WO2022114036A1 - 半導体ウェハの処理液及びその製造方法 - Google Patents

半導体ウェハの処理液及びその製造方法 Download PDF

Info

Publication number
WO2022114036A1
WO2022114036A1 PCT/JP2021/043087 JP2021043087W WO2022114036A1 WO 2022114036 A1 WO2022114036 A1 WO 2022114036A1 JP 2021043087 W JP2021043087 W JP 2021043087W WO 2022114036 A1 WO2022114036 A1 WO 2022114036A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
solution
treatment liquid
semiconductor wafer
ions
Prior art date
Application number
PCT/JP2021/043087
Other languages
English (en)
French (fr)
Inventor
伴光 佐藤
由樹 吉川
享史 下田
貴幸 根岸
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2022565395A priority Critical patent/JPWO2022114036A1/ja
Priority to EP21898008.4A priority patent/EP4269656A1/en
Priority to US17/642,059 priority patent/US20220411937A1/en
Priority to CN202180079747.9A priority patent/CN116529421A/zh
Priority to KR1020237021381A priority patent/KR20230111234A/ko
Publication of WO2022114036A1 publication Critical patent/WO2022114036A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/40Alkaline compositions for etching other metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/38Alkaline compositions for etching refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Definitions

  • the present invention relates to a processing liquid for a semiconductor wafer. More specifically, the present invention relates to a processing liquid for a semiconductor wafer, which has a sufficient etching rate for a metal used for a wiring layer of a semiconductor element and can suppress roughening of the metal surface due to etching.
  • the wiring layer plays an important role of outputting an electric signal from a transistor to the outside.
  • the design rules for semiconductor devices have been miniaturized, and the wiring resistance tends to increase.
  • the high-speed operation of the semiconductor element is hindered, and countermeasures are required. Therefore, as the wiring material, a wiring material having higher electromigration resistance and a reduced resistance value than the conventional wiring material is desired.
  • ruthenium Compared to conventional wiring materials such as aluminum and copper, ruthenium has high electromigration resistance and can reduce the resistance value of wiring, so it is particularly noteworthy as a wiring material with a semiconductor element design rule of 10 nm or less. Has been done. In addition to wiring materials, ruthenium can prevent electromigration even when copper is used as the wiring material, so it is also being considered to use ruthenium as a barrier metal for copper wiring. ..
  • the wiring is formed by dry etching or wet etching as in the conventional wiring material.
  • dry etching of ruthenium in-plane non-uniformity due to plasma distribution occurs, and the etching rate increases or decreases depending on the reaction species and the flux or energy of ions, which makes precision etching difficult and difficult.
  • etching is hindered by the strong adhesion of Ru ⁇ 2 , which is a reaction product, to the wall surface of the pattern. Therefore, wet etching is attracting attention as a method for etching ruthenium more precisely.
  • etch-back process is required to suppress the decrease in yield due to the above. That is, since the surface roughness generated by the etching of the metal forming the wiring layer increases the contact resistance between the wiring layers, the etching process that suppresses the roughness of the metal surface is regarded as one of the most important items.
  • the melting rate of the metal that is, the etching rate is also important, and there is a demand for a processing liquid for semiconductors having a sufficient etching rate for the metal and less surface roughness after etching. There is.
  • Patent Document 1 As a method for etching a ruthenium film, pH 12 or higher and a standard redox potential of 300 mV vs. A method of etching a ruthenium film using a chemical solution containing SHE (standard hydrogen electrode) or higher, specifically, a solution containing a halogen oxygen salt such as hypochlorite, chlorite or bromate. Proposed. Further, Patent Document 2 proposes a cleaning method for oxidizing, dissolving and removing ruthenium by using a removing solution in which a strong acid such as nitric acid is further added to cerium (IV) ammonium nitrate.
  • a strong acid such as nitric acid is further added to cerium (IV) ammonium nitrate.
  • Patent Document 3 has ruthenium as a treatment liquid used for etching a metal in a semiconductor wafer, which contains hypochlorite ion and a solvent and has a pH of more than 7 and less than 12.0 at 25 ° C. Wafer processing solutions have been proposed.
  • the treatment liquids described in Patent Documents 1 to 3 contain an oxidizing agent for ruthenium and are removed by oxidizing ruthenium. These treatment liquids can remove ruthenium at a high etching rate, and are particularly useful for removing metals such as ruthenium adhering to the end face portion (bevel) and the back surface portion of a semiconductor wafer. Is.
  • the present inventors have focused on the ion species contained in the treatment liquid containing the hypochlorite ion, and have focused on the hypochlorite ion and the hypochlorite ion.
  • the etching rate can be controlled to 20 ⁇ / min or less, and the storage stability and etching rate of hypochlorite ion can be controlled. It has been found that precise control and surface roughness after etching can be suppressed (see Patent Document 4).
  • the treatment liquid described in Patent Document 4 it is possible to perform etching while suppressing surface roughness after etching, and the treatment liquid is suitable for the etch back process.
  • the treatment liquid has a very low etching rate and has a high etching rate, and there is still room for improvement in that surface roughness after etching is suppressed.
  • an object of the present invention is to provide a processing liquid for a semiconductor wafer, which has a sufficient etching rate for a metal used for a wiring layer of a semiconductor element and can suppress metal surface roughness due to etching. ..
  • the present inventors have conducted diligent studies to solve the above problems.
  • the configuration of the present invention is as follows.
  • Item 1 A processing liquid for semiconductor wafers.
  • the treatment liquid contains at least one hypohalogenate ion and Containing at least one anionic species selected from halogenate ions, subhalogenates, and halide ions.
  • Item 2 The processing liquid for a semiconductor wafer according to Item 1, which contains two or more types of anions as the anion species.
  • Item 5 The treatment liquid for a semiconductor wafer according to any one of Items 1 to 4, which contains at least one selected from hypochlorite ion and hypobromous acid ion as the hypohalogenate ion.
  • the treatment liquid for a semiconductor wafer according to Item 5 which contains hypochlorite ion and hypobromous acid ion as the hypohalogenate ion.
  • the hypobromous acid ion contains at least hypobromous acid ion, and the content of the hypobromous acid ion is 0.0010 mol / L or more and 0.20 mol / L or less with respect to the treatment liquid.
  • Item 3. The processing liquid for a semiconductor wafer according to any one of Items 1 to 6.
  • the semiconductor wafer contains at least one metal selected from Ru, Rh, Ti, Ta, Co, Cr, Hf, Os, Pt, Ni, Mn, Cu, Zr, La, Mo, and W.
  • Item 11 A step of preparing a first solution containing at least one anion species selected from a halogenate ion, a subhalogenate ion, and a halide ion.
  • a step of preparing a second solution containing hypohalogenate ions, and a step of mixing the first solution and the second solution are included.
  • Item 15 The method for producing a processing liquid for a semiconductor wafer according to Item 14, wherein the first solution and the second solution each contain onium ions.
  • Item 16 A kit for preparing a treatment liquid for a semiconductor wafer, which comprises a first solution containing at least one anion species selected from a halide ion, a hypohalite ion, and a halide ion, and a hypothesis.
  • a kit comprising at least a second solution containing halide ions.
  • kits according to Item 16 wherein the oxidizing power of the hypohalogenate ion contained in the second solution is higher than the oxidizing power of the anionic species contained in the first solution.
  • Item 18 The item 16 or 17, wherein at least one of the anion species contained in the first solution is a bromide ion, and the hypochlorite ion contained in the second solution is a hypochlorite ion. kit.
  • the processing liquid for a semiconductor wafer of the present invention maintains a sufficient etching rate for metals used in the wiring layer of semiconductor elements, particularly ruthenium, suppresses surface roughness due to etching, and further improves the stability of the treatment liquid. It is possible.
  • the treatment liquid for the semiconductor wafer of the present invention (hereinafter, also simply referred to as “treatment liquid”) is selected from at least one hypohalogenate ion and at least one selected from halogenate ion, subhalogenate ion, and halide ion. It is characterized in that the content of at least one anion species including the anion species of the species is 0.30 mol / L to 6.00 mol / L.
  • the processing liquid for a semiconductor wafer of the present invention can maintain a sufficient etching rate for ruthenium and the like, and can suppress surface roughness due to etching.
  • the notation "A to B" for the numerical values A and B means “A or more and B or less”.
  • the unit shall be applied to the numerical value A as well.
  • the present inventors speculate as to the reason why the processing liquid for the semiconductor wafer of the present invention maintains a sufficient etching rate for ruthenium and suppresses surface roughness due to etching as follows. That is, when a treatment solution containing hypohalogenate ions is used as an etching solution for ruthenium, for example, when hypochlorite ions are used, it is presumed that ruthenium is oxidized and removed by the following reaction. (Equation 1). 2Ru + 7ClO- + H 2O ⁇ 2RuO 4- + 7Cl- + 2H + (Equation 1)
  • the treatment liquid of the present invention is characterized in that it contains a specific amount of anion species selected from halogenate ions, subhalogenate ions, and halide ions in addition to hypohalogenate ions. Since these anionic species are presumed to be present even on the ruthenium surface to some extent in the treatment liquid, it is presumed that it is possible to control the ruthenium etching rate by hypohalogenate ions to some extent. Ru. It is presumed that the surface roughness due to etching can be suppressed by reducing the etching rate of ruthenium.
  • hypohalogenate ions decrease in concentration in the treatment liquid due to the following disproportionation reaction (Equation 2). 2ClO- ⁇ ClO 2- + Cl- ( Equation 2)
  • the treatment liquid of the present invention contains a specific amount of anionic species selected from halogenate ions, phobic acid ions, and halide ions, the reaction between the hypohalite ions is inhibited.
  • anionic species selected from halogenate ions, phobic acid ions, and halide ions
  • the reaction between the hypohalite ions is inhibited.
  • the decrease in the hypohydranoic acid ion content is suppressed, and therefore, it is presumed that a high etching rate and good stability can be maintained. That is, the disproportionation reaction rate of hypobromous acid ion or hypobromous acid ion is obtained by preliminarily containing chloride ion or bromide ion, which is a decomposition product of the disproportionation reaction, in the treatment liquid of the present invention. Is considered to be able to be reduced.
  • hypobromous acid ion or hypobromous acid ion which is a chemical species that etches ruthenium
  • the change in the concentration of hypobromous acid ion or hypobromous acid ion becomes small, and not only the ruthenium etching rate is stabilized, but also the storage stability of the treatment liquid is improved.
  • the life of the treatment liquid can be extended.
  • the processing liquid for the semiconductor wafer of the present invention not only the wafer processing efficiency per unit time is improved, but also, for example, a semiconductor manufacturing process in which precise etching control is required for the wiring material. It can be suitably used as a treatment liquid for the metal etching back process in the above. Further, since it has the same effect on metals other than ruthenium, it can be used as a treatment liquid not only for ruthenium but also for metals contained in semiconductor wafers.
  • hypohalogenate ion contained in the treatment liquid of the present invention acts as an oxidizing agent for metals such as ruthenium, and forms an oxide of the metal or changes the metal into an ionic species to form a metal layer. Etch.
  • hypochlorite ion contained in the treatment liquid of the present invention examples include hypochlorite ion (ClO ⁇ ), hypobromous acid ion (BrO ⁇ ), and hypoiodous acid ion (IO ⁇ ).
  • the hypochlorite ion may include at least one selected from hypochlorite ion and hypobromous acid ion in terms of etching rate with respect to metal, stability during storage or use, and the like. preferable.
  • hypobromous acid ion is particularly preferable from the viewpoint of the etching rate for ruthenium and the ability to suppress the generation of toxic ruthenium gas (RuO 4 ) that is likely to be generated by the oxidation of ruthenium.
  • the hypohalogenate ion only one kind may be used, or two or more kinds of hypohalogenate ions may be included and used.
  • the treatment liquid of the present invention may contain two types of hypochlorite ions, hypochlorite ion and hypobromous acid ion.
  • the hypohalogenate ion used in the present invention can be generated by dissolving hypohalogenate or hypohalite in a treatment solution.
  • the hypohalite include alkali metal salts, alkaline earth metal salts, organic salts and the like.
  • Specific examples of the alkali metal salt include sodium hypochlorite, sodium hypobromite, sodium hypoiodous acid and the like
  • examples of the organic salt include tetramethylammonium hypochlorite and hypoiodous acid.
  • examples thereof include organic salts containing onium ions such as tetramethylammonium or a quaternary alkylammonium salt such as tetramethylammonium hypoiodous acid.
  • an organic salt containing onium ions such as a quaternary alkylammonium salt, which does not contain a metal that causes a decrease in yield in the semiconductor forming step, and in particular, tetramethylammonium hypochlorite or the following. It is preferable to use tetramethylammonium bromineate.
  • the hypohalite may be an industrially available salt or may be prepared by a known method.
  • the quaternary alkylammonium salt can be prepared by preparing an aqueous solution of tetramethylammonium hydroxide and injecting chlorine, bromine or the like. Further, the tetramethylammonium hydroxide solution is brought into contact with the cation exchange type ion exchange resin to convert the cations in the ion exchange resin into tetramethylammonium ions, and then the sodium hypophosphite solution is circulated to flow the sodium ion and tetramethyl.
  • a solution containing a quaternary alkylammonium salt of hypohalogenate can also be prepared by exchanging ammonium ions.
  • the concentration of hypohalogenate ion in the treatment liquid of the present invention is not particularly limited as long as it does not deviate from the object of the present invention, and may be appropriately set according to the type of metal species to be etched and the etching site. Just do it.
  • the concentration is preferably in the range of 0.0010 mol / L or more and 4.00 mol / L or less with respect to the treatment liquid from the viewpoint of etching rate with respect to metal, stability during storage or use, and the like.
  • hypohalogenate ions it is more preferably in the range of 0.0050 mol / L or more and 2.00 mol / L or less, and particularly preferably in the range of 0.010 mol / L or more and 0.80 mol / L or less.
  • concentration is also referred to as "content”.
  • the concentration range of the hypochlorite ion is more preferably 0.020 mol / L or more and 3.00 mol / L or less, and further preferably. Is 0.060 mol / L or more and 2.00 mol / L or less, more preferably 0.10 mol / L or more and 1.20 mol / L or less, and particularly preferably 0.10 mol / L or more and 0.80 mol / L. It is L or less.
  • the concentration range of the hypobromous acid ion is more preferably 0.0010 mol / L or more and 0.20 mol / L or less. If it is less than 0.0010 mol / L, the rate of etching the metal tends to be low. On the other hand, when it exceeds 0.20 mol / L, the decomposition of hypobromous acid ion is likely to occur, so that the etching rate for the metal becomes difficult to stabilize.
  • the concentration of the hypobromous acid ion is more preferably 0.0010 mol / L or more and 0.20 mol / L or less, more preferably 0.0050 mol. It is more preferably / L or more and 0.20 mol / L or less, and most preferably 0.010 mol / L or more and 0.10 mol / L or less.
  • hypobromous acid ion When hypobromous acid ion is used as the hypochlorite ion, it is preferable to further include hypochlorite ion.
  • hypobromite ion When hypobromite ion is used, bromide ion is generated by reaction with a metal such as ruthenium.
  • hypochlorite ion-chloride ion Since the redox potential (0.89 V (at 25 ° C., pH 14, vs. standard hydrogen electrode)) is higher than the redox potential of hypobromide ion-bromide ion (0.76 V (same as above)), the generated bromide ion Oxides to produce hypobromide ions.
  • hypobromous acid ion when hypobromous acid ion is used, it is possible to maintain the hypobromous acid ion at a predetermined concentration by further including hypobromous acid ion, and the etching rate can be stably controlled. Is preferable because it facilitates.
  • hypobromous acid ion When hypobromous acid ion is further included in the above hypobromous acid ion, the ratio of the content of hypobromous acid ion and hypobromous acid ion and the hypobromous acid ion from the viewpoint of stable control of the etching rate.
  • the (mol) / hypobromous acid ion (mol) is preferably in the range of 0.001 or more and 100 or less, more preferably 0.1 or more and 50 or less, and 0.5 or more and 10 The following range is particularly preferable.
  • the concentration of hypohalogenate ion in the above-mentioned treatment liquid can be obtained by calculation at the time of manufacturing the treatment liquid, or can be confirmed by using a known method. Specifically, as a measurement method, absorption caused by hypohydranoic acid ion is confirmed by the ultraviolet-visible absorptiometry method, and the absorption peak is prepared using a hypohalite ion solution whose absorption peak intensity and concentration are known. The hypohalogenate ion concentration can be obtained from the calibration line obtained.
  • the treatment liquid of the present invention contains at least one anion species selected from halogenate ions, subhalogenates, and halide ions. It is presumed that the surface roughness is suppressed by the interaction of these anion species with the metal.
  • the anion species include halogenate ions such as ClO 3- , BrO 3- , or IO 3- ; subhalogen ions such as ClO 2- , BrO 2- , or IO 2- ; Cl- , Br.
  • Halogen ions such as - or I- or the like can be mentioned.
  • One of these anion species may be contained in the treatment liquid, or two or more kinds of anion species may be contained.
  • anion species when two or more kinds of anion species are contained, for example, when ions having the same oxidation number of halogen atoms are contained such that two kinds among halogenate ions are contained, or when one kind of subhalochloride ion and a halide are contained. It is possible to include ions having different oxidation numbers of halogen atoms so that one type of ion is included.
  • anion species as used herein represents at least one anion species selected from halogenate ions, subhalogenate ions, and halide ions, unless otherwise specified.
  • halide ions are used as the above-mentioned anion species, particularly as the anion species contained in the range of the anion species concentration described later, from the viewpoints of solubility in the treatment liquid, availability, storage stability, cost and the like. Is preferably contained.
  • tetramethylammonium chloride which generates chloride ion, which is one of the halide ions by dissolving, has extremely high solubility (up to 70 wt% under the condition of 25 ° C.) and has a small temperature dependence of solubility.
  • Precipitates that can cause a decrease in etching rate and an increase in surface roughness are unlikely to occur.
  • the treatment liquid contains two or more kinds of anion species.
  • the halide ion and the anion species having different oxidation numbers of halogen atoms from the halide ion are used from the viewpoint of effectively suppressing the roughness of the metal surface. It is particularly preferred that it be included.
  • the anion species used in the present invention can be generated by dissolving an acid, a salt, or the like containing the anion species in a treatment liquid.
  • Acids containing anionic species include halogen acids such as chloric acid, bromic acid, or iodic acid; chloronic acids such as chloric acid, bromine acid, or iodic acid; hydrogen chloride, hydrogen bromide, or iodide. Examples thereof include hydrogen halide such as hydrogen.
  • the salt containing anionic species include alkali metal salts, alkaline earth metal salts, organic salts and the like.
  • examples of the alkali metal salt include potassium chloride, sodium chlorite, potassium bromide, sodium bromine, potassium iodide, sodium iodate and the like
  • examples of the organic salt include tetramethyl chloride.
  • examples thereof include organic salts containing onium ions such as quaternary alkylammonium salts such as ammonium, tetramethylammonium bromide, or tetramethylammonium iodide.
  • the hydrogen halide can also be generated by dissolving a halogen gas such as chlorine gas, bromine gas, or iodine gas in water.
  • the organic salt contains onium ions such as a quaternary alkylammonium salt.
  • the organic salts those that can be particularly preferably used in terms of stability, purity, and cost are chloride or bromide or tetramethylammonium iodide, or chloride or bromide or tetraethylammonium iodide, or. Chloride or bromide or tetrapropylammonium iodide and the like can be mentioned.
  • the acid or salt containing the anion species used to generate the anion species in the treatment liquid an industrially available salt may be used or may be prepared by a known method.
  • the quaternary alkylammonium salt containing the anion species can be prepared by preparing an aqueous solution of tetramethylammonium hydroxide and injecting chlorine, bromine or the like. Further, a tetramethylammonium hydroxide solution is brought into contact with a cation exchange type ion exchange resin to convert the cations in the ion exchange resin into tetramethylammonium ions, and then a halogen acid such as hydrochloric acid, bromic acid, or iodic acid is circulated.
  • a solution containing a quaternary alkylammonium salt of the anion species can also be prepared by the method of exchanging ions.
  • the concentration of at least one of the above anion species is 0.30 mol / L or more and 6.00 mol / L or less.
  • the anion species needs to be contained in the treatment liquid at 0.30 mol / L or more and 6.00 mol / L or less.
  • at least one of the contained anion species is contained in the treatment liquid at 0.30 mol / L or more and 6.00 mol / L or less.
  • the concentration of the anion species is more preferably 0.30 mol / L or more and 3.00 mol / L or less, and 0.30 mol / L or more and 1.00 mol or less. Most preferably, it is / L or less. Further, the above range may be applied as the total concentration of anion species in the treatment liquid of the present invention.
  • the anion species When two or more of the anion species are contained in the treatment liquid, they are contained at the above-mentioned concentrations of 0.30 mol / L or more, 6.00 mol / L or less, etc. from the viewpoint of achieving both sufficient etching rate and smoothness.
  • the anion species is preferably a halide ion.
  • the concentration of the anion species other than the anion species within the above concentration range is not particularly limited, and is appropriate depending on the type of the metal species to be etched and the etching site. It may be set, and the concentration of other anion species may be 0.30 mol / L or more and 6.00 mol / L or less.
  • the total concentration is preferably 6.00 mol / L or less, more preferably 3.00 mol / L or less, and most preferably 1.00 mol / L or less.
  • Ratio of concentration (mol / L) of at least one anion species to the above-mentioned concentration of hypohalogenate ion (mol / L) in the treatment liquid Is not particularly limited, but is usually 2 or more, preferably 4 or more, more preferably 6 or more, and further preferably 8 or more, from the viewpoint of effectively suppressing the roughness of the metal surface. It is preferable, usually 500 or less, preferably 200 or less, more preferably 50 or less, further preferably 10 or less, and usually 2 or more and 500 or less, 4 or more and 200 or less. It is preferably 6 or more and 50 or less, and further preferably 8 or more and 10 or less.
  • the concentration of anionic species in the above treatment liquid can be measured by using an ion chromatograph method. By using this method, it is possible to identify and quantify anion species by appropriately setting the column type and conditions.
  • the treatment liquid of the present invention further contains onium ions.
  • onium ions in addition to the above-mentioned anion species, it becomes possible to further suppress the roughness of the metal surface.
  • the present inventors speculate that the interaction between the onium ions and the anion species or the metal surface enables uniform etching of the metal.
