混入を防ぐことで、半導体用処理液の安定性を維持することができる。また、該容器の内面、すなわち半導体用処理液と接する面は、ガラスまたは有機高分子材料で形成されていることが好ましい。該容器の内面がガラスまたは有機高分子材料で形成されていれば、金属、金属酸化物、有機物等の不純物混入をより低減できるためである。
(濾過用円滑剤)
 本実施形態の半導体用処理液は、半導体デバイスの製造方法におけるパーティクルや不純物の除去を目的とした濾過工程を効率化するための濾過用円滑剤として、オニウムイオンを含んでもよい。濾過用円滑剤であるオニウムイオンを含む半導体用処理液は、濾過工程の効率化の観点から、表面張力が重要である。濾過用円滑剤を含む半導体用処理液の表面張力が低いと、濾過工程にてオニウムイオンが除去されてしまう可能性があることから、濾過用円滑剤を含む半導体用処理液の表面張力は60mN/m以上75mN/m以下であることが望ましい。また、半導体ウエハにルテニウムが含まれる場合、ルテニウムのエッチング時に発生するRuO やRuO 2-等と相互作用する事で、RuOガスおよび付随して生成されるRuOパーティクルの発生を抑制する事ができる。
 上述の通り、これらの効果を高く維持するためには、濾過用円滑剤を含む半導体用処理液の表面張力が鍵となる。濾過用円滑剤を含む半導体用処理液の表面張力が60mN/m未満では、オニウムイオンが濾過工程によって除去されやすくなるため、上記で説明したような良好な表面平滑性やRuOガスの抑制効果を保ちにくくなる。表面張力を増加させる方法の一つとして、多量の塩を添加する方法が挙げられるが、本実施形態の半導体用処理液に酸化剤が含まれる場合、塩と酸化剤の反応による酸化剤の安定性の低下や、高濃度の塩によるエッチングの阻害が生じる事がある。このような理由から、表面張力は75mN/m以下である事が好ましい。
 ここで、濾過工程について説明する。半導体ウエハの製造では、パーティクルがウエハへ付着すると歩留まり低下を招くため、半導体用処理液中のパーティクルを除去する目的で、半導体用処理液の濾過が行われる。最先端の半導体ウエハの場合、配線幅は数nm~数十nmと非常に狭いため、濾過工程で用いられるフィルターの細孔径も同程度のサイズが求められる。しかし、フィルターの細孔径が小さくなるほど、オニウム塩又はオニウムイオンは吸着除去されやすくなる。これによって、半導体用処理液中のオニウムイオン濃度が低下する事で、上述した半導体用処理液としての機能が損なわれてしまう。
 しかし、このようなオニウムイオンの濃度低下は、濾過用円滑剤を含む半導体用処理液の表面張力を制御する事で避ける事が可能となる。具体的には、水の表面張力は25℃において73mN/m前後であり、この値に近づけることでオニウム塩又はオニウムイオンのフィルターへの吸着を抑制することが可能となる。すなわち、濾過用円滑剤を含む半導体用処理液の表面張力を60mN/m以上75mN/m以下に制御する事で、オニウム塩又はオニウムイオンのフィルターへの吸着を抑制し、濾過用円滑剤を含む半導体用処理液用いた時にその機能が損なわれることなく使用できる。このような理由から、表面張力は、60mN/m以上75mN/m以下であり、68mN/m以上75mN/m以下である事が好ましく、71mN/m以上73mN/m以下である事が最も好ましい。ここで、本明細書における表面張力は25℃での値である。
 濾過用円滑剤としてオニウムイオンが含まれていると、濾過を効率化するだけでなく、半導体ウエハの金属表面と相互作用する事で、エッチング後の金属表面の荒れを抑制する事が可能となる。メカニズムは明確ではないが、半導体ウエハの金属表面にオニウムイオンが吸着し、酸化剤による金属表面のエッチングを阻害するためと考えられる。半導体ウエハの金属のエッチング速度は、結晶方位等によって異なり、そのエッチング速度差によって表面の平滑性が失われることがある。濾過用円滑剤であるオニウムイオンを処理液中に添加すると、オニウムイオンがエッチングされやすい結晶方位に選択的に吸着し、吸着した結晶方位のエッチングが阻害される。その結果、各結晶方位におけるエッチング速度比が1に近くなるため、表面が平滑に保たれると考えられる。
(オニウムイオン)
 表面張力は、本実施形態の半導体用処理液が含んでもよい濾過用円滑剤としてのオニウムイオンによる影響を受ける。そのため、オニウムイオンの種類や濃度を適切に選択する事で、表面張力を適切な範囲に保つ事が可能となる。表面張力を好ましい範囲に保つためには、下記、式(2)~(7)で表されるオニウムイオンからなる群から選択される一種以上を選択する事が好ましい。
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-C000002

Figure JPOXMLDOC01-appb-C000003

Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006
式(2)~式(7)中、
 R、R、R、R、R、Rは独立して、炭素数2~9のアルキル基、アリル基、炭素数1~9のアルキル基を有するアラルキル基、又はアリール基である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1~9のアルキル基、炭素数2~9のアルケニル基、炭素数1~9のアルコキシ基、又は炭素数2~9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素、塩素、臭素、又はヨウ素で置き換えられてもよい。
