JP2022002291A - オニウム塩を含む半導体ウェハの処理液 - Google Patents
オニウム塩を含む半導体ウェハの処理液 Download PDFInfo
- Publication number
- JP2022002291A JP2022002291A JP2021012388A JP2021012388A JP2022002291A JP 2022002291 A JP2022002291 A JP 2022002291A JP 2021012388 A JP2021012388 A JP 2021012388A JP 2021012388 A JP2021012388 A JP 2021012388A JP 2022002291 A JP2022002291 A JP 2022002291A
- Authority
- JP
- Japan
- Prior art keywords
- ion
- group
- carbon atoms
- treatment liquid
- ruthenium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- ing And Chemical Polishing (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Weting (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
は強酸化性であるため人体に有害であるばかりでなく、容易に還元されてRuO2パーティクルを生じる。一般的に、パーティクルは歩留まり低下を招くため半導体形成工程において非常に問題となる。このような背景から、RuO4ガスの発生を抑制することは非常に重要となる。
また、本発明者らは、上記の第二の課題を解決するために鋭意検討を行った。そして、ルテニウムを含む半導体ウェハ用処理液に、種々のオニウム塩を添加することを検討した。単にルテニウムを含む半導体ウェハ用処理液だけでは、RuO4ガスを抑制することが出来ないため、様々な添加成分を組み合せた。その結果、特定のオニウム塩を添加することにより、RuO4ガス発生を抑制することが可能になることを見出し、第二の発明を完成するに至った。
(1) 半導体形成工程において使用される金属をエッチングするための処理液であって、
(A)次亜塩素酸イオン、
(B)下記式(1)で示されるアルキルアンモニウム塩
を含む処理液。
である。
(2) 上記(B)上記式(1)で示されるアルキルアンモニウム塩の濃度が、0.0001〜10質量%である(1)に記載の処理液とすることが好ましい。
(3) 上記(A)次亜塩素酸イオンの濃度が、0.05〜20.0質量%である(1)又は(2)記載の処理液とすることが好ましい。
(4) (C)テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、又はテトラブチルアンモニウムイオンのいずれかより選択される少なくとも1種のアンモニウムイオンを含む(1)〜(3)のいずれかに記載の処理液とすることが好ましい。
(5) 25℃でのpHが7を超え14.0未満である(1)〜(4)のいずれかに記載の処理液とすることが好ましい。
(6) 上記半導体ウェハが含む金属がルテニウムである(1)〜(5)のいずれかに記載の処理液を提供することもできる。
(7) (1)〜(6)のいずれかに記載の処理液と半導体ウェハとを接触させる工程を含むエッチング方法を提供することもできる。
(8)オニウムイオンとアニオンから成るオニウム塩を含む半導体ウェハ用処理液であって、上記オニウム塩が、式(2)で示される第四級オニウム塩又は式(3)で示される第三級オニウム塩である、処理液である。
(式(2)中、A+はアンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3、R4がアルキル基である場合、R1、R2、R3、R4のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(3)中、A+はスルホニウムイオンであり、R1、R2、R3は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3がアルキル基である場合、R1、R2、R3のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(2)又は式(3)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、
オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンである。)
(9)上記第四級オニウム塩が、アンモニウム塩である、(8)に記載の処理液であることが好ましい。
(10)上記第四級オニウム塩が、テトラアルキルアンモニウム塩である、(8)又は(9)に記載の処理液であることが好ましい。
(11)上記第四級オニウム塩が、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン、又はテトラペンチルアンモニウムイオンから選ばれる少なくとも1種のアンモニウムイオンからなる塩である、(8)〜(10)のいずれかに記載の処理液であることが好ましい。
(12)上記オニウム塩の処理液中における濃度が、0.0001〜50質量%である、(8)〜(11)のいずれかに記載の処理液とすることが好ましい。
(13)上記処理液が酸化剤を含む、(8)〜(12)いずれかに記載の処理液であることが好ましい。
(14)上記処理液が、次亜塩素酸イオンを含み、かつ次亜塩素酸イオンの濃度が0.05〜20.0質量%である、(8)〜(13)のいずれかに記載の処理液であることが好ましい。
(15)さらに、有機溶媒を含む、(8)〜(14)のいずれかに記載の処理液であることが好ましい。
すなわち、
(16)上記有機溶媒の比誘電率が45以下である、(15)に記載の処理液であることが好ましい。
(17)上記有機溶媒が、スルホラン類、アルキルニトリル類、ハロゲン化アルカン類、エーテル類である、(15)又は(16)に記載の処理液であることが好ましい。
(18)上記有機溶媒の処理液における濃度が0.1質量%以上である、(15)〜(17)のいずれかに記載の処理液とすることが好ましい。
(19)25℃でのpHが7以上14以下である、(8)〜(18)のいずれかに記載の処理液であることが好ましい。
(20)ルテニウムを含む半導体ウェハのエッチングに用いるための、(8)〜(19)のいずれかに記載の処理液を提供することができる。
また、
(21)ルテニウムを含む半導体ウェハのエッチングに用いるための、(8)〜(19)のいずれかに記載の処理液の使用を提供することができる。
(22)(8)〜(19)のいずれかに記載の処理液と、ルテニウムを含む半導体ウェハ
とを接触させる工程を含む、半導体ウェハのエッチング方法を提供できる。
(23)オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウム含有ガスの発生抑制剤であって、
上記オニウム塩が、式(2)で示される第四級オニウム塩、又は式(3)で示される第三級オニウム塩である、ルテニウム含有ガスの発生抑制剤を提供できる。
(式(2)中、A+はアンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3、R4がアルキル基である場合、R1、R2、R3、R4のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(3)中、A+はスルホニウムイオンであり、R1、R2、R3は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3がアルキル基である場合、R1、R2、R3のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(2)又は式(3)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンである。)
さらに、
(25)オニウムイオンとアニオンから成るオニウム塩を含む半導体ウェハ用処理液であって、上記オニウム塩が、式(4)で示されるオニウム塩である、処理液である。
(式(4)中、Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基である。
X−は、有機又は無機アニオンである。
nは1又は2の整数であり、Rの数を示す。
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。)
(26)酸化剤と、オニウムイオンとアニオンから成るオニウム塩を含む半導体ウェハ用処理液であって、
上記オニウム塩が、式(4)で示されるオニウム塩である、処理液。
(式(4)中、Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基である。
X−は、有機又は無機アニオンである。
nは1又は2の整数であり、Rの数を示す。
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。)
本発明の第三の態様の処理液がRuO4ガス発生を抑制するメカニズムは、次のように推測される。すなわち、アルカリ性の処理液中では、ルテニウムの溶解により発生したRuO4 −やRuO4 2−のようなアニオン(以下、RuO4 −等と記すこともある)は、処理液に含まれるオニウムイオンと静電的に相互作用し、その一部がイオン対として安定に存在するようになる。これにより、RuO4 −等からRuO4への変化が妨げられ、結果としてRuO4ガスの発生が抑制される。さらに、RuO4の生成が妨げられるため、RuO4が還元することで生じるRuO2パーティクルの発生も抑制される、と推測される。
したがって、本発明の第三の態様の処理液において、オニウム塩の添加によるRuO4ガス抑制効果は、処理液に含まれてもよい酸化剤やその他の添加剤の種類や量、処理方法、処理条件等に限定されるものではない。例えば、処理液中に含まれてもよい酸化剤は、半導体用処理液に用いられる酸化剤として一般に公知の酸化剤を用いることができる。一例を挙げれば、ハロゲン酸素酸、過マンガン酸、及びこれらの塩又はイオン、過酸化水素、オゾン、セリウム(IV)塩等を好適に用いることができる。これらの酸化剤を含場合、本発明の第三の態様の処理液は、処理液に含まれるオニウム塩によりRuO4ガス抑制効果が得られる。また、本発明の第三の態様の処理液による半導体ウェハの処理方式は、ウェットエッチングに限定されるものではなく、洗浄用途や残渣除去用途の処理液としても好適に利用できる。さらに、本発明の第三の態様の処理液をCMP研磨に用いれば、CMP研磨工程においてもRuO4ガスの発生を抑制することが可能である。本発明の第三の態様の処理液によるルテニウムを含むウェハの処理は、枚葉処理でもよく、浸漬処理でも良い。また、処理液の温度は特に制限されることはなく、いずれの処理温度においても、処理液に含まれるオニウム塩によりRuO4ガス抑制効果が発揮される。
(27)オニウム塩が、イミダゾリウム塩、ピロリジニウム塩、ピリジニウム塩、オキサゾリウム塩、又はピペリジニウム塩である、(25)又は(26)に記載の処理液であることが好ましい。
(29)上記オニウム塩の処理液中における濃度が、0.0001〜50質量%である、(25)〜(28)のいずれかに記載の処理液とすることが好ましい。