  • onium ion examples include ammonium ion (NH 4 + ), phosphonium ion (PH 4 + ), sulfonium ion (SH 3 + ), and the like.
  • the hydrogen atoms of these onium ions may be independently substituted.
  • Aryl groups and the like can be mentioned.
  • the aryl group in the aralkyl group and the hydrogen atom in the aryl group may be substituted, and the substituent includes a fluorine atom, a chlorine atom, an alkyl group having 1 or more carbon atoms and 15 or less carbon atoms.
  • the substituent includes a fluorine atom, a chlorine atom, an alkyl group having 1 or more carbon atoms and 15 or less carbon atoms. Examples thereof include an alkenyl group having 2 or more carbon atoms and 10 or less carbon atoms, an alkoxy group having 1 or more carbon atoms and 9 or less carbon atoms, and an alkenyloxy group having 2 or more carbon atoms and 9 or less carbon atoms.
  • the onium ion from the viewpoint of having a high effect of suppressing the roughness of the metal surface, it is preferable that all the hydrogen atoms of the onium ion are independently substituted with an alkyl group having 1 or more carbon atoms and 25 or less carbon atoms. , It is more preferable that it is substituted with an alkyl group having 2 or more carbon atoms and 10 or less carbon atoms, and most preferably it is substituted with an alkyl group having 3 or more carbon atoms and 6 or less carbon atoms.
  • Specific examples of such onium ions include tetrapropylammonium ions and tetrabutylammonium ions.
  • onium ions may be bonded via an alkylene group.
  • the carbon number of the alkylene group that bonds the two types of onium ions is preferably 2 or more and 10 or less.
  • Specific examples of such onium ions include hexamethonium ions and decametonium ions.
  • an onium ion may have an alicyclic structure or a heterocyclic structure in which two hydrogen atoms of an onium ion are bonded by an alkyl group or an alkylene group.
  • onium ions include piperidinium ion, imidazolium ion, pyrrolidinium ion, oxazolium ion, pyridinium ion and the like.
  • these ring structures may have a substituent.
  • substituents include chlorine, bromine, fluorine, iodine, an alkyl group having 1 or more carbon atoms and 15 or less carbon atoms, an alkenyl group having 2 or more carbon atoms and 10 or less carbon atoms, an alkoxy group having 1 or more carbon atoms and 9 or less carbon atoms.
  • an alkenyloxy group having 2 or more carbon atoms and 9 or less carbon atoms can be mentioned.
  • onium ion having the above ring structure 1,1-dimethylpiperidinium ion, 1-butyl-2,3-dimethylimidazolium ion, 1-butyl-1-methylpyrrolidinium ion, 5-azoniaspiro [ 4,4] Nonan ion and the like can be mentioned.
  • the two types of onium ions having the above ring structure may be bonded via an alkylene group.
  • the carbon number of the alkylene group that bonds the two types of onium ions is preferably 2 or more and 10 or less.
  • onium ion 3,3'-methylenebis (1-tert-butyl-3-imidazolium) ion or 3,3'-methylenebis (1- (2,6-diisopropylphenyl) -3) -Imidazolium) Ions and the like can be mentioned.
  • the concentration of onium ions when the above-mentioned onium ions are contained in the treatment liquid of the present invention is not particularly limited, and may be appropriately determined in consideration of the metal species and the like to be the target of the treatment liquid. If the concentration of onium ions is too high, the etching rate tends to decrease and uneven etching tends to occur on the metal surface. On the other hand, if the concentration of onium ions is too low, not only the effect of suppressing surface roughness tends to decrease, but also the amount of metal that can be treated decreases, so that the number of times the treatment liquid is reused tends to decrease. It is in.
  • the concentration of onium ion is usually 0.000010 mol / L or more and 7.00 mol / L or less, and usually 0.000010 mol / L or more and 6.00 mol / L or less, preferably 0.000010 mol / L. As mentioned above, it is more preferably 3.00 mol / L or less, further preferably 0.0010 mol / L or more and 2.00 mol / L or less, and 0.010 mol / L or more and 1.00 mol / L or less. Is particularly preferred.
  • Examples of the method of adding onium ions to the treatment liquid of the present invention include a method of generating onium ions by dissolving an onium salt composed of onium ions and anions in the treatment liquid of the present invention.
  • an onium ion is contained as a counter ion of the hypohalogenate ion and / or an anion species
  • the concentration of the onium ion may be determined in consideration of the content of these onium ions. That is, when the hypohalogenate ion and / or the onium salt of the anionic species is used for the preparation of the treatment liquid of the present invention, the concentration of the onium salt to be added and the total of the onium ions to be added should be within the above range. It should be.
  • the compound containing the onium ion is used so that the concentration of the onium ion to be added is within the above range. It may be added. When adding onium ions, only one type may be added, or two or more types may be added in combination. It may contain two or more types of onium ions.
  • solvent In the treatment liquid of the present invention, the residue other than the hypohalogenate ion, the anion species, and other additives described in detail below is a solvent, and after preparing each component, the total amount is 100% by weight. The balance is adjusted with a solvent so as to be.
  • Water is most preferably used as the solvent.
  • the water contained in the treatment liquid of the present invention is preferably water from which metal ions, organic impurities, particles and the like have been removed by distillation treatment, ion exchange treatment, filter treatment, various adsorption treatments, etc., particularly pure water or ultrapure water. Water is preferred.
  • an organic solvent may be used as long as the hypohalogenate ion is stably present.
  • the organic solvent for example, acetonitrile, sulfolane and the like are used.
  • water and an organic solvent may be used in combination as the solvent.
  • the weight ratio of water and the organic solvent may be about 60/40 or more and 99.9 / 0.1 or less.
  • the content of the solvent in the treatment liquid is not particularly limited, but is usually 30% by weight or more, preferably 80% by weight or more, preferably 90% by weight, from the viewpoint that the above components can be sufficiently dissolved.
  • the above is more preferable, 94% by weight or more is further preferable, and usually 99% by weight or less, 98% by weight or less is preferable, and 97% by weight or less is more preferable.
  • the treatment liquid of the present invention is derived from the addition of anionic species and onium ions, and also contains a metal (or a metal ion, hereinafter referred to as a metal including the case of a metal ion) in the production of the treatment liquid.
  • a metal or a metal ion, hereinafter referred to as a metal including the case of a metal ion
  • the contained metal include lithium, sodium, potassium, aluminum, magnesium, calcium, chromium, manganese, iron, nickel, cobalt, copper, silver, cadmium, barium, zinc, lead, or ions thereof. Can be mentioned. However, since these metals can affect the stability of alkylammonium salts, their abundance is preferably small.
  • the metal acts as a catalyst for the decomposition of the alkyl group in alkali and promotes the decomposition reaction.
  • the content of the metal in the treatment liquid should be small, but the inclusion of a small amount of metal makes it possible to maintain the flatness of the metal surface after the etching treatment (prevent surface roughness). Therefore, the metal content in the treatment liquid is selected from lithium, sodium, potassium, aluminum, magnesium, calcium, chromium, manganese, iron, nickel, cobalt, copper, silver, cadmium, barium, zinc, or lead.
  • any one of the metals is 0.01 pt or more and 1 ppb or less, more preferably 1 pt or more and 1 ppb or less, further preferably 1 pt or more and 500 pt or less, and 10 pt or more. Most preferably, it is 200 ppt or less.
  • the metal content in the treatment liquid can be measured using an inductively coupled plasma mass spectrometer (for example, ICP-MS, Agilent 8900, manufactured by Agilent Technologies) as described in Examples described later. When the metal content exceeds 1 ppb, the metal content can be suppressed to 1 ppb or less by filtration, distillation, ion exchange, or the like.
  • the treatment liquid of the present invention may contain additives that have been conventionally used in the treatment liquid for semiconductors, as long as the object of the present invention is not impaired.
  • an acid e.g., an acid, a metal anticorrosion agent, a fluorine compound, an oxidizing agent, a reducing agent, a chelating agent, a surfactant, a pH adjusting agent, an antifoaming agent and the like can be added.
  • the pH of the treatment liquid is 7 or more. It is preferably 14 or less.
  • the pH is less than 7, the etching rate tends to be unstable because the decomposition of hypohalogenate ion, which is an oxidizing agent, proceeds. Further, when the pH exceeds 14, it becomes difficult for the metal to dissolve, and it tends to be difficult to obtain a sufficient etching rate.
  • the pH of the treatment liquid is more preferably 7 or more and 13 or less, more preferably 8 or more and 12 or more. It is more preferably 8.5 or more, and most preferably 11 or less.
  • the pH of the treatment liquid is preferably 7 or more and 14 or less, and 8 or more and 14 or less for the same reason as described above. More preferably, it is 9 or more and less than 13.
  • the pH of the treatment liquid is preferably 7 or more and 14 or less, preferably 8 or less, for the same reason as described above. As mentioned above, 14 or less is more preferable, and 9 or more and 13 or less are most preferable.
  • Acid or alkali can be added to the treatment liquid to adjust the pH of the treatment liquid.
  • the acid may be either an inorganic acid or an organic acid, and examples thereof include hydrofluoric acid, hydrochloric acid, hydrobromic acid, nitric acid, acetic acid, sulfuric acid, peroxodisulfate, and formic acid.
  • a widely known acid used in a treatment liquid for semiconductors can be used without any limitation.
  • the alkali it is preferable to use an organic alkali because it does not contain metal ions that cause a decrease in yield in semiconductor manufacturing.
  • tetraalkylammonium hydroxide which is easily industrially available and can stably coexist with the oxidizing agent contained in the treatment liquid, is preferable.
  • examples of such tetraalkylammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, choline and the like.
  • the organic alkali is more preferably tetramethylammonium hydroxide because the number of hydroxide ions per unit weight is large and a high-purity product is easily available.
  • the redox potential (at 25 ° C., pH 14, vs. standard hydrogen electrode) of the treatment liquid is not particularly limited, but is preferably 500 mV or more and 1500 mV or less, more preferably 550 mV.
  • the above is 1500 mV or less, more preferably 650 mV or more, and 1500 mV or less.
  • the redox potential is less than 500 mV, the oxidizing power tends to be low and the etching rate tends to be low.
  • it exceeds 1500 mV although the oxidizing power is high, the hypohalogenate ion tends to be decomposed and the treatment liquid tends to be unstable.
  • the redox potential of the treatment liquid is the type and / or concentration of hypohydric acid ion, halogenate ion, hypohalogenate ion, or halide ion contained in the treatment liquid, and the type and / of the above-mentioned other additives. Alternatively, it can be easily controlled by appropriately adjusting the concentration, the pH of the treatment liquid, the temperature of the treatment liquid, and the like.
  • the processing liquid for the semiconductor wafer of the present invention having the redox potential in the above range adjusted in this manner can be suitably used as the processing liquid for the metal contained in the semiconductor wafer.
  • the method for producing the processing liquid for the semiconductor wafer of the present invention is not particularly limited. Specifically, the hypohalogenate ion and the compound that generates the anion species are added to a solvent such as water so as to have a desired concentration, and further, an additive to be added as necessary is added. , The desired pH may be adjusted to obtain the treatment liquid of the present invention. Alternatively, a plurality of solutions (hereinafter, also referred to as “preparation materials”) in which each component is separately blended are prepared, and these preparation materials are mixed immediately before the processing of the semiconductor wafer to obtain the treatment liquid of the present invention. May be good.
  • the components contained in the preparation materials include the preparation materials after the preparation materials are mixed.
  • the reaction of the components may generate either the hypohalogenate ion and / or the anion species.
  • the pH, composition, and the like of the treatment liquid may change due to changes over time, and the etching performance such as the etching rate may change. Therefore, from the viewpoint of suppressing deterioration of etching performance due to aging, it is preferable to prepare a plurality of preparation materials and mix these preparation materials immediately before processing the semiconductor wafer to obtain the treatment liquid of the present invention. ..
  • the number of preparation materials may be prepared for each component, but it is preferable to use two types of preparation materials in consideration of operability at the time of mixing and the like. ..
  • a method for producing a semiconductor wafer processing liquid specifically, a step of preparing a first solution (preparation material 1) (a step of preparing a first solution), a second step.
  • Production comprising a step of preparing a solution (preparation material 2) (a second solution preparation step) and a step of mixing these preparation materials (preferably immediately before processing a semiconductor wafer) (mixing step).
  • the method will be described in detail.
  • the present production method may include steps other than the above-mentioned first solution adjusting step, second solution adjusting step, and mixing step.
  • the advantage of using the two types of preparation materials, the first solution and the second solution is, for example, improvement of the stability of etching performance when relatively unstable hypohalogenate ions are to be used as the treatment liquid.
  • the treatment liquid is one liquid, it takes time from the production of the hypohalogenate ion to the processing of the semiconductor wafer at the semiconductor manufacturing factory, so that the hypohalogenate ion decomposes. Etching performance such as etching speed may change.
  • the treatment liquid is prepared as two kinds of preparation materials, the first solution and the second solution, and the preparation material 1 and the preparation material 2 are mixed to generate hypohalogenate ions.
  • the semiconductor manufacturing plant manufactures a treatment solution containing hypohydranoic acid ions immediately before processing the semiconductor wafer, so that decomposition of hypohydranoic acid ions can be suppressed and stable. It is possible to exhibit the improved etching performance.
  • the treatment liquid of the present invention is used in the etchback step, microfabrication is required, and precise etching rate and surface roughness control are required. Therefore, the above embodiment is preferable.
  • the preparation material in the present specification may be treated as the above-mentioned semiconductor wafer processing liquid, and in this case, it may be referred to as a semiconductor wafer processing liquid preparation material.
  • the components in the two kinds of solutions constituting each preparation material are as follows.
  • the halide ions are contained in the first solution.
  • the second solution may contain hypohalogenate ions having higher oxidizing power than the halide ions in the first solution.
  • hypohalogenate ions include hypobromous acid ions for bromide ions, and hypobromous acid ions and hypobromous acid ions for iodide ions.
  • the solution containing the bromide ion is used as the first solution, and the second solution is used.
  • the solution may be a solution containing hypobromous acid ion.
  • Hypochlorite ion-chloride ion redox potential (0.89 V (at 25 ° C, pH 14, vs. standard hydrogen electrode)) is hypochlorite ion-chloride ion redox potential (0.76 V (same as above))
  • hypochlorite ions can oxidize bromide ions to generate hypochlorite ions, which can generate hypochlorite ions.
  • a treatment liquid containing the above can be produced.
  • the method for preparing the first solution is not particularly limited. Specifically, at least one anion species selected from a halogenate ion, a subhalogenate ion, and a halide ion can be added to a solvent such as water to prepare a first solution. Other additives and the like can be added to the first solution, if necessary.
  • hypohalite ion is generated by mixing the two preparation materials of the first solution and the second solution, when the bromide ion or iodide ion is contained in the first solution.
  • the ion can be obtained, for example, by dissolving a salt or the like that generates the ion at the time of dissolution in a solution.
  • a salt or the like that generates the ion at the time of dissolution in a solution.
  • metal salts such as sodium bromide and sodium iodide
  • organic salts such as tetraalkylammonium bromide and tetraalkylammonium iodide
  • halogen gas such as bromine gas or iodine gas
  • hydrogen bromide or hydrogen iodide examples include hydrogen halide.
  • organic salts, halogen gases, and hydrogen halides are preferable because they do not contain metals that cause a decrease in yield in semiconductor production.
  • the raw material of the bromide ion or the iodide ion is an organic salt.
  • organic salts those that can be particularly preferably used in terms of stability, purity, and cost are bromide or tetramethylammonium iodide, bromide or tetraethylammonium iodide, or bromide.
  • an organic salt containing onium ion such as tetrapropylammonium iodide can be mentioned.
  • organic salt used in the present invention for example, a salt obtained by producing tetraalkylammonium bromide from tetraalkylammonium ion and bromide ion can be used.
  • the method for producing tetraalkylammonium bromide is simply to mix an aqueous solution containing tetraalkylammonium hydroxide and an aqueous solution containing bromide ions, or a bromine-containing gas that generates bromide ions when dissolved in water, such as hydrogen bromide. good.
  • tetraalkylammonium hydroxide used for producing tetraalkylammonium bromide examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. Among them, tetramethylammonium hydroxide is more preferable because the number of hydroxide ions per unit weight is large and a high-purity product is easily available.
  • Bromide ion sources used to produce tetraalkylammonium bromide include hydrogen bromide, lithium bromide, sodium bromide, potassium bromide, rubidium bromide, cesium bromide, or bromide. Examples include ammonium. Among them, hydrogen bromide is preferable because it contains substantially no metal, is easily available industrially, and a high-purity product is easily available. In the above, bromide is taken up as an organic salt, but iodide can also be used in the same manner as described above.
  • the concentration of at least one anion species selected from the halide ion, the subhalotic acid ion, and the halide ion contained in the first solution is mixed with the second solution to obtain the treatment solution of the present invention. If this is the case, the desired concentration may be appropriately set. For example, when the first solution and the second solution are mixed so as not to generate hypohalogenate ions, the anion species contained in the first solution in consideration of the volume of the treated liquid after mixing. You can set the concentration. On the other hand, when the first solution and the second solution are mixed to generate hypohalogenate ions, the concentration of halide ions contained in the first solution is the same as the generation of hypohalogenate ions. It may be set in consideration of the amount of halide ions consumed.
  • the concentration of at least one anion species selected from the halogenate ion, the subhalogenate ion, and the halide ion in the first solution is usually 0 from the viewpoint of effectively suppressing the roughness of the metal surface. It is .4 mol / L or more, preferably 0.7 mol / L or more, more preferably 1.5 mol / L or more, and usually 6.0 mol / L or less, 2.5 mol / L. It is preferably less than or equal to, and more preferably 1.5 mol / L or less. Further, the above range may be applied as the total concentration of anion species in the first solution.
  • the first solution may contain a component other than the halogenate ion, and may contain, for example, the above-mentioned solvent and other additives.
  • the pH of the first solution is not particularly limited, and it is preferable to mix it with the second solution and appropriately set the pH to be, for example, the pH desired for the treatment liquid of the present invention.
  • the pH is preferably 7 or more and 14 or less, and more preferably 8 or more and 14 or less.
  • a solution in this pH range can reduce the pH drop that occurs when mixed with a second solution, which will be described later, and can stably produce, store, and use the finally obtained treatment solution. It becomes.
  • the pH of the first solution is less than 8, adjust the pH and amount of the first solution so that the pH of the treated solution after mixing becomes alkaline when mixed with the second solution. Just do it.
  • the other components contained in the first solution it is preferable to use the above-mentioned solvent described in the treatment liquid of the present invention, other additives, and a pH adjuster.
  • the method for preparing the second solution is not particularly limited. Specifically, hypohalogenate ions can be added to a solvent such as water, and if necessary, an additive to be added can be added to obtain a second solution of the present invention.
  • hypobromous acid ion for example, sodium hypochlorite, sodium hypobromous acid, tetraalkylammonium hypobromous acid, tetraalkylammonium hypobromous acid, or the like can be used.
  • tetraalkylammonium hypochlorite or tetraalkylammonium hypobromous acid which does not contain a metal that causes a decrease in yield in the semiconductor forming step.
  • the tetraalkylammonium hypohalide may be prepared by a known method.
  • an aqueous solution containing tetraalkylammonium hypochlorous acid can be prepared by preparing an aqueous solution of tetraalkylammonium hydroxide and blowing chlorine into it.
  • the tetraalkylammonary hydroxide solution is brought into contact with the cation exchange type ion exchange resin, the cation in the ion exchange resin is changed to the tetraalkylammonium ion, and then the sodium hypochlorite solution is circulated to form sodium ions and tetraalkyl.
  • a solution containing tetraalkylammonary hypochlorite can also be prepared by exchanging ammonium ions.
  • the concentration of the hypohalogenate ion contained in the second solution may be appropriately set so as to be a desired concentration when mixed with the first solution to prepare the treatment liquid of the present invention.
  • the hypohalogenate contained in the second solution is taken into consideration in consideration of the volume of the treated liquid after mixing.
  • the ion concentration may be set.
  • the concentration of hypohalogenate ions contained in the second solution is that of hypohalogenate ions. It may be set in consideration of the amount of hypohalogenate ion consumed for generation.
  • the concentration of hypohalogenate ion in the second solution is usually 0.05 mol / L or more, and 0.1 mol / L or more, from the viewpoint of effectively suppressing the roughness of the metal surface. It is more preferably 0.2 mol / L or more, and usually 3.5 mol / L or less, preferably 0.8 mol / L or less, and more preferably 0.3 mol / L or less. It is preferably 0.2 mol / L or less, and more preferably 0.2 mol / L or less.
  • the ratio of the amount of the second solution used to the amount of the first solution used is not particularly limited, but effectively suppresses the roughness of the metal surface. From this point of view, the weight ratio is usually 0.1 or more, preferably 0.15 or more, more preferably 0.25 or more, and usually 10 or less, and 6 or less. Is preferable, and 4 or less is more preferable.
  • Concentration of at least one anion species in the first solution (mol / L) relative to the concentration of hypohalogenate ions in the second solution (mol / L) (total of anion species in the first solution) is not particularly limited, but is usually 2 or more and 4 or more from the viewpoint of effectively suppressing the roughness of the metal surface. It is preferably 6 or more, more preferably 8 or more, and usually 500 or less, preferably 200 or less, more preferably 50 or less, and 10 or less. The following is more preferable.
  • the second solution may contain components other than the anionic species, and may contain, for example, the above-mentioned solvent and other additives.
  • the pH of the second solution is not particularly limited, and it is preferable to mix it with the first solution and appropriately set the pH to be, for example, the pH desired for the treatment liquid of the present invention.
  • the pH is preferably 7 or more and 14 or less, more preferably 10 or more and 14 or less, and particularly preferably 12 or more and 14 or less.