 上記のオニウムイオンに対するカウンターアニオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンを挙げることができる。
 Aはアンモニウムイオン、又はホスホニウムイオンである。
 Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、塩素、臭素、フッ素、ヨウ素、少なくとも1つの炭素数1~9のアルキル基、少なくとも1つの炭素数2~9のアルケニルオキシ基、少なくとも1つの炭素数1~9のアルキル基で置換されてもよい芳香族基、又は、少なくとも1つの炭素数1~9のアルキル基で置換されてもよい脂環式基を有していてもよい。
 Rは塩素、臭素、フッ素、ヨウ素、炭素数1~9のアルキル基、アリル基、少なくとも1つの炭素数1~9のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1~9のアルキル基で置換されてもよい脂環式基である。nは1又は2の整数であり、Rの数を示す。nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。
 aは1~10の整数である。
 式中Rで示される炭化水素基は、長鎖であるほど疎水性が高くなる。そのため、長鎖の炭化水素基を有するオニウムイオンを含む半導体用処理液ほど、表面張力は低下する傾向にある。一方で、炭化水素鎖が短すぎると、オニウムイオンの効果である、表面平滑性の向上やRuOガスの抑制効果が制限されてしまう。このような理由から、炭化水素基の炭素数は、上述の範囲内である事が好ましい。
 本実施形態の半導体用処理液中のオニウムイオンの濃度は1質量ppm以上10,000質量ppm以下であることが好ましい。オニウムイオンの添加量が少なすぎると、RuO 等との相互作用が弱まりRuOガス抑制効果が低減するだけでなく、エッチング時に金属表面へ付着するオニウムイオンの量が不十分となるため、表面平滑性が低下する傾向にある。一方、添加量が多すぎると、オニウムイオンの金属表面への吸着量が過多となって、エッチング速度が低下する。また、半導体用処理液に酸化剤が含まれる場合、酸化剤とオニウムイオンが反応する事で酸化剤の濃度低下の原因となる場合がある。したがって、本実施形態の半導体用処理液は、オニウムイオンを1質量ppm以上10,000質量ppm以下含むことが好ましく、10質量ppm以上5,000質量ppm以下含むことがより好ましく、50質量ppm以上2000質量ppm以下含むことがさらに好ましい。なお、オニウムイオンを添加する場合には、1種のみを添加してもよいし、2種以上を組み合わせて添加してもよい。2種類以上のオニウムイオンを含む場合であっても、オニウムイオンの濃度の合計が上記の濃度範囲であれば、RuOガスの発生を効果的に抑制することができる。
 このようなオニウムイオンを例示すれば、クロロコリンイオン、trans-2-ブテン1,4-ビス(トリフェニルホスホニウムイオン)、1-ヘキシル-3-メチルイミダゾリウムイオン、アリルトリフェニルホスホニウムイオン、テトラフェニルホスホニウムイオン、ベンジルトリフェニルホスホニウムイオン、メチルトリフェニルホスホニウムイオン、(2-カルボキシエチル)トリフェニルホスホニウムイオン、(3-カルボキシプロピル)トリフェニルホスホニウムイオン、(4-カルボキシブチル)トリフェニルホスホニウムイオン、(5-カルボキシペンチル)トリフェニルホスホニウムイオン、シンナミルトリフェニルホスホニウムイオン、(2-ヒドロキシベンジル)トリフェニルホスホニウムイオン、(1-ナフチルメチル)トリフェニルホスホニウムイオン、ブチルトリフェニルホスホニウムイオン、(tert-ブトキシカルボニルメチル)トリフェニルホスホニウムイオン、アリルトリフェニルホスホニウムイオン、(3-メトキシベンジル)トリフェニルホスホニウムイオン、(メトキシメチル)トリフェニルホスホニウムイオン、(1-エトキシ-1-オキソプロパンー2-イル)トリフェニルホスホニウムイオン、(3,4-ジメトキシベンジル)トリフェニルホスホニウムイオン、メトキシカルボニルメチル(トリフェニル)ホスホニウムイオン、(2,4-ジクロロベンジル)トリフェニルホスホニウムイオン、(2-ヒドロキシ-5-メチルフェニル)トリフェニルホスホニウムイオン、(4-クロロベンンジル)トリフェニルホスホニウムイオン、(3-クロロ-2-ヒドロキシプロピル)トリメチルアンモニウムイオン、メタクロイルコリンイオン、ベンゾイルコリンイオン、ベンジルジメチルフェニルアンモニウムイオン、(2-メトキシエトキシメチル)トリエチルアンモニウムイオン、カルバミルコリンイオン、1,1’-ジフルオロ-2,2'-ビピリジニウムビス(テトラフルオロボラート)、ベンジルトリブチルアンモニウムイオン、トリメチルフェニルアンモニウムイオン、5-アゾニアスピロ[4.4]ノナンイオン、トリブチルメチルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラペンチルアンモニウムイオン、テトラブチルホスホニウムイオン、ジアリルジメチルアンモニウムイオン、