(30)上記処理液が、次亜塩素酸イオンを含み、かつ次亜塩素酸イオンの濃度が0.05〜20.0質量%である、(25)〜(29)のいずれかに記載の処理液であることが好ましい。
すなわち、
(32)上記有機溶媒の比誘電率が45以下であることを特徴とする、(31)に記載の処理液であることが好ましい。
(33)上記有機溶媒が、スルホラン類、アルキルニトリル類、ハロゲン化アルカン類、エーテル類である、(31)又は(32)に記載の処理液であることが好ましい。
さらに、生成された沈殿物を十分に溶解するためには、
(34)上記有機溶媒の処理液における濃度が0.1質量%以上である、(31)〜(33)のいずれかに記載の処理液とすることが好ましい。
(35)25℃でのpHが7以上14以下である、(25)〜(34)のいずれかに記載の処理液であることが好ましい。
(36)ルテニウムを含む半導体ウェハのエッチングに用いるための(25)〜(35)のいずれかに記載の処理液の使用を提供できる。
(37)(25)〜(35)のいずれかに記載の処理液と、ルテニウムを含む半導体ウェハとを接触させる工程を含む、半導体ウェハのエッチング方法を提供できる。
(38)オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウム含有ガスの発生抑制剤であって、上記オニウム塩が、式(4)で示されるオニウム塩である、ルテニウム含有ガスの発生抑制剤であることが好ましい。
(式(4)中、Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基である。
X−は、有機又は無機アニオンである。
nは1又は2の整数であり、Rの数を示す。
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。)
(39)酸化剤と、オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウム含有ガスの発生抑制剤であって、上記オニウム塩が、式(4)で示されるオニウム塩である、ルテニウム含有ガスの発生抑制剤であることが好ましい。
(式(4)中、Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基である。
X−は、有機又は無機アニオンである。
nは1又は2の整数であり、Rの数を示す。
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。)
(40)(38)又は(39)に記載のルテニウム含有ガスの発生抑制剤を用いる、ルテニウム含有ガスの発生を抑制する方法であることが好ましい。
(41)オニウムイオンとアニオンから成るオニウム塩を含む、半導体ウェハ用処理液であって、上記オニウム塩が、式(5)で示されるオニウム塩である、半導体ウェハ用処理液である。
(式(5)中、A+は独立して、アンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4、R5、R6は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(5)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンであり、aは1〜10の整数である。)
(42)処理液中における上記オニウム塩の濃度が、0.0001〜50質量%である、(41)に記載の処理液とすることが好ましい。
(43)上記処理液が、酸化剤を含む、(41)又は(42)に記載の処理液とすることが好ましい。
(45)さらに、有機溶媒を含む、(41)〜(44)のいずれかに記載の処理液とすることが好ましい。
すなわち、
(46)上記有機溶媒の比誘電率が45以下である、(45)に記載の処理液とすることが好ましい。
(47)上記有機溶媒が、スルホラン類、アルキルニトリル類、ハロゲン化アルカン類、エーテル類である、(45)又は(46)に記載の処理液とすることが好ましい。
(48)処理液における上記有機溶媒の濃度が0.1質量%以上である、(45)〜(47)のいずれかに記載の処理液とすることが好ましい。
(49)25℃でのpHが7以上14以下である、(41)〜(48)のいずれかに記載の処理液とすることが好ましい。
(50)ルテニウムを含む半導体ウェハのエッチングに用いるための(41)〜(49)のいずれかに記載の処理液の使用を提供できる。
(51)(41)〜(49)のいずれかに記載の処理液と、ルテニウムを含む半導体ウェハとを接触させる工程を含む、半導体ウェハのエッチング方法を提供できる。
(52)オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウム含有ガスの発生抑制剤であって、上記オニウム塩が、式(5)で示されるオニウム塩である、ルテニウム含有ガスの発生抑制剤を提供できる。
(式(5)中、A+は独立して、アンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4、R5、R6は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(5)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンであ
り、aは1〜10の整数である。)
(53)(52)に記載のルテニウム含有ガスの発生抑制剤を用いる、ルテニウム含有ガスの発生を抑制する方法を提供できる。
(54)オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウム含有廃液の処理剤であって、上記オニウム塩が、式(2)で示される第四級オニウム塩、式(3)で示される第三級オニウム塩、式(4)で示されるオニウム塩、又は式(5)で示されるオニウム塩である、ルテニウム含有廃液の処理剤を提供できる。
式(3)中、A+はスルホニウムイオンであり、R1、R2、R3は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3がアルキル基である場合、R1、R2、R3のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。
式(2)又は式(3)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンである。
式(4)中、Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基であり、
X−は、有機又は無機アニオンであり、
nは1又は2の整数であり、Rの数を示し、
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。
式(5)中、A+は独立して、アンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4、R5、R6は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(5)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンであ
り、aは1〜10の整数である。)
(55)(54)に記載のルテニウム含有廃液の処理剤を用いる、ルテニウム含有廃液の処理方法を提供できる。
本発明の第一の態様の処理液は、半導体ウェハにダメージを与えることなく、半導体ウェハ上に存在するルテニウムをエッチングできる処理液である。そのため、本発明の第一の態様の処理液は、半導体製造工程における配線形成工程で好適に用いることができる処理液である。
本発明の第一の態様で使用される次亜塩素酸イオンは、次亜塩素酸塩を水に溶解させることにより、次亜塩素酸及び次亜塩素酸イオンを発生させることが可能である。次亜塩素酸イオンは強酸化性を有する酸化剤であり、次亜塩素酸イオンを含む本発明の処理液は、半導体ウェハが含む金属をエッチングすることができる。
本発明の第一の態様の処理液に含まれるアルキルアンモニウム塩は、下記式(1)で示されるアルキルアンモニウム塩である。
上で、窒素原子を中心とした極性基の部分で吸着すると考えられる。吸着したカチオンの非極性基であるアルキル基は、ルテニウム表面から離れる方向に位置することになり、ルテニウム表面に疎水性の保護層が形成されることになる。形成された保護層が、処理液に含まれる次亜塩素酸イオンとルテニウムとを接触させることを阻害するため、結果として、ムラなく均一なルテニウムのエッチング処理されることとなり、エッチング処理後のルテニウム表面の平坦性が維持されると考えられる。
本発明の第一の態様の処理液において、次亜塩素酸イオンは、次亜塩素酸塩を水に溶解させる等により処理液に含まれるため、次亜塩素酸イオンの対イオンが処理液に含まれることになる。通常、次亜塩素酸塩は、次亜塩酸ナトリウム、次亜塩素酸カルシウム等であり、この場合は、対イオンとして、ナトリウムイオン、カルシウムイオンが含まれることになる。
るためには、アンモニウムイオンの濃度は、より好ましくは0.15〜20質量%であり、さらに好ましくは0.3〜15質量%であり、特に好ましくは0.5〜8質量%である。
その他、本発明の第一の態様の処理液には、所望により本発明の目的を損なわない範囲で従来から半導体用処理液に使用されているその他の添加剤を配合してもよい。例えば、その他の添加剤として、酸、金属防食剤、水溶性有機溶剤、フッ素化合物、酸化剤、還元剤、錯化剤、キレート剤、ノニオン型界面活性剤、消泡剤、pH調整剤などを加えることができる。
以下、本発明の第一の態様の処理液等について説明する。
本発明の第一の態様の処理液は、次亜塩素酸イオンを含む次亜塩素酸塩水溶液にアルキルアンモニウム塩を添加、混合することで製造することができる。次亜塩素酸水溶液は、次亜塩素酸ナトリウムや次亜塩素酸カルシウムなどの市販の次亜塩素酸塩を水に溶解することや、水酸化ナトリウム溶液や水酸化テトラメチルアンモニウム水溶液などのアルカリ水溶液に塩素を吹き込むことで、製造出来る。その他、例えば、次亜塩素酸ナトリウム水溶液をテトラメチルアンモニウム型としたイオン交換樹脂と接触させることで、次亜塩素酸イオンの対イオンを交換することが出来る。
本発明の第一の態様の処理液を使用するエッチング条件は、温度は10〜80℃、好ましくは20〜70℃の範囲であり、使用するエッチング装置のエッチング条件にあわせて適宜選択すればよい。
形成工程においてルテニウムを使用する場合に、好適に使用することが出来る。
以下、本発明の第二の態様の処理液等について説明する。
本発明の第二の態様の処理液は、RuO4ガスを発生させることなくルテニウムを含む半導体ウェハを処理できる処理液である。そのため、本発明の第二の態様の処理液は、半導体製造工程におけるエッチング工程、残渣除去工程、洗浄工程、CMP工程等で好適に用いることができる処理液である。
(式(2)中、A+はアンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3、R4がアルキル基である場合、R1、R2、R3、R4のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(3)中、A+はスルホニウムイオンであり、R1、R2、R3は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3がアルキル基である場合、R1、R2、R3のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(2)又は式(3)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンである。)