  • the pH drop that occurs when mixed with the first solution can be reduced, and the treatment solution of the present invention can be stably produced, stored, and used.
  • the other components contained in the second solution it is preferable to use the above-mentioned solvent described in the treatment liquid of the present invention, other additives, and a pH adjuster.
  • the oxidizing power of the anion species contained in the first solution and the oxidizing power of the hypohalogenate ion contained in the second solution are not particularly limited and can be appropriately set, but the roughness of the metal surface is effective. From the viewpoint of suppressing the above, the oxidizing power of the hypohalogenate ion is preferably higher than that of the anion species.
  • the temperature is low, the light is shielded, and the amine is not contained.
  • the amine is not contained.
  • the temperature is low, the light is shielded, and the amine is not contained.
  • the amine is not contained.
  • the effect of suppressing the decomposition of oxidizing agents and anionic species in the treatment liquid can be expected.
  • the treatment liquid and the preparation material in the container filled with the inert gas it is possible to prevent the contamination of carbon dioxide, so that the stability of the treatment liquid can be maintained.
  • the inner surface of the container that is, the surface in contact with the treatment liquid, is made of glass or an organic polymer material. This is because if the inner surface of the reaction vessel is made of glass or an organic polymer material, impurities such as metals, metal oxides, and organic substances can be further reduced.
  • At least one solution selected from the first solution and the second solution contains onium ions, and in particular, the first solution and the second solution. It is preferably contained in both solutions of 2.
  • onium ion the same aspect as the onium ion described in the above-mentioned treatment liquid of the present invention can be applied.
  • the concentration of onium ions in at least one solution selected from the first solution and the second solution is not particularly limited, but is usually 0.00002 mol / L or more from the viewpoint of effectively suppressing the roughness of the metal surface.
  • the total concentration of onium ions contained in these solutions with respect to the total amount of the first solution and the second solution is not particularly limited, but is usually 0. It is 0.001 mol / L or more, preferably 0.001 mol / L or more, more preferably 0.01 mol / L or more, and usually 6.0 mol / L or less, 3.0 mol / L or less. It is preferably 2.0 mol / L or less, more preferably 1.0 mol / L or less.
  • the concentration of each component contained in the two preparation materials of the first solution and the second solution in the method for producing the treatment liquid of the present invention is not particularly limited, and the preparation materials are mixed and then used as the treatment liquid. It may be prepared so as to have the desired formulation in the case.
  • hypochlorite ion of 0.001 mol / L or more and 2.0 mol / L or less
  • chloride ion is 0.30 mol / L or more and 5.00 mol / L or less
  • chlorate ion is 0.30 mol / L or more and 5.00 mol / L or less
  • chlorate ion is 0.60 mol / L or more, 6.0 mol / L or less, and chlorate ions.
  • the second solution is a solution containing hypochlorite ions of 0.002 mol / L or more and 4.0 mol / L or less
  • the semiconductor is used.
  • these preparation materials may be mixed to prepare a processing liquid for a semiconductor wafer.
  • the hypochlorous acid ion in the treatment solution contains hypochlorite ion and hypobromine acid ion 0.001 mol / L or more and 2.0 mol / L or less, and the chloride ion is 0.
  • chloride ion is used as the first solution.
  • the second solution is a solution containing hypochlorite ions of 0.002 or more and 4.0 mol / L or less, and these preparation materials are mixed before processing the semiconductor wafer to process the semiconductor wafer. And it is sufficient.
  • a widely known method can be used as a mixing method of the semiconductor chemical solution.
  • a method using a mixing tank, a method of mixing in the piping of a semiconductor manufacturing apparatus (in-line mixing), a method of mixing by simultaneously applying a plurality of liquids on a wafer, and the like can be preferably used.
  • the preparation materials are mixed in advance from the viewpoint of reliably generating hypohalogenate ions, and then the next step is performed. It is preferable to contact the semiconductor wafer after sufficiently generating the hypohalogenate ion.
  • the temperature at which the above-mentioned preparation materials are mixed is not particularly limited as long as the treatment liquid after mixing becomes uniform, and may be appropriately set in the range of usually 0 ° C. or higher and 80 ° C. or lower.
  • the mixing time is short because the earlier the generation of the hypohalogenate ions is, the better.
  • a method of raising the temperature at the time of mixing can be mentioned, but the higher the temperature, the more the decomposition of hypohalophobic acid ions contained in the second solution or the treatment liquid after mixing It tends to progress easily.
  • the temperature at the time of mixing the preparation materials is more preferably 10 ° C. or higher and 60 ° C. or lower, more preferably 20 ° C. As mentioned above, it is most preferable that the temperature is 50 ° C. or lower.
  • the mixing time of the preparation material when the first solution and the second solution are mixed and hypohalogenate ions are not generated, the temperature and composition concentration of the mixed treatment liquid are uniform. It may be done until it becomes, and usually it may be set appropriately within 30 minutes. On the other hand, when the first solution and the second solution are mixed to generate hypohalogenate ions, it is better that the mixing time is long in order to surely generate hypohalogenate ions. From the viewpoint of throughput, it may be appropriately set within 60 minutes, and the lower limit of the mixing time does not need to be set in particular, but is usually 5 minutes or more.
  • a processing liquid for a semiconductor wafer particularly a processing liquid for a semiconductor wafer of the present invention can be manufactured.
  • the processing liquid of the semiconductor wafer manufactured by this manufacturing method and the processing liquid of the present invention described above not only the wafer processing efficiency per unit time is improved, but also, for example, precise etching with respect to the wiring material is performed.
  • It can be suitably used as a treatment liquid for a metal etchback process in a semiconductor manufacturing process, which requires control of the above.
  • it since it has the same effect on metals other than ruthenium, it can be used as an etching solution not only for ruthenium but also for metals contained in semiconductor wafers.
  • the treatment liquid for the semiconductor wafer of the present invention a method of using the processing liquid for the semiconductor wafer manufactured by the present manufacturing method or the above-mentioned treatment liquid (hereinafter, these are collectively referred to as “the treatment liquid for the semiconductor wafer of the present invention”) will be described.
  • the preparation material according to another embodiment of the present invention is a first solution containing at least one anion species selected from a halogenate ion, a hypohalite ion, and a halide ion, and a hypohalogenate. It is a material for preparing a treatment liquid for a semiconductor wafer, which comprises a second solution containing ions, and the conditions of the first solution and the second solution described above are the conditions of the first solution and the second solution described above. The conditions can be applied as well.
  • the contents of the first solution and the second solution contained in the preparation material of the present invention are not particularly limited, but the preparation material may be composed of only the first solution and the second solution.
  • the content of the first solution in the preparation material is not particularly limited, but is usually 10% by weight or more, preferably 15% by weight or more, from the viewpoint of effectively suppressing the roughness of the metal surface. It is more preferably 20% by weight or more, and usually 90% by weight or less, preferably 60% by weight or less, more preferably 40% by weight or less, and more preferably 30% by weight or less. More preferred.
  • the content of the second solution in the preparation material is not particularly limited, but is usually 10% by weight or more, preferably 40% by weight or more, from the viewpoint of effectively suppressing the roughness of the metal surface. It is more preferably 60% by weight or more, further preferably 70% by weight or more, and usually 90% by weight or less, preferably 85% by weight or less, and preferably 80% by weight or less. More preferred.
  • kit A kit (also simply referred to as a "kit"), which is another embodiment of the present invention, is a kit for preparing a treatment solution for a semiconductor wafer, and is composed of a halide ion, a hypohalogenate ion, and a halide ion. It is a kit (kit for producing a processing liquid for a semiconductor wafer) including at least a first solution containing at least one selected anion species and a second solution containing hypochlorous acid ions. As the first solution and the second solution thereof, the above-mentioned first solution and the second solution can be used.
  • the aspect of the kit is not particularly limited, and for example, a container containing (or storing or retaining) the above-mentioned first solution and a container containing (or storing or retaining) the above-mentioned second solution.
  • the aspect as a container having two or more solution accommodating spaces and accommodating the first solution and the second solution in the two solution accommodating spaces, respectively. May be.
  • the first solution and the second solution can be stored, transported, and used in a container. Further, by mixing each solution contained in such a kit, a processing liquid for a semiconductor wafer can be prepared.
  • each container When used in the form of a kit comprising a container containing a first solution and a container containing the second solution described above, the aspect of each container is not particularly limited and the volume of each container is stored. It can be appropriately designed according to the amount of the solution, for example, it may be 20000 cm 3 or more and 200,000 cm 3 or less, and it may be 4000 cm 3 or more and 20000 cm 3 or less, and the material of each container may be. It is preferable that the material is a material that does not easily react with the contained solution and has little elution of impurities. Further, the amount of the solution contained in each container can be appropriately designed according to the amount of the treatment liquid to be finally obtained.
  • the container for example, PP (polypropylene), PE (polyethylene), PTFE, PFA, etc., or other than these, a metal or glass container whose inner wall is coated with these materials can be used.
  • the volume and container of the solution accommodating space in the embodiment as a container having two or more solution accommodating spaces and accommodating the first solution and the second solution in the two solution accommodating spaces, respectively.
  • the above-mentioned volume and material can be similarly applied to the material of.
  • the kit may be a kit containing only the first solution and the second solution, or may be a kit of three or more liquids further including solutions other than these solutions, but production of a treatment liquid. From the viewpoint of simplification of the process, it is preferable that the kit includes only the solution of the first solution and the solution of the second solution. Further, the method for manufacturing the kit is not particularly limited, and the kit can be manufactured by a known method according to each embodiment.
  • the semiconductor wafer processing liquid of the present invention not only improves the wafer processing efficiency per unit time, but also requires, for example, precise etching control of the wiring material, which is a metal in a semiconductor manufacturing process. It can be suitably used as a treatment liquid for the etching back process of. Further, since it has the same effect on metals other than ruthenium, it can be used as an etching solution not only for ruthenium but also for metals contained in semiconductor wafers.
  • the metal contained in the semiconductor wafer to which the treatment liquid of the present invention is applied Ru, Rh, Ti, Ta, Co, Cr, Hf, Os, Pt, Ni, Mn, Cu, Zr, La, Mo , Or W and the like, and include at least one metal selected from these.
  • These metals can be applied as single metal species or alloys of multiple metal species.
  • it can be suitably used for metals such as Ru, Rh, Co, Cu, Mo, and W, which are useful as wiring layers.
  • Ru, Co, Mo or W is preferable.
  • the metal may be formed by any method, and methods widely known in the semiconductor manufacturing process, such as CVD, ALD, PVD, sputtering, or plating, can be used.
  • the metal may be an intermetallic compound, an ionic compound, a complex or the like. Further, the metal may be exposed on the surface of the wafer, or may be covered with another metal, a metal oxide film, an insulating film, a resist, or the like. Even when the metal is covered with another material, when the metal comes into contact with the treatment liquid of the present invention and the metal is dissolved, a sufficient etching rate and surface roughness can be achieved at the same time.
  • the treatment liquid of the present invention when used in the metal wiring forming step, it is as follows. First, a substrate made of a semiconductor (for example, Si) is prepared. The prepared substrate is subjected to an oxidation treatment to form a silicon oxide film on the substrate. After that, an interlayer insulating film made of a low dielectric constant (Low-k) film is formed, and via holes are formed at predetermined intervals. After forming the via hole, the metal is embedded in the via hole by thermal CVD, and a metal film is further formed. By treating this metal film with the treatment liquid of the present invention, it becomes possible to perform flattening while maintaining a sufficient etching rate.
  • a substrate made of a semiconductor for example, Si
  • the method of contacting the treatment liquid of the present invention with the semiconductor wafer on which the metal layer is formed is not particularly limited.
  • the processing liquid of the present invention may be flowed on the wafer while rotating the semiconductor wafer, or the semiconductor wafer may be immersed in a container filled with the processing liquid of the present invention and brought into contact with the wafer.
  • the temperature at which the metal is etched by the treatment liquid of the present invention is not particularly limited, and may be appropriately determined in consideration of the etching rate of the metal, the stability of the treatment liquid, and the like. The higher the temperature, the worse the stability of the treatment liquid tends to be. Therefore, it is preferable that the treatment temperature is low. On the other hand, the etching rate of the metal tends to increase as the temperature increases. From the viewpoint of achieving both the stability of the treatment liquid and the etching rate, the temperature for etching the metal is preferably 10 ° C. or higher and 90 ° C. or lower, more preferably 15 ° C. or higher and 70 ° C. or lower, and 20 ° C. or higher and 60 ° C. or lower. Is most preferable.
  • the processing time when etching a metal with the processing liquid of the present invention is in the range of 0.1 minutes or more and 120 minutes or less, preferably 0.3 minutes or more and 60 minutes or less, and the etching conditions and the semiconductor element used. It may be selected as appropriate.
  • the treatment liquid can be removed by cleaning the surface of the semiconductor wafer in contact with the treatment liquid with a rinsing liquid or the like.
  • the rinsing liquid after using the treatment liquid of the present invention is not particularly limited, and an organic solvent such as alcohol or deionized water can be used.
  • the rinsed semiconductor wafer can be used in the next step, such as laminating other wiring materials, after drying the wafer surface, if necessary.
  • Tetramethylammonium hypochlorite, tetramethylammonium chlorate, and a semiconductor wafer for evaluation used in Examples and Comparative Examples were prepared by the following methods.
  • concentration of metal and metal ions was measured by an inductively coupled plasma mass spectrometer (ICP-MS, Agent8900, manufactured by Azilent Technologies).
  • Example 1 Li 0.01ppt, Na 8ppt, Mg 1ppt, Al 50ppt, K 2ppt, Ca 10ppt, Cr 8ppt, Mn 0.5ppt, Fe 11ppt, Co 3ppt, Ni 2ppt, Cu 0.2ppt, It was Zn 11 ppt, Ag 0.01 ppt, Cd 0.5 ppt, Ba 2 ppt, and Pb 10 ppt.
  • the ruthenium film, molybdenum film, and tungsten film used in Examples and Comparative Examples were formed as follows.
  • the ruthenium film and the molybdenum film were obtained by forming an oxide film on a silicon wafer using a batch thermal oxidation furnace and forming 1200 ⁇ of ruthenium or 1000 ⁇ of molybdenum on the oxide film by a sputtering method.
  • the tungsten film was obtained by forming a thermal oxide film in the same manner and forming 8000 ⁇ of tungsten by the CVD method.
  • the sheet resistance was measured by a four-probe resistance measuring device (Lorester GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) and converted into a film thickness, which was used as the metal film thickness before etching.
  • thermometer protection tube manufactured by Cosmos Bead, bottom-sealed type
  • thermometer manufactured by Cosmos Bead, bottom-sealed type
  • the solution is provided at the tip of a PFA tube (manufactured by Freon Industries, Ltd., F-8011-02), which is connected to a chlorine gas bomb and a nitrogen gas bomb in one opening so that chlorine gas / nitrogen gas can be switched arbitrarily.
  • gas cleaning bottle AsOne, gas cleaning bottle, model number 2450/500
  • Carbon dioxide in the gas phase was expelled by flowing nitrogen gas from the PFA tube at 200 ccm (25 ° C.) for 20 minutes.
  • a magnet stirrer (C-MAG HS10 manufactured by AsOne) was installed in the lower part of the three-necked flask, and while rotating at 300 rpm, the outer periphery of the three-necked flask was cooled with ice water and chlorine gas (manufactured by Fujiox, specification purity 99. 4%) was supplied at 200 ccm (25 ° C.) for 180 minutes, and a 0.75 mol / L tetramethylammonium hypochlorite solution (0.75 mol / L tetramethylammonium chloride, 0.1 mol / L tetramethylammonium hydroxide) was supplied. Included). At this time, the liquid temperature during the reaction was 11 ° C.
  • a strongly acidic ion exchange resin (Amberlite IR-120BNa manufactured by Organo Corporation) was put into a glass column (Biocolumn CF-50TK manufactured by AsOne) having an inner diameter of about 45 mm.
  • 1 L of 1N hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd., for volumetric analysis) is passed through the ion exchange resin column to replace it with a hydrogen type, and 1 L of ultrapure water is added to wash the ion exchange resin with water. The liquid was passed.
  • reagents used in Examples and Comparative Examples are as follows. Tetramethylammonium chloride ((CH 3 ) 4 NCl): manufactured by Tokyo Kasei Kogyo Co., Ltd. Tetramethyl ammonium bromide ((CH 3 ) 4 NBr): manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • Sodium hypochlorite pentahydrate (NaClO ⁇ 5H) 2 O): Sodium chloride (NaCl) manufactured by Wako Junyaku Kogyo Co., Ltd .: Sodium bromide (NaBr) manufactured by Fujifilm Wako Junyaku Co., Ltd .: Tetrapropylammonium chloride ((C 3H 7 ) 4 NCl) manufactured by Fujifilm Wako Junyaku Co., Ltd. ): Tokyo Kasei Kogyo Co., Ltd. 1,1-dimethylpiperidinium chloride (C 7H 16 NCl): Tokyo Kasei Kogyo Co., Ltd.
  • hexamethonium chloride dihydrate (C 12H 30 N 2 Cl 2.2H 2 O) ): Tokyo Kasei Kogyo Co., Ltd. 15 wt% HCl: Kanto Chemical Co., Ltd. (prepared by diluting 35 wt% HCl with ultrapure water) 1mol / L NaOH: Wako Pure Chemical Industries, Ltd.
  • Examples 1-38 Comparative Examples 1-27> (Manufacturing of processing liquid for semiconductor wafers) 0.75 mol / L tetramethylammonium hypochlorite aqueous solution, tetramethylammonium chlorate powder, tetramethylammonium chloride, tetramethylammonium bromide, ultrapure water, and 15 wt% HCl, 1 mol, obtained in the above production example. By mixing / LNaOH, 100 mL of a treatment solution having the composition shown in Tables 1 to 3 was obtained.
  • Example 16 and 34 and Comparative Examples 8 and 21 sodium hypochlorite pentahydrate was used instead of the 0.75 mol / L tetramethylammonium hypochlorite aqueous solution, and chloride was used instead of tetramethylammonium chloride. Sodium was used instead of tetramethylammonium bromide.
  • the concentration of hypohalogenate ion, the concentration of anionic species, and the pH in the treatment liquid of the obtained semiconductor wafer were measured by the following methods. Using the obtained treatment liquid, the etching performance of the metal shown below and the surface evaluation after etching were carried out. The results are shown in Tables 1 to 3.
  • the concentration of anion species in the processing liquid of the semiconductor wafer was measured using an ion chromatography analyzer (DIONEX INTERGRON HPLC, manufactured by Thermo SCIENTIFIC). Using KOH as the eluent, 1.2 mL / min. The liquid was passed at the flow rate of. An anion analysis column for hydroxide-based eluent (AS15, manufactured by Thermo SCIENTIFIC) was used as the column, and the column temperature was 30 ° C. After removing the background noise with a suppressor, the anion species in the treatment liquid were quantified by the electric conductivity detector.
  • DIONEX INTERGRON HPLC manufactured by Thermo SCIENTIFIC
  • PH measurement method The pH of 10 mL of the treatment liquid prepared in Examples and Comparative Examples was measured using a tabletop pH meter (LAQUA F-73, manufactured by HORIBA, Ltd.). The pH measurement was carried out after the treatment liquid was prepared and stabilized at 25 ° C.
  • evaluation of metal etching performance 60 mL of the treatment liquid of the example was prepared in a fluororesin container with a lid (manufactured by AsOne, PFA container 94.0 mL). Each evaluation semiconductor wafer piece having a size of 10 ⁇ 20 mm was immersed in a treatment liquid at 25 ° C. or 50 ° C. for 1 minute, and the value obtained by dividing the amount of film thickness change before and after the treatment by the immersion time was calculated as the etching rate. It was evaluated according to the following criteria. In both cases, evaluations A to C are acceptable levels, and evaluation D is an unacceptable level.
  • Examples 39 to 41 Comparative Example 28> Prepare the first and second solutions (preparation materials) having the compositions shown in Table 4, and put each solution in a pure bottle (capacity 20 L, inner wall PE, light shielding, made of Kodama resin), N 2 sealed, 25. Stored separately under the conditions of ° C. The solutions stored in each container were mixed at the mixing ratio (volume ratio) shown in Table 4 to obtain a treatment liquid having the composition shown in Table 5. The etching rate and the smoothness of the metal surface were evaluated in the same manner as in Example 1. The results are shown in Table 5.
  • Example 42 The treatment liquid of Example 35 and the treatment liquid of Example 41 (first and second solutions (preparation materials)) were prepared, and the day when the liquids were prepared was set as the first day, and the same as in Example 1. A storage test was carried out for 150 days (storage conditions: nitrogen-sealed, shaded, 25 ° C.). The treatment liquid of Example 41 was stored as a first and second solution and mixed immediately before the evaluation to prepare a treatment liquid. The results are shown in Table 6.
  • Examples 43 to 56> A treatment liquid having the composition shown in Table 7 was obtained. The etching rate and the smoothness of the metal surface were evaluated in the same manner as in Example 1. The results are shown in Table 7.
  • Example 57 The treatment liquid of Comparative Example 13 and the treatment liquid of Example 21 were prepared, and a storage test for 150 days was carried out in the same manner as in Example 1 with the day when the liquids were prepared as the first day (storage condition: nitrogen). Sealed, shaded, 25 ° C). The results are shown in Table 8.
  • Example 58 The treatment liquid of Comparative Example 1 and the treatment liquid of Example 2 were prepared, and a storage test for 150 days was carried out in the same manner as in Example 1 with the day when the liquids were prepared as the first day (storage condition: nitrogen). Sealed, shaded, 25 ° C). The results are shown in Table 9.
  • Example 42 the performances of the one-component and two-component type (kit) treatment solutions (Examples 35 and 41) are compared, but the metal is compared with the one-component type.
  • the two-component type (kit) in which the treatment liquid was produced immediately before the treatment showed excellent etching rate and surface smoothness over a long period of time.
  • Table 7 in Examples 43 to 56, the characteristics of the treatment liquid to which onium ion was added in addition to the anion species were evaluated, but the etching rate was maintained by adding onium ion. The surface smoothness was further improved.
  • Tables 8 and 9 it was revealed that the treatment liquid according to the embodiment of the present invention containing more anion species was more stable in terms of etching rate and surface smoothness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)