1,1-ジメチルピペリジニウムイオン、(2-ヒドロキシエチル)ジメチル(3-スルホプロピル)アンモニウムヒドロキシド、3-(トリフルオロメチル)フェニルトリメチルアンモニウムイオン、1,1'-(デカン-1,10-ジイル)ビス[4-アザ-1-アゾニアビシクロ[2.2.2]オクタン]ジイオン、(3-ブロモプロピル)トリメチルアンモニウムイオン、ビニルベンジルトリメチルアンモニウムイオン、アリルトリメチルアンモニウムイオン、トリメチルビニルアンモニウムイオン、コリンイオン、β-メチルコリンイオン、およびトリフェニルスルホニウムイオン等が挙げられ、好ましくは、ベンジルジメチルフェニルアンモニウムイオン、1-エトキシ-1-オキソプロパンー2-イル)トリフェニルホスホニウムイオン、1,1'-(デカン-1,10-ジイル)ビス[4-アザ-1-アゾニアビシクロ[2.2.2]オクタン]ジイオン、ブチルトリフェニルホスホニウムイオン、(2-カルボキシエチル)トリフェニルホスホニウムイオン、(3-カルボキシプロピル)トリフェニルホスホニウムイオン、(4-カルボキシブチル)トリフェニルホスホニウムイオン、アリルトリフェニルホスホニウムイオン、テトラフェニルホスホニウムイオン、およびベンジルトリフェニルホスホニウムイオンからなる群から選択される1種以上である。
(半導体ウエハのエッチング方法)
 本実施形態の半導体用処理液は、半導体ウエハのエッチング方法に用いることができる。エッチング方法は、半導体ウエハと本実施形態の半導体用処理液を接触させる工程を含む。
 本実施形態の半導体用処理液は、上記で説明した濾過用円滑剤を含む場合、半導体ウエハのエッチング液として好ましく使用することができる。濾過用円滑剤の条件は上記で説明した内容を適用できる。
 本実施形態の処理液を用いて行うエッチング方法として、ルテニウムのウェットエッチング方法を例に説明する。まず、半導体(例えばSi)からなる基体を用意する。用意した基体に対して、酸化処理を行い、基体上に酸化シリコン膜を形成する。その後、低誘電率(Low-k)膜からなる層間絶縁膜を成膜し、所定の間隔でビアホールを形成する。ビアホール形成後、熱CVDによって、ルテニウムを成膜する。このルテニウム膜を本実施形態の半導体用処理液を用いてエッチングすることで、RuOガス発生を抑制しながら、表面平滑性に優れたルテニウム配線をビアホール内に形成する事が可能となる。なお、半導体ウエハが有する金属としては、Ru、Rh、Ti、Ta、Co、Cr、Hf、Os、Pt、Ni、Mn、Cu、Zr、La、Mo、及びWから選択される少なくとも1種の金属を挙げることができる。これらの中で、ルテニウムは、金属ルテニウムに制限されず、ルテニウムを70原子%以上含有すればよく、ルテニウム合金、ルテニウムの酸化物(二酸化ルテニウム、三酸化二ルテニウムなど)、窒化物、酸窒化物、金属間化合物、イオン性化合物、錯体等も含む。
 本実施形態の半導体用処理液を用いてルテニウム等の金属(具体例は後述する)をエッチングするときの温度は特に制限されないが、ルテニウム等の金属のエッチング速度などを考慮して決定すればよい。処理温度が高い場合、例えばルテニウムをエッチングする際にRuOガス量が多くなり、ハロゲン酸素酸の安定性も低下する。一方、低温ほど、エッチング速度は低下傾向にある。このような理由から、ルテニウム等の金属をエッチングする温度は10℃~90℃が好ましく、15℃~60℃がより好ましく、25℃~45℃であることが最も好ましい。本実施形態の半導体用処理液が濾過用円滑剤を含む場合の25℃での表面張力は60mN/m以上75mN/m以下であることが好ましい。
(半導体素子の製造方法)
 本実施形態の半導体素子の製造方法は、上記の半導体用処理液を用いて半導体ウエハのエッチングを行う工程を含む。また、本実施形態の半導体用処理液に上記の濾過用円滑剤を添加してもよい。本実施形態の半導体用処理液が濾過用円滑剤を含む場合、半導体素子の製造方法は濾過工程を含んでもよい。エッチング工程については、上記で説明した条件をそのまま適用できる。エッチング対象とする金属も上記と同じものを対象とすることができる。
 半導体ウエハのエッチングを行うため、半導体用処理液は上記で挙げた酸化剤を含むことが好ましい。酸化剤の種類や半導体用処理液における酸化剤の濃度は上記で説明した条件を適用できる。また、半導体用処理液が濾過用円滑剤を含む場合、半導体用処理液の25℃での表面張力は60mN/m以上75mN/m以下であり、その好ましい範囲は上記で説明した条件と同じである。
 図1に基づき説明すると、半導体素子の製造時に濾過工程を含む場合、半導体用処理液はフィルター1および2または3を通過する機会がある。図1のバルブ10を閉じ、バルブ9を解放した場合、ケミカルキャビネット6内の薬液はポンプ4の駆動によりフィルター1及び2を通過することで濾過が行われる。ケミカルキャビネット6内の薬液の不純物を極力除去するために、薬液がフィルター1及び2を通過する濾過工程を複数回行ってもよい。1回の濾過工程時に通過させるフィルターの数は、例えば1以上を挙げることができ、2であってもよく、3であってもよく、4以上であってもよい。
 図1のバルブ10を解放すると、ケミカルキャビネット6内の薬液はポンプ4の駆動によりエッチング台8に供給され、半導体ウエハのエッチングが行われる。また、ケミカルキャビネット6内の薬液を補充するために、ポンプ5の駆動により薬液補充ユニット内の薬液がフィルター3を通過してケミカルキャビネット6内に補充される。