適に使用できる。
ムイオン、又はテトラヘキシルアンモニウムイオンからなるアンモニウム塩を挙げることができる。さらに、これらの塩は、水酸化物又は、ハロゲン化物であることがより好ましい。これらの第四級オニウム塩を含む処理液は特に、半導体ウェハの処理において、RuO4ガスを抑制し、かつ、RuO2パーティクル発生を伴わずに処理を行う事が可能である。
本発明の第二の態様の処理液は、酸化剤を含有することができる。該酸化剤としては、例えばハロゲン酸素酸、過マンガン酸、及びこれらの塩、過酸化水素、オゾン、セリウム(IV)塩等を挙げることができるが、これらに限定されるものではない。ここで、ハロゲン酸素酸は、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、次亜ヨウ素酸、亜ヨウ素酸、ヨウ素酸、メタ過ヨウ素酸、オルト過ヨウ素酸又はこれらのイオンを指す。酸化剤を含有することで、ルテニウムの溶解が促進されると共に、析出したRuO2パーティクルの再溶解が促進される。このため、オニウム塩と酸化剤を含有する処理液は、RuO4ガスとRuO2パーティクルの発生を抑制しながら効率的にRu含有ウェハの処理を行うことができる。上記の酸化剤のうち、アルカリ性で安定して使用でき、濃度範囲を広く選択できることから、ハロゲン酸素酸及びそのイオン、又は過酸化水素が酸化剤として好適であり、次亜塩素酸、メタ過ヨウ素酸、オルト過ヨウ素酸及びそのイオンがより好適であり、次亜塩素酸及び次亜塩素酸イオンが最も好適である。
上記のように、本発明第二の態様では、ルテニウムが溶解する際に生成されたRuO4 −等が、オニウムイオンとの静電的相互作用により処理液中に保持される事で、RuO4
ガスの発生を抑制している。この場合、RuO4 −等とオニウムイオンはイオン対の状態で溶液中に溶けているが、溶解度を超えた場合は沈殿物となる。この沈殿物は半導体形成工程においてパーティクルの要因となるため、歩留まりの低下を招く。そのため、沈殿物を生じさせないことが重要であり、それにはイオン対の溶解度を上げることが好ましい。この方法として有機溶媒の添加が有効である。
比誘電率の低い有機溶媒を添加する場合、水と混和しにくい場合もあり得る。しかし、そのような場合であっても、水に僅かに溶解した有機溶媒によりイオン対の溶解度を高めることが可能であり、有機溶媒の添加はRuO4ガス発生の抑制に有効である。
好ましい。処理液のpHが7未満の場合は、ルテニウムの溶解はRuO4 −等のアニオンではなくRuО2やRu(ОH)3を経由して起こるようになるため、カチオン添加の効果が低下する。さらに、pH7未満では、RuО2パーティクルを生じやすくなり、RuО4ガスの発生量が多くなるといった問題も生じるようになる。したがって、本発明の第二の態様の処理液がRuО4ガス発生抑制能を十分に発揮するためには、処理液のpHは7以上14以下が好ましく、9以上13以下がより好ましい。このpH範囲であれば、処理液に溶解したルテニウムはRuO4 −又はRuO4 2−のアニオンとして存在するため、本発明の第二の態様の処理液に含まれるオニウムイオンとイオン対を形成しやすくなり、効果的にRuО4ガス発生を抑制し得る。
本発明の第二の態様の処理液には、所望により本発明の目的を損なわない範囲で、従来から半導体用処理液に使用されているその他の添加剤を配合してもよい。例えば、その他の添加剤として、酸、金属防食剤、水溶性有機溶媒、フッ素化合物、酸化剤、還元剤、錯化剤、キレート剤、界面活性剤、消泡剤、pH調整剤、安定化剤などを加えることができる。これらの添加剤は単独で添加してもよいし、複数を組み合わせて添加してもよい。
以下、本発明の第三の態様の処理液等について説明する。
本発明の第三の態様の処理液は、RuO4ガスを発生させることなくルテニウムを含む半導体ウェハを処理できる処理液である。そのため、本発明の第三の態様の処理液は、半導体製造工程におけるエッチング工程、残渣除去工程、洗浄工程、CMP工程等で好適に用いることができる処理液である。
本発明の第三の態様の処理液が適用される半導体ウェハに含まれるルテニウムは、いかなる方法により形成されていてもよい。ルテニウムの成膜には、半導体製造工程で広く公知の方法、例えば、CVD、ALD、スパッタ、めっき等を利用できる。これらのルテニウムは、金属ルテニウムであってもよいし、ルテニウム酸化物や、他の金属との合金、金属間化合物、イオン性化合物、錯体であってもよい。また、ルテニウムはウェハの表面に露出していてもよいし、他の金属や金属酸化膜、絶縁膜、レジスト等に覆われていてもよい。他の材料に覆われている場合であっても、ルテニウムが処理液に接触してルテニウムの溶解が起こる際、本発明の第三の態様の処理液に含まれるオニウム塩によりRuO4ガス発生抑制効果が発揮される。さらに、本発明の処理液は、ルテニウムを積極的に溶解させない場合、すなわち、ルテニウムが保護の対象である処理であっても、極僅かに溶解したルテニウムから発生するRuO4ガスを抑制することが可能である。
例えば、ルテニウム配線形成工程において本発明の第三の態様の処理液を用いる場合は
、次のようになる。まず、半導体(例えばSi)からなる基体を用意する。用意した基体に対して、酸化処理を行い、基体上に酸化シリコン膜を形成する。その後、低誘電率(Low−k)膜からなる層間絶縁膜を成膜し、所定の間隔でビアホールを形成する。ビアホール形成後、熱CVDによって、ルテニウムをビアホールに埋め込み、さらにルテニウム膜を成膜する。このルテニウム膜を本発明の処理液を用いてエッチングすることで、RuO4ガス発生を抑制しながら平坦化を行う。これにより、RuO2パーティクルが抑制された、信頼性の高いルテニウム配線を形成できる。
(オニウム塩)
オニウム塩は、ルテニウムの溶解により生成されたルテニウム原子を含むイオン(RuO4 −等)をトラップするために添加され、オニウムイオンとアニオンから形成される。
オニウムイオンは、単原子陰イオンに過剰のプロトン(水素陽イオン)が付加してできた多原子陽イオンの化合物である。また、オニウムイオンは、イミダゾリウムイオン、ピロリジニウムイオン、ピリジニウムイオン、ピペリジニウムイオン、アンモニウムイオン、ホスホニウムイオン、フルオロニウムイオン、クロロニウムイオン、ブロモニウムイオン、ヨードニウムイオン、オキソニウムイオン、スルホニウムイオン、セレノニウムイオン、テルロニウムイオン、アルソニムイオン、スチボニウムイオン、ビスムトニウムイオン等の陽イオンであり、イミダゾリウムイオン、ピロリジニウムイオン、ピリジニウムイオン、ピペリジニウムイオン、オキサゾリウムイオンが好ましい。
アニオンは負に荷電したイオンのことで、有機又は無機アニオンである。有機又は無機アニオンは特に限定されないが、フッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、フルオロリン酸イオン、又はトリフルオロ酢酸イオンが好ましく、水酸化物イオン、塩化物イオン、過塩素酸イオンが、より好ましい。
(式(4)中、Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの
炭素数1〜15のアルキル基で置換されてもよい脂環式基である。
X−は、有機又は無機アニオンである。
nは1又は2の整数であり、Rの数を示す。
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。)
本発明において、好適に使用できる式(4)で示されるオニウム塩を具体的に挙げると、1,3−ジメチルイミダゾリウムクロリド、1−ブチル−3−メチルイミダゾリウムクロリド、1−ブチル−2,3−ジメチルイミダゾリウムクロリド、1−ヘキシル−3−メチルイミダゾリウムクロリド、1−メチル−3−n−オクチルイミダゾリウムクロリド、1,3−ジメシチルイミダゾリウムクロリド、1,3−ビス(2,6−ジイソプロピルフェニル)イミダゾリウムクロリド、1,3−ジシクロヘキシルイミダゾリウムクロリド、1−ブチル−1−メチルピロリジニウムクロリド、1−エチル−1−メチルピロリジニウムクロリド、1,1−ジメチルピペリジニウムクロリド、1−ブチル−1−メチルピペリジニウムクロリド、5−アゾニアスピロ〔4,4〕ノナンクロリド、1−メチルピリジニウムクロリド、1−エチルピリジニウムクロリド、1−プロピルピリジニウムクロリド、1−フルオロピリジニウムテトラフルオロボラート、1−フルオロ−2,4,6−トリメチルピリジニウムテトラフルオロボラート、1−フルオロ−2,6−ジクロロピリジニウムテトラフルオロボラート、N−tert−ブチル−5−メチルイソオキサゾリウムパークロレート等を挙げることができる。
。なお、オニウム塩を添加するに場合には、1種のみを添加してもよいし、2種以上を組み合わせて添加してもよい。2種類以上のオニウム塩を含む場合であっても、オニウム塩の濃度の合計が上記の濃度範囲であれば、RuO4ガスの発生を効果的に抑制することができる。
本発明の第三の態様の処理液は、酸化剤を含有することができる。該酸化剤としては、例えばハロゲン酸素酸、過マンガン酸、及びこれらの塩、過酸化水素、オゾン、セリウム(IV)塩等を挙げることができるが、これらに限定されるものではない。ここで、ハロゲン酸素酸は、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、次亜ヨウ素酸、亜ヨウ素酸、ヨウ素酸、メタ過ヨウ素酸、オルト過ヨウ素酸又はこれらのイオンを指す。酸化剤を含有することで、ルテニウムの溶解が促進されると共に、析出したRuO2パーティクルの再溶解が促進される。このため、オニウム塩と酸化剤を含有する処理液は、RuO4ガスとRuO2パーティクルの発生を抑制しながら効率的にRu含有ウェハの処理を行うことができる。上記の酸化剤のうち、アルカリ性で安定して使用でき、濃度範囲を広く選択できることから、ハロゲン酸素酸及びそのイオン、又は過酸化水素が酸化剤として好適であり、次亜塩素酸、メタ過ヨウ素酸、オルト過ヨウ素酸及びそのイオンがより好適であり、次亜塩素酸及び次亜塩素酸イオンが最も好適である。また、これらの酸化剤は塩として処理液中に存在していてもよく、該塩としては、例えば、次亜塩素酸テトラアルキルアンモニウムが好適であり、次亜塩素酸テトラメチルアンモニウムがより好適である。
本発明の第三の態様の処理液において、オニウム塩及び下記に詳述する有機溶媒及びその他の添加剤以外の残分は水である。本発明の処理液に含まれる水は、蒸留、イオン交換処理、フィルター処理、各種吸着処理などによって、金属イオンや有機不純物、パーティクル粒子などが除去された水が好ましく、特に純水、超純水が好ましい。このような水は、半導体製造に広く利用されている公知の方法で得ることができる。
上記のように、本発明の第三の態様では、ルテニウムが溶解する際に生成されたRuO4 −等が、オニウムイオンとの静電的相互作用により処理液中に保持される事で、RuO4ガスの発生を抑制している。この場合、RuO4 −等とオニウムイオンはイオン対の状態で溶液中に溶けているが、溶解度を超えた場合は沈殿物となる。この沈殿物は半導体形成工程においてパーティクルの要因となるため、歩留まりの低下を招く。そのため、沈殿物を生じさせないことが重要であり、それにはイオン対の溶解度を上げることが好ましい。この方法として有機溶媒の添加が有効である。