Abstract

半導体ウェハの処理液であって、前記処理液が、少なくとも1種の次亜ハロゲン酸イオンと、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種とを含み、前記アニオン種の少なくとも1種のアニオン種の含有量が、前記処理液に対して、0.30mol/L以上、6.00mol/L以下である、処理液を提供する。

Description

半導体ウェハの処理液及びその製造方法
 本発明は、半導体ウェハの処理液に関する。詳しくは、半導体素子の配線層に用いられる金属に対するエッチング速度が十分で、かつ、エッチングによる金属表面荒れを抑制する事が可能な半導体ウェハの処理液に関する。
 半導体素子において、配線層は、トランジスタからの電気信号を外部に出力するという重要な役割を担っている。近年、半導体素子のデザインルールの微細化が進んでおり、配線抵抗が増大する傾向にある。配線抵抗が増大した結果、半導体素子の高速動作が阻害されることが顕著になっており、対策が必要となっている。そこで、配線材料としては、従来の配線材料よりも、エレクトロマイグレーション耐性が高く、抵抗値の低減された配線材料が所望されている。
 従来の配線材料であるアルミニウム、銅と比較して、ルテニウムは、エレクトロマイグレーション耐性が高く、配線の抵抗値を低減可能という理由で、特に、半導体素子のデザインルールが10nm以下の配線材料として、注目されている。その他、配線材料だけでなく、ルテニウムは、配線材料に銅を使用した場合でも、エレクトロマイグレーションを防止することが可能なため、銅配線用のバリアメタルとして、ルテニウムを使用することも検討されている。
 ところで、半導体素子の配線形成工程において、ルテニウムを配線材料として選択した場合でも、従来の配線材料と同様に、ドライエッチング又はウェットエッチングによって配線が形成される。しかしながら、ルテニウムのドライエッチングを行う場合、プラズマの分布に起因する面内不均一性が生じたり、反応種およびイオンのフラックスまたはエネルギーに依存してエッチング速度が増減するため、精密エッチングが難しく、また、反応生成物であるRuОがパターン壁面へ強固に付着する事によりエッチングが阻害されるという課題があった。そのため、ルテニウムをより精密にエッチングできる方法として、ウェットエッチングが注目されている。
 半導体素子のデザインルールの微細化に伴い、配線形成工程において多層の配線層を積層させる多層配線化が行われているが、多層配線を実現するためには、パターンズレが生じた際のリーク電流による歩留まり低下を抑制するためのエッチバック工程(リセス工程)が必要である。すなわち、配線層を形成する金属のエッチングにより発生した表面荒れは、配線層間の接触抵抗を増大させるため、金属表面の荒れを抑制したエッチング処理は最も重要な項目の一つとされている。また、当然の事ながら、スループットの観点から、金属の溶解速度、すなわち、エッチング速度も重要であり、金属に対するエッチング速度が十分で、かつエッチング後の表面荒れの少ない半導体用処理液が求められている。
 ルテニウム等の半導体用ウェハにおける金属をウェットエッチングするために用いられる処理液として種々の液が提案されている。例えば、特許文献1には、ルテニウム膜のエッチング方法として、pH12以上かつ標準酸化還元電位300mV vs.SHE(標準水素電極)以上の薬液、具体的には、次亜塩素酸塩、亜塩素酸塩または臭素酸塩のようなハロゲンの酸素酸塩を含む溶液を用いてルテニウム膜をエッチングする方法が提案されている。また、特許文献2では、硝酸セリウム(IV)アンモニウムに、さらに硝酸などの強酸を添加した除去液を用いて、ルテニウムを酸化して溶解、除去する洗浄方法が提案されている。
 さらに特許文献3には、半導体用ウェハにおける金属をエッチングするために用いられる処理液として、次亜塩素酸イオン及び溶媒を含み、25℃でpHが7を超え12.0未満であるルテニウムを有するウェハの処理液が提案されている。
特開2002-161381号公報 特開2001-234373号公報 国際公開第2019/142788号公報 特開2019-218436号公報
 上記特許文献1~3に記載された処理液は、いずれもルテニウムに対する酸化剤を含有し、ルテニウムを酸化することで除去するものである。これらの処理液は、ルテニウムを、高いエッチング速度で除去することが可能であり、特に、半導体ウェハの端面部(ベベル)や裏面部に付着したルテニウム等の金属を除去するのに有用な処理液である。
 一方、上述のエッチバック工程においては、被処理面におけるエッチング速度の正確な制御が必要である。具体的には、エッチングを行う表面における表面粗さを約3nm以下のレベルで制御する必要がある。しかしながら、上記特許文献1~3記載の処理液については、いずれもエッチング処理後の被処理面の平滑性については言及されておらず、本発明者らによって、これらの処理液を用いてルテニウムのエッチングを行ったところ、エッチング速度は非常に高いものの、エッチング後の表面の表面粗さの制御が困難であり、エッチング後の表面の平滑性の点で改善の余地があることが判明した。
 上記の課題に対し、本発明者らは、エッチング後の表面荒れの制御を行うために、次亜塩素酸イオンを含む処理液中に含有されるイオン種に着目し、次亜塩素酸イオン及び4級アルキルアンモニウムイオンを含む酸化性組成物中に亜塩素酸イオンを少量含有させることにより、エッチング速度を20Å/分以下に制御が可能となり、次亜塩素酸イオンの保存安定性とエッチング速度の精密な制御、並びにエッチング後の表面荒れが抑えられることを見出した(特許文献4参照)。
 特許文献4記載の処理液を用いることにより、エッチング後の表面荒れを抑制しながら、エッチングを行うことが可能であり、当該処理液は、エッチバック工程に適した液である。しかしながら、当該処理液は、エッチング速度が非常に低く、高いエッチング速度を有しつつ、エッチング後の表面荒れを抑制させる点で、なお改善の余地があった。
 したがって、本発明の目的は、半導体素子の配線層に用いられる金属に対するエッチング速度が十分で、かつ、エッチングによる金属表面荒れを抑制する事が可能な、半導体ウェハの処理液を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を行った。まず最初に次亜塩素酸イオンを含む処理液によるルテニウムのエッチング速度を調整することが可能な添加剤について検討を進めた結果、該処理液に次亜塩素酸イオン以外のアニオン種を存在せしめることで該処理液のエッチング速度を制御することが可能であるという知見を得た。そこで、さらに処理液に存在せしめるアニオン種について検討を進めた結果、ハロゲン酸イオン、亜ハロゲン酸イオン、ハロゲン化物イオンを特定量存在せしめることでルテニウムに対し十分なエッチング速度を保ち、かつ、エッチングによる表面荒れが抑えられること、さらにルテニウム以外の金属に対しても同様の効果を有することを見出し、本発明を完成するに至った。
 すなわち、本発明の構成は以下の通りである。
項1 半導体ウェハの処理液であって、
 前記処理液が、少なくとも1種の次亜ハロゲン酸イオンと、
 ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種とを含み、
 前記アニオン種の少なくとも1種のアニオン種の含有量が、前記処理液に対して、0.30mol/L以上、6.00mol/L以下である、半導体ウェハの処理液。
項2 前記アニオン種として2種以上のアニオン種を含む、項1記載の半導体ウェハの処理液。
項3 前記処理液に対して、0.30mol/L以上、6.00mol/L以下で含有される前記アニオン種として、少なくともハロゲン化物イオンが含まれる、項1又は2記載の半導体ウェハの処理液。
項4 前記次亜ハロゲン酸イオンの含有量が、前記処理液に対して、0.0010mol/L以上、4.00mol/L以下である、項1~3のいずれか一項に記載の半導体ウェハの処理液。
項5 前記次亜ハロゲン酸イオンとして、次亜塩素酸イオン及び次亜臭素酸イオンから選択される少なくとも1種が含まれる、項1~4のいずれか一項に記載の半導体ウェハの処理液。
項6 前記次亜ハロゲン酸イオンとして、次亜塩素酸イオン及び次亜臭素酸イオンが含まれる、項5に記載の半導体ウェハの処理液。
項7 前記次亜ハロゲン酸イオンとして、少なくとも次亜臭素酸イオンを含み、該次亜臭素酸イオンの含有量が、前記処理液に対して、0.0010mol/L以上、0.20mol/L以下である、項1~6のいずれか一項に記載の半導体ウェハの処理液。
項8 前記処理液がさらにオニウムイオンを含む、項1~7のいずれか一項に記載の半導体ウェハの処理液。
項9 前記処理液のpHが7以上、14以下である項1~8のいずれか一項に記載の半導体ウェハの処理液。
項10 前記半導体ウェハが、Ru、Rh、Ti、Ta、Co、Cr、Hf、Os、Pt、Ni、Mn、Cu、Zr、La、Mo、及びWから選択される少なくとも1種の金属を含む、項1~9のいずれか1項に記載の半導体ウェハの処理液。
項11 ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種を含む第1の溶液を調製する工程、
 次亜ハロゲン酸イオンを含む第2の溶液を調製する工程、並びに
 前記第1の溶液、及び前記第2の溶液を混合する工程を含む、
半導体ウェハの処理液の製造方法。
項12 前記第2の溶液に含まれる次亜ハロゲン酸イオンの酸化力が、前記第1の溶液に含まれるアニオン種の酸化力よりも高い、項11に記載の半導体ウェハの処理液の製造方法。
項13 前記第1の溶液に含まれるアニオン種の少なくとも1種が臭化物イオンであり、前記第2の溶液に含まれる次亜ハロゲン酸イオンが次亜塩素酸イオンである、項11又は12記載の半導体ウェハの処理液の製造方法。
項14 前記第1の溶液及び前記第2の溶液から選択される少なくとも1つの溶液がオニウムイオンを含む、項11~13のいずれか一項に記載の半導体ウェハの処理液の製造方法。
項15 前記第1の溶液及び前記第2の溶液がそれぞれオニウムイオンを含む、項14に記載の半導体ウェハの処理液の製造方法。
項16 半導体ウェハの処理液を調製するためのキットであって、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種を含む第1の溶液と、次亜ハロゲン酸イオンを含む第2の溶液とを少なくとも備える、キット。
項17 前記第2の溶液に含まれる次亜ハロゲン酸イオンの酸化力が、前記第1の溶液に含まれるアニオン種の酸化力よりも高い、項16記載のキット。
項18 前記第1の溶液に含まれるアニオン種の少なくとも1種が臭化物イオンであり、前記第2の溶液に含まれる次亜ハロゲン酸イオンが次亜塩素酸イオンである、項16又は17記載のキット。
 本発明の半導体ウェハの処理液は、半導体素子の配線層に用いられる金属、特にルテニウムに対し十分なエッチング速度を保ち、かつ、エッチングによる表面荒れを抑制し、さらに処理液の安定性を向上することが可能である。
(半導体ウェハの処理液)
 本発明の半導体ウェハの処理液(以下、単に「処理液」とも言う)は、少なくとも1種の次亜ハロゲン酸イオンと、ハロゲン酸イオン、亜ハロゲン酸イオン、ハロゲン化物イオンから選択される少なくとも1種のアニオン種を含み、前記アニオン種の少なくとも1種のアニオン種の含有量が、0.30mol/L~6.00mol/Lであることが特徴である。本発明の半導体ウェハの処理液は、ルテニウム等に対し十分なエッチング速度を保ち、かつ、エッチングによる表面荒れを抑制することが可能である。本明細書においては特に断らない限り、数値A及びBについて「A~B」という表記は「A以上、B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。
 また、本明細書には複数の実施形態の説明がされているが、各実施形態における条件は、適用可能な範囲で互いに適用することができる。
 本発明の半導体ウェハの処理液が、ルテニウムに対し十分なエッチング速度を保ち、かつ、エッチングによる表面荒れが抑えられる理由について、本発明者らは以下のとおり推測している。すなわち、次亜ハロゲン酸イオンを含む処理液をルテニウムのエッチング液として用いた場合、例えば次亜塩素酸イオンを用いた場合、以下の反応により、ルテニウムが酸化されて除去されるものと推測される(式1)。
 2Ru+7ClO+HO → 2RuO +7Cl+2H (式1)
 本発明の処理液では、次亜ハロゲン酸イオン以外に、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択されるアニオン種を特定量含有している点が特徴である。これらのアニオン種は処理液中でルテニウム表面においてもある程度均一に存在しているものと推測されるため、次亜ハロゲン酸イオンによるルテニウムのエッチング速度をある程度制御することが可能であるものと推測される。そしてルテニウムのエッチング速度を低減させることにより、エッチングによる表面荒れを抑制できるものと推測される。
 従来においては、ルテニウムを溶解させることが困難であると考えられたため、ルテニウムのエッチング液としては、他のアニオン種の含有量を可能な限り低減させることで、ルテニウム表面での次亜ハロゲン酸イオンとの上記反応を促進させることで、エッチング速度を高めているものと推測される。
 また、次亜ハロゲン酸イオンは、上記反応で消費される他に、以下の不均化反応により処理液中でその濃度が低下する(式2)。
 2ClO → ClO +Cl (式2)
 本発明の処理液中には、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択されるアニオン種が特定量含有されているため、上記次亜ハロゲン酸イオン間の反応が阻害される事によって、次亜ハロゲン酸イオンの含有量の低下を抑制しているものと推測され、このため、高いエッチング速度と良好な安定性を維持できるものと推測される。
 すなわち、本発明の処理液に不均化反応の分解生成物である塩化物イオン又は臭化物イオンを予め含ませておく事で、次亜塩素酸イオン又は次亜臭素酸イオンの不均化反応速度を低減できると考えられる。これにより、ルテニウムをエッチングする化学種である次亜塩素酸イオン又は次亜臭素酸イオンの濃度変化が小さくなり、ルテニウムのエッチング速度が安定するだけでなく、処理液の保存安定性が向上し、処理液の液寿命を延ばすことができる。
 これにより、本発明の半導体ウェハの処理液を用いることで、単位時間当たりのウェハ処理効率が向上するだけでなく、例えば、配線材料に対して精密なエッチングの制御が要求される、半導体製造工程における金属のエッチバック工程用の処理液として、好適に使用することが出来る。さらにルテニウム以外の金属に対しても同様の効果を有するため、ルテニウムに限らず半導体ウェハに含まれる金属に対する処理液として用いることができる。
 以下に本発明の半導体ウェハの処理液の各構成成分について詳細に述べる。
(次亜ハロゲン酸イオン)
 本発明の処理液に含まれる次亜ハロゲン酸イオンは、ルテニウム等の金属に対し酸化剤として働き、金属の酸化物を形成したり、金属をイオン種に変化させたりすることによって、金属層をエッチングする。
 本発明の処理液に含まれる次亜ハロゲン酸イオンとして具体的には、次亜塩素酸イオン(ClO)、次亜臭素酸イオン(BrO)、または次亜ヨウ素酸イオン(IO)が挙げられる。特に、次亜ハロゲン酸イオンとして、金属に対するエッチング速度、及び保管または使用時の安定性等の点から、次亜塩素酸イオンおよび次亜臭素酸イオンから選択される少なくとも1種が含まれることが好ましい。金属としてルテニウムを含む半導体ウェハをエッチング処理する場合、ルテニウムに対するエッチング速度、およびルテニウムの酸化によって発生しやすい有毒なルテニウムガス(RuO)の発生が抑制できる観点から次亜臭素酸イオンが特に好ましい。上記次亜ハロゲン酸イオンは、1種のみを用いてもよく、或いは2種以上の次亜ハロゲン酸イオンを含んで用いてもよい。例えば、本発明の処理液に含まれる次亜ハロゲン酸イオンとして次亜塩素酸イオン及び次亜臭素酸イオンの2種類を含んでいてもよい。
 本発明で使用される次亜ハロゲン酸イオンは、次亜ハロゲン酸、又は次亜ハロゲン酸塩を処理液に溶解させることにより、発生させることが可能である。次亜ハロゲン酸塩としては、アルカリ金属塩、アルカリ土類金属塩、又は有機塩等が挙げられる。具体的には、アルカリ金属塩としては次亜塩素酸ナトリウム、次亜臭素酸ナトリウム、又は次亜ヨウ素酸ナトリウム等が挙げられ、有機塩としては、次亜塩素酸テトラメチルアンモニウム、次亜臭素酸テトラメチルアンモニウム、又は次亜ヨウ素酸テトラメチルアンモニウム等の第四級アルキルアンモニウム塩等のオニウムイオンを含む有機塩が挙げられる。これらの中でも半導体形成工程において歩留まり低下の要因となる金属を含まない、第四級アルキルアンモニウム塩等のオニウムイオンを含む有機塩を用いることが好ましく、特に、次亜塩素酸テトラメチルアンモニウム、又は次亜臭素酸テトラメチルアンモニウムを用いる事が好ましい。
 上記次亜ハロゲン酸塩は、工業的に入手可能な塩を用いてもよいし、公知の方法で準備してもよい。例えば第四級アルキルアンモニウム塩は、水酸化テトラメチルアンモニウム水溶液を準備し、塩素や臭素等を吹き込むことによって準備することが出来る。また、水酸化テトラメチルアンモニウム溶液をカチオン交換型イオン交換樹脂と接触させ、該イオン交換樹脂内のカチオンをテトラメチルアンモニウムイオンとした後に、次亜ハロゲン酸ナトリウム溶液を流通してナトリウムイオンとテトラメチルアンモニウムイオンを交換する方法でも次亜ハロゲン酸第四級アルキルアンモニウム塩を含む溶液を準備することができる。
(次亜ハロゲン酸イオンの濃度)
 本発明の処理液中における次亜ハロゲン酸イオンの濃度は、本発明の目的を逸脱しない限り特に制限されることはなく、エッチングの対象となる金属種の種類、エッチング部位に応じて適宜設定すればよい。該濃度は、金属に対するエッチング速度、及び保管または使用時の安定性等の点から、前記処理液に対して、0.0010mol/L以上、4.00mol/L以下の範囲であることが好ましく、0.0050mol/L以上、2.00mol/L以下の範囲であることがより好ましく、0.010mol/L以上、0.80mol/L以下の範囲であることが特に好ましい。次亜ハロゲン酸イオンとして2種以上の次亜ハロゲン酸イオンを含む場合には、複数の次亜ハロゲン酸イオンの合計の濃度が上記の範囲となるようにすればよい。なお、本明細書において、「濃度」を「含有量」とも称する。
 例えば、次亜ハロゲン酸イオンとして次亜塩素酸イオンを含む場合、該次亜塩素酸イオンの濃度範囲としては、より好ましくは0.020mol/L以上、3.00mol/L以下であり、さらに好ましくは0.060mol/L以上、2.00mol/L以下であり、さらに好ましくは0.10mol/L以上、1.20mol/L以下であり、特に好ましくは0.10mol/L以上、0.80mol/L以下である。
 また、次亜ハロゲン酸イオンとして次亜臭素酸イオンを含む場合、該次亜臭素酸イオンの濃度範囲としては、0.0010mol/L以上、0.20mol/L以下である事がより好ましい。0.0010mol/L未満では金属をエッチングする速度が小さい傾向がある。一方、0.20mol/Lを超える場合は、次亜臭素酸イオンの分解が生じやすくなるため、金属に対するエッチング速度が安定しにくくなる。よって、金属に対するエッチングを十分な速度で安定して行うためには、該次亜臭素酸イオンの濃度が0.0010mol/L以上、0.20mol/L以下であることがより好ましく、0.0050mol/L以上、0.20mol/L以下であることがさらに好ましく、0.010mol/L以上、0.10mol/L以下であることが最も好ましい。
 次亜ハロゲン酸イオンとして次亜臭素酸イオンを用いた場合、次亜塩素酸イオンをさらに含めることが好ましい。次亜臭素酸イオンを用いた場合、ルテニウム等の金属との反応によって、臭化物イオンが生成するが、この時次亜塩素酸イオンを含有していると、次亜塩素酸イオン-塩化物イオンの酸化還元電位(0.89V(at25℃、pH14、vs.標準水素電極))が次亜臭素酸イオン-臭化物イオンの酸化還元電位(0.76V(同上))よりも高いため、生成した臭化物イオンを酸化し、次亜臭素酸イオンを生成する。従って、次亜臭素酸イオンを用いた場合、次亜塩素酸イオンをさらに含めることで、次亜臭素酸イオンを所定の濃度で維持することが可能であり、エッチング速度を安定的に制御することが容易となるため好ましい。
 上記次亜臭素酸イオンに次亜塩素酸イオンをさらに含める場合、エッチング速度を安定的に制御できる観点から、次亜臭素酸イオンと次亜塩素酸イオンの含有量の比、次亜臭素酸イオン(mol)/次亜塩素酸イオン(mol)は0.001以上、100以下の範囲とすることが好ましく、0.1以上、50以下の範囲とすることがより好ましく、0.5以上、10以下の範囲とすることが特に好ましい。