 なお、ここで説明した薬液は半導体用処理液そのものであってもよく、半導体用処理液に濾過用円滑剤を添加した薬液であってもよい。濾過用円滑剤を含む場合でも含まない場合でも、半導体用処理液の好ましい表面張力の範囲は上記で説明した範囲と同じである。
 なお、半導体素子の製造方法は、ウエハ作製工程、酸化膜形成工程、トランジスタ形成工程、配線形成工程およびCMP工程から選択される1以上の工程など、半導体素子の製造方法に用いられる公知の工程を含んでもよい。
 また、本実施形態の半導体素子の製造方法では、上記で説明した使用済みの半導体用処理液を用いることができる。
 具体的には、本実施形態の半導体素子の製造方法は、半導体ウエハのエッチング処理後の半導体用処理液を回収する工程と、回収した処理液を用いて半導体ウエハのエッチングを行う工程を含んでもよい。本実施形態の半導体素子の製造方法は、回収した処理液における酸化剤の濃度を測定する工程を含んでもよい。
(RuОガスの発生抑制方法)
 本実施形態の処理液を用いる対象物が、遷移金属、特にルテニウムを含む場合を例に説明する。
 上述した通り、本実施形態の分解抑制剤はRuОを還元し、RuОガスの発生を抑制する効果も持つ。このことから、本実施形態の酸化剤の分解抑制剤を、RuОガスの発生抑制剤として、ルテニウム処理液に添加する工程を含む処理方法を挙げることができる。具体的には、たとえば、半導体製造工程におけるエッチング工程、残渣除去工程、洗浄工程、CMP工程等において用いるルテニウム処理液に対して、本実施形態の分解抑制剤を添加する事で、RuОガスの発生を抑制する事ができる。また、これら半導体製造工程に使用した各装置において、チャンバー内壁や配管等に付着したルテニウムを洗浄する際にも、本実施形態の分解抑制剤を用いる事でRuОガスの発生を抑制できる。例えば、物理蒸着(PVD)や化学蒸着(CVD)、原子層堆積法(ALD)等を用いてRuを形成する装置のメンテナンスにおいて、チャンバーや配管等に付着したRuを除去する際に使用する洗浄液へ、該分解抑制剤を添加する事により、洗浄中に発生するRuОガスの抑制が可能となる。当該方法によれば、上述したメカニズムにより、RuОガスの発生を抑制できる。例えば、ルテニウム配線形成工程において本発実施形態の分解抑制剤を用いる場合は、次のようになる。上記の、半導体ウエハのエッチング方法の項で説明した手順により作製したルテニウム膜を、該分解抑制剤が添加された半導体用処理液によりエッチングすることで、RuОガス発生を抑制しながら平坦化を行うことができる。これにより、RuОパーティクルの発生が抑制された、信頼性の高いルテニウム配線を形成できる。その他、該分解抑制剤を添加した半導体用処理液は、半導体ウエハのベベルに付着したルテニウムを除去する際に、使用する事もできる。
 本実施形態の分解抑制剤は、ルテニウムを含む対象物を処理しようとする処理液だけでなく、ルテニウムを含む対象物を処理した後の液(以下、ルテニウム含有液と記す)に添加した場合でも、RuОガスの発生を抑制する事ができる。ここで、ルテニウム含有液とは、少量でもルテニウムを含む液体を意味する。該ルテニウム含有液に含まれるルテニウムは、ルテニウム金属に限定されず、ルテニウム元素を含んでいればよく、例えば、Ru、RuО 、RuО 2―、RuО、RuО、ルテニウム錯体などが挙げられる。ルテニウム含有液としては、例えば、上述した、半導体製造工程やチャンバー洗浄などにより発生した廃液や、RuОガスを捕捉した排ガス処理装置(スクラバー)内の処理液などが挙げられる。ルテニウム含有液に微量でもルテニウムが含まれると、RuОガスを経由してRuО粒子が発生するため、タンクや配管を汚染するし、パーティクルの酸化作用によって装置類の劣化を促進する。また、ルテニウム含有液から発生するRuОガスは低濃度でも人体に強い毒性を示す。このように、ルテニウム含有液は、装置類あるいは人体に対して様々な悪影響を及ぼすため、RuОガスの発生を抑制しながら、安全かつ速やかに処理する必要がある。ルテニウム含有液に本実施形態の分解抑制剤を添加することで、RuОガスの発生を抑制することができ、ルテニウム含有液を安全に処理できるだけでなく、装置のタンクや配管の汚染や劣化を軽減できる。
 本実施形態の分解抑制剤が、ルテニウム処理液、または、ルテニウム含有液に添加される場合、本実施形態の分解抑制剤の濃度は0.0001~50質量%となるように調整することが好ましい。なお、ルテニウム処理液およびルテニウム含有液には、上記で説明した遷移金属用酸化剤が含まれていてもよい。遷移金属用酸化剤の種類は上記で説明したものを挙げることができる。また、遷移金属用酸化剤の濃度範囲も上記で説明した範囲を挙げることができる。
 ルテニウム処理液、または、ルテニウム含有液に対する、本実施形態の分解抑制剤の添加量は、これらの液中に存在するルテニウム量を考慮して決定すればよい。本実施形態の分解抑制剤の添加量は特に制限されないが、例えば、ルテニウム処理液、または、ルテニウム含有液に存在するルテニウム量を1としたときに、重量比で1~500000が好ましく、より好ましくは10~100000であり、さらに好ましくは100~10000である。