うな有機溶媒を用いてもよいが、比誘電率は45以下が好ましく、より好ましくは20以下、さらに好ましくは10以下である。なお、これらの比誘電率は、25℃における値である。
比誘電率の低い有機溶媒を添加する場合、水と混和しにくい場合もあり得る。しかし、そのような場合であっても、水に僅かに溶解した有機溶媒によりイオン対の溶解度を高めることが可能であり、有機溶媒の添加はRuO4ガス発生の抑制に有効である。
処理液中に酸化剤が含まれる場合、有機溶媒が酸化剤によって分解されることを防ぐため、両者は反応しないことが好ましいが、酸化剤との反応性が低いものであればどのような有機溶媒を用いてもよい。一例を挙げれば、酸化剤が次亜塩素酸イオンである場合には、スルホラン類、アルキルニトリル類、ハロゲン化アルカン類、エーテル類などは次亜塩素酸イオンとの反応性が低いため、処理液に添加する有機溶媒として好適に用いることができる。このような有機溶媒を具体的に挙げれば、スルホラン、アセトニトリル、四塩化炭素、1,4−ジオキサン等であるが、当然のことながら、有機溶媒はこれらに限定されるものではない。
本発明の第三の態様の処理液には、所望により本発明の目的を損なわない範囲で、従来から半導体用処理液に使用されているその他の添加剤を配合してもよい。例えば、その他の添加剤として、酸、金属防食剤、水溶性有機溶媒、フッ素化合物、酸化剤、還元剤、錯
化剤、キレート剤、界面活性剤、消泡剤、pH調整剤、安定化剤などを加えることができる。これらの添加剤は単独で添加してもよいし、複数を組み合わせて添加してもよい。
これらの添加剤に由来して、また、処理液の製造上の都合などにより、本発明の第三の態様の処理液には、アルカリ金属イオン、アルカリ土類金属イオン等が含まれていてもよい。例えば、ナトリウムイオン、カリウムイオン、カルシウムイオン等が含まれてもよい。しかし、これらアルカリ金属イオン、及びアルカリ土類金属イオン等は、半導体ウェハ上に残留した場合、半導体素子に悪影響(半導体ウェハの歩留まり低下等の悪影響)を及ぼすことから、その量は少ない方が好ましく、実際には限りなく含まれない方がよい。そのため、例えばpH調整剤としては、水酸化ナトリウム等の水酸化アルカリ金属や水酸化アルカリ土類金属ではなく、アンモニア、アミン、コリン又は水酸化テトラアルキルアンモニウム等の有機アルカリであることが好ましい。
具体的には、アルカリ金属イオン及びアルカリ土類金属イオンはその合計量が、1質量%以下であることが好ましく、0.7質量%以下であることがより好ましく、0.3質量%以下であることがさらに好ましく、10ppm以下であることが特に好ましく、500ppb以下であることが最も好ましい。
以下、本発明の第四の態様の処理液等について説明する。
本発明の第四の態様の処理液は、RuO4ガスを発生させることなくルテニウムを含む半導体ウェハを処理できる処理液である。そのため、本発明の第四の態様の処理液は、半導体製造工程におけるエッチング工程、残渣除去工程、洗浄工程、CMP工程等で好適に用いることができる処理液である。
(式(5)中、A+は独立して、アンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4、R5、R6は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(5)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンであり、aは1〜10の整数である。)
ムイオンとの静電的な相互作用によりトラップされる。トラップされたRuO4 −等はイオン対として処理液中で比較的安定に存在するため、容易にRuO4へと変化しない。これにより、RuO4ガスの発生が抑制されると共に、RuO2パーティクル発生も抑えられる。
本発明の第四の態様の処理液は、酸化剤を含有することができる。該酸化剤としては、例えばハロゲン酸素酸、過マンガン酸、及びこれらの塩、過酸化水素、オゾン、セリウム(IV)塩等を挙げることができるが、これらに限定されるものではない。ここで、ハロゲン酸素酸は、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、次亜ヨウ素酸、亜ヨウ素酸、ヨウ素酸、メタ過ヨウ素酸、オルト過ヨウ素酸又はこれらのイオンを指す。酸化剤を含有することで、ルテニウムの溶解が促進されると共に、析出したRuO2パーティクルの再溶解が促進される。このため、オニウム塩と酸化剤を含有する処理液は、RuO4ガスとRuO2パーティクルの発生を抑制しながら効率的にRu含有ウェハの処理を行うことが
できる。上記の酸化剤のうち、アルカリ性で安定して使用でき、濃度範囲を広く選択できることから、ハロゲン酸素酸及びそのイオン、又は過酸化水素が酸化剤として好適であり、次亜塩素酸、メタ過ヨウ素酸、オルト過ヨウ素酸及びそのイオンがより好適であり、次亜塩素酸及び次亜塩素酸イオンが最も好適である。
上記のように、本発明第四の態様では、ルテニウムが溶解する際に生成されたRuO4 −等が、オニウムイオンとの静電的相互作用により処理液中に保持される事で、RuO4ガスの発生を抑制している。この場合、RuO4 −等とオニウムイオンはイオン対の状態で溶液中に溶けているが、溶解度を超えた場合は沈殿物となる。この沈殿物は半導体形成工程においてパーティクルの要因となるため、歩留まりの低下を招く。そのため、沈殿物を生じさせないことが重要であり、それにはイオン対の溶解度を上げることが好ましい。この方法として有機溶媒の添加が有効である。
比誘電率の低い有機溶媒を添加する場合、水と混和しにくい場合もあり得る。しかし、そのような場合であっても、水に僅かに溶解した有機溶媒によりイオン対の溶解度を高めることが可能であり、有機溶媒の添加はRuO4ガス発生の抑制に有効である。
素酸イオンとの反応性が低いため、本発明の第四の態様の処理液に添加する有機溶媒として好適に用いることができる。このような有機溶媒を具体的に挙げれば、スルホラン、アセトニトリル、四塩化炭素、1,4−ジオキサン等であるが、当然のことながら、有機溶媒はこれらに限定されるものではない。
本発明の第四の態様の処理液には、所望により本発明の目的を損なわない範囲で、従来から半導体用処理液に使用されているその他の添加剤を配合してもよい。例えば、その他の添加剤として、酸、金属防食剤、水溶性有機溶媒、フッ素化合物、酸化剤、還元剤、錯化剤、キレート剤、界面活性剤、消泡剤、pH調整剤、安定化剤などを加えることができる。これらの添加剤は単独で添加してもよいし、複数を組み合わせて添加してもよい。
%以下であることが好ましく、0.7質量%以下であることがより好ましく、0.3質量%以下であることがさらに好ましく、10ppm以下であることが特に好ましく、500ppb以下であることが最も好ましい。
ルテニウム含有ガスの発生抑制剤とは、ルテニウムを処理するための液に添加する事で、ルテニウム含有ガスの発生を抑制するものであり、上記式(2)〜(5)で示されるオニウム塩を含む液を指す。
ルテニウムを処理するための液は、ルテニウムと接触し、該ルテニウムに物理的、化学的変化を与える成分を含む液であればどのような液でもよく、例えば、酸化剤を含む溶液が例示される。該酸化剤としては、本発明の第二の態様の処理液、第三の態様の処理液、及び第四の態様の処理液の説明で例示したような酸化剤を挙げることができる。ルテニウムを処理するための液で処理されたルテニウムは、その全部又は一部が該処理液中に溶解、分散、又は沈殿し、RuO4(ガス)及び/又はRuO2(粒子)を生じる原因となる。
ルテニウムを処理するための液と本発明のルテニウム含有ガスの発生抑制剤とを含む液(ガス発生抑制剤を含有する処理液とも表記する)では、該処理液中に存在するRuO4 −等と、オニウムイオンとが、該処理液に溶解するイオン対を形成することで、RuO4 −等からRuO4(溶液)及びRuO2(粒子)の生成を抑制する。これは、RuO4(溶液)から生じるRuO4(ガス)を大幅に低減するとともに、RuO4(ガス)により生じるRuO2(粒子)の生成を抑えるためである。
上記で説明したとおり、本発明の第二の態様の処理液、第三の態様の処理液、及び第四の態様の処理液は、上記式(2)〜(5)で示されるいずれかのオニウム塩を含むため、RuO4ガスを発生させることなく、ルテニウムを含む半導体ウェハを処理できる処理液である。すなわち、本発明の第二の態様の処理液、第三の態様の処理液、及び第四の態様の処理液は、ルテニウムを処理するための液であると同時にルテニウム含有ガスの発生抑制剤でもある。そのため、これらの態様の処理液は、ルテニウム含有ガスの発生抑制剤としても使用できる。
また、それらの条件以外にも、例えば、ルテニウム含有ガスの発生抑制剤における、上記式(2)〜(5)で示されるいずれかのオニウム塩の含有量としては、0.0001〜50質量%を挙げることができ、0.01〜35質量%であることがより好ましく、0.1〜20質量%である事がさらに好ましい。この濃度は、後述するように、ルテニウム含有ガスの発生を抑制する対象となる液、すなわち、ルテニウムを処理するための液と混合した際の混合液における上記のオニウム塩の濃度が所定量になるように、調整することができる。また、ルテニウム含有ガスの発生抑制剤には、上記の第二〜第四の態様で示したpH調整剤と同じものを適宜添加してもよい。pH調整剤の含有量については、後述するように、ルテニウムを処理するための液と混合した際の混合液のpHが所定範囲になるように、調整することができる。例えば、ルテニウム含有ガスの発生抑制剤における、pH調整剤の含有量として、有効量であればよく、具体的には0.000001〜10質量%を例示できる。
ルテニウム含有ガスの発生抑制方法は、上記のルテニウム含有ガスの発生抑制剤を、ルテニウムを処理するための液に添加する工程を含む、ルテニウム含有ガスの発生抑制方法である。具体的には、たとえば、半導体製造工程におけるエッチング工程、残渣除去工程
、洗浄工程、CMP工程等のルテニウムを処理する工程において使用する液(ルテニウムを処理するための液)に対して、本発明のルテニウム含有ガスの発生抑制剤を添加する事で、ルテニウム含有ガスの発生を抑制する事ができる。また、これら半導体製造工程に使用した各装置において、チャンバー内壁や配管等に付着したルテニウムを洗浄する際にも、ルテニウム含有ガスの発生抑制剤を用いる事でルテニウム含有ガスの発生を抑制できる。例えば、物理蒸着(PVD)や化学蒸着(CVD)を用いてRuを形成する装置のメンテナンスにおいて、チャンバーや配管等に付着したRuを除去する際に使用する洗浄液へ、本発明のルテニウム含有ガスの発生抑制剤を添加する事により、洗浄中に発生するルテニウム含有ガスの抑制が可能となる。当該方法によれば、上記のルテニウム含有ガスの発生抑制剤の説明で示したメカニズムにより、ルテニウム含有ガスの発生を抑制できる。
なお、ルテニウム発生抑制方法においては、ルテニウム含有ガスの発生抑制剤と、ルテニウムを処理するための液との混合液における、上記の式(2)〜(5)のいずれかで示されるオニウム塩の1種以上の濃度が、0.0001〜50質量%となるように、ルテニウム含有ガスの発生抑制剤における上記オニウム塩の濃度と、その添加量を調整することが好ましい。また、ルテニウム含有ガスの発生抑制方法においては、ルテニウム含有ガスの発生抑制剤に、上記の第二〜第四の態様で示したpH調整剤と同じものを適宜添加して
もよい。ルテニウム含有ガスの発生抑制剤におけるpH調整剤の含有量と、ルテニウム含