 上記処理液中の次亜ハロゲン酸イオンの濃度は、処理液の製造時に計算で求めることもできるし、公知の方法を用いて確認することができる。測定方法として具体的には、紫外可視吸光光度法にて、次亜ハロゲン酸イオンに起因する吸収を確認し、その吸収ピークの強度と、濃度が既知の次亜ハロゲン酸イオン溶液を用いて作製した検量線とから次亜ハロゲン酸イオン濃度を求めることができる。
(アニオン種)
 本発明の処理液は、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種を含む。これらのアニオン種が金属と相互作用する事により、表面荒れが抑制されるものと推測される。上記アニオン種として具体的には、ClO 、BrO 、又はIO 等のハロゲン酸イオン;ClO 、BrO 、又はIO 等の亜ハロゲン酸イオン;Cl、Br、又はI等のハロゲン化物イオンが挙げられる。これらのアニオン種は処理液中に1種含まれていてもよく、2種以上のアニオン種が含まれていてもよい。2種以上のアニオン種を含む場合、例えばハロゲン酸イオンの中の2種が含まれるようなハロゲン原子の酸化数が同じイオン同士が含まれる場合、或いは、亜ハロゲン酸イオンの1種とハロゲン化物イオンの1種が含まれる様にハロゲン原子の酸化数の異なるイオン同士が含まれる場合のいずれも可能である。
 なお、本明細書における「アニオン種」は、特段の断りがない限り、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種を表す。
 これらの中でも、処理液への溶解性、入手の容易性、保存安定性及びコスト等の点から、上記アニオン種として、特に後述するアニオン種の濃度の範囲で含まれるアニオン種として、ハロゲン化物イオンが含まれることが好ましい。例えば、溶解する事でハロゲン化物イオンの1種である塩化物イオンを発生する塩化テトラメチルアンモニウムは、溶解度が極めて高く(~70wt%、25℃の条件下)、溶解度の温度依存性も小さいため、エッチングレート低下や表面荒れ増加の要因となりえる析出物が生じにくい。また、処理液中に2種以上のアニオン種が含まれることがより好ましい。処理液中に2種以上のアニオン種が含まれる場合、金属表面の荒れを効果的に抑制する観点から、ハロゲン化物イオンと、該ハロゲン化物イオンとはハロゲン原子の酸化数の異なるアニオン種とが含まれることが特に好ましい。
 上記本発明で使用されるアニオン種は、該アニオン種を含む酸、又は塩等を処理液に溶解することにより、発生させることが可能である。アニオン種を含む酸としては、塩素酸、臭素酸、又はヨウ素酸等のハロゲン酸;亜塩素酸、亜臭素酸、又は亜ヨウ素酸等の亜ハロゲン酸;塩化水素、臭化水素、又はヨウ化水素等のハロゲン化水素等が挙げられる。また、アニオン種を含む塩としては、アルカリ金属塩、アルカリ土類金属塩、又は有機塩等が挙げられる。具体的には、アルカリ金属塩としては、塩化カリウム、亜塩素酸ナトリウム、臭化カリウム、亜臭素酸ナトリウム、ヨウ化カリウム、又は亜ヨウ素酸ナトリウム等が挙げられ、有機塩としては、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、又はヨウ化テトラメチルアンモニウム等の4級アルキルアンモニウム塩等のオニウムイオンを含む有機塩が挙げられる。また、上記ハロゲン化水素は、水に塩素ガス、臭素ガス、又はヨウ素ガス等のハロゲンガスを溶解させることでも発生させることができる。これらの中でも、半導体製造における歩留まり低下の要因となる金属を含まない事から、アニオン種を含む酸、又は有機塩類を用いる事が好ましく、さらに工業的な入手の容易性、及び取り扱いの容易性から考えて、第四級アルキルアンモニウム塩等のオニウムイオンを含む有機塩である事がさらに好ましい。有機塩類の中でも、安定性、純度、及びコストの点から、特に好適に用いる事ができるものとしては、塩化もしくは臭化もしくはヨウ化テトラメチルアンモニウム、または塩化もしくは臭化もしくはヨウ化テトラエチルアンモニウム、または塩化もしくは臭化もしくはヨウ化テトラプロピルアンモニウム等が挙げられる。
 上記アニオン種を処理液中に発生させるために用いるアニオン種を含む酸、又は塩等は、工業的に入手可能な塩を用いてもよいし、公知の方法で準備してもよい。例えば該アニオン種を含む第四級アルキルアンモニウム塩は、水酸化テトラメチルアンモニウム水溶液を準備し、塩素や臭素等を吹き込むことによって準備することができる。また、水酸化テトラメチルアンモニウム溶液をカチオン交換型イオン交換樹脂と接触させ、該イオン交換樹脂内のカチオンをテトラメチルアンモニウムイオンとした後に、塩酸、臭素酸、又はヨウ素酸等のハロゲン酸を流通してイオンを交換する方法でも、該アニオン種の第四級アルキルアンモニウム塩を含む溶液を準備することができる。
(アニオン種の濃度)
 本発明の処理液において、上記アニオン種の内、少なくとも1種のアニオン種の濃度は、0.30mol/L以上、6.00mol/L以下である。本発明の処理液に含有する上記アニオン種が1種である場合には、当該アニオン種が処理液中に0.30mol/L以上、6.00mol/L以下で含まれている必要がある。また、処理液に含有する上記アニオン種が2種以上含まれる場合には、含有されるアニオン種の少なくとも1種が、処理液中に0.30mol/L以上、6.00mol/L以下で含まれている必要がある。処理液中にアニオン種を上記の範囲で含有することにより、ルテニウム等の金属に対し十分なエッチング速度を保ち、かつ、エッチングによる表面荒れを抑制することが可能となる。十分なエッチング速度と平滑性を両立する観点から、該アニオン種の濃度は、0.30mol/L以上、3.00mol/L以下である事がより好ましく、0.30mol/L以上、1.00mol/L以下であることが最も好ましい。
 また、本発明の処理液中のアニオン種の合計濃度として、上記の範囲を適用してもよい。
 処理液中に前記アニオン種を2種以上含む場合には、十分なエッチング速度と平滑性を両立する観点から、上述した0.30mol/L以上、6.00mol/L以下等の濃度で含有されるアニオン種としては、ハロゲン化物イオンであることが好ましい。また、前記アニオン種を2種以上含む場合において、上記濃度範囲であるアニオン種以外の他のアニオン種の濃度は特に制限されず、エッチングの対象となる金属種の種類、エッチング部位に応じて適宜設定すればよく、他のアニオン種の濃度も0.30mol/L以上、6.00mol/L以下であってもよい。上記アニオン種の濃度はあまりに高くなりすぎるとエッチング速度が低下する傾向にあり、低すぎると表面荒れの抑制効果が低下する傾向にあるため、2種以上のアニオン種を含む場合の当該アニオン種の濃度の合計は、6.00mol/L以下であることが好ましく、3.00mol/L以下である事がより好ましく、1.00mol/L以下であることが最も好ましい。
 処理液中における、前述の次亜ハロゲン酸イオンの濃度(mol/L)に対する、少なくとも1種のアニオン種の濃度(mol/L)の比率(アニオン種の濃度/次亜ハロゲン酸イオンの濃度)は、特段制限されないが、金属表面の荒れを効果的に抑制する観点から、通常2以上であり、4以上であることが好ましく、6以上であることがより好ましく、8以上であることがさらに好ましく、また、通常500以下であり、200以下であることが好ましく、50以下であることがより好ましく、10以下であることがさらに好ましく、さらに、通常2以上500以下であり、4以上200以下であることが好ましく、6以上50以下であることがより好ましく、8以上10以下である事がさらに好ましい。
 上記処理液中のアニオン種の濃度は、イオンクロマトグラフ法を用いて測定する事ができる。本方法を用いれば、カラムの種類や条件を適切に設定する事により、アニオン種の同定および定量が可能となる。
(オニウムイオン)
 本発明の処理液には、さらにオニウムイオンが含まれる事が好ましい。上記アニオン種に加えて、さらにオニウムイオンが含まれる事によって、より金属表面の荒れを抑制可能となる。オニウムイオンが含まれる事により表面荒れが抑制されるメカニズムについて、オニウムイオンとアニオン種または金属表面が相互作用する事によって、金属の均一なエッチングが可能になると本発明者らは推測している。
 本発明の処理液に用いることができるオニウムイオンとして具体的には、アンモニウムイオン(NH )、ホスホニウムイオン(PH )、またはスルホニウムイオン(SH )等が挙げられる。これらのオニウムイオンの水素原子はそれぞれ独立して置換されていてもよい。置換基として具体的には、炭素数1以上、25以下のアルキル基、炭素数1以上、25以下のアリル基、炭素数7以上、11以下のアラルキル基、または炭素数6以上、10以下のアリール基等が挙げられる。上記置換基において、アラルキル基中のアリール基、及びアリール基中の水素原子は置換されていてもよく、かかる置換基としては、フッ素原子、塩素原子、炭素数1以上、15以下のアルキル基、炭素数2以上、10以下のアルケニル基、炭素数1以上、9以下のアルコキシ基、又は炭素数2以上、9以下のアルケニルオキシ基等が挙げられる。
 上記オニウムイオンとしては、金属表面の荒れを抑制する効果が高いという観点から、該オニウムイオンの水素原子の全てが独立して炭素数1以上、25以下のアルキル基で置換されていることが好ましく、炭素数2以上、10以下のアルキル基で置換されていることがより好ましく、炭素数3以上、6以下のアルキル基で置換されていることが最も好ましい。このようなオニウムイオンとして具体的にはテトラプロピルアンモニウムイオン、又はテトラブチルアンモニウムイオン等が挙げられる。
 また、上記のオニウムイオンの2種が、アルキレン基を介して結合されていてもよい。2種のオニウムイオンを結合するアルキレン基の炭素数としては、2以上、10以下が好ましい。このようなオニウムイオンとして具体的にはヘキサメトニウムイオン、又はデカメトニウムイオン等が挙げられる。
 さらに、オニウムイオンの水素原子の2つがアルキル基、又はアルキレン基で結合された、脂環式構造、又は複素環構造を有していてもよい。かかるオニウムイオンとして具体的には、ピペリジニウムイオン、イミダゾリウムイオン、ピロリジニウムイオン、オキサゾリウムイオン、又はピリジニウムイオン等が挙げられる。また、これらの環構造は置換基を有していてもよい。かかる置換基として具体的には、塩素、臭素、フッ素、ヨウ素、炭素数1以上、15以下のアルキル基、炭素数2以上、10以下のアルケニル基、炭素数1以上、9以下のアルコキシ基、又は炭素数2以上、9以下のアルケニルオキシ基等が挙げられる。上記環構造を有するオニウムイオンとして具体的には、1,1-ジメチルピペリジニウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオン、1-ブチル-1-メチルピロリジニウムイオン、5-アゾニアスピロ〔4,4〕ノナンイオン等が挙げられる。
 また、上記の環構造を有するオニウムイオンの2種が、アルキレン基を介して結合されていてもよい。2種のオニウムイオンを結合するアルキレン基の炭素数としては、2以上、10以下が好ましい。このようなオニウムイオンとして具体的には3,3’-メチレンビス(1-tert-ブチル-3-イミダゾリウム)イオン、又は3,3’-メチレンビス(1-(2,6-ジイソプロピルフェニル)-3-イミダゾリウム)イオン等が挙げられる。
 上記オニウムイオンを本発明の処理液に含有せしめる際のオニウムイオンの濃度は、特に制限されず、該処理液の対象となる金属種等を勘案して適宜決定すればよい。オニウムイオンの濃度が高すぎるとエッチング速度の低下や、金属表面に対して不均一なエッチングを引き起こす傾向にある。一方、オニウムイオンの濃度が低すぎると、表面荒れの抑制効果が低減する傾向にあるだけでなく、処理可能な金属の量が少なくなるため、処理液の再使用(リユース)回数が少なくなる傾向にある。したがって、オニウムイオンの濃度は、通常0.000010mol/L以上、7.00mol/L以下であり、通常0.000010mol/L以上、6.00mol/L以下であることが好ましく、0.000010mol/L以上、3.00mol/L以下であることがより好ましく、0.0010mol/L以上、2.00mol/L以下であることがさらに好ましく、0.010mol/L以上、1.00mol/L以下であることが特に好ましい。オニウムイオンを本発明の処理液へ添加する方法としては、例えば、オニウムイオンとアニオンから成るオニウム塩を、本発明の処理液に溶解する事でオニウムイオンを発生させる方法が挙げられる。なお、前記次亜ハロゲン酸イオン、及び/又はアニオン種の対イオンとしてオニウムイオンを含む場合には、これらのオニウムイオンの含有量を勘案してオニウムイオンの濃度を決定すればよい。すなわち、本発明の処理液の調製に次亜ハロゲン酸イオン、及び/又はアニオン種のオニウム塩を用いた場合、添加するオニウム塩の濃度、及び追加するオニウムイオンの合計が上記範囲内とするようにすればよい。また、本発明の処理液の調製に次亜ハロゲン酸イオン、及び/又はアニオン種のオニウムイオンを用いない場合には、添加するオニウムイオンの濃度が上記範囲となるよう上記オニウムイオンを含む化合物を添加すればよい。なお、オニウムイオンを添加する場合には、1種のみを添加してもよいし、2種以上を組み合わせて添加してもよい。2種類以上のオニウムイオンを含む場合であってもよい。
(溶媒)
 本発明の処理液において、上記次亜ハロゲン酸イオン及び、上記アニオン種、並びに下記に詳述するその他の添加剤以外の残分は、溶媒であり、各成分を調製後、合計100重量%となるように、残分を溶媒で調整する。
 溶媒としては、水が最も好ましく用いられる。本発明の処理液に含まれる水は、蒸留処理、イオン交換処理、フィルター処理、又は各種吸着処理などによって、金属イオンや有機不純物、粒子などが除去された水が好ましく、特に純水または超純水が好ましい。
 また、次亜ハロゲン酸イオンが安定に存在する限りにおいて有機溶媒を使用してもよい。有機溶媒としては、たとえばアセトニトリル、スルホラン等が用いられる。
 また、溶媒として水と有機溶媒とを併用してもよい。水と有機溶媒とを併用することで、Ru等の金属の酸化が比較的穏やかに進行するため、回路形成部の配線等の酸化を抑制することができる。水と有機溶媒とを併用する場合、水と有機溶媒との重量比(水/有機溶媒)は、60/40以上、99.9/0.1以下程度であってもよい。
 処理液中の溶媒の含有量は、特段制限されないが、上記の成分を十分に溶解させることができる観点から、通常30重量%以上であり、80重量%以上であることが好ましく、90重量%以上であることがより好ましく、94重量%以上であることがさらに好ましく、また、通常99重量%以下であり、98重量%以下であることが好ましく、97重量%以下であることがより好ましい。
(金属濃度)
 本発明の処理液には、アニオン種やオニウムイオンの添加に由来して、また、処理液の製造上、金属(または金属イオン、以下、金属イオンの場合も含み金属と記載)が含まれている場合がある。含まれる金属の具体例としては、リチウム、ナトリウム、カリウム、アルミニウム、マグネシウム、カルシウム、クロム、マンガン、鉄、ニッケル、コバルト、銅、銀、カドミウム、バリウム、亜鉛、もしくは鉛、又はそれらのイオン等が挙げられる。しかし、これらの金属は、アルキルアンモニウム塩の安定性に影響を及ぼし得ることから、その存在量は少ないことが好ましい。この原因は定かではないが、アルキル基のアルカリ中での分解に対して、金属が触媒として作用し、分解反応を促進していると考えられる。一方、処理液中の金属の含有量としては少ない方が良いが、若干金属が含まれることにより、エッチング処理後の金属表面の平坦性を維持する(表面荒れを防ぐ)ことが可能となる。そのため、処理液中の金属の含有量としては、リチウム、ナトリウム、カリウム、アルミニウム、マグネシウム、カルシウム、クロム、マンガン、鉄、ニッケル、コバルト、銅、銀、カドミウム、バリウム、亜鉛、又は鉛から選択されるいずれか一つの金属が質量基準で0.01ppt以上、1ppb以下であることが好ましく、1ppt以上、1ppb以下であることがより好ましく、1ppt以上、500ppt以下であることがさらに好ましく、10ppt以上、200ppt以下であることが最も好ましい。また、これら金属は、半導体ウェハ上に残留した場合、半導体ウェハに対して悪影響(半導体ウェハの歩留まり低下等の悪影響)を及ぼす。処理液中の金属の含有量は、後述する実施例で述べるように、誘導結合プラズマ質量分析装置(例えば、ICP-MS、Agilent8900、アジレントテクノロジーズ製)を用いて測定することができる。
 金属の含有量が1ppbを超える場合には、ろ過や蒸留、イオン交換などによって金属含有量を1ppb以下に抑えることが可能である。
(その他の添加剤)
 本発明の処理液には、所望により本発明の目的を損なわない範囲で従来から半導体用処理液に使用されている添加剤を配合してもよい。例えば、添加剤として、酸、金属防食剤、フッ素化合物、酸化剤、還元剤、キレート剤、界面活性剤、pH調整剤、又は消泡剤などを加えることができる。
(半導体ウェハの処理液のpH)
 本発明の半導体ウェハの処理液において、該処理液の保管および使用時の分解を抑制しつつ、十分なエッチング速度で、かつ平滑に金属を処理するためには、処理液のpHは7以上、14以下であることが好ましい。pHが7未満である場合、酸化剤である次亜ハロゲン酸イオンの分解が進行するためエッチング速度が安定しない傾向にある。また、pHが14を超えると金属の溶解が生じにくくなり、十分なエッチング速度を得ることが難しくなる傾向がある。処理液の安定性、及びエッチング速度の観点から、次亜ハロゲン酸イオンが次亜塩素酸イオンである場合、処理液のpHは、7以上、13以下であることがより好ましく、8以上、12以下であることがより好ましく、8.5以上、11以下であることが最も好ましい。また、次亜ハロゲン酸イオンが次亜臭素酸イオンである場合、上記と同様の理由から、処理液のpHは、7以上、14以下であることが好ましく、8以上、14以下であることがより好ましく、9以上、13未満であることが最も好ましい。さらに、次亜ハロゲン酸イオンが次亜臭素酸イオンと次亜塩素酸イオンの両方を含む場合、処理液のpHは、上記と同様の理由から、7以上、14以下であることが好ましく、8以上、14以下であることがより好ましく、9以上、13以下であることが最も好ましい。
 処理液のpHを調整するために、酸またはアルカリを処理液に添加することができる。該酸としては、無機酸、又は有機酸のいずれであってもよく、一例を挙げれば、フッ酸、塩酸、臭化水素酸、硝酸、酢酸、硫酸、ペルオキソ二硫酸、又はギ酸等であるが、この他にも半導体用の処理液に用いられる広く公知の酸を何ら制限なく用いることができる。該アルカリとしては、半導体製造において歩留まり低下の要因となる金属イオンを含まないことから、有機アルカリを用いることが好ましい。有機アルカリの中でも、工業的に入手しやすく、処理液中に含まれる酸化剤と安定して共存しやすい、水酸化テトラアルキルアンモニウムである事が好ましい。このような水酸化テトラアルキルアンモニウムの例を挙げれば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、又はコリン等が挙げられる。なかでも、単位重量当たりの水酸化物イオン数が多く、高純度品が容易に入手可能であることから、該有機アルカリは水酸化テトラメチルアンモニウムであることがより好ましい。
(半導体ウェハの処理液の酸化還元電位)
 本発明の半導体ウェハの処理液において、該処理液の酸化還元電位(at25℃、pH14、vs.標準水素電極)は特に制限されないが、500mV以上、1500mV以下である事が好ましく、より好ましくは550mV以上、1500mV以下であり、さらに好ましくは650mV以上であり、1500mV以下である。酸化還元電位が500mV未満の場合は、酸化力が低く、エッチング速度が低い傾向がある。一方、1500mVを越える場合は、酸化力は高いものの、次亜ハロゲン酸イオンの分解が生じやすく処理液が不安定になる傾向にある。
 該処理液の酸化還元電位は、処理液に含まれる次亜ハロゲン酸イオン、ハロゲン酸イオン、亜ハロゲン酸イオン、又はハロゲン化物イオンの種類及び/または濃度、上述のその他の添加剤の種類及び/または濃度、処理液のpH、又は処理液の温度などを適宜調整することで容易に制御できる。このようにして調整した上記範囲の酸化還元電位を有する本発明の半導体ウェハの処理液は、半導体ウェハに含まれる金属に対する処理液として好適に利用できる。
(半導体ウェハの処理液の製造方法)