 また、本実施形態の分解抑制剤を含む、ルテニウム処理液、または、ルテニウム含有液の25℃におけるpHは、例えば7~14であることが好ましい。この混合液のpHを調整するために、上記で例示したpH調整剤を添加してもよい。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
(次亜塩素酸テトラメチルアンモニウム溶液の製造)
 2Lのガラス製三ツ口フラスコ(コスモスビード社製)に25質量%の水酸化テトラメチルアンモニウム水溶液209g、超純水791gを混合して、CO含有量が0.5ppmであり、5.2質量%の水酸化テトラメチルアンモニウム水溶液を得た。このときのpHは13.8であった。
 次いで、三ツ口フラスコの内に回転子(AsOne社製、全長30mm×径8mm)を入れ、一つの開口部に温度計保護管(コスモスビード社製、底封じ型)と温度計を投入し、もう一つの開口部に塩素ガスボンベ、及び窒素ガスボンベに接続され、任意で塩素ガス/窒素ガスの切換えが可能な状態にしたPFA製チューブ(フロン工業株式会社製、F-8011-02)の先端を該溶液底部に浸漬させ、残りの一つの開口部は5質量%の水酸化ナトリウム水溶液で満たしたガス洗浄瓶(AsOne社製、ガス洗浄瓶、型番2450/500)に接続した。次に、二酸化炭素濃度が1ppm未満の窒素ガスをPFA製チューブから、0.289Pa・m/秒(0℃換算時)で20分間流すことで気相部の二酸化炭素を追いだした。この時、気相部の二酸化炭素濃度は、1ppm以下であった。
 その後、マグネットスターラー(AsOne社製、C-MAG HS10)を三ツ口フラスコ下部に設置して300rpmで回転、撹拌し、三ツ口フラスコ外周部を氷水で冷却しながら、塩素ガス(フジオックス社製、仕様純度99.4%)を0.059Pa・m/秒(0℃換算時)で180分間、供給し、次亜塩素酸テトラメチルアンモニウム水溶液(次亜塩素酸イオン;3.51質量%相当、0.28mol/L)と水酸化テトラメチルアンモニウム(0.09質量%相当、0.0097mol/L)の混合溶液を得た。この時、反応中の液温は11℃であった。
(処理液の製造)
 式(1)で表される分解抑制剤、ハロゲン酸素酸イオンを含む溶液、超純水、pH調整剤を、所定の量にて混合することで、表1~3に記載された組成の処理液を得た。
(濾過用円滑剤を含む処理液の製造)
 式(1)で表される分解抑制剤、ハロゲン酸素酸イオンを含む溶液、超純水、pH調整剤、式(2)~(7)で表される濾過用円滑剤を、所定の量にて混合することで、表4に記載された組成の処理液を得た。
(処理液中のハロゲン酸素酸イオン)
 ハロゲン酸素酸イオンとして、次亜塩素酸イオンが選択される場合、上記操作によって得られた次亜塩素酸テトラメチルアンモニウム溶液を、ハロゲン酸素酸イオンを含む溶液として、所定の濃度にて使用した。
 ハロゲン酸素酸イオンとして、次亜臭素酸イオン、または次亜臭素酸イオンと次亜塩素酸イオンが選択される場合、上記操作によって得られた次亜塩素酸テトラメチルアンモニウム溶液に、臭化テトラメチルアンモニウム(97質量%、東京化成工業社製)を所定の量添加することで、ハロゲン酸素酸イオンを含む溶液として、所定の濃度にて使用した。
 ハロゲン酸素酸イオンとして、過ヨウ素酸イオンが選択される場合、オルト過ヨウ素酸イオンを含む溶液を、ハロゲン酸素酸イオンを含む溶液として、所定の濃度にて使用した。
(次亜臭素酸イオン及び次亜塩素酸イオン濃度の算出方法)
 次亜臭素酸イオン及び次亜塩素酸イオン濃度の測定は紫外可視分光光度計(V-700、日本分光社製)を用いた。濃度既知の次亜臭素酸イオン及び次亜塩素酸イオン水溶液を用いて検量線を作成し、製造した濾過用円滑剤中の次亜臭素酸イオン及び次亜塩素酸イオン濃度を決定した。次亜臭素酸イオン濃度は、臭素含有化合物、酸化剤、塩基化合物を混合した後、吸収スペクトルが安定したときの測定データから求めた。
(過ヨウ素酸イオン濃度の算出方法)
 過ヨウ素酸イオン濃度の測定は、滴定法により求めた。実施例および比較例の処理液を調整した後、100mL三角フラスコに処理液0.5mLとヨウ化カリウム(和光純薬工業社製、試薬特級)2g、10%酢酸8mL、超純水10mLを加え、固形物が溶解するまで撹拌し、褐色溶液を得る。調整した褐色溶液は0.01Mチオ硫酸ナトリウム溶液(和光純薬工業社製、容量分析用)を用いて溶液の色が褐色から極薄い黄色になるまで酸化還元滴定し、次いで、でんぷん溶液を加え薄紫色の溶液を得る。この溶液に更に0.01Mチオ硫酸ナトリウム溶液を続けて加え、無色透明になった点を終点として過ヨウ素酸濃度を算出した。
(評価)
 製造した処理液を用いて、上述した方法により、遷移金属酸化体に対する酸化剤濃度の安定性を評価した。また、遷移金属としてルテニウムを使用した場合は、RuОガスの発生抑制効果を評価した。また、濾過用円滑剤添加時の、遷移金属酸化体に対する酸化剤濃度の安定性、表面張力、濾過後オニウム塩残存率、及び、エッチング後の表面平滑性についても評価した。
<実施例1~25、比較例1~9>
(遷移金属酸化体に対する、遷移金属用酸化剤の安定性の評価)