有ガスの発生抑制剤の添加量については、ルテニウムを処理するための液と混合した際の混合液のpHが、例えば7〜14になるように、適宜調整することができる。
ルテニウム含有廃液の処理剤とは、ルテニウム含有廃液に添加する事で、ルテニウム含有ガスの発生を抑制するものであり、上記式(2)〜(5)で示すオニウム塩を含む液を指す。よって、上記の式(2)、(3)、(4)又は(5)で示されるオニウム塩を含有する処理液(第二の態様の処理液、第三の態様の処理液及び第四の態様の処理液)は、そのルテニウム含有ガスの発生抑制効果を利用して、ルテニウム含有廃液の処理剤としても用いることができる。
ここで、ルテニウム含有廃液とは、少量でもRuを含む溶液を意味する。ここで、Ruとは、ルテニウム金属に限定されず、ルテニウム元素を含んでいればよく、例えば、Ru、RuO4 −、RuO4 2−、RuO4、RuO2などが挙げられる。例えば、ルテニウムを含有する半導体ウェハのエッチング処理を、本発明の各態様とは異なる組成のエッチング液を用いて行った後の液や、本発明の各態様にかかる半導体ウェハ用の処理液を用いて処理を行った後の液などを挙げることができる。また、半導体ウェハのエッチングに限らず、上記のルテニウム含有ガスの発生抑制方法にて述べたような、半導体製造工程やチャンバー洗浄などにより発生したルテニウム含有液もその一例である。
廃液に微量でもRuが含まれると、RuO4ガスを経由してRuO2粒子が発生するため、タンクや配管を汚染するし、パーティクルの酸化作用によって装置類の劣化を促進する。また、廃液中から発生するRuO4ガスは低濃度でも人体に強い毒性を示す。このように、ルテニウム含有廃液は、装置類あるいは人体に対して様々な悪影響を及ぼすため、早急に処理してRuO4ガスの発生を抑制する必要がある。
本発明のルテニウム含有廃液の処理剤においては、上記式(2)〜(5)で示されるオニウム塩のいずれかの種類及びその含有量や、その他の成分及びその含有量、pH等の条件については、各態様の半導体ウェハ用処理液の説明で記載されている条件と同じ条件を
適用できる。
また、これらの条件以外にも、例えば、ルテニウム含有廃液の処理剤における、上記式(2)〜(5)で示されるいずれかのオニウム塩の含有量としては、0.0001〜50質量%を挙げることができ、0.001〜35質量%であることがより好ましい。この濃度は、後述するように、ルテニウム含有廃液と混合した際の混合液における上記のオニウム塩の濃度が所定量になるように、調整することができる。また、ルテニウム含有廃液の処理剤には、上記の第二〜第四の態様で示したpH調整剤と同じものを適宜添加してもよ
い。pH調整剤の含有量については、後述するように、ルテニウム含有廃液と混合した際
の混合液のpHが所定範囲になるように、調整することができる。例えば、ルテニウム含有廃液の処理剤における、pH調整剤の含有量として、有効量であればよく、具体的には0.000001〜10質量%を例示できる。
本発明のルテニウム含有廃液の処理方法は、上記のルテニウム含有廃液の処理剤を、後述するルテニウム含有廃液に添加する工程を含む、ルテニウム含有廃液の処理方法である。当該方法によれば、上記のルテニウム含有ガスの発生抑制剤の説明で示したメカニズムにより、ルテニウム含有廃液から発生するルテニウム含有ガスを抑制できる。そのため、ルテニウム含有廃液の取り扱いが容易になるだけでなく、排気設備や除外設備を簡素化でき、ルテニウム含有ガスの処理にかかる費用を削減できる。さらに、毒性の高いルテニウム含有ガスに作業者が晒される危険性が減り、安全性が大幅に向上する。
なお、ルテニウム含有廃液の処理方法においては、ルテニウム含有廃液の処理剤と、ルテニウム含有廃液との混合液における、上記の式(2)〜(5)のいずれかで示されるオニウム塩の1種以上の濃度が、例えば、0.0001〜50質量%となるように、ルテニウム含有廃液の処理剤における上記オニウム塩の濃度と、その添加量を調整することが好ましい。また、ルテニウム含有廃液の処理方法においては、ルテニウム含有廃液の処理剤に、上記の第二〜第四の態様で示したpH調整剤と同じものを適宜添加してもよい。ルテ
ニウム含有廃液の処理剤におけるpH調整剤の含有量と、ルテニウム含有廃液の処理剤の
添加量については、ルテニウム含有廃液と混合した際の混合液のpHが、例えば7〜14になるように、適宜調整することができる。
ルテニウム含有廃液に対する、ルテニウム含有廃液の処理剤の添加量は、ルテニウム含有廃液中のルテニウム量による。ルテニウム含有廃液の処理剤の添加量は特に制限されないが、例えば、ルテニウム含有廃液中のルテニウム量を1としたときに、重量比で10〜500000が好ましく、より好ましくは100〜100000であり、さらに好ましくは1000〜50000である。
(pH測定方法)
実験例1及び参考例1で調製した処理液30mLを、卓上型pHメーター(LAQUA
F―73、堀場製作所社製)を用いてpH測定した。pH測定は、処理液の温度が25℃で安定した後に、実施した。
実験例及び参考例の処理液を調製した後、100mL三角フラスコに処理液0.5mLとヨウ化カリウム(和光純薬工業社製、試薬特級)2g、10%酢酸8mL、超純水10mLを加え、固形物が溶解するまで撹拌し、褐色溶液を得る。調製した褐色溶液は0.02Mチオ硫酸ナトリウム溶液(和光純薬工業社製、容量分析用)を用いて溶液の色が褐色
から極薄い黄色になるまで酸化還元滴定し、次いで、でんぷん溶液を加え薄紫色の溶液を得る。この溶液に更に0.02Mチオ硫酸ナトリウム溶液を続けて加え、無色透明になった点を終点として有効塩素濃度を算出した。また得られた有効塩素濃度から次亜塩素酸イオン濃度を算出した。例えば、有効塩素濃度1%であれば次亜塩素酸イオン濃度は0.73%となる。これは以下の実験例1〜5において共通する。
実験例及び参考例の処理液中のテトラメチルアンモニウムイオン濃度はpH、次亜塩素酸イオン濃度、ナトリウムイオン濃度から計算によって求めた。なお、ナトリウムイオン濃度は、ICP−MS(誘導結合プラズマ質量分析計)によって測定した。
シリコンウェハ上にバッチ式熱酸化炉を用いて酸化膜を形成し、その上にスパッタ法を用いてルテニウムを1200Å(±10%)成膜した。四探針抵抗測定器(ロレスタ‐GP、三菱ケミカルアナリテック社製)によりシート抵抗を測定して膜厚に換算した。
(エッチング対象のサンプルの準備)
表面を清浄にしたシリコンウェハを用意し、500nmの熱酸化膜を形成した。そうして得られたシリコンウェハ上にルテニウムをスパッタリング法で成膜することによって、シリコンウェハ上に1200Åの膜厚のルテニウムが積層されたサンプルを準備した。
<イオン交換樹脂の前処理 水素型イオン交換樹脂の調製>
内径約45mmのガラスカラム(AsOne社製、バイオカラムCF−50TK)に、ナトリウム型の強酸性イオン交換樹脂(オルガノ社製、アンバーライトIR−120BNa)を200mL投入した。その後、水素型に交換するため1規定の塩酸(和光純薬工業社製、容量分析用)を1L、イオン交換樹脂カラムに通液し、イオン交換樹脂を水洗するため、超純水1Lを通液した。
さらに、水素型に交換されたイオン交換樹脂209mLに、10%水酸化テトラメチルアンモニウム溶液を1L通液し、水素型からテトラメチルアンモニウム型にイオン交換した。イオン交換後、イオン交換樹脂を水洗するため、超純水1Lを通液した。
次亜塩素酸ナトリウム五水和物(和光純薬工業社製、試薬特級)69gを2Lのフッ素樹脂容器に入れた後、超純水931gを添加して、3.11質量%の次亜塩素酸ナトリウ
ム水溶液を調製した。調製した次亜塩素酸ナトリウム水溶液をテトラメチルアンモニウム型に交換したイオン交換樹脂に通液し、次亜塩素酸テトラメチルアンモニウム水溶液1000gを得た。得られた次亜塩素酸テトラメチルアンモニウム水溶液999.9gにテトラデシルトリメチルアンモニウムクロリド100mgを添加し、表1に記載された組成の処理液を得た。
得られた処理液のpH、有効塩素濃度及び次亜塩素酸イオン濃度を評価し、pHは10、次亜塩素酸イオン濃度は2.15質量%となっていることを確認した。また、上述の「ルテニウムのエッチング速度の算出方法」によりエッチング速度を評価した。算出したエッチング速度からルテニウムを50ű10Åエッチングする時間を算出し、50ű10Åエッチングする時間で処理したルテニウム膜を準備し、表面観察用のルテニウム膜とした。ルテニウム表面については、100000倍の電子顕微鏡にて観察した。観察した結果は図3に示す。
実験例1−1において、(a)工程のイオン交換樹脂量を564mLとし、10%水酸化テトラメチルアンモニウム溶液の通液量を2Lとし、(b)工程の次亜塩素酸ナトリウム水溶液の濃度を8.39質量%として、次亜塩素酸テトラメチルアンモニウム水溶液を得た。さらにpH調整工程(c)として、該次亜塩素酸テトラメチルアンモニウム水溶液に、pHが11になるまで25%水酸化テトラメチルアンモニウム(TMAH)溶液を添加した。得られた次亜塩素酸テトラメチルアンモニウム水溶液999gにデシルトリメチルアンモニウムクロリド1gを添加し、表1に記載にされた組成の処理液を得た。評価結果を表2に示す。
実施例1において、(a)工程のイオン交換樹脂量を705mLとし、10%水酸化テトラメチルアンモニウム溶液の通液量を2Lとし、(b)工程の次亜塩素酸ナトリウム水溶液の濃度を10.49質量%として、次亜塩素酸テトラメチルアンモニウム水溶液を得た。さらにpH調整工程(c)として、該次亜塩素酸テトラメチルアンモニウム水溶液に、pHが12になるまで25%水酸化テトラメチルアンモニウム(TMAH)溶液を添加した。得られた次亜塩素酸テトラメチルアンモニウム水溶液999.5gにラウリルトリメチルアンモニウムクロリド500mgを添加し、表1に記載にされた組成の処理液を得た。評価結果を表2に示す。
実験例1−2と同様の操作を行い、次亜塩素酸テトラメチルアンモニウム水溶液を得た後、次亜塩素酸テトラメチルアンモニウム水溶液999.5gにオクタデシルトリメチルアンモニウムクロリド500mgを添加し、表1に記載にされた組成の処理液を得た。評価結果を表2に示す。
実験例1−1において、(a)工程のイオン交換樹脂量を282mLとし、(b)工程の次亜塩素酸ナトリウム水溶液の濃度を4.20質量%として、次亜塩素酸テトラメチルアンモニウム水溶液を得た。さらにpH調整工程(c)として、該次亜塩素酸テトラメチルアンモニウム水溶液に、pHが11になるまで25%水酸化テトラメチルアンモニウム(TMAH)溶液を添加した。得られた次亜塩素酸テトラメチルアンモニウム水溶液990gにn−オクチルトリメチルアンモニウムクロリド10gを添加し、表1に記載にされた組成の処理液を得た。評価結果を表2に示す。
実験例1−1と同様の操作を行い、次亜塩素酸テトラメチルアンモニウム水溶液を得た後、さらにpH調整工程(c)として、水素型に交換したナトリウム型の強酸性イオン交換樹脂(オルガノ社製、アンバーライトIR−120BNa)50mLを充填したガラスカラムに該次亜塩素酸テトラメチルアンモニウム水溶液を通液した。得られた次亜塩素酸テトラメチルアンモニウム水溶液999.9gにテトラデシルトリメチルアンモニウムクロリド100mgを添加し、表1に記載にされた組成の処理液を得た。評価結果を表2に示す。
実験例1−4と同様の操作を行い、次亜塩素酸テトラメチルアンモニウム水溶液を得た後、次亜塩素酸テトラメチルアンモニウム水溶液999.9gにヘキサデシルトリメチルアンモニウムクロリド100mgを添加し、表1に記載にされた組成の処理液を得た。評価結果を表2に示す。