 本発明の半導体ウェハの処理液の製造方法としては、特に限定はされない。具体的には、水等の溶媒に、上記次亜ハロゲン酸イオン、及び上記アニオン種を発生させる化合物を所望の濃度となるように添加し、さらに必要に応じて添加される添加剤を添加し、所望のpHに調整して、本発明の処理液としてもよい。或いは、各成分を分けて配合された複数の溶液(以下、「調製用材料」とも言う)を準備し、半導体ウェハの処理直前にこれらの調製用材料を混合して、本発明の処理液としてもよい。複数の調製用材料を準備し、これらを混合して本発明の処理液とする場合、調製用材料中に含まれる成分としては、該調製用材料を混合させた後に、該調製用材料中の成分が反応することによって、上記次亜ハロゲン酸イオン、及び/又は上記アニオン種のいずれかが生成するようなものとしてもよい。本発明の処理液は経時変化によって処理液のpHや組成等が変化し、エッチング速度等のエッチング性能が変化する場合がある。従って、経時変化によるエッチング性能の低下を抑制する観点から、複数の調製用材料を準備し、半導体ウェハの処理直前にこれらの調製用材料を混合して、本発明の処理液とすることが好ましい。複数の調製用材料を準備する場合における、調製用材料の個数は、各成分毎に準備してもよいが、混合時の操作性等を勘案し、二種の調製用材料とすることが好ましい。
 以下、本発明の一実施形態である半導体ウェハ処理液の製造方法、具体的には、第1の溶液(調製用材料1)を調製する工程(第1の溶液の調製工程)、第2の溶液(調製用材料2)を調製する工程(第2の溶液の調製工程)、及び(好ましくは、半導体ウェハの処理直前に)これらの調製用材料を混合する工程(混合工程)を含む、製造方法について詳述する。この方法によって、上述の半導体ウェハ処理液を製造してもよい。また、本製造方法は、上記の第1の溶液の調整工程、第2の溶液の調整工程、及び混合工程以外の工程を有していてもよい。
(調製用材料)
 上記第1の溶液と第2の溶液の2種の調製用材料を用いる利点としては、例えば、処理液として比較的不安定な次亜ハロゲン酸イオンを用いたい場合におけるエッチング性能の安定性の向上がある。すなわち、処理液が1液である場合、次亜ハロゲン酸イオンを製造してから、半導体製造工場にて半導体ウェハを処理するまでに時間を有するため、次亜ハロゲン酸イオンが分解する事により、エッチング速度等のエッチング性能が変化する場合がある。一方、処理液を上記第1の溶液と第2の溶液の2種の調製用材料として準備し、該調製用材料1及び調製用材料2を混合することで、次亜ハロゲン酸イオンを生成するようにした場合には、半導体製造工場にて、半導体ウェハを処理する直前に次亜ハロゲン酸イオンを含む処理液が製造されるため、次亜ハロゲン酸イオンの分解を抑制する事ができ、安定したエッチング性能を発現することが可能となる。特に本発明の処理液を、前記エッチバック工程に用いる場合には、微細加工が必要であり、精密なエッチング速度および表面荒れの制御が必要であることから、上記態様とすることが好ましい。また、本明細書における調製用材料は、上述の半導体ウェハ処理液として扱ってよく、この場合には半導体ウェハ処理液調製用材料と称してもよい。
 従って、処理液を上記第1の溶液と第2の溶液の2種の調製用材料として準備する場合には、調製用材料自体の保存安定性の観点、及び金属表面荒れを安定して抑制することが可能となる観点から、各調製用材料を構成する2種の溶液中の成分は、以下のとおりとすることが好ましい。
 ・第1の溶液:ハロゲン酸イオン、亜ハロゲン酸イオン、ハロゲン化物イオンから選択される少なくとも1種のアニオン種を含む溶液
 ・第2の溶液:次亜ハロゲン酸イオンを含む溶液
 なお、調製用材料は、調製用材料1及び調製用材料2のみを含む態様であってもよいが、これらの調製用材料以外の調製用材料を含んでいてもよい。
 ここで、上記第1の溶液と第2の溶液の2種の調製用材料を混合することで、次亜ハロゲン酸イオンを生成するためには、第1の溶液中にハロゲン化物イオンを含有し、第2の溶液には、第1の溶液中のハロゲン化物イオンより酸化力の高い次亜ハロゲン酸イオンを含めればよい。このような次亜ハロゲン酸イオンとしては、臭化物イオンに対しては次亜塩素酸イオン、ヨウ化物イオンに対しては次亜塩素酸イオンおよび次亜臭素酸イオンを挙げる事ができる。具体的には、例えば、本発明の処理液中の次亜ハロゲン酸イオンとして次亜臭素酸イオンを含む処理液を製造する場合、上記第1の溶液として臭化物イオンを含む液とし、上記第2の溶液として次亜塩素酸イオンを含む液とすればよい。次亜塩素酸イオン-塩化物イオンの酸化還元電位(0.89V(at25℃、pH14、vs.標準水素電極))が次亜臭素酸イオン-臭化物イオンの酸化還元電位(0.76V(同上))よりも高いため、第1の溶液と第2の溶液を混合することで、次亜塩素酸イオンによって臭化物イオンが酸化され、次亜臭素酸イオンを生成することができ、次亜臭素酸イオンを含む処理液を製造することができる。
(第1の溶液の調製方法)
 本発明において、第1の溶液を調製する方法としては特に制限されない。具体的には、水等の溶媒に、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種を添加し、第1の溶液とすることができる。第1の溶液には、必要に応じて、その他の添加剤等を加えることもできる。上記第1の溶液と第2の溶液の2種の調製用材料を混合することで、次亜ハロゲン酸イオンを生成する場合において、第1の溶液中に臭化物イオンまたはヨウ化物イオンが含まれる場合、該イオンは、例えば、溶解時に該イオンを発生する塩等を溶液に溶解する事で得られる。一例を挙げれば、臭化ナトリウム、ヨウ化ナトリウム等の金属塩類、臭化テトラアルキルアンモニウム、ヨウ化テトラアルキルアンモニウム等の有機塩類、臭素ガスまたはヨウ素ガスなどのハロゲンガス、臭化水素またはヨウ化水素などのハロゲン化水素が挙げられる。中でも、半導体製造における歩留まり低下の要因となる金属を含まない事から、有機塩類、ハロゲンガス、ハロゲン化水素である事が好ましい。工業的な入手の容易性、取り扱いの容易性から考えて、臭化物イオンまたはヨウ化物イオンの原料としては、有機塩類である事がさらに好ましい。このような有機塩類の中でも、安定性、純度、及びコストの点から、特に好適に用いる事ができるものとしては、臭化もしくはヨウ化テトラメチルアンモニウム、臭化もしくはヨウ化テトラエチルアンモニウム、又は臭化もしくはヨウ化テトラプロピルアンモニウム等のオニウムイオンを含む有機塩が挙げられる。
 本発明に使用する有機塩は、例えば、テトラアルキルアンモニウムイオンと臭化物イオンから臭化テトラアルキルアンモニウムを製造したものを使用する事ができる。臭化テトラアルキルアンモニウムの製造方法としては、水酸化テトラアルキルアンモニウムを含む水溶液と臭化物イオンを含む水溶液、または水に溶けると臭化物イオンを発生する臭素含有ガス、例えば臭化水素などを混合するだけでよい。臭化テトラアルキルアンモニウムを製造するために使用する水酸化テトラアルキルアンモニウムとしては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、又は水酸化テトラブチルアンモニウム等が挙げられる。なかでも、単位重量当たりの水酸化物イオン数が多く、高純度品が容易に入手可能であることから、水酸化テトラメチルアンモニウムであることがより好ましい。臭化テトラアルキルアンモニウムを製造するために使用する臭化物イオンを発生させる臭素イオン源としては、臭化水素、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化ルビジウム、臭化セシウム、又は臭化アンモニウム等があげられる。なかでも、金属を実質的に含まないこと、工業的に入手しやすく、高純度品が容易に入手可能であることから、臭化水素が好適である。上記では、有機塩として臭化物を取り上げたが、ヨウ化物も上記と同様に用いる事ができる。
 上記第1の溶液に含有するハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種の濃度は、第2の溶液と混合して、本発明の処理液とした場合に所望する濃度となるように適宜設定すればよい。例えば、第1の溶液と第2の溶液とを混合して次亜ハロゲン酸イオンを発生させない場合には、混合後の処理液の容量を勘案して第1の溶液に含有する上記アニオン種の濃度を設定すればよい。一方、第1の溶液と第2の溶液とを混合して次亜ハロゲン酸イオンを発生させる場合には、第1の溶液に含有するハロゲン化物イオンの濃度は、次亜ハロゲン酸イオンの発生に消費されるハロゲン化物イオンの量を勘案して設定すればよい。
 例えば、第1の溶液中のハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種の濃度は、金属表面の荒れを効果的に抑制する観点から、通常0.4mol/L以上であり、0.7mol/L以上であることが好ましく、1.5mol/L以上であることがより好ましく、また、通常6.0mol/L以下であり、2.5mol/L以下であることが好ましく、1.5mol/L以下であることがより好ましい。
 また、第1の溶液中のアニオン種の合計濃度として、上記の範囲を適用してもよい。
 第1の溶液は、ハロゲン酸イオン以外の成分を含んでいてもよく、例えば、上述した溶剤、及びその他の添加剤を含んでいてよい。
 第1の溶液のpHは特に限定されず、第2の溶液と混合して、例えば、本発明の処理液として所望されるpHとなるように適宜設定することが好ましい。混合後のpH変化を抑制させる点から、pHは7以上、14以下であることが望ましく、8以上、14以下であることが、より好ましい。このpH範囲の溶液であれば、後述する第2の溶液と混合した際に生じるpH低下を小さくすることができ、最終的に得られる処理液を安定に製造、保存、及び使用することが可能となる。第1の溶液のpHを8未満にする場合には、第2の溶液と混合した際に、混合後の処理液のpHがアルカリ性となるよう、第1の溶液のpHと液量を調整すればよい。第1の溶液に含まれるその他の成分としては、上記、本発明の処理液にて記載した溶媒、その他の添加剤、及びpH調整剤を使用する事が好ましい。
(第2の溶液の調製方法)
 本発明において、第2の溶液を調製する方法としては特に制限されない。具体的には、水等の溶媒に、次亜ハロゲン酸イオンを添加し、さらに必要に応じて添加される添加剤を添加し、本発明の第2の溶液とすることができる。上記次亜ハロゲン酸イオンとしては、例えば、次亜塩素酸ナトリウム、次亜臭素酸ナトリウム、次亜塩素酸テトラアルキルアンモニウム、又は次亜臭素酸テトラアルキルアンモニウムなどを用いることができる。中でも、半導体形成工程において歩留まり低下の要因となる金属を含まない、次亜塩素酸テトラアルキルアンモニウム、又は次亜臭素酸テトラアルキルアンモニウムを用いる事が好ましい。該次亜ハロゲン酸テトラアルキルアンモニウムは、公知の方法で準備すればよい。例えば、水酸化テトラアルキルアンモニウム水溶液を準備し、塩素を吹き込むことによって、次亜塩素酸テトラアルキルアンモニウムを含む水溶液を調製することが出来る。また、水酸化テトラアルキルアンモニウム溶液をカチオン交換型イオン交換樹脂と接触させ、該イオン交換樹脂内のカチオンをテトラアルキルアンモニウムイオンとした後に、次亜塩素酸ナトリウム溶液を流通してナトリウムイオンとテトラアルキルアンモニウムイオンを交換する方法でも次亜塩素酸テトラアルキルアンモニウムを含む溶液を調製できる。
 上記第2の溶液に含有する次亜ハロゲン酸イオンの濃度は第1の溶液と混合して、本発明の処理液とした場合に所望する濃度となるように適宜設定すればよい。例えば、第1の溶液と第2の溶液とを混合して次亜ハロゲン酸イオンを発生させない場合には、混合後の処理液の容量を勘案して第2の溶液に含有する次亜ハロゲン酸イオンの濃度を設定すればよい。一方、第1の溶液と第2の溶液とを混合して次亜ハロゲン酸イオンを発生させる場合には、第2の溶液に含有する次亜ハロゲン酸イオンの濃度は、次亜ハロゲン酸イオンの発生に消費される次亜ハロゲン酸イオンの量を勘案して設定すればよい。
 例えば、第2の溶液中の次亜ハロゲン酸イオンの濃度は、金属表面の荒れを効果的に抑制する観点から、通常0.05mol/L以上であり、0.1mol/L以上であることが好ましく、0.2mol/L以上であることがより好ましく、また、通常3.5mol/L以下であり、0.8mol/L以下であることが好ましく、0.3mol/L以下であることがより好ましく、0.2mol/L以下であることがさらに好ましい。
 第1の溶液の使用量に対する第2の溶液の使用量の比率(第2の溶液の使用量/第1の溶液の使用量)は、特段制限されないが、金属表面の荒れを効果的に抑制する観点から、重量比で、通常0.1以上であり、0.15以上であることが好ましく、0.25以上であることがより好ましく、また、通常10以下であり、6以下であることが好ましく、4以下であることがより好ましい。
 第2の溶液中の次亜ハロゲン酸イオンの濃度(mol/L)に対する、第1の溶液中の少なくとも1種のアニオン種の濃度(mol/L)(第1の溶液中のアニオン種の合計濃度としてもよい。)の比率(アニオン種の濃度/次亜ハロゲン酸イオンの濃度)は、特段制限されないが、金属表面の荒れを効果的に抑制する観点から、通常2以上であり、4以上であることが好ましく、6以上であることがより好ましく、8以上であることがさらに好ましく、また、通常500以下であり、200以下であることが好ましく、50以下であることがより好ましく、10以下であることがさらに好ましい。
 第2の溶液は、アニオン種以外の成分を含んでいてもよく、例えば、上述した溶剤、及びその他の添加剤を含んでいてよい。
 第2の溶液のpHは特に限定されず、第1の溶液と混合して、例えば、本発明の処理液として所望されるpHとなるように適宜設定することが好ましい。混合後のpH変化を抑制させる点から、pHは7以上、14以下であることが望ましく、10以上、14以下であることがより好ましく、12以上、14以下であることが、特に好ましい。このpH範囲の溶液であれば、上記第1の溶液と混合した際に生じるpH低下を小さくすることができ、本発明の処理液を安定に製造、保存、及び使用することが可能となる。第2の溶液に含まれるその他の成分としては、上記、本発明の処理液にて記載した溶媒、その他の添加剤、及びpH調整剤を使用する事が好ましい。
 第1の溶液に含まれるアニオン種の酸化力、及び第2の溶液に含まれる次亜ハロゲン酸イオンの酸化力は、特段制限されず適宜設定することができるが、金属表面の荒れを効果的に抑制する観点から、該次亜ハロゲン酸イオンの酸化力は、該アニオン種の酸化力よりも高いことが好ましい。
 本発明の処理液および調製用材料の製造、及び保存については、低温である事、遮光されている事かつアミンを含まない事が好ましい。低温、遮光かつアミン不含にて製造、及び保存する事で、処理液中の酸化剤およびアニオン種の分解を抑制する効果が期待できる。さらに、不活性ガスを封入した容器で処理液および調製用材料を製造、並びに保存する事により、二酸化炭素の混入を防ぐことが可能となるため、処理液の安定性を維持することができる。また、該容器の内面、すなわち処理液と接する面は、ガラスまたは有機高分子材料で形成されていることが好ましい。該反応容器の内面がガラスまたは有機高分子材料で形成されていれば、金属、金属酸化物、及び有機物等の不純物混入をより低減できるためである。
 金属表面の荒れを効果的に抑制する観点から、第1の溶液及び第2の溶液から選択される少なくとも1つの溶液にオニウムイオンが含まれていることが好ましく、特に、第1の溶液及び第2の溶液の両方に含まれていることが好ましい。
 オニウムイオンの態様は、上述した本発明の処理液において説明したオニウムイオンと同様の態様を適用することができる。
 第1の溶液及び第2の溶液から選択される少なくとも1つの溶液中のオニウムイオンの濃度は、特段制限されないが、金属表面の荒れを効果的に抑制する観点から、通常0.00002mol/L以上であり、0.002mol/L以上であることが好ましく、0.02mol/L以上であることがより好ましく、また、通常6.0mol/L以下であり、4.0mol/L以下であることが好ましく、2.0mol/L以下であることがより好ましく、1.0mol/L以下であることがさらに好ましい。
 また、第1の溶液及び第2の溶液の合計量に対する、これらの溶液に含まれるオニウムイオンの合計濃度は、特段制限されないが、金属表面の荒れを効果的に抑制する観点から、通常0.00001mol/L以上であり、0.001mol/L以上であることが好ましく、0.01mol/L以上であることがより好ましく、また、通常6.0mol/L以下であり、3.0mol/L以下であることが好ましく、2.0mol/L以下であることがより好ましく、1.0mol/L以下であることがさらに好ましい。
(調製用材料の配合)
 本発明の処理液の製造方法における上記第1の溶液と第2の溶液の2種の調製用材料に含まれる各成分の濃度は特に制限されず、調製用材料を混合後、処理液とした場合の所望の配合となるように調製すればよい。
 具体的には、次亜塩素酸イオンを0.001mol/L以上、2.0mol/L以下含み、アニオン種として、塩化物イオンを0.30mol/L以上5.00mol/L以下、塩素酸イオンを0.3mol/L以上、1.50mol/L以下含む処理液とする場合、上記第1の溶液としては、塩化物イオンを0.60mol/L以上、6.0mol/L以下、塩素酸イオンを0.60mol/L以上、3.0mol/L以下含む溶液とし、上記第2の溶液としては次亜塩素酸イオンを0.002mol/L以上、4.0mol/L以下とする溶液とし、半導体ウェハを処理する前にこれらの調製用材料を混合して半導体ウェハの処理液とすればよい。
 或いは、処理液中の次亜ハロゲン酸イオンとして、次亜塩素酸イオンと次亜臭素酸イオンを0.001mol/L以上、2.0mol/L以下含み、アニオン種として、塩化物イオンを0.30mol/L以上、5.0mol/L以下、塩素酸イオンを0.3mol/L以上、1.50mol/L以下含む処理液を得る場合、上記第1の溶液としては、塩化物イオンを0.60mol/L以上、6.0mol/L以下、臭化物イオンを0.002mol/L以上、0.40mol/L以下、塩素酸イオンを0.60mol/L以上、3.00mol/L以下含む溶液とし、上記第2の溶液としては次亜塩素酸イオンを0.002以上、4.0mol/L以下とする溶液とし、半導体ウェハを処理する前にこれらの調製用材料を混合して半導体ウェハの処理液とすればよい。
(調製用材料の混合方法)
 第1の溶液と第2の溶液とを混合する工程における混合方法は、半導体薬液の混合方法として広く公知の方法を用いることができる。例えば、混合タンクを用いる方法、半導体製造装置の配管内で混合する方法(インラインミキシング)、又はウェハ上に複数の液を同時にかけることで混合する方法等を好適に用いることができる。なお、第1の溶液と第2の溶液とを混合して次亜ハロゲン酸イオンを発生させる場合には、次亜ハロゲン酸イオンを確実に発生させる点から、予め調製用材料を混合し、次亜ハロゲン酸イオンを十分に発生させた後に、半導体ウェハと接触させることが好ましい。
 上記調製用材料を混合する際の温度については、混合後の処理液が均一になれば特に制限されず、通常0℃以上、80℃以下の範囲で適宜設定すればよい。調製用材料の混合により次亜ハロゲン酸イオンを発生させる場合には、該次亜ハロゲン酸イオンの発生は早いほどよい事から、混合時間としては短いほど好ましい。混合時間を短くするためには、例えば、混合時の温度を高くする方法が挙げられるが、温度は高いほど、第2の溶液または混合後の処理液に含まれる次亜ハロゲン酸イオンの分解が進行しやすい傾向がある。このような理由から、調製用材料の混合により次亜ハロゲン酸イオンを発生させる場合の上記調製用材料の混合時の温度としては、10℃以上、60℃以下である事がより好ましく、20℃以上、50℃以下である事が最も好ましい。
 また、調製用材料の混合時間については、第1の溶液と第2の溶液とを混合して次亜ハロゲン酸イオンを発生させない場合には、混合後の処理液の温度や組成物濃度が均一となるまで行えばよく、通常30分以内の間で適宜設定すればよい。一方、第1の溶液と第2の溶液とを混合して次亜ハロゲン酸イオンを発生させる場合には、次亜ハロゲン酸イオンを確実に発生させるためには混合時間は長い方がよいが、スループットの観点から、通常60分以内の中で適宜設定すればよく、また、混合時間の下限は特段設定不要であるが、通常5分以上である。
 上記の製造方法により、半導体ウェハの処理液、特に本発明の半導体ウェハの処理液を製造することができる。本製造方法により製造された半導体ウェハの処理液や、上述した本発明の処理液を用いることで、単位時間当たりのウェハ処理効率が向上するだけでなく、例えば、配線材料に対して精密なエッチングの制御が要求される、半導体製造工程における金属のエッチバック工程用の処理液として、好適に使用することが出来る。さらにルテニウム以外の金属に対しても同様の効果を有するため、ルテニウムに限らず半導体ウェハに含まれる金属に対するエッチング液として用いることができる。