 遷移金属用酸化剤として、上述の方法で得られた0.05質量%の次亜塩素酸イオン、0.1質量%の次亜臭素酸イオン、またはその両方を用いた。遷移金属用酸化剤に所定の濃度の分解抑制剤を含む処理液を作製し、さらに市販のテトラプロピルアンモニウムペルルテナート(TPAP、東京化成社製)を処理液の全質量に対して所定の量を添加した。その後、酸化剤濃度が所定の濃度で存在することを、紫外線可視分光光度計を用いて確認し、保管前の酸化剤濃度を得た。40℃の恒温槽にて1日保管後、再度酸化剤濃度を測定し、保管前後の遷移金属用酸化剤濃度の残存率を評価して表1に記載した。酸化剤濃度の残存率が高い順にA~Dとなっており、いずれも評価A~Cが許容レベル、評価Dは許容不可レベルである。
 A:90%以上
 B:75%以上90%未満
 C:60%以上75%未満(許容レベル)
 D:60%未満
<実施例26~28、比較例10>
 遷移金属用酸化剤として、オルト過ヨウ素酸塩(東京化成社製)とpH調整剤を用いて、3%のオルト過ヨウ素酸水溶液を作製した。遷移金属用酸化剤に所定の濃度の分解抑制剤を含む処理液を作製し、さらに市販のテトラプロピルアンモニウムペルルテナート(TPAP、東京化成社製)を処理液の全質量に対して所定の量を添加した。その後、酸化剤濃度が所定の濃度で存在することを滴定法を用いて確認し、保管前の酸化剤濃度を得た。40℃の恒温槽にて1日保管後、再度酸化剤濃度を測定し、保管前後の遷移金属用酸化剤濃度の残存率を評価して表2に記載した。実施例1~19、比較例1~9と同様に、酸化剤濃度の残存率が高い順にA~Dとなっており、いずれも評価A~Cが許容レベル、評価Dは許容不可レベルである。
 A:90%以上
 B:75%以上90%未満
 C:60%以上75%未満(許容レベル)
 D:60%未満
 実施例1、6~16と比較例1を比べると、式(1)で表される化合物、すなわち分解抑制剤の添加によって。酸化剤の残存率が大幅に上昇していることがわかる。また、比較例2~7では先行技術文献に記載された添加剤を加えているが、実施例1と比べても分解抑制効果が無いことが確認された。実施例1~5では分解抑制剤の濃度を変えており、10ppm添加でも十分に効果が得られることが確認できた。また、10000ppm以上の添加によって、酸化剤の残存率が減少する傾向にあることが確認された。
 実施例1、17~28と比較例1、8~10を比べると、酸化剤が次亜臭素酸イオン、次亜塩素酸イオン、及び過ヨウ素酸イオンの群からなるハロゲン酸素酸イオンのいずれか1種以上であれば、実施例1~16と同様に、分解抑制剤添加時に分解抑制効果が得られることが確認できた。また、実施例1と実施例17を比較すると、処理液中に含まれる酸化剤が、次亜臭素酸イオン単体よりも、次亜臭素酸イオンと次亜塩素酸イオンの混合物の方が効果が高いことが確認できた。
 実施例1、14~16を比較すると、式(1)で表される構造を有する化合物の中でも、実施例1のように芳香族基を有する化合物が高い効果を有しており、炭素二重結合を有する基を有する化合物、および炭素三重結合を有する基を有する化合物よりも効果が高いことが確認された。
 実施例9~11を比較すると、実施例11は電子供与基がエトキシ基であるために水溶性が低く、添加量を増やしても2相分離してしまうため、実施例9よりも効果が得られにくい結果となった。実施例7、8は分解抑制剤が親水基を有していない化合物であるために水溶性が低く、添加量を増やしても2相分離してしまうため、実施例1よりも効果が得られにくいことが確認された。
<実施例29~34、比較例11~15>
(RuОガスの発生抑制効果の評価)
 RuОガスの発生量はICP-ОESを用いて測定した。密閉容器に混合液を5mLとり、膜厚1200Åのルテニウムを成膜した10×20mmのSiウエハ1枚を、35℃でルテニウムが全て溶解するまで浸漬させた。その後、密閉容器にAirをフローし、密閉容器内の気相を吸収液(1mol/L  NaOH)の入った容器にバブリングして、ウエハ浸漬中に発生したRuОガスを吸収液にトラップした。この吸収液中のルテニウム量をICP-OESにより測定し、発生したRuОガス中のRu量を評価し、表3に記載した。なお、RuОガス中のRu量とは、吸収液中に含まれるルテニウムの全質量を、浸漬したウエハの面積で割った値である。混合液に浸漬したSiウエハ上のルテニウムが全て溶解したことは、四探針抵抗測定器(ロレスタ‐GP、三菱ケミカルアナリテック社製)により浸漬前及び浸漬後のシート抵抗をそれぞれ測定し、膜厚に換算することで確認した。評価基準はA~Bとなっており、評価Aが許容レベル、評価Bは許容不可レベルである。
 A:1μg/cm未満(許容レベル)
 B:1μg/cm以上
 実施例29、33と比較例11を比べると、式(1)で表される化合物の添加によってRuОガスとして放出されるRu量が1μg/cm未満となることが確認できた。また、実施例29~32と比較例11~14を比べると、酸化剤が次亜臭素酸イオン、次亜塩素酸イオン、及び過ヨウ素酸イオンの群からなるハロゲン酸素酸イオンのいずれか1種以上であれば、RuОガス放出抑制効果が得られることが確認できた。
<実施例35~43、参考例1~3>
(濾過用円滑剤添加前後の処理液の製造)
 実施例35は、実施例17に含まれる分解抑制剤濃度を5000ppmとした処理液であり、濾過用円滑剤添加前の処理液とした。また、実施例36~43、参考例1~3は、濾過用円滑剤添加前の処理液に、表4に示す各濾過用円滑剤を添加し、濾過用円滑剤添加後の処理液とした。
(表面張力の評価)