次亜塩素酸イオンが2.15質量%となるように、次亜塩素酸ナトリウム五水和物(和光純薬工業社製、試薬特級)を水に溶解した。得られた次亜塩素酸ナトリウム水溶液999gにテトラデシルトリメチルアンモニウムクロリド1gを添加し、表1に記載にされた組成の処理液を得た。評価結果を表2に示す。
実験例1−1において、(a)工程のイオン交換樹脂量を282mLとし、(b)工程の次亜塩素酸ナトリウム水溶液の濃度を4.20質量%とした。得られた次亜塩素酸テトラメチルアンモニウム水溶液999.5gにジデシルジメチルアンモニウムクロリド500mgを添加し、表1に記載にされた組成の処理液を得た。評価結果を表2に示す。
実験例1−9と同様の操作を行い、次亜塩素酸テトラメチルアンモニウム水溶液を得た後、次亜塩素酸テトラメチルアンモニウム水溶液999.9gにジドデシルジメチルアンモニウムクロリド100mgを添加し、表1に記載にされた組成の処理液を得た。評価結果を表2に示す。
式(1)で示されるアルキルアンモニウム塩を添加しなかった以外は、実験例1−1と同様に処理液を調製し、実験例1−1と同様の評価を行った。
適に使用することが出来る。また、図3に、実験例1−1にて得られたエッチング処理後のルテニウムについての100000倍の電子顕微鏡画像を示す。ウェハ表面へのRuO2(パーティクル)の生成が抑制され、平坦なルテニウム表面が得られている事が分かる。
実験例1−1と同様の操作を行い、次亜塩素酸テトラメチルアンモニウム水溶液を得た後、得られた次亜塩素酸テトラメチルアンモニウム水溶液999gにテトラヘプチルアンモニウムクロリド1gを添加し、表3に記載にされた組成の処理液を得た。
実験例1−1の手順に準じて表3に記載した処理液を得た。
(処理液の製造)
表4及び5に記載の組成となるよう、次の通り処理液を調製した。100mLのフッ素樹脂製容器に次亜塩素酸ナトリウム(和光純薬製)又はオルト過ヨウ素酸(富士フィルム和光純薬製)、第四級オニウム塩又は第三級オニウム塩、有機溶媒、超純水を加え、15wt%のHCl水溶液又は1.0mol/LのNaOH水溶液を用いて表に記載のpHに調整した処理液を60mL調製した。(ただし、表4に示す実験例2−1〜2−12及び参考例2−1〜2−5では有機溶媒は添加しなかった。)得られた処理液の有効塩素濃度が2.0wt%となっていることを確認し、表4及び5に記載の処理液を得た。
各実験例及び各参考例で調製した処理液10mLを、卓上型pHメーター(LAQUA
F―73、堀場製作所製)を用いてpH測定した。pH測定は、処理液の温度が25℃で安定した後に、実施した。
RuO4ガスの発生量は、ICP−OESを用いて測定した。密閉容器に処理液を5mLとり、膜厚1200Åのルテニウムを成膜した10×20mmのSiウェハ1枚を、25℃又は50℃でルテニウムが全て溶解するまで浸漬させた。その後、密閉容器にAirをフローし、密閉容器内の気相を吸収液(1mol/L NaOH)の入った容器にバブリングして、浸漬中に発生したRuO4ガスを吸収液にトラップした。この吸収液中のルテニウム量をICP−OESにより測定し、発生したRuO4ガス中のRu量を求めた。処理液に浸漬したSiウェハ上のルテニウムが全て溶解したことは、四探針抵抗測定器(
ロレスタ‐GP、三菱ケミカルアナリテック社製)により浸漬前及び浸漬後のシート抵抗をそれぞれ測定し、膜厚に換算することで確認した。
密閉容器に処理液を10mLとり、膜厚1200Åのルテニウムを成膜した10×20mmのSiウェハ5枚を、25℃で10分間浸漬させた。その後、処理液中に沈殿物が形成されていないかを目視で確認した。
表4及び5に、処理液の組成及び各評価結果を示す。なお、表4におけるRu量は、RuO4ガス吸収液中に含まれるRuの重量をRu付ウェハの面積で割った値である。
表4に示す参考例2−2において、2,2,6,6−テトラメチルピペリジン1−オキシル(TEMPO)を1wt%添加した他は参考例2−2と同様にして、参考例2−6の処理液を調製した。この処理液を用いてRuO4ガスの定量分析を行ったところ、発生したRuO4ガス中のRu量は40μg/cm2であった。TEMPOは特許文献7においてRuO4ガス抑制効果があるとされているが、アルカリ性条件下では、RuO4ガスの抑制効果は確認できなかった。
分かった。また、処理液における第四級オニウム塩の濃度が増加する程、その抑制効果が高いことが分かった。
表10の結果から、式(2)及び(3)の規定を満たさないオニウム塩を含有する場合には、十分なガス発生抑制効果が得られなかった。
(処理液の製造)
表11に記載の組成となるよう、次の通り処理液を調製した。100mLのフッ素樹脂製容器に次亜塩素酸ナトリウム(和光純薬製)、オニウム塩、超純水を加え、15wt%のHCl水溶液を用いてpH12.0の処理液を60mL調製した。得られた処理液の有効塩素濃度が2.0wt%となっていることを確認し、表11に記載の処理液を得た。
(pH測定方法)
実験例及び参考例で調製した処理液10mLを、卓上型pHメーター(LAQUA F―73、堀場製作所製)を用いてpH測定した。pH測定は、処理液の温度が25℃で安定した後に、実施した。
(RuO4ガスの定量分析)
RuO4ガスの発生量は、ICP−OESを用いて測定した。密閉容器に処理液を5mLとり、膜厚1200Åのルテニウムを成膜した10×20mmのSiウェハ1枚を、25℃でルテニウムが全て溶解するまで浸漬させた。その後、密閉容器にAirをフローし、密閉容器内の気相を吸収液(1mol/L NaOH)の入った容器にバブリングして、浸漬中に発生したRuO4ガスを吸収液にトラップした。この吸収液中のルテニウム量をICP−OESにより測定し、発生したRuO4ガス中のRu量を求めた。処理液に浸漬したSiウェハ上のルテニウムが全て溶解したことは、四探針抵抗測定器(ロレスタ‐GP、三菱ケミカルアナリテック社製)により浸漬前及び浸漬後のシート抵抗をそれぞれ測定し、膜厚に換算することで確認した。
スの発生量を低減できていることが分かる。
実験例3及び参考例3で示した(処理液の製造)に従って、表14に記載の組成となるように処理液を調製した。また、処理液のpHの測定方法及びRuO4ガスの定量分析に
ついては、実験例3及び参考例3で示した(pHの測定方法)及び(RuO4ガスの定量
分析)に従って行った。
表14に、処理液の組成及び各評価結果を示す。なお、表14におけるRu量は、RuO4ガス吸収液中に含まれるRuの重量をRu付ウェハの面積で割った値である。
<実験例5−1〜5−11>
(ルテニウム含有廃液の処理剤と、ルテニウム含有廃液の混合液の調製)
フッ素樹脂製容器に次亜塩素酸ナトリウム(和光純薬製)、超純水を加えた後、15wt%のHCl水溶液あるいは4wt%のNaOH水溶液を用いて表15に記載のpHに調整することで、有効塩素濃度2.0wt%のRuエッチング用処理液を得た。得られた処理液1Lへ膜厚1360Åのルテニウムを成膜した300mmのSiウェハを25℃にて10分間浸漬した後、廃液タンクに回収した。
次に、フッ素樹脂製容器に次亜塩素酸ナトリウム(和光純薬製)、オニウム塩、超純水を加えた後、15wt%のHCl水溶液あるいは4wt%のNaOH水溶液を用いて表15に記載のpHに調整することで、有効塩素濃度2.0wt%のルテニウム含有廃液の処理剤を得た。得られたルテニウム含有廃液の処理剤1Lを、廃液タンクに25℃にて混合することで、6.0×10−4mol/Lのルテニウムを含む、表15に記載の、ルテニウム含有廃液の処理剤と、ルテニウム含有廃液の混合液(以下、単に混合液ともいう)を得た。
RuO4ガスの発生量は、ICP−OESを用いて測定した。密閉容器に混合液5mlを分取した。密閉容器にairを15分間フローし、密閉容器内の気相を吸収液(1mol/L NaOH)の入った容器にバブリングして、混合液から発生したRuO4ガスを
吸収液にトラップした。この吸収液中のルテニウム量をICP−OESにより測定し、発生したRuO4ガス中のRu量を求めた。処理したSiウェハ上のルテニウムが全て溶解したことは、四探針抵抗測定器(ロレスタ−GP、三菱ケミカルアナリテック社製)により処理前及び処理後のシート抵抗をそれぞれ測定し、膜厚に換算することで確認した。
実験例5−1と同様の方法により、表15に記載のルテニウム含有廃液の処理剤と、ルテニウム含有廃液の混合液を得た。ただし、有効塩素濃度は、Ruエッチング用処理液では4.0wt%、ルテニウム含有廃液の処理剤では0%(酸化剤不含)となるように調製を行った。RuO4ガスの定量分析については、実験例5−1と同様の手順で行った。
実験例5−1と同様の方法により、有効塩素濃度4.0wt%のRuエッチング用処理液を得た。得られた処理液1Lを、膜厚2720Åのルテニウムを成膜した300mmのSiウェハ表面へ25℃にて10分間かけ流し、1Lの超純水にてリンスした後、廃液タンクに回収した。次に、実験例5−1と同様の方法により得られた、有効塩素濃度2.0wt%のルテニウム含有廃液の処理剤2Lを廃液タンクに混合することで、6.0×10
−4mol/LのRuを含む、表15に記載のルテニウム含有廃液の処理剤と、ルテニウム含有廃液の混合液を得た。RuO4ガスの定量分析については、実験例5−1と同様の手順で行った。
フッ素樹脂製容器に次亜塩素酸ナトリウム(和光純薬製)、超純水を加えた後、15wt%のHCl水溶液あるいは4wt%のNaOH水溶液を用いて表16に記載のpHに調整することで、有効塩素濃度2.0wt%のルテニウムエッチング用の処理液を得た。得られた処理液1Lへ膜厚680Åのルテニウムを成膜した300mmのSiウェハを25℃にて10分間浸漬した後、廃液タンクに回収することで、6.0×10−4mol/L
のRuを含む、表16に記載のルテニウム含有廃液を得た。RuO4ガスの定量分析については、実験例5−1と同様の手順で行った。
参考例5−1と同様の方法により、有効塩素濃度4.0wt%のルテニウムエッチング用の処理液を得た。得られた処理液1Lを、膜厚1360Åのルテニウムを成膜した300mmのSiウェハ表面へ25℃にて10分間かけ流し、1Lの超純水にてリンスした後、廃液タンクに回収することで、6.0×10−4mol/LのRuを含む表16に記載のルテニウム含有廃液を得た。
2 層間絶縁膜
3 ルテニウム
Claims (55)
- 前記(B)上記式(1)で示されるアルキルアンモニウム塩の濃度が、0.0001〜10質量%である請求項1に記載の処理液。
- 前記(A)次亜塩素酸イオンの濃度が、0.05〜20.0質量%である請求項1又は2記載の処理液。
- (C)テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、又はテトラブチルアンモニウムイオンのいずれかより選択される少なくとも1種のアンモニウムイオンを含む請求項1乃至3のいずれか一項に記載の処理液。
- 25℃でのpHが7を超え14.0未満である、請求項1乃至4のいずれか一項に記載の処理液。
- 前記半導体ウェハが含む金属がルテニウムである、請求項1乃至5のいずれか一項に記載の処理液。
- 請求項1乃至6のいずれか一項に記載の処理液と半導体ウェハとを接触させる工程を含む、エッチング方法。
- オニウムイオンとアニオンから成るオニウム塩を含む半導体ウェハ用処理液であって、
前記オニウム塩が、式(2)で示される第四級オニウム塩又は式(3)で示される第三級オニウム塩である、処理液。