 以下、本製造方法により製造された半導体ウェハの処理液、又は上述した処理液(以下、これらを総称して「本発明の半導体ウェハの処理液」とも称する。)の利用方法について説明する。
 本発明の別の実施形態である調製用材料は、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種を含む第1の溶液と、及び次亜ハロゲン酸イオンを含む第2の溶液とを含む、半導体ウェハの処理液の調製用材料であり、これらの第1の溶液及び第2の溶液の条件は、上述した第1の溶液及び第2の溶液の条件を同様に適用することができる。
 本発明の調製用材料に含まれる第1の溶液及び第2の溶液の含有量は、特段制限されないが、調剤用材料は、第1の溶液及び第2の溶液のみから構成されていてよい。
 調製用材料中の第1の溶液の含有量は、特段制限されないが、金属表面の荒れを効果的に抑制する観点から、通常10重量%以上であり、15重量%以上であることが好ましく、20重量%以上であることがより好ましく、また、通常90重量%以下であり、60重量%以下であることが好ましく、40重量%以下であることがより好ましく、30重量%以下であることがさらに好ましい。
 調製用材料中の第2の溶液の含有量は、特段制限されないが、金属表面の荒れを効果的に抑制する観点から、通常10重量%以上であり、40重量%以上であることが好ましく、60重量%以上であることがより好ましく、70重量%以上であることがさらに好ましく、また、通常90重量%以下であり、85重量%以下であることが好ましく、80重量%以下であることがより好ましい。
(キット)
 本発明の別の実施形態であるキット(単に「キット」とも称する。)は、半導体ウェハの処理液を調製するためのキットであって、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種を含む第1の溶液と、次亜ハロゲン酸イオンを含む第2の溶液とを少なくとも備える、キット(半導体ウェハの処理液製造用キット)である。これらの第1の溶液及び第2の溶液としては、上述の第1の溶液及び第2の溶液を用いることができる。
 キットの態様は特段制限されず、例えば、上記の第1の溶液が収容(又は、保管若しくは保持)された容器と、上記の第2の溶液が収容(又は、保管若しくは保持)された容器とを備える態様であってよく、また、2つ以上の溶液収容スペースを有し、かつ、その内の2つの溶液収容スペースにそれぞれ第1の溶液及び第2の溶液が収容される容器としての態様であってよい。第1の溶液及び第2の溶液は、容器に収容して保管、運搬、及び使用することができる。また、このようなキットに収納された各溶液を混合することにより、半導体ウェハの処理液を調製することができる。
 第1の溶液が収容された容器と、上記の第2の溶液が収容された容器とを備えるキットの態様で用いる場合、各容器の態様は特段制限されず、各容器の容積は、収納される溶液の量に応じて適宜設計することができ、例えば、20000cm以上、200000cm以下であってよく、また、4000cm以上、20000cm以下であってよく、また、各容器の材質は、収容される溶液と反応しにくく、不純物の溶出が少ない材質であることが好ましい。また、各容器に収容される溶液の量は、最終的に得たい処理液の量に応じて適宜設計することができる。容器としては、例えば、PP(ポリプロピレン)、PE(ポリエチレン)、PTFE、PFA等、または、これら以外であっても、これらの材質で内壁をコーティングした金属またはガラス製容器等を用いることができる。
 また、2つ以上の溶液収容スペースを有し、かつ、その内の2つの溶液収容スペースにそれぞれ第1の溶液及び第2の溶液が収納される容器としての態様における溶液収容スペースの容積や容器の材質についても、上述の容積及び材質を同様に適用することができる。
 キットは、第1の溶液及び第2の溶液のみを備えるキットであってもよく、また、これらの溶液以外の溶液を更に備える3液系以上のキットであってもよいが、処理液の製造工程の簡便化の観点から、第1液の溶液及び第2の溶液のみを備えるキットであることが好ましい。
 また、キットの製造方法は特段制限されず、各態様に応じて公知の方法により製造することができる。
(半導体ウェハの処理液の利用)
 上述のとおり、本発明の半導体ウェハの処理液は、単位時間当たりのウェハ処理効率が向上するだけでなく、例えば、配線材料に対して精密なエッチングの制御が要求される、半導体製造工程における金属のエッチバック工程用の処理液として、好適に使用することが出来る。さらにルテニウム以外の金属に対しても同様の効果を有するため、ルテニウムに限らず半導体ウェハに含まれる金属に対するエッチング液として用いることができる。
 本発明の処理液が適用される半導体ウェハに含まれる金属として具体的には、Ru、Rh、Ti、Ta、Co、Cr、Hf、Os、Pt、Ni、Mn、Cu、Zr、La、Mo、又はW等が挙げられ、これらから選択される少なくとも1種の金属を含む。これらの金属は、単独の金属種であっても、あるいは複数の金属種の合金であっても適用可能である。これらの金属の中でも、配線層として有用である、Ru、Rh、Co、Cu、Mo、又はW等の金属に対して好適に用いることができる。これらの中でも、Ru、Co、Mo又はWである事が好ましい。該金属は、いかなる方法によって成膜されていてもよく、半導体製造工程で広く公知の方法、例えば、CVD、ALD、PVD、スパッタ、又はめっき等を利用できる。
 上記金属は、金属間化合物、イオン性化合物、又は錯体等であってもよい。また、金属はウェハの表面に露出していてもよいし、他の金属や金属酸化膜、絶縁膜、又はレジスト等に覆われていてもよい。他の材料に覆われている場合であっても、金属が本発明の処理液に接触して金属の溶解が起こる際、十分なエッチング速度と表面荒れの両立が可能となる。
 例えば、金属配線形成工程において本発明の処理液を用いる場合は、次のようになる。まず、半導体(例えばSi)からなる基体を用意する。用意した基体に対して、酸化処理を行い、基体上に酸化シリコン膜を形成する。その後、低誘電率(Low-k)膜からなる層間絶縁膜を成膜し、所定の間隔でビアホールを形成する。ビアホール形成後、熱CVDによって、金属をビアホールに埋め込み、さらに金属膜を成膜する。この金属膜を本発明の処理液を用いて処理することで、十分なエッチング速度を維持しながら平坦化を行う事が可能となる。
 上記金属層が成膜された半導体ウェハへの本発明の処理液の接触方法は特に制限されない。例えば、半導体ウェハを回転させながら該ウェハ上に本発明の処理液を流してもよいし、或いは本発明の処理液を充填した容器内に上記半導体ウェハを浸漬させて接触させてもよい。
 本発明の処理液により金属をエッチングするときの温度は特に制限されず、金属のエッチング速度、及び処理液の安定性などを考慮して適宜決定すればよい。処理液の安定性は温度が高いほど悪くなる傾向があるため、処理温度は低い方が好ましい。一方、金属のエッチング速度は、高温であるほど大きくなる傾向がある。処理液の安定性とエッチング速度を両立させる観点から、金属をエッチングする温度は10℃以上、90℃以下が好ましく、15℃以上、70℃以下がより好ましく、20℃以上、60℃以下であることが最も好ましい。
 本発明の処理液により金属をエッチングするときの処理時間は、0.1分以上、120分以下、好ましくは0.3分以上、60分以下の範囲であり、エッチング条件や使用される半導体素子により適宜選択すればよい。本発明の処理液を使用後は、処理液が接触した半導体ウェハ表面をリンス液等で洗浄することで、該処理液を除去することが可能である。本発明の処理液を使用した後のリンス液としては、特に制限されずアルコールのような有機溶媒、或いは脱イオン水を用いることができる。リンス後の半導体ウェハは、必要に応じてウェハ表面を乾燥後、他の配線材料の積層等、次工程に供することができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、実施例及び比較例で用いた次亜塩素酸テトラメチルアンモニウム、並びに塩素酸テトラメチルアンモニウム、及び評価用半導体ウェハは以下の方法で準備した。以下の実施例及び比較例において、金属及び金属イオンの濃度が0.01ppt~1ppbである事を、誘導結合プラズマ質量分析装置(ICP-MS、Agilent8900、アジレントテクノロジーズ製)により測定した。具体的には、例えば実施例1では、Li 0.01ppt、Na 8ppt、Mg 1ppt、Al 50ppt、K 2ppt、Ca 10ppt、Cr 8ppt、Mn 0.5ppt、Fe 11ppt、Co 3ppt、Ni 2ppt、Cu 0.2ppt、Zn 11ppt、Ag 0.01ppt、Cd 0.5ppt、Ba 2ppt、Pb 10pptであった。
(金属のエッチング性能評価用半導体ウェハの準備)
 実施例および比較例で使用したルテニウム膜、モリブデン膜、およびタングステン膜は次のように成膜した。ルテニウム膜およびモリブデン膜は、シリコンウェハ上にバッチ式熱酸化炉を用いて酸化膜を形成し、その上にスパッタ法を用いて1200Åのルテニウムまたは1000Åのモリブデンを成膜する事で得た。タングステン膜は、同様に熱酸化膜を形成し、CVD法により8000Åのタングステンを製膜する事で得た。四探針抵抗測定器(ロレスタ-GP、三菱ケミカルアナリテック社製)によりシート抵抗を測定して膜厚に換算し、エッチング処理前の金属膜厚とした。
(次亜塩素酸テトラメチルアンモニウム((CHNClO)の調製)
 2Lのガラス製三ツ口フラスコ(コスモスビード社製)に25重量%の水酸化テトラメチルアンモニウム水溶液583.4g、イオン交換水363.4gを混合して15.4重量%の水酸化テトラメチルアンモニウム水溶液を得た。このときのpHは14.2であった。
 次いで、三ツ口フラスコの内に回転子(AsOne社製、全長30mm×径8mm)を入れ、一つの開口部に温度計保護管(コスモスビード社製、底封じ型)と温度計を投入し、もう一つの開口部に塩素ガスボンベ、および窒素ガスボンベに接続され、任意で塩素ガス/窒素ガスの切換えが可能な状態にしたPFAチューブ(フロン工業株式会社製、F-8011-02)の先端を該溶液底部に浸漬させ、残りの一つの開口部は5重量%の水酸化ナトリウム水溶液で満たしたガス洗浄瓶(AsOne社製、ガス洗浄瓶、型番2450/500)に接続した。窒素ガスをPFAチューブから200ccm(25℃)で20分間流すことで気相部の二酸化炭素を追いだした。
 その後、マグネットスターラー(AsOne社製、C-MAG HS10)を三ツ口フラスコ下部に設置して300rpmで回転させながら、三ツ口フラスコ外周部を氷水で冷却しながら塩素ガス(フジオックス社製、仕様純度99.4%)を200ccm(25℃)で180分間、供給し、0.75mol/L次亜塩素酸テトラメチルアンモニウム溶液(0.75mol/L塩化テトラメチルアンモニウム、0.1mol/L水酸化テトラメチルアンモニウムを含む)を得た。この時、反応中の液温は11℃であった。
(塩素酸テトラメチルアンモニウム((CHNClO)の調製)
 塩素酸ナトリウム(富士フィルム和光純薬製)をイオン交換水に加える事で得た飽和溶液を、冷蔵庫内で24時間保存し、析出した塩素酸ナトリウムをろ過により回収した。回収した塩素酸ナトリウムを超純水で希釈し、イオンクロマトグラフィー分析装置を用いて分析した。希釈液中のCO -、SO -、及びCl-を分析することで、不純物として含まれるNaCO、NaSO、及びNaClが減少していることを確認した。上記の精製作業を繰り返すことで、CO -、SO -、及びCl-がそれぞれ500ppb以下であることを確認し、精製した塩素酸ナトリウムを得た。
 次に、内径約45mmのガラスカラム(AsOne社製、バイオカラムCF-50TK)に、強酸性イオン交換樹脂(オルガノ社製、アンバーライトIR-120BNa)を200mL投入した。その後、水素型に交換するため1規定の塩酸(富士フイルム和光純薬社製、容量分析用)を1L、イオン交換樹脂カラムに通液し、イオン交換樹脂を水洗するため、超純水1Lを通液した。さらに、水素型に交換されたイオン交換樹脂に、2.38%水酸化テトラメチルアンモニウム溶液を2L通液し、水素型からテトラメチルアンモニウム型にイオン交換した。イオン交換後、イオン交換樹脂を水洗するため、超純水1Lを通液した。
 精製した塩素酸ナトリウム6.4gをフッ素樹脂容器に入れた後、超純水93.6gを添加して、6.4重量%の塩素酸ナトリウム水溶液を調製した。調製した塩素酸ナトリウム水溶液をテトラメチルアンモニウム型に交換したイオン交換樹脂に通液した。回収した塩素酸テトラメチルアンモニウムは、高周波誘導結合プラズマ発光分光分析法(iCAP6500DuO、Thermo SCIENTIFIC社製)を用いてNa濃度を分析し、イオン交換が十分行われていることを確認した。不十分な場合は、上記操作を繰り返すことで、Na濃度が500ppb以下の10重量%塩素酸テトラメチルアンモニウム溶液を得た。得られた溶液を熱処理し、塩素酸テトラメチルアンモニウム粉末を得た。
(その他の試薬)
 上記の他に、実施例及び比較例に用いた試薬は以下のとおりである。
 塩化テトラメチルアンモニウム((CHNCl):東京化成工業社製
 臭化テトラメチルアンモニウム((CHNBr):東京化成工業社製
 次亜塩素酸ナトリウム五水和物(NaClO・5HO):和光純薬工業社製
 塩化ナトリウム(NaCl):富士フイルム和光純薬社製
 臭化ナトリウム(NaBr):富士フイルム和光純薬社製
 塩化テトラプロピルアンモニウム((CNCl):東京化成工業社製
 塩化1,1-ジメチルピペリジニウム(C16NCl):東京化成工業社製
 塩化ヘキサメトニウム二水和物(C1230Cl・2HO):東京化成工業社製 15wt%HCl:関東化学社製(35wt%HClを超純水により希釈して調製)
 1mоl/L NaOH:富士フイルム和光純薬社製
<実施例1~38、比較例1~27>
(半導体ウェハの処理液の製造)
 上記製造例で得られた、0.75mol/L次亜塩素酸テトラメチルアンモニウム水溶液、塩素酸テトラメチルアンモニウム粉末、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、超純水、及び15wt%HCl、1mоl/LNaOHを混合することで、表1~3に記載にされた組成の処理液100mLを得た。ただし、実施例16および34、比較例8および21では、0.75mol/L次亜塩素酸テトラメチルアンモニウム水溶液の代わりに次亜塩素酸ナトリウム五水和物を、塩化テトラメチルアンモニウムの代わりに塩化ナトリウムを、臭化テトラメチルアンモニウムの代わりに臭化ナトリウムを用いた。得られた半導体ウェハの処理液中の次亜ハロゲン酸イオンの濃度、アニオン種の濃度、及びpHは以下の方法により測定した。得られた処理液を用いて下記に示す金属のエッチング性能の評価、及びエッチング後の表面評価を実施した。結果を表1~3に示した。
(次亜臭素酸イオンおよび次亜塩素酸イオン濃度の測定方法)
 次亜臭素酸イオンおよび次亜塩素酸イオン濃度の測定は紫外可視分光光度計(UV-2600、島津製作所社製)を用いた。濃度既知の次亜臭素酸イオンおよび次亜塩素酸イオン水溶液を用いて検量線を作成し、製造した処理液中の次亜臭素酸イオンおよび次亜塩素酸イオン濃度を決定した。
(アニオン種の濃度の測定方法)
 半導体ウェハの処理液中のアニオン種の濃度の測定は、イオンクロマトグラフィー分析装置(DIONEX INTEGRION HPLC、Thermo SCIENTIFIC社製)を用いて分析した。溶離液としてKOHを用い、1.2mL/min.の流量で通液した。カラムとして水酸化物系溶離液用陰イオン分析カラム(AS15、Thermo SCIENTIFIC社製)を用い、カラム温度は30℃とした。サプレッサーによりバックグラウンドノイズを取り除いたのち、電気伝導度検出器により処理液中のアニオン種を定量した。
(pH測定方法)
 実施例及び比較例で調製した処理液10mLを、卓上型pHメーター(LAQUA F-73、堀場製作所社製)を用いてpH測定した。pH測定は、処理液を調製し、25℃で安定した後に、実施した。
(金属のエッチング性能の評価)
 実施例の処理液60mLを、蓋付きフッ素樹脂製容器(AsOne製、PFA容器94.0mL)に準備した。10×20mmとした各評価用半導体ウェハ片を、処理液中に25℃または50℃で1分間浸漬し、処理前後の膜厚変化量を浸漬した時間で除した値をエッチング速度として算出し、下記の基準で評価した。いずれも評価A~Cが許容レベルであり、評価Dが不可レベルである。
 (ルテニウム膜、モリブデン膜)
 A:>50Å/分
 B:50~20Å/分
 C:20~10Å/分(許容レベル)
 D:エッチング不可
 (タングステン膜)
 A:>500Å/分
 B:500~100Å/分
 C:100~10Å/分(許容レベル)
 D:エッチング不可
(エッチング後の表面評価)
 電界放射型走査電子顕微鏡(JSM-7800F Prime、日本電子社製)によりエッチング前とエッチング後の金属表面を観察し、表面荒れの有無を確認し、下記の基準で評価した。表面荒れが少ない順にA~Dとなっており、いずれも評価A~Cが許容レベル、評価Dが許容不可レベルである。
 A:表面荒れはみられない
 B:表面荒れが若干みられる
 C:表面全体に荒れは見られるが、荒れが浅い
 D:表面全体に荒れが見られ、かつ荒れが深い
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 <実施例39~41、比較例28>
 表4に記載された組成の第1および第2の溶液(調製用材料)を調製し、各溶液をピュアボトル(容量20L、内壁PE、遮光、コダマ樹脂製)に、N封止、25℃の条件にて別々に保管した。各容器に保管した溶液を表4に記載の混合比(容量比)にて混合する事で、表5に記載された組成の処理液を得た。実施例1と同様にして、エッチング速度および金属表面の平滑性を評価した。結果を表5に示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 <実施例42>
 実施例35の処理液、及び実施例41の処理液(第1および第2の溶液(調製用材料))を調製し、液を調製した日を第1日目として、実施例1と同様にして150日間の保管試験を実施した(保管条件:窒素封止、遮光下、25℃)。実施例41の処理液は、第1および第2の溶液として保管し、評価直前に混合して処理液を調製した。結果を表6に示した。
Figure JPOXMLDOC01-appb-T000006
 <実施例43~56>
 表7に記載にされた組成の処理液を得た。実施例1と同様にして、エッチング速度および金属表面の平滑性を評価した。結果を表7に示した。
Figure JPOXMLDOC01-appb-T000007
 <実施例57>
 比較例13の処理液、及び実施例21の処理液を調製し、液を調製した日を第1日目として、実施例1と同様にして150日間の保管試験を実施した(保管条件:窒素封止、遮光下、25℃)。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 <実施例58>
 比較例1の処理液、及び実施例2の処理液を調製し、液を調製した日を第1日目として、実施例1と同様にして150日間の保管試験を実施した(保管条件:窒素封止、遮光下、25℃)。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表1に示したように、比較例1~28に示す処理液を用いた場合、エッチング後の表面はいずれも粗く、エッチングレートと平滑性を両立する事は出来なかった。一方、表1~3に示したように、実施例1~38に示した本発明の処理液では、エッチング後の表面平滑性は良好であったため、エッチングレートと平滑性の両立が可能であった。表4及び5に示したように、実施例39~41では、アニオン種を含む第1の溶液と酸化剤を含む第2の溶液とを用意し、各評価用半導体ウェハをエッチングする前に両溶液を混合して処理液を調製したが、エッチングレートと平滑性の両立が可能であった。表6に示したように、実施例42では、1液と2液タイプ(キット)の処理液(実施例35及び41)の性能について比較しているが、1液タイプに比べて、金属を処理する直前に処理液を製造した2液タイプ(キット)の方が、長期間に渡って優れたエッチング速度と表面平滑性を示した。表7に示したように、実施例43~56では、アニオン種に加えて、オニウムイオンを添加した処理液の特性を評価しているが、オニウムイオンを添加する事で、エッチング速度を保ったまま表面平滑性がより改善した。表8および9に示したように、アニオン種をより多く含む本発明の実施形態に係る処理液では、エッチング速度および表面平滑性に対する安定性がより優れている事が明らかとなった。