 表面張力計(DY300、協和界面科学社製)を用いて、濾過用円滑剤添加前後の処理液を測定した。測定はJIS2241の「ウィルヘルミー表面張力計による試験方法」に準じて実施した。
(濾過用円滑剤の濾過)
 濾過用円滑剤を含む処理液2Lを容量5LのPFAボトルへ充填し、ダイヤフラム式送液ポンプ(NF100TT 18S、KNF社製)を用いて、濾過精度5nm(SWD03UG54E71-K13C、日本ポール社製)のフィルターへ通液した。フィルターを通過した溶液は元のPFAボトル回収し、回収した処理液をフィルターに通した。この操作を繰り返し、2Lの溶液全量がフィルターを100回通過するまでフィルター濾過を繰り返した。得られた溶液を、濾過済みの濾過用円滑剤を含む処理液として回収した。
(濾過後オニウムイオン残存率の評価)
 濾過前後の濾過用円滑剤を含む処理液中のオニウムイオン濃度を、液体クロマトグラフィー質量分析装置(Xevo QTof MS、ウォーターズ社製)を用いて評価し、濾過後のオニウムイオンの残存率を下記の基準で評価した。いずれも評価A~Cが許容レベルであり、評価Dが不可レベルである。
 A:95%以上
 B:80%以上95%未満
 C:60%以上80%未満(許容レベル)
 D:60%未満
(エッチング後の表面平滑性の評価)
 電界放射型走査電子顕微鏡(JSM-7800F Prime、日本電子社製)によりエッチング前とエッチング後のルテニウム表面を観察し、表面荒れの有無を確認し、下記の基準で評価した。表面荒れが少ない順にA~Dとなっており、いずれも評価A~Cが許容レベル、評価Dが許容不可レベルである。
 A:表面荒れはみられない
 B:表面荒れが若干みられる
 C:表面全体に荒れは見られるが、荒れが浅い
 D:表面全体に荒れが見られ、かつ荒れが深い
 実施例35~43、及び参考例1~3の、酸化剤の残存率について比較すると、式(2)~(7)で表される化合物の添加によって、酸化剤の残存率がより高くなる結果となった。メカニズムは明確ではないが、カチオンであるオニウムイオンが、アニオンである遷移金属酸化体とイオン対を形成することで、遷移金属酸化体の反応性が変わり、処理液中に含まれる酸化剤より分解抑制剤と反応しやすくなったためであると考えられる。
 続いて、実施例35~43、参考例1~3の、表面張力、濾過後オニウムイオン残存率、エッチング後の表面平滑性について比較する。実施例35~43では、表面張力が濾過用円滑剤添加前とほぼ変わらないため、濾過後でもオニウムイオン残存率が変化しなかった。また、濾過後オニウムイオン残存率が高いことで、表面平滑性が改善された。参考例1~3では、表面張力が低く、濾過工程によってオニウムイオンが除去されてしまった。そのため、表面平滑性が改善されなかった。
1 フィルター1
2 フィルター2
3 フィルター3
4 ポンプ4
5 ポンプ5
6 ケミカルキャビネット
7 薬液補充ユニット
8 エッチング台
9 バルブ9
10 バルブ10

Claims (17)

  1.  遷移金属用酸化剤の分解抑制剤であって、
    下記式(1)で表される化合物からなる、分解抑制剤。
    A-(X)   (1)
    A:芳香族基、炭素二重結合を有する基、または炭素三重結合を有する基
    X:電子供与基
    n:整数
  2.  前記式(1)において、Aが芳香族基であり、且つnが1または2である、請求項1に記載の分解抑制剤。
  3.  前記式(1)において、Xがアミノ基またはアルコキシ基である、請求項1または2に記載の分解抑制剤。
  4.  前記式(1)のAがXとは別に親水基を有する、請求項1~3のいずれか一項に記載の分解抑制剤。
  5.  前記親水基がカルボキシル基である、請求項4に記載の分解抑制剤。
  6.  半導体用処理液に添加され、且つ、半導体用処理液の再利用に用いられる、請求項1~5のいずれか一項に記載の分解抑制剤。
  7.  遷移金属がRu、Rh、Ti、Ta、Co、Cr、Hf、Os、Pt、Ni、Mn、Cu、Zr、La、Mo、及びWからなる群から選択される少なくとも1種の金属を含む、請求項1~6のいずれか一項に記載の分解抑制剤。
  8.  遷移金属がRuである、請求項1~7のいずれか一項に記載の、遷移金属用酸化剤の分解抑制剤。
  9.  請求項1~8のいずれか一項に記載の遷移金属用酸化剤の分解抑制剤、及び遷移金属用酸化剤を含む、半導体用処理液。
  10.  前記分解抑制剤の濃度が半導体用処理液全質量に対して1質量ppm以上10,000質量ppmである、請求項9に記載の半導体用処理液。
  11.  遷移金属用酸化剤が、次亜臭素酸イオン、次亜塩素酸イオン、及び過ヨウ素酸イオンからなる群から選択される少なくとも1種のハロゲン酸素酸イオンであり、該遷移金属用酸化剤の全ての合計濃度が、半導体用処理液全質量に対して50質量ppm以上35質量%以下である、請求項9または10に記載の半導体用処理液。
  12.  前記遷移金属用酸化剤が、次亜臭素酸イオン及び次亜塩素酸イオンである、請求項11に記載の半導体用処理液。
  13.  さらに遷移金属酸化体を含む、請求項9~12のいずれか一項に記載の半導体用処理液。
  14.  さらに濾過用円滑剤を含む、請求項9~13のいずれか一項に記載の半導体用処理液。
  15.  濾過用円滑剤がオニウムイオンである、請求項14に記載の半導体用処理液。