(式(2)中、A+はアンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3、R4がアルキル基である場合、R1、R2、R3、R4のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(3)中、A+はスルホニウムイオンであり、R1、R2、R3は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3がアルキル基である場合、R1、R2、R3のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(2)又は式(3)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンである。) - 前記第四級オニウム塩が、アンモニウム塩である、請求項8に記載の処理液。
- 前記第四級オニウム塩が、テトラアルキルアンモニウム塩である、請求項8又は9に記載の処理液。
- 前記第四級オニウム塩が、テトラプロピルアンモニウムイオン、テトラブチルアンモニ
ウムイオン、又はテトラペンチルアンモニウムイオンから選ばれる少なくとも1種のアンモニウムイオンからなる塩である、請求項8〜10のいずれか一項に記載の処理液。 - 前記オニウム塩の処理液中における濃度が、0.0001〜50質量%である、請求項8〜11のいずれか一項に記載の処理液。
- 前記処理液が、酸化剤を含む、請求項8〜12のいずれか一項に記載の処理液。
- 前記処理液が、次亜塩素酸イオンを含み、かつ次亜塩素酸イオンの濃度が0.05〜20.0質量%である、請求項8〜13のいずれか一項に記載の処理液。
- さらに、有機溶媒を含む、請求項8〜14のいずれか一項に記載の処理液。
- 前記有機溶媒の比誘電率が45以下である、請求項15に記載の処理液。
- 前記有機溶媒が、スルホラン類、アルキルニトリル類、ハロゲン化アルカン類、エーテル類である、請求項15又は16に記載の処理液。
- 処理液における前記有機溶媒の濃度が0.1質量%以上である、請求項15〜17のいずれか一項に記載の処理液。
- 25℃でのpHが7以上14以下である、請求項8〜18のいずれか一項に記載の処理液。
- ルテニウムを含む半導体ウェハのエッチングに用いるための、請求項8〜19のいずれか一項に記載の処理液。
- ルテニウムを含む半導体ウェハのエッチングに用いるための、請求項8〜19のいずれか一項に記載の処理液の使用。
- 請求項8〜19のいずれか一項に記載の処理液と、ルテニウムを含む半導体ウェハとを接触させる工程を含む、半導体ウェハのエッチング方法。
- オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウム含有ガスの発生抑制剤であって、
前記オニウム塩が、式(2)で示される第四級オニウム塩、又は式(3)で示される第三級オニウム塩である、ルテニウム含有ガスの発生抑制剤。
(式(2)中、A+はアンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3、R4がアルキル基である場合、R1、R2、R3、R4のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(3)中、A+はスルホニウムイオンであり、R1、R2、R3は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3がアルキル基である場合、R1、R2、R3のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(2)又は式(3)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンである。) - 請求項23に記載のルテニウム含有ガスの発生抑制剤を用いる、ルテニウム含有ガスの発生を抑制する方法。
- オニウムイオンとアニオンから成るオニウム塩を含む半導体ウェハ用処理液であって、
前記オニウム塩が、式(4)で示されるオニウム塩である、処理液。
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基である。
X−は、有機又は無機アニオンである。
nは1又は2の整数であり、Rの数を示す。
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。) - 酸化剤と、オニウムイオンとアニオンから成るオニウム塩を含む半導体ウェハ用処理液であって、
前記オニウム塩が、式(4)で示されるオニウム塩である、処理液。
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基である。
X−は、有機又は無機アニオンである。
nは1又は2の整数であり、Rの数を示す。
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。) - 前記オニウム塩が、イミダゾリウム塩、ピロリジニウム塩、ピリジニウム塩、オキサゾリウム塩、又はピペリジニウム塩である、請求項25又は26に記載の処理液。
- 前記有機又は無機アニオンが、フッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、フルオロリン酸イオン、又はトリフルオロ酢酸イオンである、請求項25〜27のいずれか一項に記載の処理液。
- 前記オニウム塩の処理液中における濃度が、0.0001〜50質量%である、請求項
25〜28のいずれか一項に記載の処理液。 - 前記処理液が、次亜塩素酸イオンを含み、かつ次亜塩素酸イオンの濃度が0.05〜20.0質量%である、請求項25〜29のいずれか一項に記載の処理液。
- さらに、有機溶媒を含む、請求項25〜30のいずれか一項に記載の処理液。
- 前記有機溶媒の比誘電率が45以下である、請求項31に記載の処理液。
- 前記有機溶媒が、スルホラン類、アルキルニトリル類、ハロゲン化アルカン類、エーテル類である、請求項31又は32に記載の処理液。
- 処理液における前記有機溶媒の濃度が0.1質量%以上である、請求項31〜33のいずれか一項に記載の処理液。
- 25℃でのpHが7以上14以下である、請求項25〜34のいずれか一項に記載の処理液。
- ルテニウムを含む半導体ウェハのエッチングに用いるための請求項25〜35のいずれか一項に記載の処理液の使用。
- 請求項25〜35のいずれか一項に記載の処理液と、ルテニウムを含む半導体ウェハとを接触させる工程を含む、半導体ウェハのエッチング方法。
- オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウム含有ガスの発生抑制剤であって、
前記オニウム塩が、式(4)で示されるオニウム塩である、ルテニウム含有ガスの発生抑制剤。
(式(4)中、Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基である。
X−は、有機又は無機アニオンである。
nは1又は2の整数であり、Rの数を示す。
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。) - 酸化剤と、オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウム含有ガスの発生抑制剤であって、
前記オニウム塩が、式(4)で示されるオニウム塩である、ルテニウム含有ガスの発生抑制剤。
(式(4)中、Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基である。
X−は、有機又は無機アニオンである。
nは1又は2の整数であり、Rの数を示す。
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。) - 請求項38又は39に記載のルテニウム含有ガスの発生抑制剤を用いる、ルテニウム含有ガスの発生を抑制する方法。
- オニウムイオンとアニオンから成るオニウム塩を含む、半導体ウェハ用処理液であって、
前記オニウム塩が、式(5)で示されるオニウム塩である、半導体ウェハ用処理液。
(式(5)中、A+は独立して、アンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4、R5、R6は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアル
コキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(5)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンであり、aは1〜10の整数である。) - 処理液中における前記オニウム塩の濃度が、0.0001〜50質量%である、請求項41に記載の処理液。
- 前記処理液が、酸化剤を含む、請求項41又は42に記載の処理液。
- 前記処理液が、次亜塩素酸イオンを含み、かつ次亜塩素酸イオンの濃度が0.05〜20.0質量%である、請求項41〜43のいずれか一項に記載の処理液。
- さらに、有機溶媒を含む、請求項41〜44のいずれか一項に記載の処理液。
- 前記有機溶媒の比誘電率が45以下である、請求項45に記載の処理液。
- 前記有機溶媒が、スルホラン類、アルキルニトリル類、ハロゲン化アルカン類、エーテル類である、請求項45又は46に記載の処理液。
- 処理液における前記有機溶媒の濃度が0.1質量%以上である、請求項45〜47のいずれか一項に記載の処理液。
- 25℃でのpHが7以上14以下である、請求項41〜48のいずれか一項に記載の処理液。
- ルテニウムを含む半導体ウェハのエッチングに用いるための請求項41〜49のいずれか一項に記載の処理液の使用。
- 請求項41〜49のいずれか一項に記載の処理液と、ルテニウムを含む半導体ウェハとを接触させる工程を含む、半導体ウェハのエッチング方法。
- オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウムを含有するガスの発生抑制剤であって、
前記オニウム塩が、式(5)で示されるオニウム塩である、ルテニウム含有ガスの発生抑制剤。
(式(5)中、A+は独立して、アンモニウムイオン、又はホスホニウムイオンであり、
R1、R2、R3、R4、R5、R6は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(5)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンであり、aは1〜10の整数である。) - 請求項52に記載のルテニウム含有ガスの発生抑制剤を用いる、ルテニウム含有ガスの発生を抑制する方法。
- オニウムイオンとアニオンから成るオニウム塩を含む、ルテニウム含有廃液の処理剤であって、
前記オニウム塩が、式(2)で示される第四級オニウム塩、式(3)で示される第三級オニウム塩、式(4)で示されるオニウム塩、又は式(5)で示されるオニウム塩である、ルテニウム含有廃液の処理剤。
(式(2)中、A+はアンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3、R4がアルキル基である場合、R1、R2、R3、R4のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。