Claims (18)

  1.  半導体ウェハの処理液であって、
     前記処理液が、少なくとも1種の次亜ハロゲン酸イオンと、
     ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種とを含み、
     前記アニオン種の少なくとも1種のアニオン種の含有量が、前記処理液に対して、0.30mol/L以上、6.00mol/L以下である、半導体ウェハの処理液。
  2.  前記アニオン種として2種以上のアニオン種を含む、請求項1に記載の半導体ウェハの処理液。
  3.  前記処理液に対して、0.30mol/L以上、6.00mol/L以下で含有される前記アニオン種として、少なくともハロゲン化物イオンが含まれる、請求項1又は2に記載の半導体ウェハの処理液。
  4.  前記次亜ハロゲン酸イオンの含有量が、前記処理液に対して、0.0010mol/L以上、4.00mol/L以下である、請求項1~3のいずれか一項に記載の半導体ウェハの処理液。
  5.  前記次亜ハロゲン酸イオンとして、次亜塩素酸イオン及び次亜臭素酸イオンから選択される少なくとも1種が含まれる、請求項1~4のいずれか一項に記載の半導体ウェハの処理液。
  6.  前記次亜ハロゲン酸イオンとして、次亜塩素酸イオン及び次亜臭素酸イオンが含まれる、請求項5に記載の半導体ウェハの処理液。
  7.  前記次亜ハロゲン酸イオンとして、少なくとも次亜臭素酸イオンを含み、該次亜臭素酸イオンの含有量が、前記処理液に対して、0.0010mol/L以上、0.20mol/L以下である、請求項1~6のいずれか一項に記載の半導体ウェハの処理液。
  8.  前記処理液がさらにオニウムイオンを含む、請求項1~7のいずれか一項に記載の半導体ウェハの処理液。
  9.  前記処理液のpHが7以上、14以下である、請求項1~8のいずれか一項に記載の半導体ウェハの処理液。
  10.  前記半導体ウェハが、Ru、Rh、Ti、Ta、Co、Cr、Hf、Os、Pt、Ni、Mn、Cu、Zr、La、Mo、及びWから選択される少なくとも1種の金属を含む、請求項1~9のいずれか1項に記載の半導体ウェハの処理液。
  11.  ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種を含む第1の溶液を調製する工程、
     次亜ハロゲン酸イオンを含む第2の溶液を調製する工程、並びに
     前記第1の溶液、及び前記第2の溶液を混合する工程を含む、
    半導体ウェハの処理液の製造方法。
  12.  前記第2の溶液に含まれる次亜ハロゲン酸イオンの酸化力が、前記第1の溶液に含まれるアニオン種の酸化力よりも高い、請求項11に記載の半導体ウェハの処理液の製造方法。
  13.  前記第1の溶液に含まれるアニオン種の少なくとも1種が臭化物イオンであり、前記第2の溶液に含まれる次亜ハロゲン酸イオンが次亜塩素酸イオンである、請求項11又は12に記載の半導体ウェハの処理液の製造方法。
  14.  前記第1の溶液及び前記第2の溶液から選択される少なくとも1つの溶液がオニウムイオンを含む、請求項11~13のいずれか一項に記載の半導体ウェハの処理液の製造方法。
  15.  前記第1の溶液及び前記第2の溶液がそれぞれオニウムイオンを含む、請求項14に記載の半導体ウェハの処理液の製造方法。
  16.  半導体ウェハの処理液を調製するためのキットであって、ハロゲン酸イオン、亜ハロゲン酸イオン、及びハロゲン化物イオンから選択される少なくとも1種のアニオン種を含む第1の溶液と、次亜ハロゲン酸イオンを含む第2の溶液とを少なくとも備える、キット。
  17.  前記第2の溶液に含まれる次亜ハロゲン酸イオンの酸化力が、前記第1の溶液に含まれるアニオン種の酸化力よりも高い、請求項16に記載のキット。
  18.  前記第1の溶液に含まれるアニオン種の少なくとも1種が臭化物イオンであり、前記第2の溶液に含まれる次亜ハロゲン酸イオンが次亜塩素酸イオンである、請求項16又は17に記載のキット。
PCT/JP2021/043087 2020-11-26 2021-11-25 半導体ウェハの処理液及びその製造方法 WO2022114036A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022565395A JPWO2022114036A1 (ja) 2020-11-26 2021-11-25
EP21898008.4A EP4269656A1 (en) 2020-11-26 2021-11-25 Semiconductor wafer treatment solution and prodction method for same
US17/642,059 US20220411937A1 (en) 2020-11-26 2021-11-25 Semiconductor wafer treatment liquid and prodution method thereof
CN202180079747.9A CN116529421A (zh) 2020-11-26 2021-11-25 半导体晶片处理液及其制造方法
KR1020237021381A KR20230111234A (ko) 2020-11-26 2021-11-25 반도체 웨이퍼의 처리액 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-196348 2020-11-26
JP2020196348 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022114036A1 true WO2022114036A1 (ja) 2022-06-02

Family

ID=81755588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043087 WO2022114036A1 (ja) 2020-11-26 2021-11-25 半導体ウェハの処理液及びその製造方法

Country Status (7)

Country Link
US (1) US20220411937A1 (ja)
EP (1) EP4269656A1 (ja)
JP (1) JPWO2022114036A1 (ja)
KR (1) KR20230111234A (ja)
CN (1) CN116529421A (ja)
TW (1) TW202221104A (ja)
WO (1) WO2022114036A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234373A (ja) 2000-02-23 2001-08-31 Nec Corp ルテニウム系金属の除去液及びその使用方法
JP2002161381A (ja) 2000-11-22 2002-06-04 Ebara Corp ルテニウム膜のエッチング方法
JP2005516384A (ja) * 2002-01-24 2005-06-02 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド タングステン研磨溶液
JP2005227749A (ja) * 2004-02-11 2005-08-25 Mallinckrodt Baker Inc ハロゲン酸素酸、その塩及び誘導体含有、マイクロエレクトロニクス洗浄組成物
WO2019142788A1 (ja) 2018-01-16 2019-07-25 株式会社トクヤマ 次亜塩素酸イオンを含む半導体ウェハの処理液
JP2019218436A (ja) 2018-06-15 2019-12-26 株式会社トクヤマ 4級アルキルアンモニウムイオン、亜塩素酸イオン、及び次亜塩素酸イオンを含む酸化性組成物
WO2020049955A1 (ja) * 2018-09-06 2020-03-12 富士フイルム株式会社 薬液、基板の処理方法
WO2020166677A1 (ja) * 2019-02-13 2020-08-20 株式会社トクヤマ オニウム塩を含む半導体ウェハの処理液

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234373A (ja) 2000-02-23 2001-08-31 Nec Corp ルテニウム系金属の除去液及びその使用方法
JP2002161381A (ja) 2000-11-22 2002-06-04 Ebara Corp ルテニウム膜のエッチング方法
JP2005516384A (ja) * 2002-01-24 2005-06-02 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド タングステン研磨溶液
JP2005227749A (ja) * 2004-02-11 2005-08-25 Mallinckrodt Baker Inc ハロゲン酸素酸、その塩及び誘導体含有、マイクロエレクトロニクス洗浄組成物
WO2019142788A1 (ja) 2018-01-16 2019-07-25 株式会社トクヤマ 次亜塩素酸イオンを含む半導体ウェハの処理液
JP2019218436A (ja) 2018-06-15 2019-12-26 株式会社トクヤマ 4級アルキルアンモニウムイオン、亜塩素酸イオン、及び次亜塩素酸イオンを含む酸化性組成物
WO2020049955A1 (ja) * 2018-09-06 2020-03-12 富士フイルム株式会社 薬液、基板の処理方法
WO2020166677A1 (ja) * 2019-02-13 2020-08-20 株式会社トクヤマ オニウム塩を含む半導体ウェハの処理液

Also Published As

Publication number Publication date
CN116529421A (zh) 2023-08-01
US20220411937A1 (en) 2022-12-29
JPWO2022114036A1 (ja) 2022-06-02
EP4269656A1 (en) 2023-11-01
TW202221104A (zh) 2022-06-01
KR20230111234A (ko) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2020166677A1 (ja) オニウム塩を含む半導体ウェハの処理液
JP7321138B2 (ja) ルテニウムの半導体用処理液及びその製造方法
JP2022153481A (ja) 半導体ウエハ用処理液
US11932590B2 (en) Inhibitor for RuO4 gas generation and method for inhibiting RuO4 gas generation
US20220328320A1 (en) Semiconductor treatment liquid
US20240014045A1 (en) Semiconductor wafer processing liquid containing hypobromite ions and ph buffering agent
WO2022114036A1 (ja) 半導体ウェハの処理液及びその製造方法
WO2021201094A1 (ja) 半導体用処理液及びその製造方法
WO2024075704A1 (ja) 半導体用処理液
JP7081010B2 (ja) オニウム塩を含む半導体ウェハの処理液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898008

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022565395

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180079747.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237021381

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021898008

Country of ref document: EP

Effective date: 20230626