  16.  請求項9~15のいずれか一項に記載の半導体用処理液と、遷移金属を含む半導体ウエハとを接触させ、遷移金属をエッチングする半導体ウエハのエッチング方法。
  17.  請求項16に記載のエッチング方法を工程中に含む、半導体素子の製造方法。
PCT/JP2023/046949 2022-12-28 2023-12-27 遷移金属用酸化剤の分解抑制剤 WO2024143473A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-212635 2022-12-28
JP2022212635 2022-12-28

Publications (1)

Publication Number Publication Date
WO2024143473A1 true WO2024143473A1 (ja) 2024-07-04

Family

ID=91717839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/046949 WO2024143473A1 (ja) 2022-12-28 2023-12-27 遷移金属用酸化剤の分解抑制剤

Country Status (1)

Country Link
WO (1) WO2024143473A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525851A (ja) * 2004-03-01 2007-09-06 マリンクロッド・ベイカー・インコーポレイテッド ナノエレクトロニクスおよびマイクロエレクトロニクスの洗浄組成物
WO2014061417A1 (ja) * 2012-10-16 2014-04-24 日立化成株式会社 Cmp用研磨液、貯蔵液及び研磨方法
WO2021060234A1 (ja) * 2019-09-27 2021-04-01 株式会社トクヤマ RuO4ガスの発生抑制剤及びRuO4ガスの発生抑制方法
WO2021210310A1 (ja) * 2020-04-16 2021-10-21 富士フイルムエレクトロニクスマテリアルズ株式会社 処理液、化学的機械的研磨方法、半導体基板の処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525851A (ja) * 2004-03-01 2007-09-06 マリンクロッド・ベイカー・インコーポレイテッド ナノエレクトロニクスおよびマイクロエレクトロニクスの洗浄組成物
WO2014061417A1 (ja) * 2012-10-16 2014-04-24 日立化成株式会社 Cmp用研磨液、貯蔵液及び研磨方法
WO2021060234A1 (ja) * 2019-09-27 2021-04-01 株式会社トクヤマ RuO4ガスの発生抑制剤及びRuO4ガスの発生抑制方法
WO2021210310A1 (ja) * 2020-04-16 2021-10-21 富士フイルムエレクトロニクスマテリアルズ株式会社 処理液、化学的機械的研磨方法、半導体基板の処理方法

Similar Documents

Publication Publication Date Title
KR20160130169A (ko) TiN 하드 마스크 및 에치 잔류물 제거
JP7477466B2 (ja) オニウム塩を含む半導体ウェハの処理液
JP6874231B1 (ja) RuO4ガスの発生抑制剤及びRuO4ガスの発生抑制方法
JP7375032B2 (ja) 半導体ウエハ用処理液
US11674230B2 (en) Treatment liquid for semiconductor with ruthenium and method of producing the same
JP2024024074A (ja) 次亜塩素酸イオン、及びpH緩衝剤を含む半導体ウェハの処理液
WO2024143473A1 (ja) 遷移金属用酸化剤の分解抑制剤
WO2021201094A1 (ja) 半導体用処理液及びその製造方法
US20220328320A1 (en) Semiconductor treatment liquid
WO2024075704A1 (ja) 半導体用処理液
US20240014045A1 (en) Semiconductor wafer processing liquid containing hypobromite ions and ph buffering agent
WO2024071417A1 (ja) ドライエッチング残渣除去液
WO2023190984A1 (ja) オニウムイオンを含む濾過用円滑剤
TW202426701A (zh) 半導體用處理液
EP4269656A1 (en) Semiconductor wafer treatment solution and prodction method for same
JP2022002291A (ja) オニウム塩を含む半導体ウェハの処理液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23912251

Country of ref document: EP

Kind code of ref document: A1