式(3)中、A+はスルホニウムイオンであり、R1、R2、R3は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。ただし、R1、R2、R3がアルキル基である場合、R1、R2、R3のうち少なくとも1つのアルキル基の炭素数が2以上である。また、アラルキル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。
式(2)又は式(3)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンである。
式(4)中、Zは、窒素、硫黄、酸素原子を含んでもよい芳香族基又は脂環式基であり、該芳香族基又は該脂環式基において、炭素又は窒素は、
塩素、臭素、フッ素、ヨウ素、
少なくとも1つの炭素数1〜15のアルキル基、
少なくとも1つの炭素数2〜9のアルケニルオキシ基、
少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、
又は、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基
を有していてもよい。
Aは、窒素又は硫黄である。
Rは塩素、臭素、フッ素、ヨウ素、炭素数1〜15のアルキル基、アリル基、少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい芳香族基、又は少なくとも1つの炭素数1〜15のアルキル基で置換されてもよい脂環式基であり、
X−は、有機又は無機アニオンであり、
nは1又は2の整数であり、Rの数を示し、
nが2の場合、Rは同一又は異なっていてもよく、環を形成してもよい。
式(5)中、A+は独立して、アンモニウムイオン、又はホスホニウムイオンであり、R1、R2、R3、R4、R5、R6は独立して、炭素数1〜25のアルキル基、アリル基、炭素数1〜25のアルキル基を有するアラルキル基、又はアリール基である。アラル
キル基中のアリール基及びアリール基の環において少なくとも1つの水素は、フッ素、塩素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜9のアルコキシ基、又は炭素数2〜9のアルケニルオキシ基で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素又は塩素で置き換えられてもよい。式(5)中、X−はフッ化物イオン、塩化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、メタン硫酸イオン、過塩素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、オルト過ヨウ素酸イオン、メタ過ヨウ素酸イオン、ヨウ素酸イオン、亜ヨウ素酸イオン、次亜ヨウ素酸イオン、酢酸イオン、炭酸イオン、炭酸水素イオン、フルオロホウ酸イオン、又はトリフルオロ酢酸イオンであり、aは1〜10の整数である。) - 請求項54に記載のルテニウム含有廃液の処理剤を用いる、ルテニウム含有廃液の処理方法。
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019024016 | 2019-02-13 | ||
JP2019024016 | 2019-02-13 | ||
JP2019045761 | 2019-03-13 | ||
JP2019045761 | 2019-03-13 | ||
JP2019093194 | 2019-05-16 | ||
JP2019093194 | 2019-05-16 | ||
JP2019110984 | 2019-06-14 | ||
JP2019110984 | 2019-06-14 | ||
JP2020572319A JP7477466B2 (ja) | 2019-02-13 | 2020-02-13 | オニウム塩を含む半導体ウェハの処理液 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020572319A Division JP7477466B2 (ja) | 2019-02-13 | 2020-02-13 | オニウム塩を含む半導体ウェハの処理液 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022002291A true JP2022002291A (ja) | 2022-01-06 |
JP7081010B2 JP7081010B2 (ja) | 2022-06-06 |
Family
ID=79244800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021012388A Active JP7081010B2 (ja) | 2019-02-13 | 2021-01-28 | オニウム塩を含む半導体ウェハの処理液 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7081010B2 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008135746A (ja) * | 2006-11-27 | 2008-06-12 | Cheil Industries Inc | 化学的機械的研磨用スラリー組成物及びその前駆体組成物 |
JP2008536312A (ja) * | 2005-04-08 | 2008-09-04 | サッチェム, インコーポレイテッド | 金属窒化物の選択的なウェットエッチング |
US20090124082A1 (en) * | 2007-11-08 | 2009-05-14 | Hynix Semiconductor Inc. | Slurry for polishing ruthenium and method for polishing using the same |
WO2011074601A1 (ja) * | 2009-12-17 | 2011-06-23 | 昭和電工株式会社 | ルテニウム系金属のエッチング用組成物およびその調製方法 |
JP2016510175A (ja) * | 2013-03-04 | 2016-04-04 | アドバンスド テクノロジー マテリアルズ,インコーポレイテッド | 窒化チタンを選択的にエッチングするための組成物および方法 |
WO2016140246A1 (ja) * | 2015-03-04 | 2016-09-09 | 日立化成株式会社 | Cmp用研磨液、及び、これを用いた研磨方法 |
WO2016167184A1 (ja) * | 2015-04-13 | 2016-10-20 | 三菱瓦斯化学株式会社 | ウェハを再生するための炭素含有シリコン酸化物を含む材料の洗浄液および洗浄方法 |
US20180291309A1 (en) * | 2017-04-11 | 2018-10-11 | Entegris, Inc. | Post chemical mechanical polishing formulations and method of use |
JP2020087945A (ja) * | 2018-11-14 | 2020-06-04 | 関東化学株式会社 | ルテニウム除去用組成物 |
-
2021
- 2021-01-28 JP JP2021012388A patent/JP7081010B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008536312A (ja) * | 2005-04-08 | 2008-09-04 | サッチェム, インコーポレイテッド | 金属窒化物の選択的なウェットエッチング |
JP2008135746A (ja) * | 2006-11-27 | 2008-06-12 | Cheil Industries Inc | 化学的機械的研磨用スラリー組成物及びその前駆体組成物 |
US20090124082A1 (en) * | 2007-11-08 | 2009-05-14 | Hynix Semiconductor Inc. | Slurry for polishing ruthenium and method for polishing using the same |
WO2011074601A1 (ja) * | 2009-12-17 | 2011-06-23 | 昭和電工株式会社 | ルテニウム系金属のエッチング用組成物およびその調製方法 |
JP2016510175A (ja) * | 2013-03-04 | 2016-04-04 | アドバンスド テクノロジー マテリアルズ,インコーポレイテッド | 窒化チタンを選択的にエッチングするための組成物および方法 |
WO2016140246A1 (ja) * | 2015-03-04 | 2016-09-09 | 日立化成株式会社 | Cmp用研磨液、及び、これを用いた研磨方法 |
WO2016167184A1 (ja) * | 2015-04-13 | 2016-10-20 | 三菱瓦斯化学株式会社 | ウェハを再生するための炭素含有シリコン酸化物を含む材料の洗浄液および洗浄方法 |
US20180291309A1 (en) * | 2017-04-11 | 2018-10-11 | Entegris, Inc. | Post chemical mechanical polishing formulations and method of use |
JP2020087945A (ja) * | 2018-11-14 | 2020-06-04 | 関東化学株式会社 | ルテニウム除去用組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP7081010B2 (ja) | 2022-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7477466B2 (ja) | オニウム塩を含む半導体ウェハの処理液 | |
JP7311477B2 (ja) | 次亜塩素酸イオンを含む半導体ウェハの処理液 | |
TWI752651B (zh) | 抑制RuO氣體產生之抑制劑及抑制RuO氣體產生之方法 | |
JP7375032B2 (ja) | 半導体ウエハ用処理液 | |
JP2024024074A (ja) | 次亜塩素酸イオン、及びpH緩衝剤を含む半導体ウェハの処理液 | |
JP7081010B2 (ja) | オニウム塩を含む半導体ウェハの処理液 | |
US20220328320A1 (en) | Semiconductor treatment liquid | |
KR20230048015A (ko) | 차아브롬산 이온 및 pH 완충제를 함유하는 반도체 웨이퍼의 처리액 | |
WO2021172397A1 (ja) | ルテニウムの半導体用処理液 | |
WO2022114036A1 (ja) | 半導体ウェハの処理液及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210204 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210204 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7081010 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |